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1 Executive Overview

1.1 Challenge overview

Noise annoyance is often reported as one of the main adverse effects of
noise exposure on human health. Chronic high noise annoyance impacts
22 million people in Europe alone, with a broad range of public health
outcomes. This Data Study Group applied sound source identification and
deep learning methods on a set of urban recordings to create a model
which can predict the resulting annoyance rating. The research challenge
was to investigate to what degree the inclusion of sound source information
can inform the optimal modelling strategy for automatically predicting noise
annoyance.

1.2 Data overview

The challenge made use of the "Deep Learning Techniques for noise
Annoyance detection” (DeLTA) dataset collected by the Acoustics Group
at University College London (UCL). The DeLTA dataset comprises 2,980
15-second binaural audio recordings collected in urban public spaces
across four cities in Europe (London, Venice, Granada, and Groningen).
A remote listening experiment was distributed to a pool of pre-registered
participants (N = 1,221). During the listening experiment, participants
listened to ten recordings from the sample and were instructed to select
all the sound sources they could identify within the recording (from a set
of 24 possible sound sources) and then to provide an annoyance rating
(from 1 to 10).

1.3 Main objectives

A growing challenge for the field of urban noise and soundscapes has
been to provide a more nuanced view of the prevalence of annoying and
impactful sounds across cities. To capture the effects requires the
identification of different sound sources in a complex environment and the
ability to automatically characterise the likelihood of annoyance. This
DSG was proposed in order to extend the use of deep learning models for
sound source identification to the prediction of perceptual ratings of urban



soundscapes. The challenge group applied sound source identification
and deep learning methods to the recordings in the DeLTA dataset to
create a series of models which can predict the resulting annoyance
rating. Two key objectives were put forward:

» To test various deep learning model structures for predicting
noise annoyance.

« To investigate whether the inclusion of sound source
information, whether from human-generated labels or from
automated sound source recognition improves the ability to
predict noise annoyance ratings.

The approaches taken in this DSG and the novel developments of deep
learning models to noise annoyance can help spur the creation of more
advanced tools within the field.

1.4 Approach

After an in-depth exploration of the dataset which expands on the
previous literature, this work was divided into two primary experiments.
The first experiment takes a classical machine learning (ML) approach to
predicting annoyance ratings based on the sound source labels present
in the DelLTA dataset. In total, four models were built: two linear
regression models and two random forest models. The primary question
answered by these models was to what extent (weakly-labelled) sound
sound source labels are able to predict annoyance ratings and how this
prediction is improved by incorporating spectral information. These
models will also act as a baseline for performance to compare the later
deep learning models against.

For the second experiment, a series of 12 neural networks were trained
with mel spectrograms as the primary input. Mel spectrograms provide a
visual representation of the frequency and temporal information in a
recording, in a way which approximates the human auditory response.
Across the models, we tested a variety of architectures (including
Convolutional Neural Networks (CNN), TinyCNN, Temporal Convolutional
Networks (TCN), Feed forward Neural Networks (FNN), and Long
Short-Term Memory (LSTM)), different spectrogram resolutions, and



different approaches for incorporating the sound source information. By
investigating a wide array of modelling strategies, interesting and novel
patterns can be found in what approaches do or do not work well.

1.5 Main Conclusions

Our primary conclusions of the modelling experiments are that:

1. Using higher resolution spectrograms outperforms compressed
spectrograms with an approximate RMSE improvement of 16.5%.

2. In general, simpler model structures performed as well or better on
this dataset than more complex models, with the TinyCNN models
performing surprisingly well despite their simplicity. A TinyCNN
model achieved an equivalent RMSE (1.09) to the 'best’ performing
model which incorporates a large-scale pretrained audio neural
network (PANN) (RMSE = 1.08).

3. Including sound source information does improve the prediction
accuracy, however this is often not enough to overcome the two
previous factors (high-resolution spectrograms and simple model
structures), demonstrating the importance of the model structure
chosen.

4. When comparing like models, it appears that including the sound
source information as an output target can match the performance
of more complex models which make use of large pretrained audio
networks.

5. The added complexity necessary to incorporate sound source
labels as input features appears to drastically reduce the predictive
performance, making it difficult to directly compare implicit vs
explicit methods of incorporating human-generated sound source
information.

1.6 Limitations

There are several limitations to the dataset. Firstly, the annoyance ratings
are unbalanced (i.e. there are many more low annoyance ratings



compared to high annoyance ratings). This means that the models may
under-predict high annoyance ratings. Secondly, as the initial data
collection was performed in an online study, the absolute playback
volume of the recordings to the participants could not be controlled.
Therefore, sound level could not be used as a meaningful predictive
factor. This likely limits the performance of any models, given that noise
annoyance is directly related to sound level. For this reason, our analysis
focused primarily on incorporating spectral characteristics.

1.7 Recommendations and further work

Coming into this challenge, there was an expectation that incorporating
sound source labels as inputs into the network would lead to better
predictions [Orga et al., 2021]. However, our work demonstrated that this
explicit approach to incorporating sound source information added
unnecessary complexity and reduced the model performance. Building
on the success of jointly predicting sound source labels and annoyance
ratings, more sophisticated models could be developed using our
approach as a starting point. One fruitful avenue for further research
could be to explore the possibility that this result also works in the
inverse, i.e. including perceptual features as a joint output could improve
the performance of sound source classification tasks. The simplicity and
size of the TinyCNN models in particular are a promising indication that
these models could be deployed on even low-power equipment, possibly
even on remote monitoring sensors in a smart city context.

Although the recordings in the dataset are two-channel, we only made
use of one channel in our modelling. Future work could explore the
possible benefits of considering the full binaural signal. This would
provide additional information including the inter-aural time and level
differences.  Whilst data augmentation is a common process for
image-based neural networks, this was not explored for our models. This
could also be beneficial for future model development, particularly if this
augmentation makes further use of both channels.



2 Problem formulation

Urban soundscapes are complex environments, with overlapping sound
sources each competing for our attention against an ever-shifting
background. Although discussions and investigations of “urban noise”
often focus only on traffic and aircraft noise, all sounds in a city contribute
to the production or restoration of stress. Chronic high noise annoyance
impacts 22 million people in Europe alone, with a broad range of public
health outcomes, ranging from mild distress to severe and chronic
physical impairment and leading to increased risks of cardiovascular and
metabolic disorders [Guski et al., 2017, Sliwinska-Kowalska and
Zaborowski, 2017].

These impacts have been documented using large scale maps of
modelled noise levels, but noise annoyance is caused by much more than
solely elevated noise levels [Yang and Kang, 2005, Zwicker and Fastl,
2007]. Some sounds are positively and some negatively perceived, and
this influences annoyance to different extents. Capturing these effects
requires the identification of different sound sources in a complex
environment [Orga et al., 2021]. A growing challenge is in providing a
more nuanced view of urban soundscapes with overlapping sound
sources. Typically, noise annoyance in urban settings is estimated based
on long-term measured sound levels. Recently, the focus has shifted to
considering a more holistic view of the soundscape, in particular
considering how different sound sources are each perceived and how
they might contribute to a general degree of noise annoyance. In addition,
noise level measurements from stationary sensors often do not reflect
what individuals on the ground would actually be exposed to, as opposed
to binaural soundscape recordings which are designed to accurately
characterise the experience of urban space-users [ISO/TS 12913-2:2018,
2018, Aletta et al., 2020]. A binaural recording is an audio recording
technique that employs two microphones, one for each ear, to capture
sound in a way that replicates the natural cues our ears use for
three-dimensional sound perception. When played back with
headphones, it creates an immersive three-dimensional listening
experience, replicating the sensation of being present in the original
acoustic environment.



As a starting point, we consider a large-scale online active listening
experiment conducted as part of the initial DeLTA project and a study by
Mitchell et al. [2022a] investigating how the complexity of the soundscape
- in terms of presence, number, and combination of different sound
sources - would affect the perceived noise annoyance. This study found
that the combination of sound sources in soundscape recordings is less
important than the “soundscape complexity”, while a combination of any
two clearly distinguishable sound sources in a given urban soundscape
appears to minimise the perceived noise annoyance, which is higher
when the number of sources either increases or decreases.

This DSG was proposed in order to extend the use of deep learning
models developed for sound source identification to the prediction of
perceptual ratings of urban soundscapes. Two key objectives were put
forward:

» To test various deep learning model structures for predicting
noise annoyance.

« To investigate whether the inclusion of sound source
information, whether from human-generated labels or from
automated sound source recognition, improves the ability to
predict noise annoyance ratings.

This report will be structured in three main sections. The first section
presents an in-depth exploration of the DelLTA dataset, preparing for the
model training to come later. It expands upon the soundscape complexity
analysis presented in Mitchell et al. [2022a] and introduces additional
context and findings. Finally, this first section presents the distributions of
human responses for sound event labelling and discusses the challenges
and conceptual considerations for considering ambiguity in human
labelling of training datasets.

The second and third sections present the classical and deep learning
predictive models trained during the DSG Challenge week, respectively.
A wide range of models, each building upon one another, are trained to
investigate how the model structure and methods for incorporating sound
source information affect their predictive performance. We approach the
given objectives by exploring three sets of annoyance rating prediction
models:



1. A classical approach, to establish a baseline performance for
predicting annoyance ratings. (Models W1 - W4 )

2. Neural Network (NN) Models which do not consider any sound
source information to predict annoyance. (C1-C4,YO0)

3. NN Models which consider sound source information derived from:
(@) Human labels (R1, R2)
(b) Pretrained ID models (Y2 - Y4 )
(c) Non-pretrained ID models. (Y1, Y6)

Each model variation is given a label to identify it. Prior to model training,
the dataset was divided into a training set (80%) of the sample and a
testing set (20%). For the NN models, the training set was further divided
into five folds for cross-validation.

We begin with a small set of classical ML models (linear regression and
random forest) to establish a baseline against which the performance of
the deep learning models can be compared. These models expand upon
the results found in Mitchell et al. [2022a], which highlighted the impact of
the complexity of the soundscape (i.e. the number of overlapping
identifiable sounds) on the annoyance rating.

For model set two (C1 - C4 , YO ), a variety of neural network model
architectures are explored, with mel spectrograms (see Section 5 for
more information) as the input. These models do not include any implicit
or explicit information regarding the sound source labels and attempt to
predict annoyance ratings based solely on the sonic characteristics of the
recordings.

Model set three (R1 , R2 , Y1 - Y6 ) then builds upon set two by
introducing the sound source label information, derived either from the
human-generated labels in the DeLTA dataset or by incorporating sound
source prediction from pretrained models. Several strategies for
incorporating this information are trialled, including using embeddings
from pretrained sound classification models, explicitly passing the sound

'These labels were created throughout the week based on the participant who was
primarily in charge of building and training the model. For instance, Wingyan Yip was
responsible for the classical models, which are labelled W1 through W4 .



event labels as input, or implicitly including the information by jointly
predicting the annoyance rating and event labels.

3 Data overview

One issue with applying a deep learning approach previously has been
the lack of large-scale training datasets which include high-quality urban
recordings, sound source labels and, most importantly, perceptual data
(i.e. annoyance ratings). The challenge makes use of the "Deep Learning
Techniques for noise Annoyance detection” (DelLTA) dataset collected by
the Acoustics Group at University College London (UCL). This dataset has
been made publicly available under a Creative Commons 4.0 open data
license on Zenodo [Mitchell et al., 2022b].

The DeLTA dataset comprises 2,980 15-second binaural audio recordings
collected in urban public spaces across London, Venice, Granada, and
Groningen. A remote listening experiment was distributed to a pool of
pre-registered participants (N = 1,221). During the listening experiment,
participants listened to ten 15-second-long binaural recordings of urban
environments and were instructed to select all the sound sources they
could identify within the recording and then to provide an annoyance
rating (from 1 to 10). For the source recognition task, participants were
provided with a list of 24 labels they could select from. These labels
included: Aircraft, Bells, Bird tweets, Bus, Car, Children, Construction,
Dog bark, Footsteps, General traffic, Horn, Laughter, Motorcycle, Music,
Non-identifiable, Other, Rail, Rustling leaves, Screeching brakes,
Shouting, Siren, Speech, Ventilation, and Water. Each recording was
assessed by between two and four participants and on average, each
recording has 3.1 identified sound sources present.

In total this dataset includes 12,210 individual ratings (from 1,221
participants) of 2,980 recordings with up to 24 source labels and one
annoyance rating. The recordings were collected over numerous
sessions as part of the Soundscape Indices (SSID) Project Kang et al.
[2019] throughout 2019 and 20202, while the online listening experiment

2These original recordings form the International Soundscape Database (ISD) which
is a publicly available dataset of binaural soundscape recordings and assessments,
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was conducted between July 5th and July 23rd, 2021. The recordings
were collected in urban public spaces across London, Venice, Granada,
and Groningen, according to the SSID Protocol [Mitchell et al.,
2020].

3.1 Data exploration and visualisation

Unbalanced dataset Mean annoyance, our main target variable, is
calculated by averaging annoyance ratings from participants who rated
the same sound track. As seen in Figure 1, the distribution of mean
annoyance is right-skewed. This reflects an unbalanced dataset with a
dominance of low annoyance ratings.

Figure 1: Density of mean annoyance ratings across the dataset. Mean
annoyance is right-skewed, with mode at around 2.5.

When ratings are stratified into high and low annoyance levels with any

available on Zenodo [Mitchell et al., 2021a].
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rating greater than five classified as high, we see higher variance among
high ratings (Figure 2). This suggests high average ratings are likely
influenced by individuals who rated highly. Highly-rated soundtracks only
make up around 11% of the dataset, making the prediction of high
annoyance ratings challenging.
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Figure 2: Variance in annoyance rating for recordings which have a high or
low average annoyance rating. Highly-rated tracks have a higher variance,
suggesting a high mean rating might be a result of extreme individual
ratings.

Relationship between number of sounds and annoyance rating
Mitchell et al. [2022a] explored the influence of the number of sound
sources on annoyance rating and found that mean annoyance is
minimised at N = 2 and increases towards N = 8, as plotted below in
Figure 3.

We further explored this relationship by testing whether this non-linear
relationship held across different types of sound sources. We added four
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Figure 3: Distribution of annoyance ratings given the total number of sound
sources in a given recording. Total number of sound sources has a non-
linear relationship with mean annoyance

labels and plotted similar diagrams to see whether the relationship
between sounds identified and mean annoyance changes for different
kinds of sounds. The four labels are traffic, other urban (non-traffic),
urban speech, and natural sounds. The original 24 source labels were
sorted into one of these four categories.

A one-way ANOVA is conducted for each of the four labels because it is
an appropriate significance test when comparing the annoyance ratings
of multiple categories simultaneously. This test allows for the efficient
assessment of whether there are statistically significant differences in
annoyance ratings among the different labels. The results, reported in
Table 1, indicate that the annoyance ratings for all label categories were
found to be statistically significantly different, with p < 0.01 for all four
labels.
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Figure 4: Distribution of annoyance rating by types of sounds. Nature-
related sounds have a negative correlation with annoyance perception

As expected, more traffic sounds and other urban-related sounds like
construction and footsteps correlate with higher mean annoyance. A
similar pattern is found for speech-related sounds. Nature-related
sounds, on the other hand, are negatively correlated with the annoyance
rating. Although only four nature-related sounds appeared in the dataset,
such that the negative association might just reflect the initial dip in Figure
3, the absence of a dip in the other three categories suggests it is
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Table 1: Anova results for different types of sounds.

Sound label df1t df2 F-stat PR (F)

Traffic 5 2884 33.68 1.58e-33
Other-urban 6 2883 28.95 8.15e-34
Speech 4 2885 2559 7.31e-21
Nature 3 2886 58.41 1.19e-36

plausible to expect a negative relationship to persist were there more
nature-related sounds in the survey. In other words, a listener might find a
soundscape less annoying when more nature sounds are present.

These results provide new context for the previous results on soundscape
complexity reported by Mitchell et al. [2022a]. Two interpretations are
possible:

1.

3.2

That the previously identified relationship is indeed correct and the
annoyance rating is minimised at N = 2 sound sources. In addition,
that soundscapes with primarily nature-related sounds also tend to
have only two identified sources.  This would indicate that
nature-dominated soundscapes also achieve a desirable level of
soundscape complexity and therefore minimise annoyance through
both the presence of semantically pleasant sounds and an
appropriate amount of complexity.

. That this analysis of the dataset is limited by the number of

nature-related (and other semantically positive) sound sources
available for participants to select. Given that the maximum number
of nature-related sources is three, it is not possible to investigate the
effect of high soundscape complexity with N > 3 semantically
positive sources. This would be necessary in order to confirm or
reject the hypothesis tested in Mitchell et al. [2022a].

Investigating ambiguities in source
classification

Before supervising the sound source separation issue, it is worth
analysing the distribution of human response for the sound events in the

15



DelLTA database, which will display the prevalence of certain sounds in
the urban soundscape whilst also giving the degree of ambiguity in each
sound label. When discussing supervised training datasets, we tend to
consider the training data labels as the ’ground truth’, or the true answer
we are asking our model to predict [Stuart Russell, 2021]. However, this
idea of a ground truth should be given extra attention when dealing with
subjective data [Ellis et al.,, 2002]. For the DelLTA database, both the
sound event labels and the annoyance ratings could be considered
'subjective’ information.

For this challenge, one of our goals is to be able to predict whether a
sound source is present in a soundscape or not. Ideally, the ground truth
for such a task is objective knowledge for whether or not a particular
source physically generated the sound. However, with the data available,
this information is strictly impossible to know. For each recording in the
dataset, several respondents have indicated whether they could hear
certain sound sources in the soundscape. Even if all respondents agreed
and indicated that exactly the same sources were present, we still cannot
know objectively whether those sources actually generated the sound. In
addition to this inherent subjectivity, in reality this form of data collection
introduces another ambiguity when not all respondents agree on the
identified sound sources. How should we treat the data when two
respondents disagree about whether a sound source was actually
present in the recording?

In Mitchell et al. [2022a], they addressed this question by taking a majority
vote approach - if a majority of respondents for a given recording indicated
that a source was present, then it is considered present. But this still
raises the question - How much agreement is there about the presence
of sources and which sources have the most ambiguity? This could also
become a fine-tuning training objective for the sound classification model®,
such that when the sound source label prediction for annoyance ratings are
propagated, it is in accordance with human perception. The goal would be
to tune the predicted probabilities for each sound source to match the real-
world percentage of agreement about the presence of a source.

We calculate the probability of the occurrence for each sound event in

3Note, unfortunately our experiments with the sound classification model did not
progress enough to pursue this so this idea is speculation at this point.
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participants’ response. This is effectively the degree of agreement for
whether each sound label is present in a given recording. We then
examine the average agreement given across all recordings which (may)
contain that sound. The function is as follows:

where N, is the number of recordings with s sound source identified by at
least one participant, n; is the total number of participants who assessed
recording i, and n, is the number of participants who identified sound
source s in recording i. Therefore a P(C,) of 0.25 would indicate that
25% of respondents indicated that the sound label was present in the
recording.

The result in Figure 5 shows a steady increase in agreement across the
sound sources, ranging from around 50% for broadband sounds such as
rustling leaves and ventilation to around 80% for bells, bird tweets, and
music. Compared to the other sound events, speech is the most salient in
the complex environment with an average agreement across recordings of
87%.

We follow the categorisation of the sound events mentioned in Section 2.2
and plot the probability as shown in Figure 6 for each of the categories.
One thing worth noticing is that we separate the speech from other human
voice, so there are five categories we use in the current analysis.

17
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Figure 5: The degree of agreement among human labellers for each sound
file in DeLTA dataset.

The result presented in Figure 6 confirms the preceding results that the
speech is the most salient with the least ambiguity regarding its presence.
By contrast, the traffic noise seems to be the sound source with the least
agreement in participants’ perception. The labelling of other sound
sources such as other human voice, other urban sound and nature seem
to be more ambiguous as indicated by a wider distribution of the
response.
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Figure 6: The distribution of human response for the the five sound source
types.

The result so far indicates a high ambiguity issue of sound sources
labelling in human perception. We propose that this ambiguity can be
decomposed into two aspects of variation:

1. Salience: the sound source was present, but either noticed or not
noticed.

2. Cross-over: The same sound source was heard between
participants, but has been identified as having a different label(s).
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Accounting for this ambiguity was developed as a target goal as we
developed our models, however this avenue of investigation could not be
explored in the experiments. This ambiguity in human labelling should be
kept in mind when interpreting our results and when considering other
sound source identification models.

4 Experiment 1: Establishing a baseline with
classical ML models

We begin by training a set of classical ML models which can provide a
baseline level of performance for the deep learning models in Experiment
2 to be compared against. These models expand on the results found in
Mitchell et al. [2022a] and the new analysis presented in Section 3.1 to
predict the annoyance rating from the sound source identification data in
the DeLTA surveys. Initially these models include only the source IDs, then
a spectral feature derived from the audio files is introduced.

Figure 7 presents an overview of the classical models which were
tested.

4.1 Linear Regression Models - W1 and W2

Since the results in Section 3.1 indicated linear relationships between the
number of different sound sources within each source category and mean
annoyance, we begin with an Ordinary Least Squares (OLS) regression
as a baseline model.

We created a multivariate linear regression model to predict the mean
annoyance for each recording i, given as Mean_annoyance. For each
category of sources as defined in Section 3.1, the number of sound
sources within that category identified in the recording is given by the cnt_
variables. To add additional sonic information, two spectral features are
also included. The recording is split into one second chunks and the
spectral centroid at each second is calculated. The spectral centroid is an
estimate of the ’centre of gravity’ of the spectrum, in this case taken
across the whole spectral range, and has been previously used in
applications such as speech processing [Le et al., 2011] and music

20



Figure 7: Classical models

perception [Schubert et al., 2004]. This time series of spectral centroids
results in two features - a mean spectral centroid (mean_spec_cent) and
standard deviation of the spectral centroid (std_spec_cent) for each
recording i. Spectral centroid is often associated with the "brightness” of a
sound as it describes the balance of high and low frequencies, hence
mean and standard deviation gives an idea of the general ’brightness’
and disparity in 'brightness’ in the sound track. We estimated two models,
one without spectral characteristics (W1 ) and another with specitral
characteristics included (W2 ).

We then define a multivariate linear regression model including intercept
() and error terms (e):

21



Table 2: Summary of results from Model W.1

Coef Std. Err o] [0.025, 0.975]
Intercept 1.6522  0.095 0.000 [1.466, 1.839]
cnt_total_sources -0.1695  0.044 0.000 [-0.255, -0.084]
np.power(cnt_total sources, 2) 0.0194  0.005 0.000 [0.009, 0.03]
cnt_traffic 0.1040 0.020 0.000 [0.066, 0.142]
cnt_speech 0.1329  0.025 0.000 [0.084, 0.181]
cnt_other_urban 0.0589 0.034 0.087 [-0.008, 0.126]
cnt_nature -0.0743  0.019 0.000 [-0.112, -0.036]
N R? Adj. 2 RMSEr.q;  RMSEran
2242 0.122 0.120 1.325 1.334

Mean_annoyance; =a + (;cnt_total_sources; + Bocnt_total_sources?+-
+ Bsent_traffic + +G4cnt_other_urban;
+ Bscnt_speech; + fgent_nature; + Symean_spec_cent;
+ Brstd_spec_cent; + e,

Since the distribution of mean annoyance is right-skewed (Figure 1), we
applied a box-cox transformation to mean_annoyance improve model fit.
Variable cnt_total_sources is modelled with an additional quadratic term as
a non-linear association is identified between the number of sound sources
and mean annoyance in Figure 3. Since the number of sound sources
are measured with a much smaller scale than sonic characteristics, all
independent variables are z-scale standardised.

The results for the model without spectral traits (W1 ) and with spectral
traits (W2 ) are reported in Table 2 and Table 3, respectively. The full model
outputs and diagnostics are reported in Section A in the Appendix. ?? and
Adjusted R? are easily calculated for linear regression models and are
reported in Tables 2 and 3 alongside the root-mean-square error (RMSE)
for comparison with the models which follow.

The residuals are normally distributed with approximately constant
variance (shown in Figures 8 and 9), thus the conditions for inference in
multiple regression are met.
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Table 3: Summary of results from Model W.2

Coef Std. Err o] [0.025, 0.975]
Intercept 1.5154  0.091 0.000 [1.338, 1.693]
cnt_total_sources -0.0980 0.042 0.018 [-0.179, -0.017]
np.power(cnt_total_sources, 2) 0.0119  0.005 0.019 [0.002, 0.022]
cnt_traffic 0.0699 0.019 0.000 [0.033, 0.107]
cnt_speech 0.0990 0.024 0.000 [0.053, 0.145]
cnt_other_urban 0.1035 0.033 0.002 [0.039, 0.168]
cnt_nature -0.1218  0.019 0.000 [-0.158, -0.085]
mean_spec_cent 0.1942 0.012 0.000 [0.171, 0.218]
std_spec_cent -0.0449 0.011 0.000 [-0.067, -0.022]

N R? Adj. R?> RMSEr.q RMSErp,4in
2242 0.213 0.211 1.217 1.254

All variables are significant at 5% level. mean_spec_cent has the strongest
positive impact on mean annoyance, suggesting higher general frequency
soundtracks tend to be more annoying. On the other hand, c¢nt_nature has
the strongest moderating effect on annoyance, as expected from the box
plots in Figure 4a.

When spectral traits are added for Model W2 , the adjusted R-squared
increases from 0.120 (see Tables 2 and 3) to 0.211. Since
mean_spec_cent is also the strongest positive predictor of annoyance
rating, our regression results suggest sonic characteristics have
significant explanatory power on annoyance rating.

Model performance is also better with spectral traits (W2 ). The test RMSE
is 1.217, while the test RMSE for the model without spectral traits (W1 )
is 1.325. The train RMSE of the model with spectral traits (W2 ) is 1.254,
while the one without is 1.334 (W1 ).

Since the dataset is unbalanced, as shown in Figure 2, we evaluated the
OLS performance for high and low annoyance levels using AR =5 as a
threshold. Figure 10 plots the residual distribution among high and low
annoyance ratings in the evaluation set. AR for soundtracks with high
actual annoyance ratings are generally under-predicted.

While the OLS results show that sonic characteristics are also important
predictors, the low R-squared indicates that we need more information to
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Figure 8: Distribution of Residuals for OLS Models

explain the variability in annoyance ratings. Other spectral traits or
perceptive elements not captured by the survey might explain more
variability in the data. These spectral features may represent elements
which can be extracted within the deep learning approaches presented
later.

4.2 Random Forest Models - W3 and W4

OLS assumes a linear and additive relationship between the predictors
and the target variable. To capture a possibly complex and non-linear
relationship between predictors and variables, we applied random forest
models, an ensemble machine learning method that operates by
combining the predictions of multiple decision trees. Random forest offers
good predictive performance and interpretability through feature
importance, and has been previously used in predictive soundscape
modelling [Lionello et al., 2020].

In contrast to the preceding models, we also included all the sound source
labels present, together with variables described in the regression model.
We applied a random search with a five-fold cross-validaion (CV) to identify
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Figure 9: Fitted values scatterplots for OLS Models

Table 4: Summary of Random Forest results

Model RMSFEr4in RMSEres
W3 1.153 1.231
W4 1.032 1.171

the optimal number of trees in the random forest. As with the OLS models
in the previous section, we trained two random forest models, one with
spectral characteristics (W4 ) and one without (W3 ).

For the random forest with spectral characteristics, the best model has 344
trees. The training and testing RMSE results are shown in Table 4

The variables used in the OLS model are also top predictors in the
random forest, shown in Figure 11. The mean spectral centroid is the
most importance predictor. The standard deviation of the spectral
centroid, while with a relatively low coefficient magnitude in the OLS, is
the second most important predictor in the random forest. The number of
total sound sources is also among the top predictors, providing additional
confirmation of the initial results from Mitchell et al. [2022a].
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Figure 10: Distribution of residuals for W2 across high and low annoyance
level ratings. High annoyance ratings are underpredicted.

Bird tweet and construction stand out as two distinct sound sources with
particularly high feature importance. Since bird tweet is labelled a nature
sound and construction is labelled an ’other urban’ sound in the
regression, the magnitude of the coefficient values on cnt_nature and
ent_other_urban in Table 3 might have been driven by these two
sounds.

The classical models thus show that sonic characteristics are as, if not
more important, than the number of sound sources. The best performing
of the classical models is W4 (random forest with spectral characteristics)
with a test RMSE of 1.171. This result leads into the following deep
learning models and our primary question. Since sonic characteristics
have been confirmed as important and likely other spectral characteristics
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Figure 11: Feature importance of predictors used in random forest model.

can be extracted, how much additional predictive performance will the
models achieve when sound source information is included?

5 Experiment 2: Deep Learning Methods

The primary goal of this DSG was to investigate various methods of
employing deep learning for predicting noise annoyance. Specifically, we
wished to trial ways of incorporating sound source information - whether
from human labels derived from a survey or from automated source
recognition - to augment the annoyance prediction. This section reports
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the results of 11 deep learning (DL) models trained to predict annoyance
ratings.

Inputs To generate the inputs for the deep learning models, we first
calculated a mel spectrogram for each recording. To capture both the
frequency information of a signal and its variation over time, a
spectrogram computes a Fast Fourier Transform (FFT) of windowed
sections of the signal (demonstrated in Figure 12).

Figure 12: Demonstration of the calculation process for a spectrogram.
Image from Gallardo-Antolin and Montero [2021].
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By combining these windowed spectra, we can create a spectrogram
which visualises the temporal pattern of the spectral content of the full
recording. The mel scale provides a linear scale for the human auditory
system (i.e. where each step in frequency on the mel scale is judged to
be equal in distance from one another). This provides a spectrogram
which theoretically better approximates the human auditory system and is
commonly used in Audio Classification systems [Hershey et al., 2017,
Thornton, 2019]. An example of a mel spectrogram computed for one of
the DeLTA recordings is given in Figure 13.

Figure 13: Mel spectrogram computed for one of the DeLTA recordings
(2CV11_1.wav).

By default, the mel spectrograms are calculated with 128 mel frequency
bins and a hop length of 512, giving a fairly high resolution spectrogram.
For the calculation of mel spectrograms, hop length denotes the number
of samples between successive frames, determining the temporal
resolution and the amount of overlap between those frames in the audio
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signal. For some of the models presented below, the possibility for low
resolution spectrograms to be used was also tested, with the goal of
decreasing the input size and speeding up training times. For these, the
spectrograms were resized via interpolation to 32 by 128.

In addition to the mel spectrogram, those models which include sound
source information also have the 24 binary source labels as inputs.

5.1 Models without sound source information

This section presents the results from the first set of deep learning models,
which do not include any information about the sound source. The models
from this set are shown in Figure 14, with structures shown in Appendix C.
Each of the models trained is described below.

( Tempaoral | Feedforward Meural
cA1 M[ecloir? ercggosger Zm 4>{ Convolutional H Metwark }—b AR
P ! | Network(TCN) | | (FNN} |
Mel spectrogram
c.2 (compressed) AL AR

.Convolutiona\ Neural
No so_und source c3 Mel spectrogram Netwark ENN N
label information (compressed) (CNN)
| Long shortterm |
ca4 el specogram s memory H N
p ! (LSTM)

Y.0 Mel spectrogram 44 Tiny CNN }—b AR

Figure 14: No Sound source information used

—

C1 While many studies have applied Convolutional Neural Networks to
address noise and acoustics issues, this model is using the Temporal
Convolutional Network (TCN). Like a CNN, the TCN can treat the
time-series information in the spectrogram as an image, however TCN’s
consider the time-dependence of the x-axis of the image. The TCN
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architecture in particular carries certain features that allow for greater
effectiveness in time-series analysis, as compared to generic CNNs.
Model C1 uses a TCN on a compressed mel spectogram, feeds the result
to the Feed-Forward Neural Network (FNN) and outputs an Annoyance
Rating (AR). (See Appendix B for detailed implementation notes on
TCN)

C2 Model uses the standard FNN on the compressed mel spectogram
and outputs an AR.

C3 Model uses a Convolutional Neural Network (CNN) applied to
compressed mel Spectogram. Then the FNN is applied to produce an
AR.

C4 Model applies an Long Short-Term Memory (LSTM) network to
compressed mel spectograms, then feeds the output feature vector to an
FNN and outputs AR.

Y0 This model explores whether the annoyance rate can be successfully
predicted based only on a simple convolutional neural network. The model
receives a high resolution mel spectogram, and trains a TinyCNN to output
an AR.

5.2 Models including sound source information

Three approaches to incorporate the sound source information are
explored. The first directly inputs the human-generated labels from the
DelLTA dataset. The second approach replaces these human-generated
labels with labels generated by a pretrained, publicly available sound
source recognition model (PANN) [Hershey et al., 2017]. These first two
approaches both attempt to explicitly inform the model about the sound
sources present by including source labels as direct inputs. The goal of
the PANN-based models is to investigate the possibility of using
automated source recognition to remove the 'human-in-the-loop’ aspect.
This would allow the model to be used in an automated context.
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The third approach includes the human-generated labels from DelLTA as
outputs only. We consider this to be implicitly including the sound source
information. By training the models to jointly predict the AR and to predict
the sound sources in the recording, the latent embedding of the models
will be trained to include information about the sources based on the mel
spectrogram.

5.2.1 Human-generated Labels

Figure 15 shows the structures of the models based on human-generated
labels.

Figure 15: Sound source including models with human generated labels.

R1  Model applies TCN to mel spectograms and combines the result
with the human-generated labels and feeds that to the FNN to produce
AR.

The rationale behind the model is that adding sound source information as
additional inputs to the model would add more value to the model. This
was done in a framework such that the sound source data is stacked with
latent feature representation of the spectrograms instead of plain stacking
the data with the spectrogram. The spectrogram is treated as an image
and direct stacking of source data with image data was not explored in this
study.

Although we added only 24 features of source information (i.e. the binary
sound source labels), the architecture selected to do this used a fully
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connected FNN to predict the Annoyance rating. In this model, the sound
source labels indicated the presence or absence of a sound source in the
given sound. The FNN model used stacked latent spectrogram features
that come out of TCN feature extraction and the one-hot encoded sound
source labels as inputs.

Our speculative reasoning for the models performing poorly is due to the
additional complexity of the architecture used to stack the two data
formats. We attribute this to the complexity of the model since simple
model that does not include sound source data as inputs is able to
perform better and does not overfit on training data.

R2 Model applies TinyCNN to mel spectograms, combines the result
with the human-generated labels, and feeds that to the FNN to produce
AR.

This model is very similar in architecture to model R1 as we use the
spectrogram and sound source information as inputs to the model. There
are two fundamental differences between these two models. Firstly, we
use the TinyCNN as a feature embedding network instead of the TCN
architecture as in other experiments the TinyCNN model had better
performance, as will be demonstrated in Section 5.3. This is shown in
models Y1 and Y4 .

The second fundamental difference in the model is the representation of
the sound source information. Building on the results of the preceding
models and the investigations into the ambiguity of human labelling
presented in Section 3.2, this model was altered to use the degree of
agreement for a sound source ID rather than a simple binary of source
presence. The source labels are migrated from one hot encoding, which
indicates only presence to a more proportional representation. Here the
presence of data is proportional to the number of survey participants that
identified a particular sound, as in Section 3.2 where the ambiguities of
human labelling are discussed.
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5.2.2 Pretrained IDs

Figure 16: Sound Source including models with usage of Pretrained
models

Y2 This model is using the PANN model (Pre-trained Audio Neural
Network) [Kong et al., 2020], pretrained using sound source information
from the Google Audio Set [Gemmeke et al., 2017a]. Audio Set is a
hierarchically structured set of audio even categories such that each
category (i) provides a comprehensive set that can be used to describe
the audio events encountered in real-world recordings; (i) can be
distinguished by a "typical” listener. The Audio Set dataset contains 632
audio event categories, arranged in a hierarchy with a maximum depth of
six levels and a collection of 1,789,621 labelled 10-sec excerpts from
YouTube videos. The PANN is applied to the mel spectrograms to perform
sound source recognition and outputs both sound source classification
and AR.

Y3 Similar to Y2, this model is using the PANN, pretrained using sound
source information from Audioset. The PANN is applied to mel to produce
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sound source classification vector which is then fed to a 1-layer FNN to
output the annoyance rate. The sound source classification is also given
as an output.

Y4 The model applies the PANN to the mel spectogram, then the
resulting partial sound source information is fed to the separated
multi-head attention encoder blocks to form the CnnT (CNN-Transformer).
The model outputs both the sound source classification and an AR.

J.1  Throughout the DSG week, one of the experiment teams worked
towards a model framework for the sound source recognition task,
attempting to resolve the possible cross-over ambiguity between sound
source labels (see Section 3.2). Unfortunately this work could not be
completed meaning results and outcomes cannot be reported for this
model.  Figure 17 demonstrates the proposed framework for this
model.

Figure 17: Sound source classification model

R3 This model was intended to combine the structure of R1 with a
bespoke the sound source recognition model J.1. The goal was to build
on the progress made in Section 3.2, train (or tailor) our own separate
model to predict sound source labels, then feed this into R1 , replacing
the human labels from DeLTA. Unfortunately, since the source recognition
model could not be completed, R3 was also not completed.

5.2.3 Sound source label as output (implicit source
information)

This final set of prediction models takes a different approach to
incorporating the sound source information. Rather than directly feeding
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either human-generated or automatically identified source labels, we
instead include the sources as a target to be jointly predicted alongside
the AR. In this way, the trained model would implicitly include information
about the sound sources embedded within the hidden layers of the CNN.
This has the added benefit that the trained model itself is able to generate
predicted sound source labels from just an input spectrogram.

Figure 18: Models which implicitly include sound source information by
jointly predicting AR and SSC.

Y1 Model receives a mel spectrogram, uses a TinyCNN to output both
an AR and a one-hot encoded vector with 24 values corresponding to the
sound source classification.

Y6 This model is very similar to Y1 except that the output is a vector
of the sound source identification proportion for each label, as derived
in Section 3.2. Thus, the model is trained using data which reflects the
ambiguity of human labelling, rather than encoding the labels as definite
yes/no binary answers.

5.3 Model comparison.

Each of the models described above is trained on the 80% training set
and tested with the 20% holdout set. For all models, the Root Mean
Squared Error (RMSE) is used as the testing score for the Annoyance
Rating (AR) which has a range from 1-10. For those models which also
output sound source classification (SSC) predictions, the area under the
ROC curc (AUC) is reported as the test score [Fawcett, 2006], calculated
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Table 5: Comparison of models

AR test AR train SSCtest SSC train

Category Model 'pMSE) (RMSE) (AUC)  (AUC)
W.1 1.28 1.34 - -
. . W.2 1.22 1.25
Set 1: Classical baseline W.3 103 115
W.4 1.17 1.03
C.1 1.30 1.31
C.2 3.87 3.78
Set 2: No source info C.3 1.26 1.29
C4 1.50 1.33
Y.0 1.13 1.03
R.1 1.30 0.97
Set 3a: Human labels B2 129 0.68 i i
Y.2 1.08 0.95 0.86 0.88
Set 3b: PANN Y.3 1.10 0.97 0.88 0.97
Y.4 1.12 0.18 0.91 0.99
. . Y.1 1.09 0.97 0.88 0.92
Set 3c: Implicit source info Y6 107 016 0.90 1.00

using the metrics.auc_roc_score() function from scipy. AUC provides
an uncomplicated metric which has several benefits over simple accuracy.
AUC decouples model performance from class skew (uneven distribution
of class instances across the classes) and error costs (i.e. the tradeoffs
between true positives and false positives) and have been commonly
used for scoring multi-class classification models [Hand and Till, 2001].
Table 5 reports the training and testing scores for all of the models.
Figure 19 plots a comparison of the various types of models tested.

Spectrogram resolution The very first conclusion that could be made
from the model comparison is that the high resolution spectrogram
considerably outperform a compressed spectrogram (e.g. Y1 — Y6

models are better than C1 — C4). In all but one case, those models
which included high resolution spectrograms out-performed those which
used the compressed spectrograms. What is particularly interesting is
that even though W2 and W4 could also be said to incorporate ’highly
compressed spectrogram’ information (i.e. the spectral characteristics
used are single-dimension representations of the full spectrogram), in
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general they still outperform the compressed spectrogram neural network
models, even those which also include sound source labels.

Figure 19: AR RMSE results (lower is better).

Inclusion of sound source information To further investigate the
differences among model architecture and the inclusion of sound source
information, we will limit our discussion to the high-resolution spectrogram
models: R2, YO, Y1,Y2,Y3, Y4, and Y6 . A comparison of the AR
performance of YO to Y1 -Y6 demonstrates a clear improvement when
some form of sound source information is included. Although YO
(RMSE=1.13) outperforms R1 (RMSE=1.30) and R2 (RMSE=1.30)
which explicitly included human-generated labels as inputs, it is at least
marginally outperformed by all of the comparable high-resolution models
with sound source information (RMSE <1.12).

In particular, we can compare the performance of YO and Y1 which share
nearly identical architectures. Both are a TinyCNN with the only difference
being the number of output nodes: one linear regression node for AR in
Y0 and one linear regression and 24 linear classification nodes in Y1 . By
implicitly including sound source information through joint prediction, Y1
(RMSE=1.09) shows a marked improvement over YO (RMSE=1.13).

Model complexity Although R2 also made use of the high-resolution
spectrograms, its performance is significantly worse than the Y models.

38



As noted earlier, our speculation is that this is due to the complexity of the
model architecture and the use of the FNN. The model structure itself is
similar to C1 , making use of a TCN and an FNN and we would expect
that the performance would improve since R1 includes the
human-generated sound source labels. This is indeed true in the training
performance, with R1 achieving a training RMSE of 0.97 compared to the
C1 training RMSE of 1.31. However, both models have identical testing
performance, indicating the increased complexity of R1 likely caused it to
overfit to the training data.

A similar issue may contribute to the discrepancy in training and testing
scores for model Y6 . While Y1 and Y6 have identical architectures,
binary SSC labels are used for Y1 whereas probabilistic SSC labels
derived from Section 3.2 are used as the outputs for Y6 . While Y6
slightly outperforms Y1 for the AR task on the test set, its training RMSE
score is significantly lower, which would indicate that it has overfit to the
training data and may be less generalisable. It is possible this overfitting
issue is due to some additional complexity in the training process,
however more work is required to thoroughly determine whether any
benefit may be gained by using the probabilistic source labels to reflect
the ambiguity in human-generated labelling.

Best performing models Overall, the best performing models were Y1
, Y2 and Y6 , all achieving a testing RMSE below 1.10. Although Y6
technically achieves the best performance of these three, it has a wide
difference between the training and testing score, indicating it may be
overfitted. As such, it would appear that Y1 and Y2 are the best models
out of the 12 neural networks that were trained. Of these, it is particularly
interesting that Y1 , although it is significantly simpler overall and does
not incorporate a pretrained sound recognition model, nearly matches the
performance of the other more complex model. This is especially
interesting when considering that Y1 outperforms Y2 on the audio
classification task.

There are very few existing models within the literature whose
performance could be directly compared with the models presented here,
so it is difficult to establish what is considered a ’strong’ or ‘'weak’ RMSE
within this task. This report is the first piece of work using the DelLTA
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dataset and, more broadly, attempting to predict individual sound
perception ratings is a relatively recent development in the field. While
predicting the annoyance due to a single source (e.g. traffic or electric
vehicles) or predicting community annoyance levels are common tasks
which achieve very high accuracy, predicting individual annoyance
perception for complex realistic soundscapes with multiple sound sources
is @ much more challenging task which has only recently seen attention.
Given this, we cannot yet state absolutely whether the prediction scores
achieved here are sufficient for practical applications, but when compared
against other attempt within the soundscape perception prediction field
(see Ooi et al. [2023, 2022], Mitchell et al. [2021b]) the results achieved
are promising.

5.4 Conclusions

Based on these results, our primary conclusions are that:

1. Using higher resolution spectrograms outperforms compressed
spectrograms.

2. In general, simpler model structures performed better on this dataset
than more complex models, with the TinyCNN models performing
surprisingly well despite their simplicity.

3. Including sound source information does improve the prediction
accuracy, however this is often not enough to overcome the two
previous factors, demonstrating the importance of the model
structure chosen.

4. When comparing like models, it appears that including the sound
source information as an output target can match the performance
of more complex models which make use of large pretrained audio
networks. In addition, the added complexity necessary to
incorporate sound source labels as input features appears to
drastically reduce the predictive performance, making it difficult to
directly compare implicit vs explicit methods of incorporating
human-generated sound source information.
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6 Future work and research avenues

With the exception of the classic modelling approaches, in depth
examination of the model prediction output was not undertaken beyond
assessment of the training and testing RMSE scores. Further
development of these models would benefit from exploration of this. This
may help identify whether the models are capable of consistently
identifying high annoyance sounds. Whilst data augmentation is a
common process for image-based neural networks, this was not explored
for our models. Due to the recent success of data augmentation in the
speech and vision domains, augmentation methods for this audio data
would be a useful avenue or further work [Park et al., 2019]. Several
augmentation methods drawn from the domain of image recognition
which operate on the mel spectrogram could be applied, to expand the
training dataset:

« Creating a mask in the x-axis (time-domain) or in the y-axis
(frequency masking).

» Warping or skewing the image

+ Adding white noise - this could be added either as audio white noise
to the recording before calculating the mel spectrogram or as visual
noise to the spectrogram image.

Although the recordings in the dataset are two-channel, we only made
use of one channel in our modelling. Future work could explore the
possible benefits of considering the full binaural signal. This would
provide additional information including the inter-aural time and level
differences.

Coming into this challenge, there was an expectation that incorporating
sound source labels as inputs into the network would lead to better
predictions. However, our work demonstrated that this explicit approach
to incorporating sound source information added unnecessary complexity
and reduced model performance. Building on the success of jointly
predicting sound source Ilabels and annoyance ratings, more
sophisticated models could be developed using our approach as a
starting point. One fruitful avenue for further research could be to explore
the possibility that this result also works in the inverse i.e. including
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perceptual features as a joint output could improve the performance of
sound source classification tasks.
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Appendices

A OLS model table

A.1 Model W.1

Table 6: OLS results for model without spectrogram traits

Dep. Variable: annoyance_t R? 0.122
Model: OLS Adj. R? 0.120
Method: Least Squares F-statistic:
Prob (F-statistic): Log-Likelihood: -1834.9
No. Observations: 2242 AlC: 3685
Df Residuals: 2235 BIC: 3724
Df Model: 6

coef stderr t P> |t| [0.025, 0.975]
Intercept 1.6522 0.095 17.385 0.000 [1.466, 1.839]
cnt_total_source -0.1695 0.044 -3.895 0.000 [-0.255, -0.084]
np.power(cnt_total sources, 2) 0.0194 0.005 3.633 0.000 [0.009, 0.030]
cnt_traffic 0.1040 0.020 5.317 0.000 [0.066, 0.142]
cnt_speech 0.1329 0.025 5.362 0.000 [0.084, 0.181]
cnt_other_urban 0.0589 0.034 1.714 0.087 [-0.008, 0.126]
cnt_nature -0.0743 0.019 -3.844 0.000 [-0.112, -0.036]
Omnibus: 10.328 Durbin-Watson: 1.450
Prob(Omnibus): 0.006 Jarque-Bera (JB): 0.120
Skew: 0.101 Prob(JB): 0.0105
Kurtosis: 2.762 Cond. No. 132
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A.2 Model W.2

Table 7: OLS results for model with spectrogram traits

Dep. Variable: annoyance_t R? 0.213
Model: OLS Adj. r? 0.211
Method: Least Squares F-statistic: 75.77
Prob (F-statistic): 8.14e-111 Log-Likelihood: -1711.5
No. Observations: 2242 AlC: 3441
Df Residuals: 2233 BIC: 3492
Df Model: 8

coef stderr t P> |t| [0.025, 0.975]
Intercept 1.5154 0.091 16.734 0.000 [1.338, 1.693]
cnt_total_source -0.098 0.042 -2.360 0.018 [-0.179, -0.017]
np.power(cnt_total_sources, 2) 0.0119 0.005 2.339 0.019 [0.002, 0.022]
cnt _traffic 0.0699 0.019 3.731 0.000 [0.033, 0.107]
cnt_speech 0.0990 0.024 4.201 0.000 [0.053, 0.145]
cnt_other_urban 0.1035 0.033 3.169 0.002 [0.039, 0.168]
cnt_nature -0.218 0.019 -6.572 0.000 [-0.158, -0.085]
mean_spec_cent 0.1942 0.012 16.106 0.000 [0.171,0.218]
std_spec_cent -0.0449 0.011  -3.932 0.000 [-0.067, -0.022]
Omnibus: 4.306 Durbin-Watson: 1.401
Prob(Omnibus): 0.116 Jarque-Bera (JB): 3.936
Skew: -0.050 Prob(JB): 0.140
Kurtosis: 2.821 Cond. No. 133

B Temporal Convolutional Neural Network.

The fundamental idea behind the TCN is that time-series information can
be treated as an image, where "time” occupies one of the image axes.
For example, if we have a multi-variable time-series input of shape (¢ x ¢)
- where t is the number of time-steps and ¢ is the number of variables
- then this can be treated as a 2D mono-channel image where ¢ and ¢
are the width and height of the image respectively. The framing of input
information as an image immediately raises the possibility for the use of
CNNs. However, the TCN architecture in particular carries certain features
that allow for greater effectiveness in time-series analysis, as compared to
generic CNNs.

The first is that the convolutions used are causal, meaning that in the
course of a convolution operation, information flows only from the past to
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the future and not the other way round. In concrete terms, this means
that, assuming the "time” axis is the z-axis, a convolution applied to a
pixel with coordinates z(,y, will involve only those pixels for whom
r < xp.

The second is that the TCN is able to accept an input with some length
L and produce an output with exactly the same length. This aspect of
the TCN leverages the technique of using "fully convolutional” networks,
which produce an output of the same size as the input. Thus at the core of
the TCN architecture are 1D fully convolutional networks that use causal
convolutions.

One remaining problem is that in traditional CNNs, the receptive field of
each node in a convolutional layer is limited by the size of its associated
kernel filter. This presents an issue for time-series tasks in which
information must ideally be integrated across the entire length of the
input. CNNs would typically solve this "distance” problem using pooling
operations, but this would jeopardise the ability of the TCN to produce an
output with the same length as the input. The way that TCNs circumvent
this issue is to use dilated causal convolutions. This means that in each
successive layer of the TCN, the convolutional filters target pixels that are
spaced increasingly further apart, even though the actual size of the filter
remains the same. This approach allows the TCN to capture the entire
history of the time-series input.

A TCN model can thus be characterised by a dilation vector, in which each
successive element is the dilation factor for each successive convolutional
layer - these would typically increase by a factor of 2.

One final feature of TCNs is the use of residual blocks developed to
circumvent the problem of accuracy degradation that has been known to
plague CNNs with a very high number of convolution layers. More
specifically, it had been recognised that as network depth increases, the
maximum accuracy achievable actually reaches a plateau and then
decreases. The fact that training accuracy displays this trend reveals that
the problem does not lie in over-fitting. Whatever the root of the problem,
the general finding is that sometimes shallower networks can achieve
better performance than their deeper counterparts, imposing a limit on
the network complexity attainable before performance deteriorates.
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The input x is processed to yield some desired output #’(x) via a two
steps. First, the input is processed through the convolutional layers to
yield F(x), then the original input x is transmitted via a unit-weight skip
connection to downstream of the convolutional layers, where it is then
added to F(x) to form #(x), which is then passed through an activation
function ¢ to yield H’(x). Hence, we have

H'(X) = p(H(X)) = o(F(X) +X), (1)

where F(x) can be seen to be the difference, or residual between the
non-activated target output #(x) and the original input x. For this reason,
the skip connection is often called a “residual connection” and the entire
structure is often called a "residual block”.

The main rationale behind the development of residual blocks was that
for deep CNNSs, it would be easier for the convolutional layers to learn
the residual mapping F(x), compared to the original target mapping H(x).
Presumabily, this is due to the fact that the residual connections enable the
model to simultaneously leverage the strengths of both shallow networks
and deep networks.
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C YO through Y6 network structures

(c) Y2 (d) Y3
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