
IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. Y, OCTOBER 2013 1

A General Testability Theory: Classes,
properties, complexity, and testing reductions

Ismael Rodríguez, Luis Llana, and Pablo Rabanal

Abstract —In this paper we develop a general framework to reason about testing. The difficulty of testing is assessed in terms of the
amount of tests that must be applied to determine whether the system is correct or not. Based on this criterion, five testability classes
are presented and related.
We also explore conditions that enable and disable finite testability, and their relation to testing hypotheses is studied. We measure how
far incomplete test suites are from being complete, which allows us to compare and select better incomplete test suites. The complexity
of finding that measure, as well as the complexity of finding minimum complete test suites, is identified.
Furthermore, we address the reduction of testing problems to each other, that is, we study how the problem of finding test suites to test
systems of some kind can be reduced to the problem of finding test suites for another kind of systems. This enables to export testing
methods.
In order to illustrate how general notions are applied to specific cases, many typical examples from the formal testing techniques
domain are presented.

Index Terms —Formal testing techniques, general testing frameworks

✦

1 INTRODUCTION

Testing consists in checking the correctness of a system
by interacting with it. Typically, the goal of this inter-
action is checking whether an implementation fulfills a
property or a specification. If the specification is formally
defined then procedures for deriving tests, applying
tests, and assessing the outputs collected by tests can
be formal and systematic [23], [27], [5], [29], [13]. There
exist myriads of formal testing methodologies, each one
focusing on checking the correctness of a different kind
of system (e.g. labeled transition systems [33], [34], [5],
[14], temporal systems [31], [22], [3], [26], probabilistic sys-
tems [32], [24], Java programs [6], [12], etc). Some methods
focus on testing a part of the behavior considered critical.
Other methods aim at constructing complete test suites,
that is, sets of tests such that, after applying them to
the implementation, the results allow us to precisely
determine whether the implementation is correct or not
with respect to the specification. For example, checking
the correctness of a non-deterministic machine could be
impossible regardless of how many tests one applies,
because a given behavior could remain hidden for any
arbitrarily long time. Even if a machine is deterministic,
we could need to apply infinite tests if the number of
available ways to interact with the implementation is
infinite. In some cases where infinite tests are required,
it could be the case that we can achieve any arbitrarily

• I. Rodríguez, L. Llana, and P. Rabanal are with the Department of
Sistemas Informáticos y Computación, Universidad Complutense de
Madrid, Spain, 28040. E-mail: isrodrig@sip.ucm.es, llana@sip.ucm.es,
prabanal@fdi.ucm.es

This work is a revised and extended version of CONCUR’09 paper [28].
Work supported by projects TIN2009-14312-C02-01, TIN2012-39391-C04-
04, and TIN2012-36812-C02-01.

high degree of partial completeness with some finite test
suite, thus enabling a kind of unboundedly-approachable
completeness, rather than completeness. Alternatively,
if the behavior of the system depends on temporal
conditions and the time is assumed to be continuous,
then we could need to check what happens when a given
input is produced at all possible times, thus requiring an
uncountable infinite set of tests.

Since the feasibility of a testing method depends on
our capability to test systems in finite time, investigating
the conditions that enable/disable the existence of finite
complete test suites in each case is a major issue in
testing. In this regard, several works have studied the
effect of assuming some hypotheses about the imple-
mentation [18], [29], [19]. By assuming hypotheses, the
number of systems that could actually be the imple-
mentation is reduced, so less tests must be applied
to seek for undesirable behaviors. Actually, this may
yield a reduction in the number of necessary tests for
completeness, from infinite to finite, in some specific
cases [2], [15].

However, the general conditions that make the dif-
ference between requiring infinite or finite sets of tests
(regardless of the use of hypotheses) are still unknown.
In this paper, by testability we will understand how
difficult is to test systems, measured in terms of the size
required by test suites to be complete. We think that the
conditions leading to the testability cases commented on
before must be analyzed, that is, whether complete test
suites are:

(a) finite;
(b) infinite, but any arbitrarily high degree of partial

completeness can be finitely achieved;
(c) countable infinite;

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. Y, OCTOBER 2013 2

(d) uncountable infinite;
(e) or there does not exist any complete test suite at

all.

To the best of our knowledge, testability scenarios (b),
(d), and (e) have never been defined or investigated. A
few hypotheses enabling finite complete test suites for
some particular models, such as finite state machines,
have been reported [23], [27], [5], [29], and some ap-
proaches to formally define cases (a) and (c) have been
proposed [7], [8]. However, as we will comment later
in the related work section, they lack the generality
to represent many feasible testing scenarios. Moreover,
little is known about the conditions that must hold to
make a testing problem fall in each of these cases, as well
as the borders between them. This contrasts with other
mature fields of Computer Science like Computability or
Complexity, where a well established theory allows us to
relate different known problems to each other, as well as
to classify them into a known hierarchy. Unfortunately,
the lack of such formal roots makes the field of Formal
Testing Techniques a bit disorganized, and techniques are
not easily inherited from one problem to another – even
if they are quite similar after abstracting factors not
directly affecting testability.

In this paper we propose a first step towards the con-
struction of a general testability theory. We will present
some formal criteria to classify testing problems accord-
ing to their testability. Providing a complete testability
hierarchy is a huge task and it is out of the objectives
of this paper. Instead, we will introduce a hierarchy
including only the five main testability cases commented
before. We will also present some formal properties of
the testability scenario (a) (later called finitely testable
class) such as conditions required for finite testability, al-
ternative characterizations, transformations keeping the
testability, the effect of adding testing hypotheses, meth-
ods to reduce a testing problem into another, the com-
plexity of finding a minimum complete test suite, and
the complexity of measuring the completeness degree of
incomplete test suites. We will apply these properties to
study the testability of some examples. A deeper study
of the properties of the remaining four testability classes
remains for future work.

1.1 Related work
In this section we present some previous proposals and
we use such a presentation to summarize, by the way, the
main differences of them with our proposal. As we said
before, there is little work dealing with testing from an
abstract and general point of view. Among the literature
on this subject, it is worth mentioning [7], [8], [10], [30],
[35], [25].

In [7], Cherniavsky and Smith propose a recursion the-
oretic approach to testing, and apply concepts from in-
ductive inference by relating program testing and induc-
tive inference. An abstract formalism to represent testing
is presented. Authors show that, for recursively enumer-
able sets of functions, inference is more difficult than

testing, and study the relationship between testable sets
and recursively enumerable sets. The proposed model
assumes that programs receive a natural number as in-
put and produce another natural number as output. An
adequacy criterion (for us, testing completeness) is defined
as follows: Outputs collected by a finite test suite must
allow the tester to uniquely determine which model is
the IUT (implementation under test), given a set of models
that could be the IUT. On the contrary, our own notion of
completeness will impose a weaker requirement: Given a
set of models (functions) representing all possible defini-
tions of the IUT, and a subset representing those that are
considered as correct, a test suite is complete if outputs
after applying it necessarily let us precisely determine
whether the IUT belongs to the latter set or not. Thus,
determining which one is the specific model of the IUT is
irrelevant after we have determined on which side of the
correctness/incorrectness border the IUT is. Hence, our
interpretation of the testing case (a), as proposed before
in the introduction, is different. Note that considering a
set of correct definitions of the IUT, rather than a single
correct definition, is natural in many cases: specifications
can be partially unspecified and, moreover, sometimes
acceptable implementations may be mutually exclusive
or denote behaviors which are incompatible with other
acceptable implementations.1 Besides, only determinis-
tic and total functions are considered in [7], whereas
our models explicitly denote non-determinism (functions
may return different non-deterministic outputs, and our
completeness criterion requires that the correctness can
be determined regardless of which outputs are non-
deterministically chosen by the IUT) as well as non-
termination (e.g. the tester can determine that emitting
a and next non-terminating could be undistinguishable
from emitting a and next terminating; more generally,
our model allows testers to explicitly determine which
pairs of outputs can/cannot be distinguished). Regard-
ing the distinction of cases (a)-(e) commented before,
in [7] only case (a) is defined (with the previous impor-
tant differences), and properties given in [7] just focus
on comparing testing and inference.

Based on [7], Cherniavsky and Statman developed
later a game theoretic approach to testing, as well as
a theory of testing in the limit, in [8]. Let us note that
the proposed notion of testing in the limit is not re-
lated to case (b) commented before (i.e. unboundedly-
approachable testing), but it is strongly related to case
(c) (i.e. countable infinite testing). Thus, in [8] the word
limit refers to the fact that, if we were able to apply all
test cases belonging to an infinite countable set, then the

1. Let us consider a drinks machine that sells orange and lemon
juices. It has two buttons, A and B. The machine will be considered
correct as long as buttons unambiguously allow users to request orange
or lemon drinks. Thus, an implementation where button A always
returns orange and B always returns lemon is correct. Moreover, an
implementation where A always returns lemon and B always returns
orange would be correct as well. Any other behavior is not permitted.
Both behaviors are incompatible, so considering them as two separate
acceptable definitions is a natural choice.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. Y, OCTOBER 2013 3

completeness would be achieved. On the contrary, our
notion of unboundedly-approachable testing (case (b))
will require that any non-full completeness measure can
be achieved with some finite test suite, which will be a
subtle intermediate point between cases (a) and (c) (in
fact, stronger than (c) and weaker than (a)).

In [10], Davis and Weyuker outline a theoretical model
for the notion of test adequacy for a given program. Con-
trarily to our proposal, which will be black-box oriented,
a white-box testing approach is considered. A test set
is said to be adequate for a given program if the input-
output behavior of the program for the given test set
distinguishes the program from the rest of the programs
whose input-output behavior is not identical to the first
one. This idea is generalized by providing a nearness def-
inition as a measure of the distance between programs.
Their model is presented as a programming language
that receives one input and generates one output, and
a grammar definition is given to measure this distance.
Authors also discuss a hierarchy of adequacy notions,
based on the distance between two programs, and define
the minimal adequation of a set for a program.

Another paper dealing with the complexity of testing
different classes of programs in white-box testing is [30],
where Romanik and Vitter define a measure of testing
complexity called VCP-dimension. In this work, authors
give upper and lower bounds on the number of test
points needed to determine if a program is approxi-
mately correct or to distinguish one program from all
other programs in the same class. These test points are
given as input/output pairs. This measure is applied to
different classes of programs: straight line programs, if-
then-else statements, for loops, and the combinations of
the previous schemes.

In [35], Zhu and He present a methodology for testing
high-level Petri nets in order to test concurrent software
systems. The syntax and semantics of the model pre-
sented are introduced, and next the model is used to
study four different types of testing strategies for Petri
nets: transition-oriented, state-oriented, flow-oriented,
and specification-oriented. Each method is formally de-
fined by an observation scheme and an adequacy crite-
rion. In particular, the test adequacy is defined in terms
of the coverage for the considered criterion.

In [25], Meinke presents a mathematical framework
for black-box testing. The model defines a functional
requirement as a precondition on the input data and a
postcondition on the output data of a system. This ap-
proach allows testers to treat coverage, test termination
and reliability modeling, as well as test case generation.
A program is said to fail a test if the test satisfies the
precondition, the program terminates on the input, and
the resulting output assignment does not satisfy the post-
condition. In this way, Meinke defines program testing as
the search for counterexamples of program correctness,
and introduces a probabilistic model to compute the
probability that a specification fails a test after passing
n tests. In this way, the probability of correctness of a

program is calculated, which can be used to generate
good test cases to find out errors.

1.2 Contributions

Next we summarize the main contributions of this work.
These notions will be explained in detail in subsequent
sections.

• A general framework to define testing scenarios is
given. It provides enough generality to enable the repre-
sentation of many different testing scenarios, as we will
illustrate with many typical examples from the formal
testing techniques domain. Our efforts will primarily fo-
cus on tackling the most challenging part of testing, that
is, guaranteeing that an incorrect IUT will necessarily
emit outputs that let us distinguish it from any pos-
sible correct definition (which provides exhaustiveness),
though our completeness notion will not only require
this, but also that a correct IUT will emit outputs that
let us distinguish it from any possible incorrect defini-
tion (which provides soundness). In comparison to other
general frameworks, ours has the following features:

1) In order to provide generality, no specific structure
of systems (states, transitions, code lines, etc) is assumed.
Behaviors are represented by functions relating inputs
and outputs, in a black-box manner.
2) Designers can explicitly denote that there are sev-

eral correct definitions rather than a single one, which is
a natural approach to under-specification and mutually
exclusive valid definitions. More importantly, the goal
of testing is determining whether the IUT belongs to the
set of correct definitions, which is a weaker requirement
than uniquely identifying the IUT from a set of possible
definitions (as typically considered in the literature).
3) Testers can explicitly specify which pairs of outputs

are (un-)distinguishable through observation. It enables
a natural representation of observation issues such as
non-termination and imprecise observation of magni-
tudes.
4) The non-determinism of systems is explicitly de-

noted. Moreover, the non-determinism explicitly affects
the definition of completeness: A test suite is considered
complete only if, after applying it to the IUT, we will
always be able to decide whether the IUT is correct or not
(regardless of non-deterministic choices actually made
by the IUT).

• A classification of testing problems into five classes
is provided. This classification includes classes which
have been introduced before in the literature but had
a different definition (cases (a) and (c)), as well as other
classes which have never been proposed to the best of
our knowledge, including the class where unboundedly-
approachable testing is possible (case (b)).
• Properties of the first class (case (a)) are extensively

studied, including alternative characterizations and tech-
niques to export methods between testing problems.
• The particular case where the set of possible defini-

tions of the IUT is finite is analyzed. The complexity of

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. Y, OCTOBER 2013 4

problems such as finding the minimum complete test
suite, and finding the least hypothesis that makes test
suites complete in several scenarios, is studied. Most of
them (but not all) turn out to be NP-complete problems.
• In order to put the proposed theoretical ideas into

practice, we develop a few elaborated case studies where
our framework lets us discover new interesting proper-
ties about well-known testing settings (e.g. the inclusion
of a part of M. Hennessy’s testing framework [17] into
case (b)) and other useful models (e.g. the classification
of testing time-out machines with rational times into the
same case (b), and the classification of testing several
variants of machines handling increasing continuous mag-
nitudes in case (a), which is discovered through a series
of testing reductions).

1.3 Paper structure

This paper is structured as follows. In the next section we
construct some basic concepts to reason about testability,
and in Section 3 we present the classes of our testability
hierarchy. Next, in Section 4 we present some properties
of the first of these classes, the finite testability class.
We focus on studying those aspects that enable/disable
finite testability, the complexity of some problems, the
effect of assuming testing hypotheses, and the notion
of testing reduction. Later, Section 5 presents our case
studies. For the sake of readability, the lengthiest proofs
(in particular, those concerning results about complexity)
are presented in a different section, Section 6. In Section 7
we present the conclusions of the paper and we outline
some lines of future work.

2 TESTABILITY CONCEPTS

In this section we introduce some preliminary concepts
and define testability classes. A general notion to de-
note implementations and specifications is presented. In
particular, we introduce an abstraction of computation
device (program, hardware system, etc) as a machine
that takes an input from a set of inputs and computes
an output. Let us recall that testing consists in observing
the outputs of an implementation and comparing them
with those allowed by the specification. However, there
might be different outputs that are not distinguishable
under observation, for instance in presence of imprecise
measurement or non-termination (see the forthcoming
Example 1). Therefore, we need to introduce a notion of
distinguishable outputs.

Definition 1: Let O be a set of outputs.

• A distinguishing relation for O is an anti-reflexive
symmetric binary relation 6⊜ over O. We denote the
complementary of 6⊜ by ⊜.
• A set of distinguished outputs is a set O of outputs with

a distinguishing relation 6⊜.
• We extend the relation 6⊜ to sets of outputs as follows.

Let O′,O′′ ⊆ O. We say that O′ and O′′ are distinguishable,
denoted by O′ 6⊜O′′, iff o′ 6⊜o′′ for all o′ ∈ O′ and o′′ ∈ O′′.
Again, the relation ⊜ is the negation of 6⊜.

Hereafter, when no distinguishing relation is explicitly
given, we will assume the trivial inequality: o1 6⊜ o2 iff
o1 6= o2. ⊓⊔

The next example illustrates the previous definition.
Example 1: Let us consider a testing scenario where all

outputs can be distinguished from each other. Then we
may consider a trivial distinguishing relation 6⊜ where
two outputs o1, o2 ∈ O are distinguishable iff they are
different, i.e. o1 6⊜ o2 iff o1 6= o2.

This strong distinguishing capability may not be feasi-
ble in other frameworks. Let us observe programs which
may not terminate, and let us assume that the time
at which messages are produced is not represented in
collected observations. For instance, the output o1 =
mes1·mes2·stop denotes that the IUT produces a message
mes1, next produces mes2, and next terminates (stop),
whereas the output o2 = mes1 · ⊥ denotes that the IUT
produces mes1 and next is stuck forever, denoted by ⊥.
In practice, o1 is not effectively distinguishable from o2
via observation because, if mes1 is produced, then we
cannot guarantee that mes2 will not be observed later,
no matter how much time passes. Consequently, we may
consider the following (effective) distinguishing relation:
We have o′ 6⊜ o′′ iff (i) o′ 6= o′′; and (ii) neither o′ = w · ⊥
nor o′′ = w · ⊥, where w is the longest common prefix
of o′ and o′′. Note that if (ii) is not met then o1 and o2
are not distinguishable in finite time, so o1 ⊜ o2. In fact,
given this definition of 6⊜, if we observe o ∈ {o′, o′′} and
we have o′ 6⊜ o′′ then we can decide whether o = o′ or
o = o′′ in finite time.2 The tester could also represent
deadlocks and livelocks with different symbols if required
(e.g. ⊥1 and ⊥2), and define them as distinguishable or
not depending on whether e.g. the tester can monitor
consumed processing resources or not.

Now let us assume that the time when each mes-
sage is produced is denoted in outputs indeed. For
instance, the output 〈(1.2,mes1), (2.7,mes2), (3.2, stop)〉
denotes that mes1 is produced at time 1.2, then mes2
is produced at time 2.7, and next the system stops at
time 3.2. In this case, non-termination issues would not
affect the distinguishability of outputs. Let us consider
o = 〈(t1, o1), . . . , (tn, on)〉 ∈ O. If time ti is reached and oi
is not observed then we know for sure that we are not
observing o. Thus, in this case we may use the following
criterion: We have o′ 6⊜ o′′ iff o′ 6= o′′.

We could also consider a scenario where two out-
puts cannot be distinguished if outputs have close,
but not identical time stamps. Thus, two observa-
tions o = 〈(t1, o1), . . . , (tn, on)〉 ∈ O and o′ =
〈(t′1, o

′
1), . . . , (t

′
m, o′m)〉 ∈ O would be distinguishable, i.e.

o′ 6⊜ o, iff n 6= m or, for some i, oi 6= o′i or |ti − t′i| > ǫ for
some given ǫ.

Finally, let us note that the non-distinguishing relation
⊜ may be non-transitive. Let us suppose that testers

2. Alternatively, a tester could assume a kind of non-termination
observability for practical reasons. For instance, the tester could assume
non-termination if he observes that some timeout is reached. In that
alternative case, he could consider o′ 6⊜ o′′ iff o′ 6= o′′.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. Y, OCTOBER 2013 5

check an analog scale, but their observations may deviate
±3 gr from the weight actually indicated by the sensor.
Then, we could define our distinguishing relation in such
a way that 45 gr⊜47 gr (testers cannot assure that 45 gr
and 47 gr observations denote different IUT behaviors
indeed) and 47 gr ⊜ 49 gr, but 45 gr 6⊜ 49 gr. Similarly,
the relation ⊜ given in the previous paragraph is not
transitive either. ⊓⊔

Next we introduce our notion of computation formal-
ism.

Definition 2: Let I be a set of inputs and O be a set
of distinguished outputs. A computation formalism C for
I and O is a set of functions f : I → 2O where for all
i ∈ I we have f(i) 6= ∅. ⊓⊔

Given a function f ∈ C, f(i) represents the set of
outputs we can obtain after applying input i ∈ I to
the computation artifact represented by f . Since f(i)
is a set, f may represent a non-deterministic behavior.
Besides, C, I and O can be infinite sets. Representing
the behavior of systems by means of functions avoids to
implicitly impose a specific structure to system models
(e.g. states, transitions). Still, elaborated behaviors can be
represented. The next example shows different compu-
tation formalisms.

Example 2: Let C be a computation formalism repre-
senting the set of all (possibly non-deterministic) Mealy
machines (also known as finite state machines, FSMs).
Let M be an FSM and I ′ and O′ be the set of inputs
and the set of outputs of M , respectively. M is repre-
sented in C by a function f ∈ C such that we have
f(σ) = {σ′

1, . . . , σ
′
n} if and only if {σ′

1, . . . , σ
′
n} is the set

of sequences of O′ outputs that can be answered by M
when it receives the sequence σ of I ′ inputs. For instance,
if σ = a · b, σ′ = x ·y, and σ′′ = w ·z, then f(σ) = {σ′, σ′′}
means that f represents an FSM M where, in particular,
if a · b is given then the machine can answer either x · y
or w · z. Hence, the set I considered in Definition 2
(respectively, the set O) is the set of all sequences of
symbols belonging to I ′ (resp. to O′), that is, I = I ′∗

and O = O′∗.Thus, even if I ′ and O′ are finite, I and O
are infinite sets. Alternatively, if systems were assumed
to be deterministic FSMs, then all functions representing a
non-deterministic FSM would be removed from C. Other
restrictions over the set of systems that are represented
by C could be considered (e.g. considering only FSMs
with less than n states for some given n ∈ N, etc).

Now, let us consider a computation formalism C
that represents interactive programs written in a given
programming language. The interaction of a user with
the program can be represented in a similar way as
in Example 1. For example, the behavior of a given
program P could be denoted by a function f such that,
in particular:

f
(

〈(0.5, but1),
(1.25, but2)〉

)

=











〈(0.75, mes1), (1.5, mes2), (2, stop)〉,
〈(0.75, mes1), (1.5, mes3), (2, mes4),
(2.5, stop)〉,

〈(0.75, mes1),⊥〉











meaning that if the user presses button 1 at time

0.5 and button 2 at time 1.25, then she will receive
message 1 at time 0.75 for sure, and next the pro-
gram non-deterministically chooses one of the follow-
ing choices: (a) answering message 2 at time 1.5 and
stopping at time 2; (b) answering message 3 at time
1.5, giving message 4 at time 2, and then finish-
ing at time 2.5; or (c) not terminating (denoted by
the ⊥ symbol; the effect of non-terminating behav-
iors on testing will be further discussed later). For
example, we have 〈(0.5, but1), (1.25, but2)〉 ∈ I and
〈(0.75,mes1), (1.5,mes2), (2, stop)〉 ∈ O. Alternatively, if
temporal issues were not considered relevant for assess-
ing the correctness of behaviors, then time stamps could
be removed from the proposed representation, or they
could be replaced by ordering stamps denoting the rela-
tive order of each O′ output with respect to I ′ inputs. If
other factors were considered relevant, additional details
could be denoted.

If two FSMs (resp., two programs) produce the same
sets of outputs for all inputs then both machines are
represented by the same function f ∈ C. This is because
a function belonging to C represents a relation between
inputs and outputs (but not the internal structure of the
machine leading to this behavior). ⊓⊔

Computation formalisms will be used to represent the
set of implementations we are considering in a given
testing scenario. Implicitly, a computation formalism C
represents a fault model (i.e. the definition of what can be
wrong in the implementation under test, IUT) as well as
the hypotheses about the IUT the tester is assuming. For
instance, if the IUT is assumed to be a deterministic FSM
and to differ from a given correct FSM in at most one
transition, then only functions denoting the behaviors of
such FSMs (including the correct one) are in C. Alterna-
tively, if we only assume that the IUT is represented by a
deterministic FSM, then C will represent all deterministic
FSMs.

Computation formalisms will also be used to represent
the subset of specification-compliant implementations.
Let C represent the set of possible implementations and
E ⊆ C represent the set of implementations fulfilling
the specification. The goal of testing is interacting with
the IUT so that, according to the collected responses,
we can decide whether the IUT actually belongs to
E or not. Typically, we apply some tests (i.e., some
inputs i1, i2, . . . ∈ I) to the IUT so that observed results
o1 ∈ f(i1), o2 ∈ f(i2), . . . allow us to provide a verdict.
Since all outputs are returned by the same function f ,
we are implicitly assuming that all input applications
are independent, i.e. the result after applying i1 does
not affect the output observed next, when we apply
i2.3 Note that dependencies between consecutive input
applications can still be represented by using sequences,

3. In practice, this is equivalent to assuming the existence of a reliable
reset button, a typical testing assumption. Since a reset button allows
to recover the initial state after each test application, it allows to
reason independently about each test application in a sequence of tests
applications.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. Y, OCTOBER 2013 6

as in Example 2. For instance, let i1 and i2 be inputs such
that, if we apply input i1 before i2, then we obtain an
output o1; however, if we apply only input i2, then we
obtain a different output o2. In this case, the inputs of
the computation formalism would not be system inputs
but sequences of system inputs, and the system would
be represented by a function f such that f(i1 · i2) = {o1}
and f(i2) = {o2}.

Definition 3: Let C be a computation formalism. A
specification of C is a set E⊆C. ⊓⊔

If f ∈ E then f denotes a correct behavior, whereas
f ∈ C\E denotes that f is incorrect. Thus, a specification
implicitly denotes a correctness criterion. For example,
let f, f ′ ∈ C be two functions such that for all i we
have f(i) = {a} and f ′(i) = {b}. Then, E = {f, f ′}
denotes that only machines producing always a or always
b are considered correct. We can also construct E in
such a way that a given underlying semantic relation
is considered (e.g. bisimulation, testing preorder, traces
inclusion, conformance testing, etc). For instance, given
some f ∈ C, let us consider that f is correct and we
wish to be consistent with respect to a given semantic
relation �, where A � B means that A is correct
with respect to B. Then we could define E as follows:
E = {f ′|f ′ � f ∧ f ′ ∈ C}.

Next we identify test suites and complete test suites.
By applying tests cases in a test suite (i.e. a set of inputs
I ⊆ I) to an IUT, collected outputs should (ideally) let us
determine whether the IUT is correct or not, i.e. whether
the function denoting its behavior belongs to a given
specification set E ⊆ C. Unfortunately, in black-box
testing we do not have access to the IUT definition, so
the only thing we can do is to observe the outputs given
by the IUT when tests are applied, and collect produced
outputs. If observed outputs can be produced by some
possible correct behavior (i.e. some f ∈ E) but cannot
be produced by some possible incorrect behavior (i.e.
some f ∈ C\E), then we know for sure that the IUT is
correct; otherwise, we cannot assure the IUT correctness.
If a test suite I ⊆ I is such that observed outputs will
necessarily let us decide the (in-)correctness of the IUT,
then we say that the test suite is complete. This requires
that, for any pair of correct and incorrect functions (i.e.
f ∈ E and f ′ ∈ C\E, respectively), there must be a
test i ∈ I that distinguishes f and f ′. Let f ′′ be the
actual behavior of the IUT. When tests i1, i2, . . . ∈ I are
applied to f ′′, some outputs o1, o2, . . . ∈ O are (in gen-
eral non-deterministically) chosen by f ′′ and observed
(o1 ∈ f ′′(i1), o2 ∈ f ′′(i2), . . .). If I is complete then, for
each pair f ∈ E and f ′ ∈ C\E of possible correct and
incorrect behaviors of the IUT, some of these outputs, say
oj , must let us distinguish between f and f ′. Assuring
this property a priori, i.e. regardless of non-deterministic
choices actually taken by the IUT, requires that, for some
ij , all possible non-deterministic output responses of f
must be pairwise distinguishable from all possible non-
deterministic output responses of f ′. In this case, outputs
collected by applying I to the IUT will let us determine

the (in-)correctness of the IUT in any case.
Let us note that, as explained before in Section 1.1,

our completeness notion differs from several classical
adequacy notions given in the literature, where non-
determinism is not taken into account and, more impor-
tantly, a quite stronger condition is required: rather than
determining whether the IUT behavior belongs to E or
not, it is required that we are able to distinguish any
candidate behavior from any other candidate behavior
from a given set. Note that, given f1, f2 ∈ E (respectively,
f1, f2 ∈ C\E), our notion does not require that f1 and
f2 are distinguishable, so our requirement is weaker. Be-
sides, defining specific distinguishing relations 6⊜ enables
subtler relations between observable outputs.

Definition 4: Let C be a computation formalism for I
and O, E ⊆ C be a specification, and I ⊆ I be a set of
inputs.

We say that f ∈ E and f ′ ∈ C\E are distinguished by
I, denoted by di (f, f ′, I), if there exists i ∈ I such that
f(i) 6⊜ f ′(i).

We say that I is a complete test suite for C, E if for all
f ∈ E and f ′ ∈ C\E we have di (f, f ′, I). ⊓⊔

Note that, in the previous definition, 6⊜ is applied to
sets of outputs, so all outputs from a set are required to
be distinguishable from all outputs from the other set.

Observations collected by complete test suites pre-
cisely determine whether the IUT is correct or not. Let I
be a complete test suite for the computational formalism
C and the specification E. Then, we trivially conclude
that:

(A) if f ∈ E, then there is no f ′ ∈ C\E such that f ′(i)⊜
f(i) for all i ∈ I, and
(B) reciprocally, if f ∈ C\E then there does not exist
f ′ ∈ E such that f ′(i)⊜ f(i) for all i ∈ I.

That is, after applying I, no correct IUT can be consid-
ered as incorrect, and no incorrect IUT can be considered
as correct.

3 TESTABILITY HIERARCHY

Once the basic general framework has been presented,
we introduce four of the five classes of our testability hi-
erarchy: Class I, Class III, Class IV, and Class V
(Class II will be defined later).

Definition 5: Let C be a computation formalism for I
and O, and E ⊆ C be a specification.

We say that a pair (C,E) is finitely testable if there exists
a finite complete test suite for C, E. We denote the set
of all finitely testable pairs (C,E) by Class I.

We say that (C,E) is countably testable if there exists
a countable complete test suite for C, E. We denote the
set of all countably testable pairs (C,E) by Class III.

We say that (C,E) is testable if there exists a complete
test suite for C, E. We denote the set of all testable pairs
(C,E) by Class IV.

We denote the set of all pairs (C,E) by Class V. ⊓⊔
This classification induces the relation Class I ⊆

Class III⊆ Class IV⊆ Class V. Class II, whose

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. Y, OCTOBER 2013 7

definition is harder, will be presented in Section 3.2,
Definition 7. Next we show some examples fitting into
each of these testability classes. They show that all the
inclusions considered in the previous relation are proper
indeed. Besides, the proposed example of a pair (C,E) in
Class IV but not in Class III will be used to argue
that the interest of Class IV is, perhaps, just theoretical.

Example 3: Given n ∈ N, let C1 represent the set of all
deterministic completely-specified FSMs with at most n
states where the finite sets of inputs and outputs are
I ′ and O′, respectively. Let E1 ⊆ C1, and I1 be the
set of all sequences of I ′ symbols whose length is at
most 2n + 1. It is known that, if two FSMs M1 and M2

represented by C1 produce different responses for some
input sequence, then sequences answered by M1 and
M2 are different for at least one sequence belonging to
I1 [9], [23]. Hence, for all f ∈ E1 and f ′ ∈ C1\E1 there
exists a sequence i ∈ I1 allowing to distinguish f and f ′.
Thus, (C1, E1) ∈ Class I. As we will see in Example 6
(used to illustrate notions of Section 4) this result can
also be proved by applying Lemma 1 (c), which makes
this result straightforward and avoids the necessity of
identifying any specific complete test suite I1.

We consider again the previous case, but this time
we remove the restriction that FSMs have at most n
states. Let C2 be the resulting computation formalism,
and let E2 ⊆ C2. It is known that, in general, given
two (possible infinite) sets of deterministic FSMs, there
is no finite set of sequences I2 allowing to distinguish
each member of the first set from each FSM in the other
set. Hence, in general we have (C2, E2) 6∈ Class I (in
Example 6 we also prove this property, this time by
using forthcoming Lemma 1 (b)). However, the set of
all sequences of inputs from I ′, that is I ′∗, distinguishes
all pairs of non-equivalent deterministic FSMs. In fact,
I ′∗ can be numbered (e.g. lexicographically). Thus, we
have (C2, E2) ∈ Class III.

Let us consider a variant of deterministic FSMs where
the transition taken at each situation depends on the
elapsed time, and let the time be assumed to be con-
tinuous. For each state and input, a machine may have
several outgoing transitions, each one labeled by a time
interval [t1, t2] with t1, t2 ∈ R such that t1 ≤ t2. When
an input i is received by the machine, the machine
takes the first defined transition reacting to i such that
the elapsed time fits into its interval. We denote by C3

the proposed computation formalism, and we consider
E3 ⊆ C3. The set of all input sequences produced at all
possible real times is a complete test suite for (C3, E3),
so (C3, E3) ∈ Class IV. However, in general we have
(C3, E3) 6∈ Class III. In order to see this, let us note
that the IUT could have some faulty transitions with
intervals of the form [t, t] with t ∈ R, and detecting such
transitions requires considering all input sequences in all
real times.

Now, let C′
3 be defined as C3, but only intervals

following the form [t1, t2], with t1 < t2 and t1, t2 ∈ R,
are allowed in machines represented by C′

3. Let E′
3 ⊆ C′

3.

In this case, the set of all input sequences produced at
all possible rational times is complete for C′

3, E′
3: For all

t1, t2 ∈ R with t1 < t2 there exists a rational t with
t1 < t < t2, so by emitting all input sequences in all
possible rational times we will be able to observe all
IUT transitions. Since the set of all rational numbers is
countable and the set of all finite input sequences is so,
the set of all finite sequences of rational-timed inputs is
countable as well (note that if A is countable then A∗ is
countable, and if B is countable too then A×B is count-
able as well). Hence, we have (C′

3, E
′
3) ∈ Class III.4

We could argue that the problematic intervals of C3,
i.e. those of the form [t, t] with t ∈ R, are artificial because
we cannot produce an input at the (exact) time t. As far
as we have analyzed other examples in Class IV but
not in Class III, they are so for similar reasons. Thus,
the practical utility of Class IV, if it has any, has not
been proved yet. However, we include Class IV in our
hierarchy for the sake of theory completeness.

Let C4 be a computation formalism representing all
non-deterministic (non-timed) FSMs, and let E4 ⊆ C4.
We consider an FSM M1 that answers b when a is
received, and another FSM M2 which behaves in the
same way as M1 for any input different from a, and
behaves non-deterministically for a: If M2 receives a,
then M2 can answer either b or c. Let us suppose that M1

is correct and M2 is not, and let they be represented in
C4 by f ∈ E4 and f ′ ∈ C4\E4, respectively. Despite the
fact that we could obtain c after applying a to f ′, input a
does not necessarily distinguish f and f ′ because both
of them could produce b in response to a. In fact, M2

could hide the output c for any arbitrarily long time,
no matter how many times we apply a. Thus, no input
allows the tester to necessarily distinguish f and f ′, so
we have (C4, E4) ∈ Class V but (C4, E4) 6∈ Class IV.5

Non-determinism does not imply that finite testability
is not possible. Let us consider C5 = {f, f ′} and E5 =
{f} be such that f(a) = {x}, f ′(a) = {x, y}, f(b) = {x, y},
and f ′(b) = {z, w}. Then, {b} is a complete test suite for
C5 and E5. Thus, (C5, E5) ∈ Class I.

Finally let us note that (C,E) ∈ Class I does not im-
ply that C or E are finite, or even that C and E represent
some simple computation formalisms such as e.g. FSMs.
Let C represent all deterministic terminating functions
from integers to integers, written in some programming
language, that are either strictly increasing or strictly
decreasing. Let E ⊆ C consist of all strictly increasing
functions in C. Though C and E are infinite sets and

4. Besides, there are in the literature some specific temporal sys-
tems dealing with continuous time where testing completeness can
be finitely achieved. This is the case for Timed Automata under the
assumptions that the number of states is known, and upper and
lower bounds of all temporal intervals are required to be integers [31].
Then, the time can be discretized into a finite set of time regions, and
completeness can be finitely achieved by considering only these regions
for testing purposes.

5. If fairness were assumed, we would be considering a different
computation formalism C′

4 6= C4. In C′

4, for all single input denoting a
long repetition of the same experiment, the single output would denote
that all possible reactions are observed at least once.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. Y, OCTOBER 2013 8

FSMs cannot express all functions in C or all functions
in E, {3, 5} is a complete test suite for (C,E): For all
f ∈ C, f(3) < f(5) iff f ∈ E. So, (C,E) ∈ Class I.
This trivial example shows that the finite testability does
not lie in the finiteness or the simplicity of C or E, but
in the simplicity of the border between correctness and
incorrectness. ⊓⊔

If (C,E) ∈ Class I then we can precisely decide if the
IUT is correct or not (i.e., if it belongs to the specification
set) by considering the answers collected by a complete
test suite. On the contrary, if the problem belongs to
Class III or Class IV, but not to Class I, then
applying a complete test suite to the IUT is unfeasible
because the suite is infinite. In particular, if the problem
belongs to Class III then we could rather speak about
testability in the limit, i.e. as we iteratively apply more
tests, we could tend to complete testing coverage (later
this idea will be further elaborated to define Class II,
given in Definition 7). This is not the case for problems
in Class IV but not in Class III: Applying an infinite
number of tests one after each other in a given order
is not enough to reach complete coverage, because the
complete test suite is not countable.

3.1 Non-termination

Next we discuss the relation between complete test suites
and non-termination. Let us consider a computation
formalism C where systems may not terminate, and let
I be a finite complete test suite. Each correct function is
distinguished from each incorrect function for some i ∈
I (and vice versa). Let us suppose that the distinguishing
relation 6⊜ is defined in such a way that two outputs are
distinguished only if we can distinguish them in finite
time (e.g. as we did in Example 1, second paragraph).
Let f ∈ C\E (the argument if f ∈ E is symmetric). If we
apply all inputs in I to f then, for some of these inputs,
we will observe some outputs allowing to distinguish f
from all correct functions. By the definition of 6⊜, for all
of these inputs the part of the answer needed to make
the distinction is reached in finite time. However, for
those inputs of I not distinguishing function f from
any correct function, f could not terminate (this is the
case if the specification permits not to terminate for some
inputs). Thus, the procedure consisting in applying all
inputs of I one after each other could not terminate indeed.

Nevertheless, let us note that we could always return
verdicts in finite time if all inputs in I were applied to
(several instances of) the IUT in parallel or interleaving:
Since each required distinction is provided in finite
time, once all distinctions are reached we can stop the
parallel/interleaved execution of tests and provide a ver-
dict. Alternatively, we could adopt a more conservative
approach where complete test suites are not allowed to
include any input i such that, for some f ∈ C, f(i)
could not terminate. In this case, the application of a
complete test suite terminates even if inputs are applied
sequentially. The results presented later in Section 4 also

apply to this alternative notion of complete test suite,
once a straightforward adaptation is made in each case.

3.2 Definition of Class II

In this section we elaborate on our idea of finite testabil-
ity in the limit or, more precisely, unboundedly-approachable
finite testability. When finite testability is not possible,
in some cases it may still be possible to test the IUT
up to any arbitrarily high distinguishing rate with a finite
test suite. As distinguishing rate we will consider the
ratio between the number of pairs of correct/incorrect
functions that are distinguished by the test suite and
the total number of correct/incorrect pairs. Let us note
that this ratio can only be defined if the computation
formalism C is finite.

Definition 6: Let C be a finite computation formalism
for I and O, E ⊆ C be a specification, and I ⊆ I be a
set of inputs. We define the distinguishing rate of I for
(C,E), denoted by d-rate (I, C,E), as:

|{(f, f ′)|f ∈ E, f ′ ∈ C\E,di (f, f ′, I)}|

|E| · |C\E|

⊓⊔
The assumption that C is finite (otherwise the previous

division would be undefined) reduces the applicability
of the previous notion, as many interesting computation
formalisms are infinite indeed. In order to adapt this
idea to infinite computation formalisms, we consider
sequences of finite computation formalisms. Let us note
that, if C is a countable set, then there exists a non-
decreasing chain of finite subsets:

C1 ⊆ C2 ⊆ · · · ⊆ Ck ⊆ Ck+1 ⊆ · · ·

such that C =
⋃

i∈N
Ci. Given a specification E ⊆ C,

let us consider the sub-specifications Ei = E ∩Ci. Since
each Ci and Ei are finite sets, we can apply Definition 6
to them indeed. Then, the class of pairs (C,E) which
are unboundedly-approachable by finite testing (Class II)
consists of those pairs such that, for some non-decreasing
sequence like those described above, any arbitrarily high
distinguishing rate less than 1 is reached, by some finite
test suite, for almost all computation formalisms in the
sequence.

Definition 7: We say that (C,E) is unboundedly-
approachable by finite testing if there is a non-decreasing
sequence: C1 ⊆ C2 ⊆ · · · ⊆ Ck ⊆ Ck+1 ⊆ · · · with
C =

⋃

i∈N
Ci such that, for all ǫ < 1, there exists a finite

set of inputs I ⊆ I and n ∈ N such that, for all l ≥ n,
d-rate

(

I, Cl, El
)

≥ ǫ, where El = Cl ∩ E for all l ∈ N.
We denote by Class II the set of all pairs (C,E) that

are unboundedly-approachable by finite testing. ⊓⊔
It is straightforward to see that this class is related with

the other classes as expected: Class I ⊆ Class II ⊆
Class III. Moreover, the next two examples show that
both inclusions are proper.

Example 4: We revisit (C2, E2) as defined before in
Example 3. In particular, let us assume that the sets of

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. Y, OCTOBER 2013 9

FSM inputs and outputs are I ′ = {a, b} and O′ = {0, 1},
respectively, and E2 = {f1} consists of a single func-
tion f1. Next we prove that (C2, E2) ∈ Class II, i.e.
(C2, E2) is unboundedly-approachable by finite testing.

First we define a non-decreasing sequence of finite sets
C0 ⊆ C1 ⊆ C2 ⊆ · · ·Cn ⊆ Cn+1 ⊆ · · · as required
by the definition of Class II. Let us introduce some
notation. We say that f ∈ C2 is the smallest function
fulfilling a given criterion Q if f fulfills Q and, for all
function f ′ ∈ C2\{f} fulfilling Q, the smallest FSM (i.e.
the one with less states) behaving as defined by f has
less states than the smallest FSM behaving according to
f ′, or both have the same number of states but f is
smaller according to some fix arbitrary criterium (e.g.
we can sort tied functions lexicographically according
to their respective infinite sequences f(0) · f(1) · f(00) ·
f(01) · f(10) · f(11) · f(000) · . . .). Note that, for any set
of functions, there always exists the smallest function
fulfilling Q (as long as some function fulfills Q).

We build each set Cn as follows. First, let C0 = E2 =
{f1}. Besides, for all n ≥ 1, the set Cn is constructed
as follows. Let us consider the set of all combinations
of output responses that a deterministic FSM could
give for all input sequences in {a, b}n. For instance, if
n = 2, then all possible responses to sequences aa, ab,
ba, bb consist in answering 00, 00, 00, 00 respectively,
00, 00, 00, 01 respectively, ..., 11, 11, 11, 11 respectively.
Note that not all combinations of 8 bits are possible
indeed. For instance, the combination 00, 10, 00, 00 is
impossible because we cannot have f(aa) = {00} and
f(ab) = {10}: It would imply that, at its first state, the
FSM can answer either 0 or 1 when a is provided, but the
FSM must be deterministic. According to these notions,
Cn is constructed as follows: For each combination of
responses to {a, b}n which is possible in a deterministic
FSM, we introduce in Cn the smallest function providing
that combination if f1 does not provide that particular
combination, else f1 is introduced instead; and there are
no other functions in Cn.

Let us show that, for all i ≥ 0, we have Ci ⊆ Ci+1. Let
f ∈ Ci. This implies that either f = f1 or f is the smallest
function providing some combination of responses to
{a, b}i. If f = f1 then f ∈ Ci+1, because f1 also belongs
to Ci+1. Let f 6= f1. Thus f is the smallest function
providing some combination of responses to {a, b}i. Note
that f also provides some combination of responses to
{a, b}i+1 and, moreover, it is also the smallest function
providing that combination. We prove it by contradic-
tion: If the smallest function for that combination of
responses to {a, b}i+1 were f ′ 6= f , then f ′ would
be smaller than f , so f ′ would also be the smallest
function providing the same combination as f for {a, b}i.
However, the smallest function for that combination in
{a, b}i is f indeed, so we have a contradiction. Thus, f
also belongs to Ci+1.

Let us calculate |Cn| for each n ≥ 1. We have that
Cn has as many elements as possible combinations of
responses to {a, b}n exist in a deterministic FSM. Let us

consider a binary tree with depth n, where left arcs are
labeled by a and right arcs are labeled by b. Sequences of
labels in each branch, from the root to a leaf, represent
each sequence in {a, b}n. Each combination of responses
of a deterministic FSM to all of these sequences can be
represented by assigning a value in {0, 1} to each arc in
the tree. Since there are 2n+1 − 2 arcs in the tree, there
are 22

n+1−2 possible assignments. Thus, |Cn| = 22
n+1−2.

We also have to prove C2 =
⋃

n∈N
Cn. Let f ∈ C2. Let

us suppose that the smallest deterministic FSM behaving
as f has k states. Note that the number of functions
which can be represented by deterministic FSMs with k
or less states is finite, let K be this number. If f = f1 then
f ∈ C0. Let f 6= f1. By contradiction, let us suppose that
f 6∈ Ci for all i ∈ N. This implies that there does not exist
i ∈ N such that, for the combination of output sequences
answered by f to {a, b}i, we have both that (a) this
combination differs from the combination answered by
f1 to {a, b}i; and (b) f is the smallest function providing
that combination. Since f 6= f1, there exists i′ such that,
for all i > i′, the combination of sequences responded
by f to {a, b}i differs from the combination given by f1
(otherwise we would have f = f1 indeed). Thus, for all
i > i′ (b) is not met, i.e. f is not the smallest function
providing its own combination of responses to {a, b}i.
For each i > i′, let f i be the smallest function providing
the combination of responses given by f to {a, b}i. Since
we are assuming f 6∈ Ci for all i ∈ N, we have f i 6= f for
all i > i′. Note that, for all i > i′, there must exist j > i
such that f i 6= f j (otherwise f and f i would have the
same behavior for all {a, b}j with j ∈ N, so we would
have f = f i). Let j1 < j2 < . . . be an infinite sequence
of naturals such that f jh 6= f jh+1 for all h. Since there
exist at most K functions which are smaller than f , we
have that f jK+1 cannot be smaller than f . Thus we have
a contradiction, and we infer f ∈ CjK+1 .

Let us prove (C2, E2) ∈ Class II. Hereafter we will
assume sn = |Cn|. Let ε < 1. We find a test suite I and
a natural n ∈ N such that the distinguishing rate of I
is higher than or equal to ε for all Cl with l ≥ n. For
all k ∈ N, let Ik = {a, b}k. Besides, let us consider the
equivalence relation f ≡k f ′ iff f(σ) = f ′(σ) for all σ ∈
Ik. For any l > k, the relation ≡k is a equivalence relation
in Cl. The class of equivalence of a function f (that is, the
set of functions f ′ such that f ≡k f ′) will be denoted by
[f]. Note that there are exactly sk equivalence classes in
Cl, and each class has sl

sk
elements. Moreover, since E2 =

{f1}, we have di
(

f1, f, I
k
)

iff f1 6≡k f . Therefore, the
number of pairs of correct-incorrect functions from Cl

which are distinguished by Ik is the number of classes of
equivalence minus 1 (note that the elements in the class
of equivalence of f1 are not distinguishable), multiplied
by the number of elements in the class of equivalence.
Thus we have

|{(f ′, f) |f ∈ E2, f ∈ Cl\{f1}, di
(

f, f ′, Ik
)

}| =
sl
sk

·
(

∣

∣{[f] | f ∈ Cl, f1 6≡k f}
∣

∣− 1
)

=
sl
sk

· (sk − 1)

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. Y, OCTOBER 2013 10

Therefore

d-rate
(

Ik, Cl, E2

)

=

|{(f ′, f) |f ∈ E2, f ∈ Cl\{f1}, di
(

f, f ′, Ik
)

}|

|E2| · |Cl\E2|
=

(sk − 1) · sl
sk

sl − 1
=

sl −
sl
sk

sl − 1
>

sl −
sl
sk

sl
= 1−

1

sk

Thus, d-rate
(

Ik, Cl, E2

)

is higher than 1− 1
sk

. Note
that this lower bound does not depend on l. Thus, if we
want to find I and n such that d-rate

(

I, Cl, E2

)

is at
least ε for all l > n, then we just have pick any value
of n such that 1 − 1

sn
> ε (that is, 1 − ε > 1

sn
) and pick

I = In. Note that sn strictly grows with n, so such n
exists. We conclude (C2, E2) ∈ Class II. ⊓⊔

The next example shows that some reduction of the set
C2 of the previous example makes us lose the inclusion
in Class II.

Example 5: Let us reconsider (C2, E2) as defined in
Example 4. We modify C2 so that its pair with E2 no
longer belongs to Class II. Let C′

2 ⊂ C2 consist of f1 as
well as all functions gk, with k ∈ N, such that gk behaves
as f1 for all input sequences but the input sequence akb
(and its extensions akbσ, for all σ ∈ {a, b}∗). In particular,
the output produced by gk when input b is given after
ak is the opposite as the one given by f1 (i.e. 0 if it is 1 in
f1; 1 otherwise). For all input sequence akbσ, the outputs
produced by gk for the rest of inputs after akb are the
same as the ones produced by f1. Therefore, for any non-
decreasing sequence: C1 ⊆ C2 ⊆ · · ·Cn ⊆ Cn+1 ⊆ · · · of
subsets of C′

2, the ratio d-rate (I, Cn, En) is arbitrarily
low as n increases. This is because, for all finite test
suite I, the number of pairs of {(f1, f)|f ∈ C′

2\{f1}}
distinguished by I is finite (in particular, this number
is lower than or equal to |I| because, if some i ∈ I
distinguishes f1 from some wrong function f ′, then it
cannot distinguish f1 from any other wrong function).
As a consequence, no sequence of subsets like that
required by Definition 7 can be constructed. Therefore,
(C′

2, E2) 6∈ Class II. ⊓⊔

The two cases considered in the two previous exam-
ples illustrate a fact that could look very surprising at a
first glance: By reducing the computation formalism from
C2 to C′

2 ⊂ C2 (and thus reducing the number of possible
wrong implementations) the unboundedly-approachable
finite testability is lost. Intuitively, the reason is that
C′

2 only includes functions with a single fault, while
all FSMs are in C2 (including FSMs strongly deviating
from the correct behavior). Thus, distinguishing correct
implementations from incorrect ones is easier in C2 than
in C′

2. This shows that the difficulty of testing does not
lie in the number of possible wrong implementations
to be discarded, but in the narrowness of the border
between correct and incorrect potential implementations.
Due to this narrowness, if the computation formalism
is C′

2 then testing is not very productive in terms of
distinguishability: After applying n tests, no more than n
pairs of correct/incorrect functions will be distinguished

– out of an infinite number of pairs of correct/incorrect
functions to be distinguished.

Two additional elaborated examples concerning
Class II are given in Section 5. In Case Study 5.1 we
show how the classical framework of M. Hennessy [17]
for process algebras can be expressed into our formal-
ism, and we show its relation with Class II. In Case
Study 5.2 we present a variant of FSMs where states
are also endowed with timeout transitions. Timeouts of
states belong to a dense domain and can be arbitrarily
close to 0, which implicitly eliminates the possibility to
discretize the times when we test the IUT in order to
reach completeness. Yet we prove that this case belongs
to Class II.

Let us note that Class I serves us a reference ideal
class of what we would like to achieve by testing:
precisely deciding whether the IUT is right or wrong.
Although finite complete testability is not a very likely
scenario in practice, knowing Class I (and the prop-
erties that allow to be in it) lets us assess other more
realistic testing cases which are not in Class I: In
general, we will be willing to be as close to Class I
(i.e. as near to fulfill the properties required to be in
the class) as possible. Later we will consider several
formal ways to approach Class I such as e.g. assuming
hypotheses regarding which functions can be in the set
C (Section 4.3). However, note that Class II introduces
by itself a practical approximation to Class I. If we
are in Class II, then any partial distinguishing rate
< 1 can be reached by some finite test suite. Note
that this notion gives testers a formal measure of the
productivity of testing. The tester intuition says that the
usefulness of testing decays as more tests are applied,
that is, after applying n test cases, the utility of applying
one more test (i.e. the capability of detecting a fault if
none was detected so far) decreases with n. However,
how much? The construction required by Definition 7
for being in Class II implicitly lets us calculate that
measure, because we can use it to define an expression
denoting, in each particular case, the relation between
the distinguishing rate and the size of test suites reach-
ing that rate. For instance, a simple productivity metric,
denoting the marginal utility of applying one more test
after applying n test cases, could consist in the derivative
of the distinguishing rate with respect to the size of the
test suites reaching that rate. Though the distinguishing
rate expressions developed before in Example 4, and
later in case studies 5.1 and 5.2, implicitly let us calculate
these relations, explicitly investigating them (as well
as possible separations of Class II into subclasses in
terms of the kinds of these relations) is out of the scope
of this paper and will be investigated in our future work.
This issue will be revisited later in Section 7, in the
conclusions.

4 STUDYING PROPERTIES OF CLASS I
In this section we study the properties of Class I. We
show some conditions required for finite testability, and

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. Y, OCTOBER 2013 11

we present some alternative characterizations. Transfor-
mations keeping the testability are defined, and the effect
of adding testing hypotheses is analyzed. The complex-
ity of finding minimum complete test suites is studied,
and we also measure how far a test suite is from being
complete. Besides, we study how to reduce a testing
problem into another, thus allowing us to find complete
test suites for the former in terms of the latter. Some
properties can be applied to other testability classes
as well, though a specific study of the remaining four
classes is left as future work. For the sake of readability,
in results presented from now on we will assume that
C denotes a computation formalism for a set of inputs
I and a set of distinguished outputs O, and E ⊆ C is a
specification.

4.1 Characterizations of Class I

Next we present some simple conditions
enabling/disabling the testability.

Lemma 1: We have the following properties:

(a) Let f ∈ E, f ′ ∈ C\E be such that for all i ∈ I
we have o1 ⊜ o2 for some o1 ∈ f(i), o2 ∈ f ′(i). Then,
(C,E) 6∈ Class IV.

(b) (C,E) 6∈ Class I iff for all n ∈ N and I =
{i1, . . . , in} ⊆ I there exist f ∈ E, f ′ ∈ C\E such that for
all i ∈ I we have o1 ⊜ o2 for some o1 ∈ f(i), o2 ∈ f ′(i).

(c) Let us suppose that C is a finite computation for-
malism (that is, C is a finite set), and there do not exist
f ∈ E, f ′ ∈ C\E such that for all i ∈ I we have o1 ⊜ o2
for some o1 ∈ f(i), o2 ∈ f ′(i). Then, (C,E) ∈ Class I.

(d) Let us suppose that I is infinite and for some f ∈ E
we have that, for all i ∈ I , there exists f ′ ∈ C\E such
that f(i) 6⊜f ′(i), but f(i′)⊜f ′(i′) for all i′ 6= i with i′ ∈ I .
Then, (C,E) 6∈ Class I.

⊓⊔
Proof. Properties (1) and (2) are straightforward. Next

we prove (3). Let us consider the set A = {(f, f ′)|f ∈
E ∧ f ′ ∈ C\E}. Let us note that A is finite because C
is finite. Since we assume that there do not exist f ∈ E
and f ′ ∈ C\E such that f(i)⊜f ′(i) for all i ∈ I, for each
pair (f, f ′) ∈ A there exists some input i ∈ I allowing to
distinguish f and f ′, that is, there exists i ∈ I such that
f(i) 6⊜f ′(i). Thus, a finite set containing an input allowing
to distinguish f and f ′ for each pair (f, f ′) is a finite
complete test suite for C and E. Thus, (C,E) ∈ Class I.

Now we prove (4). Let us consider a finite test suite
I ⊆ I . Since I is finite, there is i ∈ I such that i 6∈ I. By
hypothesis, there is f ′ ∈ C\E such that f ′(i) 6⊜ f(i) but
f(i′)⊜ f ′(i′) for all i′ ∈ I with i 6= i′. Since i 6∈ I, I does
not distinguish f and f ′. Thus, I cannot be complete.
Since this happens for any finite test suite, we conclude
(C,E) 6∈ Class I. ⊓⊔

The previous results are, in fact, a simple rephrasing
of definitions given in Section 2. However, they help
us to reason about the testability of problems from an
abstract point of view, in such a way that some (or most
of) details concerning the structure of a computation

formalism (states, instructions, etc) can be ignored. The
next example illustrates how the previous results can be
applied.

Example 6: Let (C2, E2) be defined as in Example 3.
We argued that, in general, (C2, E2) 6∈ Class I. Now we
prove it by applying Lemma 1 (b). Let I = {i1, . . . , in} be
any finite set of sequences of I ′ inputs, and let k be the
length of the longest sequence in I. Let E2 = {f} where
f denotes the behavior of a deterministic completely-
specified FSM M . Since the number of states of FSMs
represented by C2 is not bounded, there exists f ′ ∈ C2

representing the behavior of an FSM M ′ such that for all
i ∈ I the response is the same as the one given by M ,
but the answer is different for some sequence of length
k + 1. Hence, f ∈ E2 and f ′ 6∈ E2 are not distinguished
by I. By Lemma 1 (b), (C2, E2) 6∈ Class I.

Let (C1, E1) be defined as in Example 3. We provide
a simple proof of (C1, E1) ∈ Class I which does not
require to reason about the set of all traces of some
length. Since we consider deterministic FSMs, for all
f1, f2 ∈ C1 there exists i ∈ I distinguishing f1 and
f2. Thus, for all f ∈ E1 and f ′ ∈ C1\E1 there exists
some i ∈ I distinguishing f and f ′. Since C1 is finite,
by Lemma 1 (c) we conclude (C1, E1) ∈ Class I. Let
us apply Lemma 1 (c) in a similar way, but in a very
different context. Let P denote the set of all deterministic
programs written in some programming language with
less than k characters, I denote the (finite) set of keys
in a standard keyboard, and O denote the (finite) set
of ASCII symbols with the trivial distinguishing relation,
respectively. Let C′

1 represent the beginning of the behav-
ior of all programs in P as follows: If f ∈ C′

1 represents
p ∈ P then f(i) = {o} denotes that o ∈ O is the first
character depicted in the screen by p if a keystroke i ∈ I
is produced at the first execution tick. If no character is
depicted after t ticks then we consider f(i) = {Null}
with Null ∈ O. Let E′

1 = {f} for some f ∈ C′
1. Since C′

1

is finite and all functions in C′
1 are distinguishable, again

by Lemma 1 (c) we have (C′
1, E

′
1) ∈ Class I.

Lemma 1 (c) provides some sufficient conditions to
achieve finite testability, though they are not necessary.
We may also have finite testability when the compu-
tation formalism is infinite. The finitely testable pair
(C,E) considered in the last paragraph of Example 3 in
Section 3, dealing with an infinite set of programs of some
kind, illustrated this fact. Next we consider an example
in the context of FSMs. Let C6 represent all deterministic
FSMs and E6 ⊆ C6 represent all deterministic FSMs with
I ′ = {a, b} such that, if they receive a in their initial state,
then they produce q ∈ O′, and any behavior is allowed
next. This means that, for all sequence of I ′ inputs
beginning by a, the sequence of O′ outputs must begin
by q. We are imposing a requirement over all sequences
beginning by a, that is a, aa, ab, aaa, aab, aba, abb, . . . ∈ I .
However, we do not have to test all sequences in this in-
finite set. In fact, {a} is a complete test suite for (C6, E6)
because, for all f ∈ C6 (where f may or may not belong
to E6), we have the following property: If f(a) = {q}

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. Y, OCTOBER 2013 12

then for all w we have f(aw) = {qw′} for some w′

(otherwise, f does not represent a deterministic FSM,
which is required by C6). Thus, the input a distinguishes
any pair of functions f ∈ E6 and f ′ ∈ C6\E6. Hence, {a}
is a (finite) complete test suite for the infinite sets C6 and
E6, and we have (C6, E6) ∈ Class I.

Let us consider again programs written in some pro-
gramming language. Let P denote the set of all termi-
nating deterministic programs such that, after launching
them, they wait for receiving a character sequence from
the user and next they display a sequence of characters.
Let us note that this time we are not constraining the
length of programs, so the source code of these programs
may have any length. Let I = O denote the set of
all sequences of ASCII characters. Let C′′

1 represent all
programs in P as follows: If f ∈ C′′

1 represents p ∈ P
then f(i) = {o} denotes that the sequence of ASCII
symbols o ∈ O is depicted by p if, after launching p,
the user writes the sequence i ∈ I and next presses
enter. If no sequence is depicted before the termination
of p then we consider f(i) = {Null} with Null ∈ O. Let
E′′

1 = {f} consist of a single function f ∈ C′′
1 . Given any

deterministic program p and a sequence of characters i,
we can trivially construct another deterministic program
p′ such that p′ behaves as p for all sequences of characters
but i (we just catch this special case with an if-then-else
statement at the beginning). Hence, for all i ∈ I we
can find a function f ′ ∈ C′′

1 \E
′′
1 such that f and f ′ are

only distinguished by i. Since the set of all sequences of
ASCII characters is infinite, by Lemma 1 (d) we conclude
(C′′

1 , E
′′
1) 6∈ Class I.

Let us revisit (C6, E6) given before in this example and
let f ∈ E6 be an arbitrary function. We cannot find, for
all i ∈ I , a function f ′ ∈ C6\E6 such that f and f ′ are
only distinguished by i, because f and f ′ must answer
different outputs for infinite inputs (in particular, for all
sequences beginning by a). Thus, in this case we cannot
apply Lemma 1 (d) to infer (C6, E6) 6∈ Class I. ⊓⊔

Before presenting the next results, let us introduce
some notation to facilitate the reading. Next we identify
the set of all inputs that distinguish two functions.

Definition 8: Let f ∈ E and f ′ ∈ C\E. We define the set
of inputs that distinguish f and f ′, written disobs(f, f ′),
as:

disobs(f, f ′) = {i | i ∈ I ∧ f(i) 6⊜ f ′(i)}

⊓⊔

The next result analyzes conditions preserving testa-
bility, that is, we study how we can modify C or E in
such a way that complete test suites are preserved. Let
us suppose that distinguishing f1 ∈ E and f ′

1 ∈ C\E
requires applying an input that, in particular, also dis-
tinguishes f2 ∈ E and f ′

2 ∈ C\E. Then test suites do not
need to care about f2 and f ′

2 in order to achieve com-
pleteness, so we can ignore them. In this way, smaller
sets of functions can be considered.

Lemma 2: (Equi-testability Lemma) Let C be a computa-

tion formalism for I and O, and let E ⊆ C. Let C0 ⊆ C
be such that for all f ∈ E and f ′ ∈ C\E there exist
g ∈ E\C0 and g′ ∈ (C\E)\C0 verifying disobs(g, g′) 6= ∅

and disobs(g, g′) ⊆ disobs(f, f ′). Then, I is a complete
test suite for C and E iff I is a complete test suite for
C\C0 and E\C0. ⊓⊔

Proof.

=⇒: Let I be a complete test suite for C and E. Since
E\C0 ⊆ E and (C\E)\C0 ⊆ C\E, I is a complete test
suite for C\C0 and E\C0.
⇐=: Let I be a complete test suite for C\C0 and E\C0.

Let us prove that I is a complete set for C and E. Let us
consider f ∈ E and f ′ ∈ C\E. By hypothesis, there exists
g ∈ E\C0 and g′ ∈ (C\E)\C0 such that disobs(g, g′) 6= ∅

and disobs(g, g′) ⊆ disobs(f, f ′). Since I is complete for
C\C0 and E\C0, there is i ∈ I such that g(i) 6⊜ g′(i). By
the definition of disobs(g, g′), we have i ∈ disobs(g, g′).
Since disobs(g, g′) ⊆ disobs(f, f ′), again by the defini-
tion of disobs(f, f ′) we conclude f(i) 6⊜ f ′(i). Thus, I is
a complete test suite for (C,E).

⊓⊔
Example 7: We apply Lemma 2 to find out that we can

ignore some functions in the search for a complete test
suite. Let C consist of some non-deterministic functions
for input set I and output set O, and let E = {f}
for some f ∈ C. For some i ∈ I , let V be the set
of all functions f ′ ∈ C\E such that f(i) and f ′(i) are
disjoint, and let g ∈ V be some function such that, for
all i′ ∈ I\{i}, we have g(i′) = f(i′). Note that for all
f ′ ∈ V we have disobs(f, g) = {i} ⊆ disobs(f, f ′).
Thus, by Lemma 2 we conclude that a set I ⊆ I is a
complete test suite for (C,E) iff I is a complete test suite
for ((C\V)∪{g}, E). Hence, all functions in V but g can
be ignored, and just the smaller set (C\V) ∪ {g} ⊆ C
has to be considered to seek for the completeness for
C. Actually, ((C\V) ∪ {g}, E) ∈ Class I would imply
(C,E) ∈ Class I. ⊓⊔

A very different approach to reduce a testing problem
into another will be presented later in Definition 12.

Next we present a result providing a lower bound of
the number of inputs that must be included in a set to
achieve a complete test suite.

Proposition 1: Let A ⊆ 2I be a pairwise disjoint6 set
of sets of inputs such that for all A ∈ A there exist f ∈E,
f ′∈C\E verifying disobs(f, f ′)⊆A. Then |I| ≥ |A| for
any finite complete test suite I for C and E. ⊓⊔

Proof. Let us assume that there exists a complete test
suite I ⊆ I for (C,E). In order to prove the result, we
define an injective function h : A 7→ I. For any A ∈ A,
let us take f ∈ E and f ′ ∈ C\E fulfilling the premises of
the proposition. Since I is complete, there must be some
iA ∈ I satisfying

iA ∈ I ∩ {i | i ∈ I ∧ f(i) 6⊜ f ′(i)} ⊆ I ∩ A

Let us define h(A) = iA. This function is injective since
A is pairwise disjoint. Thus, |I| ≤ |A|. ⊓⊔

6. That is, for all A,A′ ∈ A we have A = A′ or A ∩ A′ = ∅.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. Y, OCTOBER 2013 13

Let us note that if A is not finite then, by applying
the previous proposition, we immediately infer (C,E) 6∈
Class I. The next example uses this property.

Example 8: Let (C2, E2) be defined as in Example 3. In
particular, E2 = {f} consists of a single correct function,
I = I ′∗ denotes the set of all sequences of I ′ inputs,
and a, b ∈ I ′ denote any two inputs. Since C2 does not
limit the number of states of represented FSMs, for all
sequence i ∈ I ′∗ we can find two FSMs represented
by C2 whose answers differ only for i (as well as its
extensions iσ for all σ ∈ I ′∗). Let Qk = {akbσ|σ ∈ I ′∗}.
For all k ∈ N we can find a function f ′ ∈ C\E such
that only those input sequences that are included in Qk

allow to distinguish f and f ′ (in particular, this is so if
f ′ behaves as f for all input sequences but akb, where
a wrong output is produced). For all k1, k2 ∈ N with
k1 6= k2 we have Qk1

∩ Qk2
= ∅. Thus, the infinite set

A = {Qk|k ∈ N} fulfills the conditions of Proposition 1.
Hence, we rediscover (C2, E2) 6∈Class I.

Interestingly, we may have (C,E) 6∈ Class I even if
there does not exist any infinite set A fulfilling the con-
ditions of Proposition 1 (that is, the longest set fulfilling
the conditions is finite). Let us show it by explicitly con-
structing such a case. Let C be a computation formalism
and E ⊆ C be a specification such that C and C\E are
infinite sets. Each input will be decorated with the name
of two correct and two incorrect functions. Specifically,

I =
{

ix
′,y′

x,y |x, y ∈ E ∧ x′, y′ ∈ C\E
}

. Besides, we con-

sider O = {isx|x ∈ C}∪{notdistx,y|x, y ∈ C}. As we will
see, an output of the form isf will identify the function f
emitting it, because it will be emitted only by f . Besides,
an output of the form notdistx,y will make functions x
and y not to be distinguished by the input leading to
emit that output, because both x and y will emit it. We
will assume that the ordering of indexes in inputs and

outputs is irrelevant, so e.g. we assume if
′,g′

f,g = ig
′,f ′

f,g and
notdisth,h′ = notdisth′,h. Note that I and O are infinite
sets.

For all function q ∈ C we define q
(

if
′,g′

f,g

)

= {isq} ∪

{notdistq,h|h ∈ C\{f, f ′, g, g′}} if q ∈ {f, f ′, g, g′}; else

q
(

if
′,g′

f,g

)

= O. According to this construction, input if
′,g′

f,g

distinguishes h and h′ if h ∈ {f, g} and h′ ∈ {f ′, g′}

because we have h
(

if
′,g′

f,g

)

∩ h′
(

if
′,g′

f,g

)

= ∅. Otherwise,

i.e. if h 6∈ {f, g} or h′ 6∈ {f ′, g′}, we have h
(

if
′,g′

f,g

)

∩

h′
(

if
′,g′

f,g

)

6= ∅, so if
′,g′

f,g does not distinguish h and h′.

Let W be the condition, required by Proposition 1, that
for all A ∈ A there exist f ∈ E, f ′ ∈ C\E verifying
{i | i ∈ I ∧ f(i) 6⊜ f ′(i)} ⊆ A. Any set of inputs A
fulfilling condition W must include, for some pair of
functions f, f ′, all inputs allowing to distinguish f, f ′.
For any other set A′ including all inputs allowing to
distinguish another pair g, g′, the set A shares at least
one input with A′ (in particular, A and A′ share the

input if
′,g′

f,g). Thus, there do not exist two disjoint sets
A and A′ fulfilling condition W . Since Proposition 1

also requires that all sets of A are pairwise disjoint,
the conditions of the proposition are fulfilled only if
A = {I}, i.e. A cannot be infinite. However, there does
not exist any finite complete test suite for C and E

either: Each input if
′,g′

f,g distinguishes only four pairs (in
particular, any combination of f or f ′ with g or g′), but
there are infinite pairs to be distinguished (recall that we
are assuming that E and C\E are infinite sets). Thus,
(C,E) 6∈ Class I. ⊓⊔

Next we consider an alternative way to find complete
test suites by manipulating the sets distinguishing each
pair of functions.

Proposition 2: Let G be the set of all sets of inputs
allowing to distinguish each correct function from each
incorrect function, that is:

G =
{

disobs(f, f ′) | f ∈ E ∧ f ′ ∈ C\E
}

We have (C,E)∈Class I iff there exist n ∈ N subsets of
G, denoted by A1, . . . , An ⊆ G, such that G =

⋃

1≤j≤n Ai

and
⋂

B∈Aj
B 6= ∅ for all 1 ≤ j ≤ n.

Moreover, if such n subsets of G exist, then there is a
complete test suite I such that |I| ≤ n. ⊓⊔

Proof.

=⇒: If (C,E) ∈ Class I then there exists a finite
complete test suite {i1, . . . , in} for C and E. For each
ij , let Aj be the set of all sets of inputs distinguishing a
correct and an incorrect function such that ij is included,
that is, Aj = {B | B ∈ G ∧ ij ∈ B} ⊆ G. We have
ij ∈

⋂

B∈Aj
B, so

⋂

B∈Aj
B 6= ∅. For all B ∈ G, we have

B ∩ {i1, . . . , in} 6= ∅ (otherwise, some pair of functions
would not be distinguished by {i1, . . . , in} and it would
not be a complete test suite). So, for some 1 ≤ j ≤ n
we have ij ∈ B ∩ {i1, . . . , in}. Thus, by the construction
of sets Aj , for all B ∈ G we have B ∈ Aj for some
1 ≤ j ≤ n, and we conclude

⋃

1≤j≤n Aj = G.
⇐=: This implication is easy to prove: We can build

a finite complete test suite by taking, for all 1 ≤ j ≤ n,
any input from the set

⋂

B∈Aj
B 6= ∅. Let us note that

the size of the resulting test suite is n.
⊓⊔

In the following example we show an application of
the previous property.

Example 9: Let us consider I = N, O = {0, 1}, and for
all i ∈ N

+ the functions fi(x) : N 7→ 2{0,1} defined as:

fi(x) =

{

{1} if x mod i = 0
{0} if x mod i 6= 0

Let C = {fi | i ∈ N
+} and E = {f6}. Let us consider

Bi = disobs(fi, f6) for i > 0, i 6= 6. We check that
the sets A1 = {B1}, A2 = {B2}, A3 = {B3} and
A4 =

{

Bi | i > 0 ∧ i 6∈ {1, 2, 3, 6}
}

satisfy the hypothesis
of Proposition 2. First we check that G = A1∪A2∪A3∪A4.
This is obvious because G = {Bi | i > 0 ∧ i 6= 6}.
Now let us check that

⋂

B∈Ai
B 6= ∅ for i ∈ {1, 2, 3, 4}.

Since |Ai| = 1 for i ≤ 3, this condition is trivial for
these sets. Finally, we have 6 ∈ Bi for i 6∈ {1, 2, 3, 6},
so

⋂

B∈A4
B 6= ∅.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. Y, OCTOBER 2013 14

Thus, by Proposition 2 we conclude (C,E) ∈ Class I.
Moreover, we can easily extract a complete test suite
from sets A1, A2, A3, A4: In order to distinguish all pairs
of functions (fi, f6), for each set Ai we just have to pick
any element from the intersection of all sets in Ai. In
fact, {1, 2, 3, 6} is a complete test suite for C and E. ⊓⊔

4.2 Minimum Test Suites

Next we consider the problem of finding the minimum
complete test suite in a particularly basic case:

(a) the computation formalism C = {f1, . . . , fn} is finite,
(b) the sets I = {i1, . . . , ik} and O = {o1, . . . , ol} of

inputs and outputs are finite as well.

Before continuing, let us note that any function f : I 7→
2O can be considered as a set of pairs f ⊆ I×2O such that
for all i ∈ I there is a single outs ∈ 2O with (i, outs) ∈ f .
Therefore, any finite function can be extensionally de-
fined as the set of tuples f = {(i1, outs1), . . . (ik, outsk)}.
Since we have already enumerated the set of inputs
I = {i1, . . . , ik}, the function f can be implicitly defined
by the tuple (outs1, . . . , outsk). Thus, in the rest of the
paper we will identify any finite function f ∈ C with
such a tuple: f = (outs1, . . . , outsk).

We will call the problem of finding a complete test
suite of some size or smaller under the previous condi-
tions the Complete Suite problem, and we will denote it by
CS. So, the corresponding optimization problem consists
in finding the minimum complete test suite.

Definition 9: Let C be a finite computation formalism
for the finite set of inputs and outputs I , a set of outputs
O with a distinguishing relation 6⊜, and E ⊆ C be a
specification.

Given C, E, I , O, 6⊜, and some K ∈ N, the Complete
Suite problem (CS) is defined as follows: Is there any
complete test suite I for C and E such that |I| ≤ K? ⊓⊔

Theorem 1: CS ∈ NP-complete. ⊓⊔
The proof of this theorem is given in Section 6. Proving

CS ∈ NP is straightforward, whereas CS ∈ NP-hard is
proved by reducing the Set Cover problem to CS.

This result shows us that, in general, finding the
minimum complete test suite (if it exists) is a hard
problem, as the NP-completeness of the decision prob-
lem implies the NP-hardness of the corresponding op-
timization problem. We immediately infer that other
useful generalizations of this optimization problem are
also NP-hard. For instance, finding the minimum test
suite reaching some given distinguishing rate d ≤ 1 (see
Definition 6); finding the test suite which maximizes
some linear combination of the distinguishing rate and
(the inverse of) the number of test cases in the suite;
or doing that under the assumption test cases might
have different costs and these costs are explicitly given,
generalize that problem, so they are trivially NP-hard
problems as well.

Several testing techniques face the problem of mea-
suring the (a priori) capability of test suites to find

faults (e.g. Mutation Testing [11], [21]), and thus they
also support methodologies to select good test suites:
We pick those test suites reaching the highest score
according to some fault-detection capability measure.
Theorem 1 shows us that these tasks will be hard in
general. Note that, although CS is defined in terms of
our completeness criterion (i.e. distinguishing all pairs
of correct/incorrect functions), CS would remain NP-
complete even if we assumed the more particular case
where there is a single acceptable behavior and all other
possible behaviors are incorrect.7 In this case, we would
not speak about distinguishing correct/incorrect pairs of
functions, but just about discarding faulty implementations,
which actually fits into other test-suite fault-detection
metrics used in the literature.8 However, the problem
would still be NP-complete in this particular case. Of
course, the problem may be polynomial if only some
particular kind of systems is considered.

4.3 Using testing hypotheses to enable finite testa-
bility

In this section we present some notions allowing us to
reason about testing hypotheses, which play a key role
in formal testing methodologies. Assuming a testing
hypothesis typically consists in making an assumption
about the set of systems that could actually be the IUT.
As we have seen in several examples, the testability is
affected by assuming some restrictions about the IUT
(e.g. testing deterministic FSMs is not in Class I, but
it is if a given limit of the number of states is assumed).
Thus, assuming a testing hypothesis might allow an
incomplete test suite I to become complete (provided
that the hypothesis actually holds). Next we study the
conditions for this. We will denote a hypothesis by
the set H of systems we remove from those that could
actually be the IUT if the hypothesis is assumed.

Definition 10: A testing hypothesis H for C is a subset
H ⊆ C.

Let I ⊆ I not be a complete test suite for C and E.
If I is a complete test suite for C\H and E\H , then we
say that H enables I for (C,E).

Let (C,E) 6∈Class I. If (C\H,E\H)∈Class I then
we say that H enables (C,E). ⊓⊔

Lemma 3: Let I ⊆ I be a finite set of inputs that is not
a complete test suite for C and E and let H be a testing
hypothesis for C. H enables I for (C,E) iff, for all f ∈ E

7. In the proof of NP-completeness of CS given in Section 6, the
polynomial reduction used to prove its NP-hardness considers a single
incorrect function. Since the problem treats correct and incorrect func-
tions symmetrically, that reduction also works if correct and incorrect
function roles are trivially exchanged so that a single correct function
is considered.

8. For instance, in the simplest form of Mutation Testing, a single
program behavior is considered correct, which is the behavior of the
specification program (obviously, it is also the behavior of any other
equivalent program). All other behaviors are considered incorrect.
Then, a measure of the quality of a test suite is the portion of incorrect
functions (behaviors) detected by the suite (i.e. the number of incorrect
mutants it kills).

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. Y, OCTOBER 2013 15

and f ′ ∈ C\E such that f(i)⊜ f ′(i) for all i ∈ I, either
f ∈ H or f ′ ∈ H holds. ⊓⊔

Proof.

=⇒: Let us consider f ∈ C and f ′ ∈ C\E such that for
all i ∈ I we have f(i)⊜ f ′(i). Since I is a complete test
suite for (C\H,E\H), we infer f 6∈ C\H or f ′ 6∈ E\H .
So f ∈ H or f ′ ∈ H .
⇐=: In order to check that I is complete for

(C\H,E\H), let us consider f ∈ E\H and f ′ ∈
(C\H)\(E\H) = (C\E)\H . Since f 6∈ H and f ′ 6∈ H ,
there is i ∈ I such that f(i) 6⊜ f ′(i). Then I is complete
for (C\H,E\H).

⊓⊔
In Section 3.2 we proposed to use the distinguishing

rate (see Definition 7) to measure the coverage of an in-
complete finite test suite. Alternatively, next we consider
measuring the coverage of an incomplete test suite I in
terms of the amount of potential functions that should
be removed from C to make I complete, that is, in terms
of the number of potential implementations we have to
assume not to be the actual IUT to make I complete.
By removing functions from C, the number of pairs
of complete/incomplete functions to be distinguished
is reduced. This may turn an incomplete test suite into
complete or, moreover, enable finite testability in a prob-
lem that did not belong to Class I before removing
functions.

According to this idea, we consider that an incom-
plete test suite is better than another incomplete suite
if making the former suite complete requires removing
less functions. That is, the suite requiring a kind of weaker
function removal assumption to be complete is better. As
we have said before, testing hypotheses are assumed to
make this effect indeed, that is, to reduce the number
of potential implementations so that finite test suites
can be complete – provided that the hypotheses hold.
Thus, if a test suite requires less or weaker hypotheses
to be assumed (i.e. less potential implementations have
to be removed) to get completeness than another, then
the former test suite is better because it is closer to be
complete indeed. The next example illustrates this idea.

Example 10: Let us suppose that there are only two
correct functions f1 and f2 in E, and only two incorrect
functions f ′

1 and f ′
2 in C\E. Let us suppose that test

suite I1 does not distinguish f2 from f ′
1 or f ′

2, but it
distinguishes all remaining pairs of correct and incorrect
functions. Besides, I2 does not distinguish f1 from f ′

1 nor
f2 from f ′

2, but it distinguishes all other correct-incorrect
pairs. Note that the number of pairs not distinguished
by each test suite is 2 in both cases, so the distinguishing
rate (see Definition 6) would not allow us to prefer I1
over I2 or the other way around. Besides, let us assume
that

• The system represented by f1 is deterministic; it
always handles some user’s request Q in the same
way (that is, the way it handles Q is the same in all
system configurations); and it implements correctly
some functionality Z .

• f2 is non-deterministic; it does not always handle
Q in the same way (i.e. the way it handles Q is
different at different system configurations); and it
implements correctly functionality Z .

• f ′
1 is deterministic; it always handles Q in the same

way; and it implements incorrectly functionality Z .
• f ′

2 is deterministic; it does not always handle Q in
the same way; and it implements correctly function-
ality Z .

Let us suppose that the tester can assume (or not) the
following testing hypotheses: (i) the IUT is deterministic;
(ii) request Q is always handled in the same way;
(iii) functionality Z is correctly implemented. Besides,
the tester assumes that the feasibility of each of these
hypotheses is very similar. Which test suite (I1 or I2)
requires the smallest set of hypotheses to be complete?
We can see that I1 would become complete if hypothesis
(i) were assumed: If f2 can be discarded, then both
pairs not distinguished by I1 (i.e. (f2, f

′
1) and (f2, f

′
2)) no

longer exist, so I1 becomes a complete test suite. On the
other hand, I2 would become complete if hypotheses (i)
and (iii) were assumed, as they would let us discard f2
and f ′

1, respectively (so all pairs not distinguished by I2
would not longer exist and I2 would be complete). The
test suite I2 would also become complete if hypotheses
(ii) and (iii) were assumed, but there is no hypothesis
which achieves that alone. Thus, I1 requires a smaller
set of hypotheses than I2 to become complete. If we
can assume that all three hypotheses have the same
feasibility and all are independent from each other, then
we can consider that I1 is a better test suite than I2,
because it is closer to be complete. ⊓⊔

Next we study the difficulty to assess the coverage
measure of a test suite in these terms, and we do it in
the same context as when we defined the CS problem
in Definition 9, that is, C,E, I, O are finite. In the next
definition, the set H = {H1, . . . , Hn} represents the
hypotheses the tester may or may not assume: If the
hypothesis Hi ⊆ C is assumed then all functions in
Hi are assumed not to be in the actual computation
formalism (e.g. if we are assuming that the IUT is
deterministic then we assume some H ⊆ C, where H
consists of all non-deterministic functions in C).

Definition 11: Let C be a finite computation formalism
for the finite set of inputs I , the finite set of outputs O
with the distinguishing relation 6⊜, and E ⊆ C be a finite
specification.

In addition, let I ⊆ I be a set of inputs and H =
{H1, . . . , Hn}, where for all 1 ≤ i ≤ n we have Hi ⊆ C.

Given C, E, I , O , 6⊜, I and some K ∈ N, the Function
Removal problem (FR) is defined as follows: Is there any
set R ⊆ C with |R| ≤ K such that I is a complete test
suite for C\R and E\R?

Given C, E, I , O, 6⊜, I, H, and some K ∈ N, the
Function removal via Hypotheses problem (FH) is defined
as follows: Is there any set of hypotheses R ⊆ H with
|
⋃

H∈R H | ≤ K such that I is a complete test suite for

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. Y, OCTOBER 2013 16

C\(
⋃

H∈R H) and E\(
⋃

H∈R H)?
Given C, E, I , O, 6⊜, I, H, and some K ∈ N, the Hy-

potheses Assumption problem (HA) is defined as follows:
Is there any set R ⊆ H with |R| ≤ K such that I is a
complete test suite for C\(

⋃

H∈R H) and E\(
⋃

H∈R H)?
⊓⊔

The differences among the previous problems (and
the corresponding coverage measures they allow to cal-
culate) is the following: In FR, the coverage is mea-
sured in terms of the number of functions that must
be removed, where any subset of C is allowed to be
removed. In FH, the number of functions is considered
again, though this time the set of functions to be re-
moved must be the union of some hypotheses (sets of
functions) from a given hypotheses repertory H. Finally,
HA considers the coverage in terms of the number of
assumed hypotheses, rather than the number of removed
functions. At a first glance, one might think that all
FR, FH, and HA are NP-complete problems, and so
their corresponding optimization problems are all NP-
hard. Interestingly, FR is not NP-complete, as it can
be reduced to the minimum Vertex Cover problem in
bipartite graphs, which in turn is equivalent to the maxi-
mum Matching problem. This problem can be solved in
polynomial time by the Hopcroft-Karp algorithm [20].
Thus, measuring the coverage of an incomplete test
suite in terms of the minimum number of functions that
must be removed to achieve completeness is a tractable
problem indeed. The proof of the next result, given in
Section 6, introduces the proposed reduction, and uses
it to actually find the minimum function removal in
time O(|C|5/2 + |C|2 · |I| · |O|2), thus solving FR and
its corresponding optimization version polynomially. On
the other hand, the NP-completeness of FH and HA is
proved by constructing polynomial reductions from 3-
SAT and Set Cover, respectively, which implies that their
optimization versions are NP-hard problems.

Theorem 2: We have the following properties:

(a) FR ∈ P
(b) FH ∈ NP-complete
(c) HA ∈ NP-complete

⊓⊔
The proof of this result is given in Section 6.

The distinguishing rate notion given in Definition 6,
and the previous three measures based on assessing how
many (groups of) functions we should assume not to be
the IUT to reach completeness, attempt to answer the
question of how far an incomplete test suite is from being
complete. Since they do so in an abstract manner (i.e.
they do not rely on numbers of states, transitions, code
lines, etc), they are general enough to be applied to any
testing setting.

In particular, let us consider a setting where testing is
particularly costly because e.g. each test case will take
a long time, each test wastes some resources, etc. Let
us suppose that a finite set of test cases is designed
according to the testers’ experience. Similarly, a finite
fault model is constructed to denote some representative

right and wrong definitions of the IUT (or just a set
of its possible faults, which may be combined in the
IUT in any possible way). Thus, the particular setting
required in the definitions of problems CS, FR, FH, or
HA (Definitions 9 and 11), which require that the sets
of possible test cases and possible IUT definitions are
finite and explicitly given, is met. Given a manually
designed set of test cases, such that the cost of applying
all considered test cases in the set is not feasible (due to
time, money, etc), the problem of selecting a good subset
from the set necessarily arises. Hence, the proposed
notions of distinguishing rate and least required hypothesis
providing completeness provide a general criterion to pick
some of these test cases in terms of whether the set of
selected test cases will have (a priori) a good capability
to detect faults.

Similarly, as we said in the case of CS, we could also
consider some useful variants of problems FR, FH, or HA.
For instance, it is trivial to see that FH and HA would
also remain NP-complete if we assigned weights to each
function or hypothesis, respectively.9 Note that weights
would allow the tester to express that assuming some
hypothesis A does not have the same likelihood than
assuming another hypothesis B.

4.4 Testing reductions

In this section we present a notion to relate different test-
ing scenarios. Given a computation formalism, we con-
sider the problem of finding a complete test suite for any
specification belonging to a given set of specifications.
This is the typical goal of testing methodologies: For any
specification fitting into a given kind of specifications
(for us, a computation formalism), find a way to derive
tests from the specification in such a way that the test
suite is complete. Moreover, rather than imposing a fixed
computation formalism for all possible specifications, a
(possibly infinite) set of pairs (C,E) will denote the cases
to be considered. This will improve the generality of
the framework. For instance, if the tester assumes that
the IUT includes at most n faults with respect to the
specification, then a different set C should be considered
for each possible set E. So, for us a testing problem will
be a set of pairs (C,E), and the goal of a testing problem
will be, given any pair in the set, finding a complete test
suite for that pair. Ideally, our knowledge about how to
find suitable tests for a given testing problem (i.e. for a
given kind of target formalisms and specifications) could
help us to face other testing problems. In order to enable
this, we introduce a general notion of testability reduction.
If a testing problem can be solved by transforming it
into another testing problem and solving the latter, then
we will say that the former problem can be reduced to
the latter. This provides a criterion to classify problems
inside each class.

9. The question of whether FR would still be polynomial if each
function had a different weight is still open, and will be addressed in
future work.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. Y, OCTOBER 2013 17

Definition 12: A testing problem T for a set of inputs I
is a set T of pairs (C,E) with the usual meanings of C
and E where, for all (C,E) ∈ T , the set of inputs of C
(that is, the domain of functions in C) is included in I .

Let T ⊆ Class I. A computable function d : T −→ 2I

is a finite suite derivation for T if, for all p ∈ T , d(p) is a
finite complete test suite for p.

Let T1 and T2 be testing problems for I1 and I2. T1
can be finitely reduced to T2, denoted by T1 ≤F T2, if
there exist some computable functions e : T1 −→ T2 and
t : 2I2 −→ 2I1 such that, for all p1 ∈ T1 and I ⊆ I2, if I is
a finite complete test suite for e(p1) then t(I) is a finite
complete test suite for p1. ⊓⊔

Theorem 3: (Testing reduction Theorem) We have the
following properties:

(a) ≤F is a preorder.
(b) Let T1 ≤F T2. If there exists a finite suite derivation

for T2 then there exists a finite suite derivation for
T1.

(c) Let T1≤F T2. If T2⊆Class I then T1⊆Class I.

⊓⊔
Proof. We will consider that T1, T2, and T3 are testing

problems for the sets of inputs I1, I2, and I3, respectively.
Let us prove (a). First, we consider the reflexivity of

≤F . Let e : T1 −→ T1 and t : 2I1 −→ 2I1 be identity
functions. We trivially have that for all (C,E) ∈ T1 and
I ⊆ I1, if I is a finite complete test suite for e(C,E) =
(C,E) then t(I) = I is a finite test suite for (C,E). Thus,
T1 ≤F T1.

We prove the transitivity of ≤F . Let us assume T1 ≤F

T2 and T2 ≤F T3. There exist functions e : T1 −→ T2 and
t : 2I2 −→ 2I1 such that if I is a finite complete test suite
for e(C1, E1) then t(I) is a finite complete test suite for
(C1, E1), for all (C1, E1) ∈ T1 and I ⊆ I2. Besides, there
also exist functions e′ : T2 −→ T3 and t′ : 2I3 −→ 2I2

such that if I is a finite complete test suite for e′(C2, E2)
then t′(I) is a finite complete test suite for (C2, E2), for
all (C2, E2) ∈ T2 and I ⊆ I3. Let e′′ = e′ ◦ e and t′′ =
t ◦ t′. Let (C1, E1) ∈ T1 and I be a finite complete test
suite for e′′(C1, E1). This implies that t′(I) is a complete
test suite for e(C1, E1). In turn, this implies that t(t′(I))
is a complete test suite for (C1, E1). Thus, we can use
functions e′′ and t′′ to make the required transformations
between T1 and T2, and we have T1 ≤F T3.

Next we consider (b). Since T1 ≤F T2, there exist com-
putable functions e : T1 −→ T2 and t : 2I2 −→ 2I1 such
that if I is a finite complete test suite for e(C1, E1) then
t(I) is a finite complete test suite for (C1, E1), for all
(C1, E1) ∈ T1 and I ⊆ I2. Besides, let d : T2 −→ 2I

be a finite suite derivation for T2. We know that d
is computable, and d(C2, E2) is a finite complete test
suite for (C2, E2), for all (C2, E2) ∈ T2. Therefore, given
(C1, E1) ∈ T1, t(d(e(C1, E1))) is a finite complete test
suite for (C1, E1). The composition of computable func-
tions is computable, so h = t ◦ d ◦ e is computable. Thus,
h is a finite suite derivation for T1.

The property (c) is proved by using very similar argu-
ments as in (b), though now we do not construct a finite

suite derivation for T1. Instead, functions e and t are
used to prove the existence of a finite complete test suite
for each (C1, E1) ∈ T1 as follows. Since T2 ⊆ Class I,
there exists a finite complete test suite for e(C1, E1) ∈ T2.
By applying function t, this suite can be transformed
into a finite complete test suite for (C1, E1) ∈ T1. Thus,
T1 ⊆ Class I. ⊓⊔

The relation ≤F lets us relate testing problems with
each other. In this sense, it reminds the reductions of
computability and complexity theory, where a computa-
tion problem is transformed into another problem.10 In
our case, we check whether finding a finite complete test
suite in a given scenario can be achieved by means of
finding a finite complete test suite in another one.

We illustrate ≤F in Case Study 5.3 of the next section,
where the problems of testing FSMs, EFSMs and TEFSMs
are related by means of testing reductions. Due to some
finiteness constraints imposed to EFSMs and TEFSMs, it
turns out that each computation formalism can simulate
the other two ones. However note that, in general,
a testing reduction does not consist in mapping one
computation formalism into another, but in mapping
the border between correctness and incorrectness from
one problem to another. This is illustrated later in the
same case study with an additional short example, where
testing Turing Machines is reduced to testing Finite
Automata when faults follow a given form and no size
constraint is assumed (so the latter cannot simulate the
former). Section 5 also presents the more elaborated
Case Study 5.4, where testing several kinds of machines
involving an increasing magnitude (some denoted by
infinite computation formalisms) are reduced into the
problem of testing deterministic FSMs with no more
that n states (which is a finite computation formalism).
Moreover, in some cases transitions are labeled with
magnitude values from a continuous domain, and yet
they can be reduced to that problem. Also, a series of
reductions proves the inclusion of the problem involving
n magnitudes into Class I, and this is used to develop
a method to test a car control device.

5 CASE STUDIES

In this section we present four elaborated examples
where the notions proposed in the paper are applied
to different scenarios. They include the discovery of
some interesting properties for some well-known testing
frameworks as well as other useful ones.

5.1 Case study: Hennessy’s Framework

Let us study the testability of a classical testing frame-
work in terms of the testability notions proposed here.
In particular, we will study the relation of the seman-
tic framework proposed by M. Hennessy in [17] with
Class II. In that framework, a theory of concurrent

10. In fact, a testing problem also represents a kind of computability
problem.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. Y, OCTOBER 2013 18

processes is presented. Systems are defined as processes,
and each process implicitly defines an associated labeled
transition system denoting how actions are iteratively
performed. There is no distinction between inputs and
outputs, we just consider actions. In order to check if
a process passes a test, all possible computations of the
process synchronized in parallel with the test (that is, all
possible sequences of transitions which may be taken by
the process in response to the test) are studied. There
are two notions of passing a test: must and may test
passing. A process passes a test in the must sense if all
possible computations are considered correct by the test.
A process is passed in the may sense if there exists at
least one computation considered correct by the test. In
both cases, the outcome of a test is either acceptance or
failure.

Before presenting in more detail other relevant aspects
of that framework, it is worth to mention that the
effect of the non-determinism on whether we can consider
a complete test suite as complete is different in that
framework and ours. We illustrate it with an example
defined in our setting. Let f1(i) = {a} and f2(i) = {a, b}.
That is, if input i is given, then f1 will always reply a,
whereas f2 non-deterministically replies either a or b. In
our framework we consider that {i} is not a complete
test suite for ({f1, f2}, {f1}) because, after applying i
to either f1 or f2, its reply does not necessarily let us
decide whether it was f1 or f2 (the reply a does not
allow us to determine which one the IUT is). On the
contrary, according to other views of non-determinism
in testing such as Hennessy’s, {i} distinguishes f1 and
f2 indeed. In terms of our setting, this can be justified
as follows. Let us assume that, if we apply input i many
times to f2, then we will eventually observe a and we
will eventually observe b, that is, we assume a fairness
hypothesis. If we assume that all non-deterministic re-
actions of the IUT to a given tester interaction will be
observed at least once after performing that interaction
a high enough number of times, then applying i a high
enough number of times will finally reveal whether the
IUT is f1 or f2: if b is eventually replied then it is f2
else it is f1. There are several ways to effectively model
this particular non-determinism view into our general
framework. Perhaps the simplest and more direct one
consists just in representing this framework as a deter-
ministic environment where, in particular, there exists a
(single) output called “{a}” as well as a (single) output
called “{a, b}”. Also, we assume that our distinguishing
relation 6⊜ distinguishes output {a} from output {a, b},
because the repetition of any interaction producing one
of them will eventually distinguish it from the other, so
in general we consider 6⊜ iff 6=. Thus, the (deterministic)
functions f1(i) = {{a}} and f2(i) = {{a, b}} are distin-
guished by input i in our framework, so {i} is a complete
test suite.

Let us introduce other important aspects of the frame-
work given in [17] which must be considered here. The
author provides a testing semantics for a process algebra

at three levels: an operational semantics, a denotational
semantics, and an axiomatic semantics. It is proved that
the three semantics are equivalent. The author considers
a set of actions A, and an algebra with the typical
operators of a process algebra. Then, an operational
semantics is defined as well as a testing semantics. One
of the key points is that the testing semantics can be
characterized just by using the operational semantics. In
this way, the author defines the acceptance of a process
p after a trace s ∈ A∗ as A(p, s) ⊆ P(P(A)), where
P(X) denotes the powerset of X . This set characterizes
the non-deterministic possibilities of a process p after
executing the trace s. For instance, A(p, ǫ) = {{a}, {b}}
indicates that the process can initially execute internal
actions, and then it reaches either a state where only a is
possible, or a state where only b is possible. On the other
hand, A(q, ǫ) = {{a, b}} indicates that, after possibly
executing internal actions, the process q is ready to offer
a and b, so the environment (e.g. a test) can choose
both actions. The process p can be written syntactically
as a ⊕ b (internal choice), whereas q can be written as
a + b (external choice). In terms of tests, we say that
the test T = a;X is passed by process q but not by p
(p fails the test T) under the must testing semantics. As
mentioned before, a test is passed under these semantics
if all possible computations of the process with the test
are passed. It is clear that a single execution of the test
T and p might not fail, because the execution of a is
possible in p. However, if T is repeated, then the process
p will eventually choose the other branch, and then the
test T will fail.

Next we show how the Hennessy’s framework can be
expressed in our framework and related to Class II.
Here we will assume that A is a finite set (this re-
striction is only necessary to prove our result regarding
Class II). We will consider the denotational view of
processes and the must testing semantics. Under these
assumptions, a process is just a tree where nodes are
decorated with acceptance sets A ⊆ P(A) that have to be
closed under union and convexity, and arcs are labeled
by some action a ∈ A. Moreover, if a node is decorated
with set A, then it has a unique outgoing arc labeled
with each a ∈ ∪A∈AA. Under this view, a tree t can be
seen as a function from the set of traces A∗ to P(P(A))
where t(s) is the decoration of the node reached after
processing the sequence s. We assume that function t
also fulfills the following restriction: for any a ∈ A and
s ∈ A∗, t(sa) = ∅ iff a 6∈ ∪A∈AA, where A = t(s). The
set of all of these trees is denoted by fATS.11

In order to represent Hennessy’s model into our set-
ting, we consider that our set of inputs I is the set of
traces A∗, and the outputs set is the set O = {A | A ⊆

11. We have chosen to represent the set fATS for clarity reasons in
this example, as there is only one kind of nodes in these trees. However,
it would not be very hard to consider the sets ATS or AT. In these
cases, the definitions of the functions would be a bit more complicated,
because there are two kinds of nodes (open and closed), and there are
some restrictions that apply to open nodes.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. Y, OCTOBER 2013 19

P(A), A is closed under union and convexity}

The distinguishing relation 6⊜ is the trivial one. We
define our computation formalisms set as C = {ft |t ∈
fATS}, where ft(s) = {A} iff t(s) = A (recall that we
consider A as a single output of ft in our setting). The
set E consists in some function f0 ∈ C denoting some
tree t0 ∈ fATS, so E = {f0}.

Next we prove (C,E) ∈ Class II. Initially we will
consider the set CF = {ft |t ∈ fATS, t finite},12 and
we will prove (CF ∪ {f0}, {f0}) ∈ Class II. The more
general case where f0 is also compared with functions
denoting infinite trees will be tackled afterwards. For any
k ∈ N, we consider the following equivalence relation:
t ≡k t′ iff t(s) = t′(s) for all s ∈ Ak′

with k′ ≤ k.13 It is
easy to check that ≡k is indeed an equivalence relation.
For any t ∈ CF , the equivalence class induced by t
for ≡k is denoted by [t]k, and the set of all equivalence
classes for ≡k will be denoted by CF k.

Let us introduce the sets C0, C1, . . . required in the
definition of Class II. The set C0 consists of one
representative of each equivalence class of ≡0, though
we force to choose f0 as representative of its equivalence
class. Since the alphabet is finite, the number of equiv-
alence classes induced by ≡k is finite for all k ∈ N. Let
t1, . . . , tg be arbitrary elements of each equivalence class
c ∈ CF 0 with c 6≡ [t0]0. Then, C0 = {f0, ft1 , . . . , ftg}.

Similarly, Ci+1 is built by considering one represen-
tative of all equivalence classes of ≡i+1, but forcing
that the representatives already chosen in Ci are also
the representatives of their corresponding equivalence
classes of CF i+1 in the set Ci+1. So for any c ∈ CF i+1:

• If there is some ft ∈ Ci such that t ∈ c, then we pick
ft as representative of c in Ci+1, that is, ft ∈ Ci+1.
• Otherwise, we choose any t ∈ c and make ft ∈ Ci+1.

It is clear that Ci ⊆ Ci+1, CF =
⋃

i∈N
Ci, and the set

of inputs Ai is a complete test suite for (Ci, E). Since A
is finite, the set Ai is a finite complete test suite.

Let si = |Ci|. It is clear that limn→∞ sn = ∞. Let
n, l ∈ N be such that l > n. The set of inputs An can
only distinguish elements that are in different classes of
fATS

n. Let us consider the set T = {f | f ∈ Cl, f ∈ [t0]n}.
Then, |{(f0, f

′) | di (f0, f ′, An) , f ′ ∈ Cl\{f0}}| = sl−|T |.
Next we identify an upper bound of |T |. For any k ≥ n,

let us consider the set T k
t0 ⊆ Ck containing all processes

that, at least, include all traces of t0 whose length is n:

T k,n
t0 = {f | f ∈ Ck, ∀s ∈ An : f0(s) 6= ∅ ⇒ f(s) 6= ∅}

Let us prove |T l,n
t0 | = |T n,n

t0 ||T |. In order to do so, we

define a bijection between T × T n,n
t0 and T l,n

t0 . We define

b : T × T n,n
t0 7→ T l,n

t0 as follows. Let (f1, f2) ∈ T × T n,n
t0 ,

and let us consider the following function:

f(s) = f2(s) if |s| ≤ n f(s) = f1(s) if |s| > n

12. A tree is finite if its number of traces is finite, formally |{s | t(s) 6=
∅}| < ∞.

13. Ak is the set of all traces whose length is no longer than k.

It is easy to check that f ∈ T l,n
t0 . We can define b(f1, f2)

as the unique representative of f in Cl. It is not difficult
to prove that b is indeed a bijection. First, we prove that
b is surjective. Let us consider f ∈ T l,n

t0 . Let us build
the function f ′ such that f ′(s) = f0(s) for any trace
s such that |s| ≤ n and f ′(s) = f(s) for any trace s
such that |s| > n. Then let us consider f1 as the unique
representative in Cl of [f ′]l. It is clear that f1 ∈ T .
Now let us consider f2 as the unique representative
in Cn of f . Since f ∈ T l,n

t0 , we have f2 ∈ T n,n
t0 . Then,

by definition b(f1, f2) = f . Second, let us prove that b

is injective. Let us consider (f1, f2), (f
′
1, f

′
2) ∈ T × T l,n

t0
such that b(f1, f2) = b(f ′

1, f
′
2). Since f1, f1 ∈ T , we have

f1(s) = f2(s) = f0(s) for any trace s such that |s| ≤ n. By
the definition of b, we obtain f1(s) = f ′

1(s) for any trace
n < |s| ≤ l; so [f1]l = [f ′

1]l. Since T ⊆ Cl and there is only
one representative per class in Cl, we obtain f1 = f ′

1. By
the definition of b we obtain f2(s) = f2(s) for any trace
s such |s| ≤ n. So [f2]n = [f ′

2]n. Since f2, f
′
2 ∈ T n,n

t0 ⊆ Cn

and there is only one representative per class in Cn, we
obtain f2 = f ′

2.

Then we obtain |T | =
|T l,n

t0
|

|Tn,n
t0

|
. Since T l,n

t0 ⊆ fATS
l, we

infer |T | ≤ sl
|Tn,n

t0
|
. It is also clear that limn→∞ |T n,n

t0 | = ∞.

So

d-rate
(

Ak, Cl, E
)

=

|{(f0, f
′)|di

(

f0, f
′, Ak

)

, f ′ ∈ Cl\{f0}}

sl − 1
=

sl − |T |

sl − 1
≥

≥
sl −

sl
|Tn,n

t0
|

sl − 1
=

sl

(

1− 1
|Tn,n

t0
|

)

sl − 1

Let ǫ < 1. Let us consider the expression Sk = 1− 1

|Tk,k
t0

|
.

The expression snSk

sn−1 is a decreasing succession whose
limit is Sk when n tends to infinity. So, in order to make
snSk

sn−1 > ǫ, it is enough to find a value of Sk such that
Sk > ǫ. Since the succession Sk converges to 1, there
exists n0 such that Sn0

≥ ǫ. Hence, for all l ≥ n0 we

obtain
slSn0

sl−1 > ǫ. We deduce (CF,E) ∈ Class II.
In order to prove that (C,E) ∈ Class II, let us

consider CI = C\CF . The set CI is countable, so let
us consider a numeration c0, c1, c2, . . . of CI . Now let us
consider the sequence C′

i = Ci ∪ {c0, . . . , ci}. In each C′
i

there are i+1 more elements that in Ci. At worst, those
elements are not distinguishable from f0. So

d-rate
(

Ak, Cl, E
)

≥
sl − |T | − (l + 1)

sl − 1
≥

≥
sl −

sl
|Tn,n

t0
|
− (l + 1)

sl − 1
≥

sl(1−
1

|Tn,n
t0

|
)

sl − 1
−

l + 1

sl − 1

In this case, we also have that l+1
sl−1 is a succession whose

limit is 0. Hence we infer (C,E) ∈ Class II.

5.2 Case study: Timeout Machines

Our second case study also tackles an elaborated (and
somehow surprising) case of inclusion in Class II. Let

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. Y, OCTOBER 2013 20

us consider FSMs with rational timeouts (in short, timeout
machines hereafter). These machines work as follows.
We consider that all states have exactly one outgoing
transition labeled with each input and some output (thus
they are fully-specified and deterministic). In addition,
all states also have one timeout transition, which is trig-
gered when the time spent in that state reaches a given
rational value r with 0 < r ≤ M for some given rational
M . The transition leads the machine to another state.
Timeout machines are stimulated by means of sequences
where some waiting times strictly alternate with actions
where some input button is pressed and some output is
replied (the sets of input and output symbols are finite).
Note that, contrarily to our previous examples, now the
choices of the tester at each step of the stimulation of the
IUT are infinite: the tester can press a button (finite set of
choices) or wait for any rational time within an interval
(infinite set of choices). This makes testing particularly
difficult: at each step of the execution of the IUT, any
finite number of tests can check only what happens in a
finite number of situations, but there are infinite choices
we could take at this step. Thus, any finite testing plan
checks a 0 proportion of all cases that must be checked at
each point (a finite amount out an infinite amount which
must be checked). Yet this case is in Class II, as we
prove next.14

Let E = {f}, where f represents the behavior of a
timeout machine (actually many, as it represents all ma-
chines with the same behavior). Let mf be the minimum
timeout machine, i.e. the one having less states, behaving
as f (note that it is unique up to isomorphism), and
let it have n states. Without loss of generality, let us
suppose that all timeouts of mf are multiple of some
1
v . Note that, even if all rational timeouts in mf have
different denominators after simplified, all of them can
be expressed as a multiple of some 1

v where v is the
multiplication of all the denominators of timeouts of mf .

Let C consist of all functions denoting timeout ma-
chines. Let us remark that machines represented by
functions in C can have any number of states. The set
of inputs which can be received by each function f ∈ C,
denoted as usual by I , is the set of sequences which
strictly alternate input symbols and rational delays as
mentioned before.

Let us define the required sets C1 ⊆ C2 ⊆ ... such
that

⋃

i∈N+ Ci = C. We define the functions included

14. One could consider that, since measure devices are digital and
only discrete magnitudes can be considered in practice, the difficulty
of dealing with dense time (rational times) does not appear in practice.
However, in an environment where delays can take hours or nanosec-
onds, considering that the set of possible times is discrete (and hence,
also finite if closed intervals are considered) does not help practical
testing because the number of times to be checked is astronomical
anyway (this is similar to assuming that computers do not compute
recursive languages but regular languages because, since the memory
of a real computer is limited, a computer can be only in a finite
set of states, so it can be fully denoted by some finite automaton.
This is technically true, but this view does not help to reason about
programs or solve any problem). On the contrary, if we develop a
testing methodology under the assumption that the time is dense, then
it will necessarily assume that we cannot check all times in practice.

in each set Ci as follows. Let the set Aj
i consist of all

deterministic partially-specified timeout machines with
the form of trees where the root denotes the initial state,
all branches have length i, all non-leaf nodes denote
fully specified states (i.e. they have one timeout transi-
tion as well as one transition labeled with each input
and some output), all leaf nodes denote unspecified
states (i.e. they have no outgoing transition), and all
timeout transitions are labeled with rational numbers
0 < r ≤ M which are multiple of 1

j . Hereafter this
kind of machines will be denoted as partially-specified
tree-form timeout machines. We will say that a function
f ′ is consistent with some partially-specified tree-form
timeout machine m′ of depth k if the following condition
holds: f ′ behaves as some minimum timeout machine
m′′ where all sequences of k consecutive transitions from
the initial state are labeled with the same inputs, outputs,
and timeouts as some sequence of transitions available
in m′ from its initial state.

Similarly as in the proof of (C2, E2) ∈ Class II in
Example 4, let us consider that the minimum function
fulfilling a given criterion H is the function fulfilling
H which can be represented with a machine (in this
case, a timeout machine) with the minimum number of
states (we assume that ties between timeout machines
with the same size are solved in any arbitrary fix way).
For each m ∈ Aj

i , let fm ∈ C be the minimum function
such that (a) it is consistent with m and (b) all timeouts
of the minimum timeout machine represented by fm are
multiple of 1

j (not only those included by m). Then we

define Ci = {f} ∪ {fm | m ∈ Ai!
i } (recall that f is the

specification function). Let us check that
⋃

i∈N+ Ci = C
and Ci ⊆ Ci+1 for i ∈ N

+.

First we see that Ci ⊆ Ci+1 for all i ∈ N
+. All

functions of Ci but f are constructed from the partial
tree-form machines of Ai!

i . On the one hand, note that
all timeout values used in functions in Ci are allowed
by Ci+1 (we have 1

i! = 1
(i+1)! · (i + 1), so all timeouts

used in machines represented by functions of Ci can also
be expressed as multiples of 1

(i+1)!). On the other hand,
note that the minimum function which is consistent with
some partially-specified tree-form machine used to build
Ci will also be so for some partially-specified tree-form
machine used to build Ci+1. In particular, since the set
of tree-form machines considered in the construction of
functions in Ci+1 covers all possible ways to interact dur-
ing a (i+1)-long interaction (where timeouts are multiple
of 1

(i+1)!), one of them must coincide with the behavior
of each function which was the minimum one being
consistent with some tree-form machine considered in
the construction of functions in Ci (where timeouts are
multiple of 1

i! =
1

(i+1)! · (i + 1)). Thus Ci ⊆ Ci+1.

Now we show
⋃

i∈N+ Ci = C. Note that, as we
commented before when we introduced the specification
function f , forcing all timeouts of each machine to be
multiple of the same rational number 1

i for some i ∈ N
+

does not prevent us from denoting any function in

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. Y, OCTOBER 2013 21

C. Moreover, all timeouts multiple of some 1
i are also

multiple of 1
i! ,

1
(i+1)! , . . ., so all sets Ci, Ci+1, . . . let

represent functions where all timeouts are multiple of
some 1

i . Let us prove that any function f ′ ∈ C is included
in some Ci, either because it is the minimum machine
being consistent with some of the partially-specified tree-
form machines considered in the construction of Ci, or
because it is f (the specification). Note that f is explicitly
added to all Ci, so this case is trivial. Let us consider
f ′ 6= f . Without loss of generality, let us assume that
f ′ represents some timeout machine where all timeouts
are multiple of some 1

d! with d ∈ N
+. Note that f ′ is

consistent with a single partially specified machine of Ai!
i

if i ≥ d, because all possible trees of transitions of depth i
where timeouts are multiple of 1

i! are represented in Ai!
i ,

and exactly one of them is consistent with f ′. Thus, if a
given function f ′ ∈ C is not in some Ci with i ≥ d, it is
because f ′ is not the minimum function being consistent
with the single partial machine of Ai!

i it is consistent
with. Could f ′ be such that, for all i ≥ d, it is not
the minimum function consistent with the single partial
machine of Ai!

i it is consistent with? Let us suppose
that the minimum timeout machine behaving as f ′ has
J states. Let K be the number of minimum timeout
machines such that all of their timeouts are multiple
of 1

d! and have J or less states (the set of them is
finite because all timeouts must be at most M). Note
that, by iteratively considering the functions added by
each C1, C2, C3, . . ., the number of times the minimum
function being consistent with some partially-specified
tree-form machine (where all timeouts are multiple of
1
d!) is selected but it is not f ′, is at most K . Thus, f ′ is
eventually added to some Ci.

Let Id ⊆ I be a test suite consisting of all stimulation
sequences of the form a1 . . . ad where, for all 1 ≤ k ≤ d,
ak is either an input symbol of the machine or a time
delay not greater than M and multiple of 1

d . Note that
any subsequence of a1 . . . ad consisting only of consecu-
tive time delays can be trivially converted into a single
delay amounting all of them together. Similarly, any
sequence of consecutive input symbols can be translated
into a sequence where a 0 delay is put between each
pair of input symbols. Thus, any sequence in Id can be
expressed as a sequence where input symbols and time
delays strictly alternate, as required for Id ⊆ I . Let us
find a lower bound of the distinguishing rate of Id for
each pair (Ci, {f}).

By the construction of sets C1, C2, . . ., we can see the
following property. Let us consider any combination of
outputs (one for each input/output transition with its
corresponding input) and timeouts (one for each timeout
transition) which could label the first d ≤ i transitions
reachable in a timeout machine represented by a function
of Ci. The number of functions of Ci representing a
machine with that combination of timeouts and outputs
along the first d steps is the same as the number of
functions of Ci representing any other combination of
timeouts and outputs during the first d steps. Thus, the

proportion of functions of Ci having some given combina-
tions of outputs and timeouts in all transitions traversed
during the first d steps is equal to the proportion of
machines of the set Ai!

d (i.e. the set of partial tree-form
machines of depth d where all timeouts are multiple of
1
i!) having the same combinations. Since the capability of
Id to detect the incorrectness of a function depends only
on the combination of outputs and timeouts labeling the
transitions of the machine represented by this function
during the first d steps, we conclude that the proportion
of functions from Ci which are (un-)distinguished by
Id matches exactly the proportion of partial tree-form
machines of Ai!

d which are (un-)distinguished by Id.
We could think that Id can distinguish f from any

function f ′ ∈ Cd where the combination of outputs and
timeouts of the machine represented by f ′ along the first
d reachable transitions is not exactly the combination of f .
If this were true, then Id would left undistinguished only
those functions which have exactly the same timeouts
and produce the same outputs for each input during
their first d steps. Thus, the distinguishing rate of Id for
(Ci, {f}) with i ≥ d would be at least one minus the pro-
portion of functions in Ci having the same timeouts and
outputs as f for their first d steps (which, by the property
introduced in the previous paragraph, would be one
minus the proportion of partial tree-form machines in
Ai!

d having the same timeouts and outputs as f for their
first d steps). Unfortunately, there are some functions
f ′ ∈ Ci representing machines that do not have the same
combination of outputs and timeouts during the first
d steps as f , and yet Id might not be able to identify
their incorrectness. In particular, when the test suite
Id is applied, some alternative assignments of outputs
and timeouts to the first d transitions might produce a
response being undistinguishable from that of f .

On the one hand, let us suppose that two states pro-
duce exactly the same output for each input, and one of
them leads to the other through a timeout transition. Let
us suppose that both states are consecutively traversed
by some execution of d steps. Note that Id might not
be able to discover when the timeout from one state to
the other is taken. In particular, this is the case if the
remaining steps up to the d-th step do not produce a dif-
ferent behavior from both states (which obviously does
not imply than longer interactions could not distinguish
them indeed). A necessary (not sufficient) condition for
Id not to be able to distinguish the behavior of both
states, and thus not to discover when the timeout is
taken, is that two states produce the same outputs for
all inputs and the timeout of one of them leads to the
other one.

On the other hand, let us note that the time delays
produced in Id could be too sparse and skip some
relevant time frames where incorrect behaviors might
happen, so they could remain unobserved by Id. Two
kinds of these problems may occur:

(a) The IUT could move to another state where the
behavior is wrong (i.e. the output replied for some input

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. Y, OCTOBER 2013 22

is different to the reply defined in the specification after
the same previous interaction), and stay in that wrong
state for a very short time, so the sparse times checked
by Id skip the time frame where the IUT is at this state
and do not discover it. A necessary condition for this is
that the IUT autonomously leaves this wrong state before
1
d units of time: otherwise, some test case in Id would
produce some input during the stay in that state, and its
wrong behavior would be eventually discovered. Thus,
the timeout of the wrong state must be less than 1

d .
(b) The sparse times checked by Id might not be able

to detect the precise time when the IUT takes some
timeout, even when the responses of both states differ
for at least one input. In fact, since the time delays
produced in Id between consecutive inputs are at least
1
d , they just let us to detect that each IUT timeout was
taken within some time frame of width 1

d . Hence the
actual timeout could be taken at any point within that
time frame, although only the specific time defined by
the specification for the corresponding state is valid. An
upper bound of this uncertainty zone, where we might
not know where the actual timeout is, is the area between
− 1

d and 1
d time units from the actual timeout required

by the specification at that state. Note that the correct
timeout is included in this area.

If the test suite Id is used to test (Ci, {f}) then,
how many possible timeouts of machines represented
by functions of Ci could fit within the uncertainty areas
mentioned in (a) or (b) (which amount a size of 1

d and
2
d , respectively)? Taking into account that Ci contains
machines where all timeouts are multiples of 1

i! , an upper
bound of the number of possible timeout values within
the 1

d critical area (respectively, the 2
d critical area) is

equal to 1/d
1/i! (resp. 2/d

1/i!). On the other hand, since all
timeouts t must fulfill the condition 0 < t ≤ M , the num-
ber of all possible timeouts in each state of a machine of
Ci is M

1/i! . By dividing the two previous expressions, we
infer that an upper bound of the proportion of available
timeouts which fall into the critical area mentioned in
(a) is 1/d

M = 1
dM , and the proportion in the critical area

mentioned in (b) is 2/d
M = 2

dM .

Let us suppose that some IUT timeout is deviated from
the timeout actually required by the specification for the
corresponding state. If the deviated IUT timeout is out
of the critical areas considered in (a) and (b), then it will
produce a behavior which will be able to be detected
as incorrect by Id provided that the state reached after
the timeout replies a different output for at least one
input. On the one hand, if the timeout mentioned in (a) is
higher than 1

d then at least one test case of Id will observe
the IUT behavior at the new state. Thus, if the reply
of that state to some input is different from the reply
of the previous state, it will be detected. On the other
hand, if the timeout mentioned in (b) is further than 1

d
units from the timeout required by the specification, then
this excessive deviation will be discovered by at least
one test case of Id, provided that the reply before and

after the timeout is taken is different for some input.
We conclude that, if there is a wrong timeout but the
reply of the machine before and after the timeout is
different for at least one input, then this fault can remain
undetected by Id only if the timeout is within the critical
areas mentioned in (a) or (b), which account a proportion
of 1

dM and 2
dM respectively.

All in all, we conclude that a necessary (but not
sufficient) condition for Id not being able to detect a
fault in an incorrect function f ′ ∈ Ci is that, for all
state s of the timeout machine represented by f ′ such
that s is reachable by some sequence in Id, either (i) its
timeout is within the critical areas (a) or (b) (amounting a
total proportion of 3

dM); or (ii) the state s′ reached by the
timeout transition leaving s produces, for all inputs, the
same outputs as s. Note that, if for some state s reachable
by Id neither (i) nor (ii) hold, then the timeout of s is
produced at a time such that Id observes what happens
before and after it for at least one point at each side (due
to (i) not holding), and the behavior of both consecutive
states is different for at least one input (due to (ii) not
holding), so Id discovers that a timeout is taken at an
unexpected time and hence a fault is detected. It is worth
to mention that, if the timeout machine represented by f ′

is such that all transitions reachable in d steps are labeled
with the same outputs and timeouts as in the timeout
represented by f , then f ′ also fulfills the condition stated
at the beginning of this paragraph, because the correct
timeout value is also within the critical area considered
in (b) (note that such f ′ could be incorrect or not). We
conclude that a function f ′ ∈ Ci can be incorrect and
not be detected as incorrect only if (i) and (ii) hold for
all the states reachable by Id in the timeout machine
represented by f ′.

Thus, a lower bound of the distinguishing rate of Id
for (Ci, {f}) is given by the proportion of functions of Ci

where at least one state reached by Id is such that either
its timeout is out of these critical areas, or the response of
that state for some input is different from the response of
the state reached after the timeout. In order to calculate
this, let us count the proportion of functions of Ci where
all timeouts taken during the execution of all sequences
of Id are within the critical areas or lead to a state where
all inputs are replied with the same outputs as in the
previous state. Let N be the number of input symbols
and L be the number of output symbols (we assume
N,L ≥ 2). The proportion of functions in Ci where a
given state s produces, for all inputs, the same outputs
as the state it reaches through its timeout transition, is
1

LN . We deduce that the proportion of functions where,
for a given state s reached by Id, either its timeout is
within the critical areas mentioned before or for all inputs
it produces the same outputs as the state reached by its
timeout transition is 3

dM + 1
LN − 3

dM · 1
LN .

Let us consider i ≥ d. In order to compute the
proportion of functions of Ci which fulfill some property
concerning only their first d steps, we just have to calcu-
late the proportion of trees of length d which fulfill the

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. Y, OCTOBER 2013 23

considered property. As mentioned earlier, the reason is
that the number of functions in Ci being exactly as each
of these d-depth trees during their first d steps is the
same for all of these trees, so a proportion calculated
for the set of all partially-specified tree-form machines
of depth d steps is the same for the set of all partially-
specified tree-form machines of depth i ≥ d.

Taking all the previous considerations into account,
we can compute a lower bound of the distinguishing
rate of Id for Ci with i ≥ d as follows. We will calculate
an upper bound of the proportion of incorrect functions
from Ci which might not produce any incorrect response
when all sequences in Id are given. Let v(k) denote
the proportion of partial tree-form machines of depth
k where, for all state s of the tree, either

• there is some previous input/output transition
along its branch which departs from a state whose
timeout is less that 1

d (note that this input/output
transition might not be taken by Id because all
delays between inputs are at least 1

d , so Id could
never reach s), or

• if not (so s can be reached indeed) then either its
timeout is within the critical 3

dM area or its responses
for all inputs are exactly the same as in the previous
state of the branch.

Note that, if i ≥ d, then v(d) provides an upper bound
of the proportion of incorrect functions in Ci which
cannot be distinguished from f when all test cases in Id
are applied, so we have d-rate (Id, Ci, {f}) ≥ 1− v(d).

Let us recursively define v(k). Let v(1) = 3
dM + 1

LN −
3

dM · 1
LN . Regarding the recursive case, let

v(k + 1) = 1
dM

· v(k)+
dM−1
dM

·

(

2/dM
(dM−1)/dM

+ 1
LN −

2/dM
(dM−1)/dM

·

1
LN

)

· v(k)N+1

Let us explain the previous expression, which denotes
an upper bound of the proportion of trees of depth k+1
which are incorrect but could not be detected as such by
Id. Let s be the state at the root of the tree.

(a) The first line of the expression denotes the pro-
portion of these trees where, in particular, the timeout
of s is less than 1

d . In this case, the proportion of trees
where this happens (1

dM) is multiplied by the proportion
of all cases where the subtree reached from s through
its timeout also fulfills the property (v(k)). Note that
the rest of subtrees reached from s in a single transition
are reachable through input/output transitions, but these
transitions could not be taken by Id in the worst case (as
the timeout of s is too small for Id), so these subtrees
are not required to fulfill the property (recall that we are
computing an upper bound of the proportion of incorrect
but undetected functions). On the contrary, the timeout
transition of s certainly can be taken, so we must include
the v(k) term indeed.

(b) The second line denotes the proportion of trees
where, in particular, the timeout of s is higher than 1

d .
In this case, the proportion of trees like this (dM−1

dM) is
multiplied by the proportion of all cases where some

source of potentially undetected faults happens at s. This
proportion is the addition of the proportion of timeouts
which are at most 1

d further from the required timeout
at this point, conditioned to the fact that the timeout

is not less than 1
d

(

2/dM
(dM−1)/dM

)

, plus the proportion of

trees where s produces, for all inputs, the same outputs
as the state reached by the timeout transition of s (1

LN),
minus the proportion of trees fulfilling both conditions
(to avoid counting twice). Note that all subtrees reach-
able from s through a transition (either input/output or
timeout) are required to fulfill the property in this case,
because now Id certainly can reach all of them (as the
timeout is higher than 1

d). Thus the previous amount is
multiplied by the proportion of cases where all of these
subtrees fulfill the property (v(k)N+1).

Let p = 1
dM and q = 3

dM + 1
m . Note that we have

0 ≤ v(k) ≤ 1 for all k ≥ 1 because v(k) is a proportion.
Thus we have

v(k + 1) = p · v(k)+

(1− p) · (2p
1−p + 1

LN − 2p
1−p · 1

LN) · v(k)N+1 ≤

p · v(k) + (1− p) · (2p
1−p + 1

LN) · v(k)N+1 =

p · v(k) + (2p+ 1−p
LN) · v(k)N+1 ≤

p · v(k) + (2p+ 1
LN) · v(k)N+1 ≤

q · v(k) + q · v(k)N+1 ≤
q · v(k) + q · v(k) = 2q · v(k)

Let us define v′(1) = 2q and v′(k + 1) = 2q · v′(k).
It is clear that v′(k) ≥ v(k) for all k ≥ 1. Moreover, by
induction over k, it is trivial to prove that v′(k) = 2kqk.
Hence,

d-rate (Id, Ci, {f}) ≥ 1− v(d) ≥ 1− v′(d) =

1− 2dqd = 1− 2d
(

3
dM + 1

LN

)d

This lower bound of d-rate (Id, Ci, {f}) is strictly
increasing with d, and it tends to 1 as d tends to in-

finity (note that 2d
(

3
dM + 1

LN

)d
tends to 0 as d increases

because LN ≥ 4). Moreover, let us remark that this lower
bound is valid for all i ≥ d, so it does not depend on
i provided that i ≥ d. Thus, for any ǫ < 1 there exists
some d such that d-rate (Id, Ci, {f}) > ǫ for all i ≥ d.
We conclude (C,E) ∈ Class II.

5.3 Case study: Finite State Machines, Turing Ma-
chines and Finite Automata

We illustrate ≤F with examples. The first examples,
dealing with FSM variants, will lie in manipulating
finite computation formalisms and mapping computation
formalisms into each other. Next, a more interesting
example where computation formalism are infinite, deal-
ing with Turing machines and finite automata, will be
given to illustrate a case where mapping computation
formalisms to each other is impossible, but there still
exists a testing reduction because we can just map the
border between correctness and incorrectness.

Let us compare FSMs, extended finite state machines (EF-
SMs) and temporal EFSMs (TEFSMs) in terms of testing.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. Y, OCTOBER 2013 24

EFSMs are FSMs where the behavior at each state is con-
ditioned by the current values of some variables; the set
of variables is finite. Each transition is enabled/disabled
by a boolean condition over current variable values,
and values are updated after taking each transition.
We consider that the set of possible values for each
variable is finite. On the other hand, TEFSMs are EFSMs
where the time at which actions occur is considered.
Stimulating a TEFSM implies producing some inputs at
some times. Variables are also used by TEFSMs, but some
of them may denote clocks, that is, they denote the time
elapsed since some previous transition was taken.15 We
will assume that the time is discrete and only executions
up to a given number of time units are considered.

Let CFSM
klm represent the set of all deterministic FSMs

having at most k ∈ N states, l ∈ N inputs, and m ∈ N

outputs (that is, following the notation used in previous
examples, we have |I ′| = l and |O′| = m). Besides,
let TFSM = {(CFSM

klm , {f}) | k, l,m ∈ N, f ∈ CFSM
klm }.

Similarly, let CEFSM
klmpq represent the set of all determin-

istic EFSMs with the same meaning of k, l,m as before
and having at most p ∈ N variables, where each vari-
able can take up to q ∈ N different values, and let
TEFSM = {(CEFSM

klmpq , {f}) | k, l,m, p, q ∈ N, f ∈ CEFSM
klmpq }.

Finally, let CTEFSM
klmpqrs represent the set of all determin-

istic TEFSMs with the same meaning of k, l,m, p, q as
before, where the first r variables denote clocks and
executions can take up to s time units, and let TTEFSM =
{(CTEFSM

klmpqrs, {f}) | k, l,m, p, q, r, s ∈ N, f ∈ CTEFSM
klmpqrs}. Let

us compare testing problems TFSM , TEFSM , and TTEFSM .

FSMs can be seen as EFSMs where all transition guards
are enabled. Thus, it will be easy to check TFSM ≤F

TEFSM . Given a pair a = (CFSM
klm , {f}) ∈ TFSM , let us

consider the pair b = (CEFSM
klm00 , {f}) ∈ TEFSM . Let us note

that functions in CFSM
klm are the same functions as those

in CEFSM
klm00 , that is, CFSM

klm = CEFSM
klm00 , so a = b and any

complete test suite for b is also a complete test suite for
a. Thus, functions e and t required by Definition 12 to
transform pairs from TFSM into TEFSM and transform test
suites for TEFSM into test suites for TFSM , respectively,
can be defined such that e((CFSM

klm , {f})) = (CEFSM
klm00 , {f})

and t is the identity function.16 Given a ∈ TFSM , if I is a
complete test suite for e(a) then t(I) is a complete test
suite for a, so TFSM ≤F TEFSM . On the other hand, EF-
SMs can be seen as TEFSMs where no variable represents
a clock. Let us note that, contrarily to FSMs or EFSMs,
stimulating a TEFSM does not consist in producing a
sequence of inputs (buttons), but it consists in producing
a sequence of inputs at some specific times, that is, a
test for a TEFSM is a sequence of pairs (i, d) where i
is an input and d is the time when i is produced. Let
us consider a function e such that e((CEFSM

klmpq , {f})) =

(CTEFSM
klmpq00 , {f

′}) with f ′((i1, d1) · · · (in, dn)) = f(i1 · · · in).
Given a ∈ TEFSM , a test suite for e(a) consists in a set of
sequences of pairs (i, d) of inputs and times. However,

15. TEFSMs can be thought as a kind of timed automata.
16. Let us note that e is also the identity function.

since e(a) follows the form (CTEFSM
klmpq00, {f

′}), times in
these sequences are irrelevant. Given a complete test
suite for e(a), it is straightforward to see that the set
of sequences of inputs of that suite without the times
is complete for a. Thus, we can define t as follows:
t(I) = {(i1 · · · in)|((i1, d1) · · · (in, dn)) ∈ I}. By consider-
ing these definitions of e and t, the requirement imposed
by Definition 12 is fulfilled: If I is a complete test suite
for e(a) then t(I) is a complete test suite for a. Thus we
conclude TEFSM ≤F TTEFSM . By the transitivity of ≤F ,
we also have TFSM ≤F TTEFSM . Thus, the problem of
completely testing (i.e. testing up to completeness) FSMs
can be easily transformed into the problem of completely
testing TEFSMs, as one would expect.

More interestingly, we also have TEFSM ≤F TFSM
and TTEFSM ≤F TEFSM . Let us note that any EFSM
where the number of variables is finite, and variables
can take a finite number of values, can be unfolded
into an equivalent FSM where each state represents a
combination of EFSM state and variable values. Let
e((CEFSM

klmpq , {f})) = (CFSM
(k∗p∗q) lm, {f}). Given a ∈ TEFSM , a

complete test suite for e(a) is a complete test suite for a
(note that CEFSM

klmpq = CFSM
(k∗p∗q) lm, so e(a) = a). Thus, if t is

the identity function then e and t fulfill the requirement
of Definition 12 and we have TEFSM ≤F TFSM .

On the other hand, let us note that a TEFSM where
executions are constrained to take at most s time units
can be simulated by an EFSM. We can transform the
TEFSM as follows. Each transition labeled by i in the
TEFSM is transformed into up to s transitions in the
EFSM, one for each pair (i, d) where 0 ≤ d ≤ s represents
a time. Actually, each (i, d) is considered to be a single
EFSM input. Due to the s limit, the number of EFSM
inputs and transitions is finite. Besides, each transition
labeled by (i, d) explicitly updates the value of all EFSM
variables representing the TEFSM clocks according to d.
Let e((CTEFSM

klmpqrs, {f})) = (CEFSM
k (l∗s) mp (max(q,s)), {f}), and

let t map TEFSM sequences of inputs and times in such
a way that each pair (i, d) in a sequence is transformed
into the (single) input representing that pair (i, d) in the
EFSM. Given a ∈ CTEFSM

klmpqrs, by construction we have that,
if I is a complete test suite for e(a), then t(I) is a com-
plete test suite for a, so we conclude TTEFSM ≤F TEFSM .
By the transitivity of ≤F , we have TTEFSM ≤F TFSM ,
that is, the problem of finding a complete test suite for
a bounded TEFSM can be transformed into the problem
of finding a complete test suite for a FSM having less
than a given number of states. As we saw in Example 6,
for all a = (CFSM

klm , {f}) ∈ TFSM we have a ∈ Class I,
so TFSM ⊆ Class I. By Theorem 3 (c) we conclude
TEFSM ⊆ Class I and TTEFSM ⊆ Class I.

The previous examples of this case study lie in map-
ping computation formalism, which was possible in par-
ticular due to the finiteness of all involved computation
formalisms. Next, an example of reduction where a
mapping between computation formalisms is impossible
(because they trivially have different computing power)

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. Y, OCTOBER 2013 25

is presented. Moreover, despite both computation for-
malisms are infinite, we will see that they lie in Class I.
Other kinds of examples involving infinite computation
formalisms that cannot be transformed into each other
will be considered in Case Study 5.4.

Let CTM represent all deterministic terminating Turing
Machines from {0, 1}∗ to {yes, no}, and CFA represent all
deterministic finite automata with the same type.

Let TTM consist of all pairs where we have to dis-
tinguish a Turing Machine M from all Turing Machines
answering as M for at most k ∈ N inputs. Formally, let
TTM be defined as follows: TTM = {({f}∪Cf,k

TM , {f})|f ∈

CTM , k ∈ N} where f ′ ∈ Cf,k
TM iff f ′ gives the same

answer as f for at most k words.
Similarly, let TFA = {({f}∪Cf,k

FA, {f})|f ∈ CFA, k ∈ N}

where f ∈ Cf,k
FA iff f ′ gives the same answer as f for at

most k words. Let us note that any pair in TTM or TFA

is uniquely characterized by f and k.
Next we will show TTM ≤F TFA. In particular,

functions e and t considered in Definition 12 can be
defined as follows. First, e : TTM −→ TFA is such
that e(({f} ∪ Cf,k

TM , {f})) = ({f ′} ∪ Cf ′,k
FA , {f ′}), where

f ′ is any function in CFA (say, the one answering yes
for all inputs), and t : 2{0,1}

∗

−→ 2{0,1}
∗

is the identity
function. Let p = ({f}∪Cf,k

TM , {f}) ∈ TTM . We have that

I is a complete test suite for e(p) = ({f ′} ∪ Cf ′,k
FA , {f ′})

only if I consists of (any) k + 1 or more different
inputs. If it is so then t(I) = I is also complete for
p = ({f} ∪ Cf,k

TM , {f}) ∈ TTM . So, TTM ≤F TFA. For

all q = ({f} ∪ Cf,k
FA, {f}) ∈ TFA, we have that any

set of k + 1 ∈ N inputs is a complete test suite for
q, so TFA ⊆ Class I. By Theorem 3 (c) we conclude
TTM ⊆ Class I. By using similar arguments we have
TFA ≤F TTM .

5.4 Case study: Increasing Continuous Magnitude
Machines

In this case study, we introduce a model of machine
that generalizes (a kind of) temporal systems, and we
use testing reductions to find ways to test several
variants of this model. Actually, some reductions will
show interesting methods to test them and some (not
so expected) inclusion in Class I (in particular, that
of testing problem TV). In addition, we will use these
notions to briefly discuss the practical applicability of
the proposed methods to test a car control device.

Let Fk,I,O consist of all deterministic FSMs with no
more that k ∈ N states, the finite set of inputs I , and
the finite set of inputs O. Let TF = {(Fk,I,O, {f}) | k ∈
N ∧ I, O are finite sets ∧ f ∈ Fk,I,O}. We already know
that all pairs in TF belong to Class I (see Example 3).

Let us introduce a new state machine which we will
call Increasing Continuous Magnitude machine (ICM here-
after). This deterministic machine has a finite number
of states and transitions as a standard FSM, though it
has some new elements. In addition to standard inputs,

it also receives a (never decreasing) continuous signal.
For instance, this magnitude can denote the number
of kilometers ran by a car, the number of gas liters
consumed by the car, or even the elapsed time. A mag-
nitude increment counter accounts the increment of the
magnitude since it was reset to 0 for the last time. There
are three kinds of transitions in an ICM. First, we have
the standard FSM transitions labeled by an input/output
pair (called standard i/o transitions). Second, we have
transitions like the former ones, though they also reset
the magnitude counter to 0 when triggered (resetting i/o
transitions). Finally, we also have transitions which are
taken when the magnitude increment counter reaches
some value r ∈ R

+ specified in the transition. After the
transition is (silently) taken, the counter is also reset to
0. These transitions will be called triggering transitions.
We will assume that all states have exactly one outgoing
triggering transition (note that we can still represent a
state that cannot be abandoned without receiving any
input by making its mandatory triggering transition lead
to the same state). An interaction with an ICM consists
in a sequence where standard inputs from a finite set
I can interleave with actions of the form “increase the
magnitude by x units” with x ∈ R

+, in any order. The
ICM replies to inputs with outputs, whereas magnitude
increments produce no visible answer.

Let Wk,I,O be the set of all functions which denote the
behavior of some ICM with at most k states and sets of
inputs and outputs I and O, respectively. Let f ∈ Wk,I,O .
It is easy to see that (Wk,I,O, {f}) 6∈ Class I. Let us
suppose that we have observed the reaction of the IUT
in these two scenarios: (a) when an input i is provided
after increasing the magnitude by u1 units; and (b) when
it is provided after increasing it by u2 units with u2 > u1.
We know nothing about what would happen if i were
given after u units with u2 > u > u1. In particular, the
ICM could silently move to another state just before
u, and then again just after u. Thus, similarly as in
the pair (C3, E3) viewed in Example 3, all magnitude
increments must be checked to get completeness. Hence
(Wk,I,O, {f}) 6∈ Class I.

However, we can enable finite completeness in many
alternative related scenarios. For instance, let us suppose
that we can see triggering transitions when they happen.
Then, we can check the value of the magnitude counter
at that exact moment when they are taken. Let us
assume that we extend the original ICM set of inputs
I with a new input called ‘increase,’ meaning “increase
the magnitude until a triggering transition is taken.” Also,
the original ICM set of outputs O is extended with a
finite set of outputs ‘trigger at x’ with x ∈ R

+, meaning
“a trigger transition was taken at magnitude counter value
x.” Let I ′ and O′ be the resulting extended sets (note
that O′ is infinite). Let W ′

k,I′,O′ denote the set of ICM
variants modified like this and having the (extended) set
of inputs I ′, the (extended) set of outputs O′, and having
at most k states, and let TW ′ = {(W ′

k,I′,O′ , {f}) | k ∈
N ∧ I ′, O′ are the described extensions for some finite

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. Y, OCTOBER 2013 26

sets I, O ∧ f ∈ W ′
k,I′,O′}. We have TW ′ ≤F TF . In

order to make this reduction, we just convert any pair
(W ′

k,I′,O′ , {f}) ∈ TW ′ into a pair (Fk,I′,O′′ , {f ′}) ∈ TF . In
that expression, f ′ represents an FSM where, contrarily
to f , interactions consist in sequences of only I ′ inputs
(note that f also reacts to sequences where I ′ inputs
may interleave in any order with ICM actions of the
form “increase the magnitude by x units” with x ∈ R

+,
which do not exist in f ′). Besides, the set of outputs O′′

consists of all outputs of O, together with all outputs
of the form ‘trigger at x’ where x is the label of some
triggering transition of f , together with an additional
output ‘trigger at unknown value.’ All outputs of the
form ‘trigger at x’ given by functions in W ′

k,I′,O′ are
translated into the ‘trigger at unknown value’ output if
x is not a triggering value of f . Note that, contrarily
to O′, O′′ is a finite set. We can see that any complete
test suite for (Fk,I′,O′′ , {f ′}) is a complete test suite
for (W ′

k,I′,O′ , {f}), because testing (Fk,I′,O′′ , {f ′}) up to
completeness implies fully controlling the reactions to
magnitude increments in (W ′

k,I′,O′ , {f}). So, TW ′ ≤F TF .
Since TF ⊆ Class I, we have TW ′ ⊆ Class I.

Finite completeness can also be enabled if we assume
that we know the finite set J of values x ∈ R

+ that label
triggering transitions in the IUT (or we know any finite
superset of J). Let W ′′

k,I,O,J ⊆ Wk,I,O denote all ICMs
with at most k states, set of inputs I , and set of outputs
O, where the set of values labeling all triggering transi-
tions is a subset of J . Let TW ′′ = {(W ′′

k,I,O,J , {f}) | k ∈
N ∧ I, O are finite sets ∧ all values in triggering
transitions belong to J ∧ f ∈ W ′′

k,I,O,J}. We have
TW ′′ ≤F TF . In particular, we can convert any pair
(W ′′

k,I,O,J , {f}) ∈ TW ′′ into a pair (Fk′,I′,O, {f
′}) ∈ TF

where

• I ′ consists of all inputs of I together with a set of
new inputs ‘increase magnitude by x’ for all x ∈ J (note
that J is finite, so I ′ remains finite as well);
• f ′ represents an FSM that behaves (partially) as the

ICM represented by f . In particular, FSM states are pairs
(s,m) where s is a state of the ICM and m is a magnitude
value which must be the addition of 0 or more values
of J and must not be higher than max (where max is
the highest value of J). In addition, max + 1 (meaning
‘any value higher than m’) is also an allowed value for
m. Note that the set of allowed values of m is finite,
so the set of states of the FSM is so as well. Transitions
for each FSM state (s,m) are defined to simulate the
corresponding ICM: s changes as defined by the corre-
sponding standard or resetting i/o transition, and m is
increased in ‘increase magnitude by x’ inputs (with x ∈ J)
by x units as long as m+x ≤ max, else it is set to max+1.
Besides, m turns to 0 in FSM transitions which denote
an ICM resetting i/o or triggering transition; and
• k′ equals k (the number of allowed states in ICMs

represented by W ′′
k,I,O,J) multiplied by the number of

possible values of m according to the previous expla-
nation. Note that any ICM represented by W ′′

k,I,O,J can

be converted, according to the aforementioned construc-
tion, into an FSM with k′ states.

Since all values labeling triggering transitions in the
ICM representing the IUT belong to J (by hypothesis),
we have that any complete test suite for (Fk′,I′,O, {f

′})
is also a complete test suite for (W ′′

k,I,O,J , {f}) (any
complete test suite for (Fk′,I′,O, {f

′}) must check all FSM
transitions, which by the way also implies checking all
reactions of the original ICM to magnitude increments).
We infer TW ′′ ≤F TF .

We modify the previous case to denote a similar
scenario. Rather than the set J , we could just know
the greatest common divisor gcd of all values in J , which
makes sense if all real values in J turn out to be also
naturals, or at least rational numbers. In addition, let
us suppose that we also know an upper bound max
on the highest value labeling a triggering transition in
the IUT. Let TW ′′′ be this new testing problem. We can
perform the same reduction into TF as in the previous
paragraph, though now ICMs are translated into FSMs
where a single ‘increase magnitude by x’ new input is
added, where x = gcd. States have also the form (s,m),
though now m can take any multiple of gcd from 0 to
the lowest multiple being higher than max. We infer
TW ′′′ ≤F TF , so TW ′′′ is also included in Class I. Note
that this case is very similar to assuming that magnitudes
can take only natural numbers and we know an upper
bound of the maximum label of triggering transitions. In
addition, let us consider the following problem variant.
Let TW ′′′′ ⊆ TW ′′ be the same problem as the problem
TW ′′ we saw in the previous paragraph, though now all
values in J are rational numbers. After proving TW ′′′ ⊆
Class I like proposed in this paragraph, proving that
TW ′′′′ is included in Class I is much easier than doing
it by proving TW ′′ ⊆ Class I. Since all values of J are
assumed to be rational values in TW ′′′′ , there exists a
greatest common divisor for all of them, so the reduction
TW ′′′′ ≤F TW ′′′ is trivial. Since TW ′′′ ⊆ Class I, we
deduce TW ′′′′ ⊆ Class I.

Let us introduce a more interesting scenario that
(somehow unexpectedly) enables finite completeness.
Note that, even if the conditions required by TW ′′′ apply,
the size of the complete test suite dramatically increases
as the greatest common divisor decreases. For instance,
if two ICM triggering transitions trigger at values 4703.2
and 4703.25, then all magnitude increments of 0.05 units
up to (at least) 4703.25 have to be checked at each ICM
state in order to get completeness. Next we present a
scenario where this problem is avoided.

Let us discard all previously presented hypotheses and
assume the following ones:

(a) All values labeling triggering transitions are higher
than some given l ∈ R

+.
(b) For some given r ∈ R

+ with 2r < l, any wrong
output happening within less than r magnitude units
away from another magnitude value where that output
can be produced by the specification ICM will not be
considered as a fault. In order to forbid cumulative small

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. Y, OCTOBER 2013 27

deviations where none individually exceeds the limit,
total magnitude increments from the execution beginning
are considered. For instance, let us suppose that the
sequence “increase 5.3 units; give i1 and receive o1; increase
7.9 units; give i2 and receive o2” cannot be produced by the
specification ICM, but the sequence “increase 5.7 units;
give i1 and receive o1; increase 7.2 units; give i2 and receive
o2” can. If we set r = 0.5, then the former sequence is not
considered as a fault, because the first output happens
within the 0.5 units margin from 5.7, and the second one
happens within the 0.5 units margin from 5.7+7.2 = 12.9
(it happens at value 5.3 + 7.9 = 13.2). However, if
magnitude 7.9 is replaced by 7.0 in the former sequence,
then the resulting sequence is considered wrong, because
now o2 happens 0.6 units away from its allowed value
(5.3 + 7.0 = 12.3).

Let Vk,I,O,l be the set of all functions denoting the
behavior of some ICM with at most k states and sets
of inputs and outputs I and O, respectively, where the
values of all triggering transitions are higher than l. Let
f ∈ Vk,I,O,l and Vf,r ⊆ Vk,I,O,l be the subset of all
functions in Vk,I,O,l which are correct with respect to f
according the criterion (b). Let TV = {(Vk,I,O,l, Vf,r) | k ∈
N ∧ l, r ∈ R

+ ∧ r < l ∧ f ∈ Vk,I,O,l ∧ I, O are finite sets
∧ Vf,r ⊆ Vk,I,O,l contains all functions being correct with
respect to f according to (b)}. Let us show that we have
TV ≤F TF , which by the way will prove TV ⊆ Class I.
We can transform each pair (Vk,I,O,l, Vf,r) ∈ TV into a
pair (Fk′,I′,O, {f

′}) ∈ TF where

• I ′ consists of all inputs of I together with the follow-
ing new input: ‘raise magnitude’;
• f ′ is a function representing an FSM behaving as

follows. Its states are pairs (s,m) where s is a state of
the ICM and m is a magnitude value which can be
any multiple of l from 0 to the highest multiple of l
that is lower than max, where max is the maximum
value labeling a triggering transition in the specification
machine. Moreover, m can also be r and x − r for all
x ∈ R

+ labeling a triggering transition of the specifica-
tion machine. Note that s and m can take a finite set
of values, so the resulting machine has a finite number
of states indeed. Transitions between states (s,m) are
defined to simulate the state and magnitude changes in
ICM transitions. Let us suppose we are at the FSM state
(s,m). Taking ICM standard i/o transitions modifies
s according to the transition and leaves m unmodi-
fied, whereas ICM resetting i/o transitions modify s as
specified by the transition and also set m to 0. ICM
triggering transitions are discarded and replaced in the
FSM by new transitions triggered by a new input in
I ′ called ‘raise magnitude’. The input ‘raise magnitude’
simulates, in the FSM, some (partial or total) increase of
the magnitude towards the lowest or the highest bound
allowed by the (unique) ICM triggering transition value
at s. Let x be the triggering value at s, and let us assume
that the ICM triggering transition at s leads to s′. The
FSM input ‘raise magnitude’ has the following effect:

(i) If the current magnitude value m is the highest
multiple of l being less than x − r, then the magnitude
is raised to reach x − r. This means that the new state
reached in the FSM is (s, x− r).
(ii) Else, if the current magnitude value m equals x−r,

then the magnitude is raised to reach x+r (note that this
increment is lower than l because we required 2r < l).
This means that the new state reached in the FSM is
(s′, r) (note that it is not (s′, 0)).
(iii) Else it simulates that the magnitude is increased up

to the next multiple of l. That is, the new state reached
in the FSM is (s,m′) where m′ is the smallest multiple
of l that is higher than m.

• k′ = k·(pmax
l q+k+1). That is, k′ equals k (the number

of allowed states in ICMs represented by Vk,I,O,l) mul-
tiplied by an upper bound of the number of possible
values of m as mentioned above. Note that any ICM
represented by Vk,I,O,l can be converted, according to
the aforementioned construction, into an FSM with k′

states.

Let us note that any complete test suite for
(Fk′,I′,O, {f

′}) must also be a complete test suite for
(Vk,I,O,l, Vf,r) after all ‘raise magnitude’ FSM inputs ap-
pearing in the complete test suite for FSMs are replaced
by the corresponding magnitude increments they rep-
resent in each case according to cases (i), (ii), and (iii)
presented above. That is, if a test suite can guarantee
that an FSM behaves as the FSM resulting from the
previous conversion, then the original ICM is correct as
well. On the hand, by using only +l (or less) magnitude
increments, there is no risk of missing any triggering
transition from the IUT: Since all triggering transitions
trigger at increments strictly higher than l, no more
than one triggering transition may happen between two
consecutive multiples of l. Thus, there is no risk to
leave any IUT state unchecked. On the other hand, by
checking triggering values just r units before and after
the required triggering value, we can check whether the
behavior at both points corresponds to the behavior of
the ICM at the state we are supposed to be at just before
the triggering transition and the expected state just after
it. If both behaviors are as expected, then the triggering
must have happened between both values, as required
by condition (b) introduced earlier. We conclude that
the proposed reductions enables TV ≤F TF , so we have
TV ⊆ Class I.

Let us suppose that we want to extend ICMs to make
them depend on two independent magnitudes. Both
magnitudes have their own counter, both can be inde-
pendently reset in transitions, and both can launch their
own independent triggering transitions when their coun-
ters reach some specific values. Also, let us assume that
both may have their own independent l and r constants
as defined in the previous case. The problem of testing
ICMs with two magnitudes under these assumptions
(say TV 2) can be reduced to the problem of testing ICMs
as considered in the previous case (TV) by using almost

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. Y, OCTOBER 2013 28

the same construction as in the reduction TV ≤F TF
seen before. In particular, we get rid of one magnitude
of the 2-magnitude ICM by codifying it into the FSM
part (i.e. states and transitions) of the 1-magnitude ICM
(again, we use the ‘raise magnitude’ additional input for
simulating increases on the removed magnitude). We
conclude TV 2 ≤F TV . Let TV n be the problem of testing
ICMs with n independent magnitudes. Similarly, it can
be reduced to TV n−1 . Since we also have TV ≤F TF and
TF ⊆ Class I, by induction and the transitivity of ≤F

we trivially infer that TV n ⊆ Class I for all n ∈ N.
In order to get the actual complete test suite derivation
algorithm for TV n instances, we just have to compose all
the reductions from each problem to the subsequent one,
next apply a derivation algorithm for FSMs (e.g. test all
sequences with 2n + 1 inputs, where n is the number
of states), and next iteratively translate complete test
suites back up to TV n . In particular, we convert all ‘raise
magnitude’ inputs, used at each magnitude hiding, into
the true magnitude increments corresponding at each
state (s,m).

Let us discuss some practical implications of the pre-
vious testing methodology. First, note that the time can
be considered as any other magnitude of an ICM. In
order to increase this magnitude, we just have to let
the time pass by. Second, let us address the following
question: Can we use that previous testing methodology
for TV n , inferred by consecutively applying reductions,
to test ICMs where magnitudes are not independent? Let
us illustrate this issue with the following example. We
want to test a car control device which depends on the
increments of the number of traversed kilometers, the
number of consumed gasoline liters, and the amount
of elapsed time. We may argue that, when the device
is deployed in an actual car, we could hardly observe
kilometer increments without associated increments in
time or in the consumed gasoline. Let us suppose that
we can test the device before it is deployed in a car.
In the laboratory, we are free to stimulate all IUT sen-
sors (time, kilometers, gas consumption) independently
from each other. Let us suppose that we apply the test
suite derivation algorithm mentioned in the previous
paragraph (in particular, the one for 3-magnitude ICMs)
to test this IUT, and the IUT passes it. Since the de-
rived test suite is complete, it means that the IUT is
correct according to our criteria (a) and (b) mentioned
earlier. Moreover, since the test suite discards all possible
wrong IUTs according to these criteria, in particular it
also discards all possible wrong IUTs where magnitudes
increments are constrained to those that could really
happen inside a car. For instance, interactions where
every 1 kilometer we add 1 minute and 0.05 liters are
also possible in an independent-magnitude setting, so
they are also required to be right by a complete test
suite. Thus, any possible wrong behavior, unleashed by a
realistic after-deployment magnitude increment pattern,
is also guaranteed not to happen if the test suite is passed
(even if no test in the suite increases 1 kilometer every 1

minute and 0.05 liters), because the test suite is complete.
Hence, if the IUT passes this laboratory test (developed
for ICMs where magnitudes are independent), then it
will also work in deployment conditions – as long as
magnitude sensors also work well and the IUT logical
definition does not “change” in deployment conditions
(e.g. due to chip overheating caused by the engine). That
is, the 3-independent-magnitudes testing methodology
completely checks the logic of the IUT – also for the
particular logic scenarios that may happen under deploy-
ment conditions.

Alternatively, we could study how to explicitly impose
constraints between increments of different magnitudes
in the testing reductions given before, so that the com-
pleteness is required only for those magnitude incre-
ments that can be produced after the real deployment.
Note that, in this case, the new derived complete test
suites would not be required to guarantee the correctness
when we add 100 kilometers, 0 minutes, and 0 gas liters
consumption, because this case would be considered as
impossible under deployment conditions. Studying these
alternative reductions is beyond the scope of this case
study.

Let us note that all the reductions given in this case
study could be easily adapted to the case where mag-
nitudes are allowed to both increase and decrease, and
triggering transitions can be launched by both incre-
ments and decrements. For instance, in the TV ≤F TF
reduction given before, we would just have to consider
both increments towards increment triggering transitions
and decrements towards decrement triggering transitions.
This way, adding e.g. a temperature increase/decrease
factor to our car device example would be simple.

Finally, let us note that the TW ′ ≤F TF and TV ≤F TF
reductions given in this example are particularly inter-
esting because they are asymmetric: In both cases, the
computation formalism of any pair in the origin testing
problem is infinite (in particular, there are infinitely many
deterministic ICMs with some given number of states
and fulfilling the specific constraints considered in these
cases, because both cases enable infinite possible values
to label triggering transitions), but the computation for-
malism of all pairs of the destination problem in both
cases, i.e. TF , is finite (the set of all behaviors which can
be represented by an FSM with a given number of states
is finite). In the rest of reductions studied in this case
study, we have finiteness at both sides or infiniteness at
both sides. Anyway, in all cases considered in the case
study, the testing problems belong to Class I.

6 PROOFS OF COMPLEXITY RESULTS

Proof of Theorem 1

First, let us prove CS ∈ NP. Let us note that the
representation size of C and E is in O(|C| · |I| · |O|) and
the representation size of 6⊜ is in O(|O|2). Given C, E, I ,
O, 6⊜, K as input of CS, we prove that checking whether

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. Y, OCTOBER 2013 29

some given set of inputs I ⊆ I is such that |I| ≤ K and I
is a complete test suite for C and E requires polynomial
time. Since I ⊆ I , we calculate |I| in time O(|I|). Next
we have to check that, for all pair (f, f ′) with f ∈ E
and f ′ ∈ C\E, there exists some i ∈ I such that for all
o ∈ f(i) and o′ ∈ f ′(i) we have o 6⊜ o′. This can be done
in time O(|C|2 · |I| · |O|2). Thus, CS ∈ NP.

In order to prove CS ∈ NP-complete, we polyno-
mially reduce an NP-complete problem to CS. We will
consider the Set Cover problem. This NP-complete is
defined as follows: Given a set S, a collection J of subsets
of S, and a natural number K ∈ N, find a set cover J ′

for S (i.e., find a subset J ′ ⊆ J such that every element
in S belongs to at least one member of J ′) such that
|J ′| ≤ K .17

Given a set S = {x1, . . . , xn} and a collection of sets
J = {S1, . . . , Sk} with Sj ⊆ S for all 1 ≤ j ≤ k, we
will construct some C, E, I , O from them in polynomial
time. The idea of the transformation from Set Cover to
CS is the following: We construct an instance of CS where
there are some correct functions and a single incorrect
function; in particular, we will have C = {f1, . . . , fn, f

′}
and E = {f1, . . . , fn} (that is, f ′ is the only incorrect
function). For all 1 ≤ j ≤ n, the pair (fj , f

′) with fj ∈ E
and f ′ ∈ C\E will be used to represent the element xj

of the set S. Besides, each input of CS will represent a
set of J . In particular, fj and f ′ will be defined in such
a way that (fj , f

′) are distinguished by input il if and
only if xj ∈ Sl. Since each input represents a set and
each pair of correct/incorrect functions represents an
element, the task of finding K inputs such that all pairs
of correct/incorrect functions are distinguished will be
equivalent to finding K sets such that all elements of
S are covered by them. Let us note that the set of
outputs returned by a function for an input must include
at least one element. In our case, each function will
return at least a (unique) output for each input: For each
function fj and input il, we will consider αj

l ∈ fj(il)

for some unique output αj
l . We will use the trivial

distinguishing relation, i.e. o1 6⊜ o2 iff o1 6= o2. Thus,
if only the unique outputs αj

l were returned, all pairs
(fj , f

′) would be distinguished by all inputs. Following
the proposed analogy between both problems, (fj , f

′)
should be distinguished by il only if xj ∈ Sl. Thus,
if xj 6∈ Sl then we must impose a condition to avoid
that (fj , f

′) is distinguished by il. In particular, we will
consider βl ∈ fj(il) and βl ∈ f ′(il) for some output
βl. Since fj(il) ∩ f ′(il) 6= ∅, the pair (fj , f

′) is not
distinguished by il. Hence, distinguishing (fj , f

′) (i.e.,
covering the element xj) will require to include another
input in the test suite (i.e., another set in the collection).

We define C,E, I, O, 6⊜ from J, S as follows:

17. We could consider another problem, such as the Minimum Test
Collection problem. Despite its name, this problem is very different to
CS and thus is not a good choice to construct a polynomial reduction
from an NP-complete problem to CS. In this problem, a collection of
sets is selected in such a way that, for all pair of elements, there is a
set including only one of them.

• C = {fj = (outsj1, . . . , outs
j
k)|1 ≤ j ≤ n}

⋃

{f ′ = (outs′1, . . . , outs
′
k)}

where:

– for all 1 ≤ j ≤ n and 1 ≤ l ≤ k we have outsjl =
{αj

l } if xj ∈ Sl, else outsjl = {αj
l , βl},

– for all 1 ≤ l ≤ k we have outs′l = {α′
l, βl}.

• E = {(outsj1, . . . , outs
j
k)|(outs

j
1, . . . , outs

j
k) ∈ C}

• I = {i1, . . . , ik}
• O = {αj

l |1 ≤ j ≤ n ∧ 1 ≤ l ≤ k}∪
{α′

l|1 ≤ l ≤ k} ∪ {βl|1 ≤ l ≤ k}
• 6⊜ = {(o1, o2)|o1, o2 ∈ O ∧ o1 6= o2}

It is easy to check that the representation size of C and
E is in O(|S| · |J |) (|S|+ 1 functions, |J | inputs for each
function, and one or two outputs for each input). There
are O(|S|) inputs in I and O(|S| · |J |) outputs in O, so
the representation size of 6⊜ is in O(|S|2 · |J |2). Thus, the
constructed instance of CS has polynomial size.

We check that there exists J ′ ⊆ J with
⋃

S′∈J′ S′ = S
and |J ′| = K iff there exists a complete test suite I for
C, E with |I| = K :

=⇒: Let us suppose J ′ = {Sa1
, . . . , SaK

} and
⋃

S′∈J′ S′ = S. We check that I = {ia1
, . . . , iaK

} is a
complete test suite for C, E. Let us suppose that it is
not. Then, there exists a pair (fj , f

′) with fj ∈ E and
f ′ ∈ C\E such that for all il ∈ {ia1

, . . . , iaK
} we have

fj(il) ∩ f ′(il) 6= ∅. By the definition of C and E, if
fj(il) and f ′(il) share some element then this element
must be βl. So, for all il ∈ {ia1

, . . . , iaK
} we have

fj(il) ∩ f ′(il) = {βl}. By the construction of C and E
from J and S, if βl ∈ fj(il) then xj 6∈ Sl. Thus, xj 6∈ Sl

for all Sl ∈ {Sa1
, . . . , SaK

} = J ′. Therefore,
⋃

S′∈J′ S′ 6= S
and we get a contradiction.
⇐=: We assume that I = {ia1

, . . . , iaK
} is a complete

test suite for C, E, and we check that J ′ = {Sa1
, . . . , SaK

}
fulfills the property

⋃

S′∈J′ S′ = S. Let us suppose it does
not. Then, there exists xj ∈ S such that for all Sl ∈ J ′

we have xj 6∈ Sl. By the construction of C and E from J
and S, this implies that for all il ∈ {ia1

, . . . , iaK
} we have

βl ∈ fj(il) and βl ∈ f ′(il). Thus, no input of I allows to
distinguish the pair (fj , f

′) and I is not a complete test
suite for C, E. Hence, we have a contradiction.

⊓⊔
Proof of Theorem 2

(a): We prove FR ∈ P. From an instance of FR, let us
construct a graph G = (V , E) as follows: V = C, and
(f1, f2) ∈ E for all f1 ∈ E and f2 ∈ C\E such that
di (f1, f2, I) does not hold. By Lemma 3, a set R ⊆ C
is such that I is a complete test suite for (C\R,E\R)
iff f1 ∈ R or f2 ∈ R for all f1 ∈ E and f2 ∈ C\E
such that di (f1, f2, I) does not hold. Since vertexes
in V are functions in C and edges in E are pairs of
correct/incorrect functions that are not distinguished by
I, the problem of finding a set R ⊆ C with |R| ≤ K
such that I is a complete test suite for (C\R,E\R) is
equivalent to removing K or less vertexes from G in such
a way that all edges are lost. That is, FR is equivalent to
finding a subset of vertexes V ′ ⊆ V such that |V ′| ≤ K

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. Y, OCTOBER 2013 30

and the subgraph G′ of G induced by V\V ′ has no edges,
that is, {(v, v′)|(v, v′) ∈ E , {v, v′} ⊆ V\V ′} = ∅. Let us
consider the Vertex Cover problem, which is stated as
follows: Given a graph, find a set of K or less vertexes
such that, for each edge, at least one endpoint of the
edge is included in the set. Since solving FR requires
that, for each edge, at least one of the endpoints of the
edge is removed, we can solve FR in terms of the Vertex
Cover by considering that the vertex cover to be found
represents the set of vertexes (functions) to be removed
(i.e. R). In particular, we can do as follows: From an FR
problem instance, we construct the graph G = (V , E) as
defined before and next we find a vertex cover Q of size
K . Then, we have R = Q.

Though the Vertex Cover problem is NP-complete in
general graphs, König’s theorem [4] states that it is
equivalent to the Matching problem if the graph is bi-
partite (and G is so). The Matching problem in bipartite
graphs is defined as follows: Given a bipartite graph,
find a set of K of more edges such that no vertex of
the graph is at the endpoint of more than one edge
in the set. By König’s Theorem, the number of edges
in a maximum matching equals the number of vertices
in a minimum vertex cover. Moreover, given a graph
G = (V , E), both problems are solved in time O(

√

|V|·|E|)
by the Hopcroft-Karp algorithm [20]. Hence, FR and
the corresponding optimization problem of finding the
minimum function removal can be solved by constructing
G = (V , E) and next running that algorithm for G.
Identifying all pairs (f1, f2) such that di (f1, f2, I) does
not hold requires that, for all f ∈ E and f ′ ∈ C\E, we
check whether for all input i ∈ I there exist o ∈ f(i) and
o′ ∈ f ′(i) such that o ⊜ o′. Thus, the cost of constructing
G is in O(|C|2 · |I| · |O|2). The cost of executing the
Hopcroft-Karp algorithm is, in terms of the FR problem
instance, in O(

√

|C| · |C|2) = O(|C|5/2). Thus, FR (and
its corresponding optimization problem) can be solved
in time O(|C|5/2+|C|2·|I|·|O|2), and we conclude FR ∈ P.

(b): We prove FH ∈ NP-complete. First we prove
FH ∈ NP. Given C, E, I , O, 6⊜, I, H, K as input of FH,
we prove that we can check in polynomial time whether
some given R ⊆ H is such that |

⋃

H∈R H | ≤ K and I
is a complete test suite for (C\(

⋃

H∈RH), E\(
⋃

H∈RH)).
Since R ⊆ H and for all H ∈ R we have H ⊆ C, we
can calculate |

⋃

H∈R H | in time O(|H| · |C|2). Subtracting
⋃

H∈R H from C and E requires that, for all H ∈ R, we
remove all function f ∈ H from these sets. Since for all
H ∈ R we have H ⊆ C, these subtractions can be done
in time O(|H| · |C|2). After making these subtractions,
we have to check that, for all pair (f, f ′) with f ∈
E\(

⋃

H∈R H) and f ′ ∈ (C\(
⋃

H∈R H))\(E\(
⋃

H∈R H)),
there exists some i ∈ I such that for all o ∈ f(i) and
o′ ∈ f ′(i) we have o 6⊜ o′. Since |E\(

⋃

H∈R H)| ≤ |C| and
|(C\(

⋃

H∈R H))\(E\(
⋃

H∈R H))| ≤ |C|, this can be done
in time O(|C|2 · |I| · |O|2). Thus, checking whether some
given R ∈ H fulfills the required conditions can be done
in polynomial time. Hence, CS ∈ NP.

In order to prove FH ∈ NP-complete, we polyno-
mially reduce an NP-complete problem, 3-SAT, to FH.
Next we introduce some notation related to 3-SAT. This
problem is stated as follows: Given a propositional logic
formula ϕ expressed in conjunctive normal form where
each disjunctive clause has at most 3 literals, is there any
valuation ν satisfying ϕ? Let ϕ ≡ (l11 ∨ l12 ∨ l13) ∧ . . . ∧
(ln1 ∨ ln2 ∨ ln3) be an input for 3-SAT. We denote
by props(ϕ) = {p1, . . . , pm} the set of propositional
symbols appearing in ϕ. We denote the i-th disjunctive
clause of ϕ by ci, that is, ci ≡ li1 ∨ li2 ∨ li3. A valuation
ν is a function ν : props(ϕ) −→ {⊤,⊥}. We say that ν
satisfies a clause ci if it makes true at least one literal of
ci. We say that ν satisfies ϕ if it makes true all clauses
ci of ϕ.

Let ϕ ≡ (l11 ∨ l12 ∨ l13) ∧ . . . ∧
(ln1 ∨ ln2 ∨ ln3). We construct in polynomial time
an instance (C,E, I, O, 6⊜, I,H,K) of the FH problem
such that there is a set of hypotheses R ⊆ H with
|
⋃

H∈R H | ≤ K such that I is a complete test suite for
(C\(

⋃

H∈R H), E\(
⋃

H∈R H)) if and only if ϕ is satisfi-
able. Before formally presenting this construction, we
give an intuitive explanation. We will construct an FH
instance where, for each literal ljk of ϕ, there will be
one function in E and another function in C\E. The test
suite I will consist of a single input i, and the answers
of each function f to input i will be defined in such
a way that some specific pairs of functions will not be
distinguishable by i. Each function will answer some
output α that is given only by that function. Thus, if
this were the only output produced by a function then
this function would be distinguishable from any other
function (as we will consider the trivial distinguishing
relation: o1 6⊜o2 iff o1 6= o2). However, if we want to make
two functions f1, f2 not to be distinguished by i, then we
will add some output β to the answer of both functions
to i. In this way, di (f1, f2, I) will not hold. Thus, we
can make any pair of functions (un-)distinguishable as
required for our construction.

In FH, the set of functions to be removed must be the
union of some hypotheses (i.e. sets of functions) from
some set H of available hypotheses. For each literal ljk,
we will have in H a hypothesis consisting of the function
representing ljk in E and the function representing the
same literal in C\E, and there will not be any other
hypotheses in H. This guarantees that the removal of
functions in E and C\E will be symmetric: The only way
to remove a function representing some literal in E or
C\E consists in removing the function representing the
same literal in C\E and E, respectively.

There are two kinds of pairs of functions such that
their behavior will be defined to make them undistin-
guishable. On the one hand, pairs of functions represent-
ing opposite literals (e.g. p and ¬p) in E and C\E will
not be distinguishable. Given a solution to FH, we will
consider that non-removed functions implicitly denote
a valuation of the propositional symbols. For instance,
if a function representing ¬p is not removed then we

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. Y, OCTOBER 2013 31

are implicitly considering ν(p) = ⊥; if neither p nor ¬p
are removed then ν(p) can be arbitrarily set to ⊤ or ⊥.
Thus, for each function in E and each function in C\E
representing opposite literals, at least one of them must
be removed. By the symmetry of E and C\E, both E
and C\E will represent the same valuation indeed. On
the other hand, for each function representing a literal
lkj in E (respectively, in C\E), this function will not be
distinguishable from the functions representing the other
two literals of the same clause in C\E (resp. E). Due to
the definition of the hypotheses set H, this guarantees
that, for each clause, at least four out of the six functions
representing the literals of each clause (three in E and
three in C\E) will be removed (and, if two functions
remain, then they will be the representation of the same
literal in E and C\E). Thus, for each FH solution, at
least 4 · n functions must be removed (recall that ϕ has
n clauses). Actually, if only 4 · n functions are removed,
then it means that one literal of each clause in E (resp.
C\E) is made true. Moreover, literals made true in C\E
(resp. E) do not contradict these literals, because pairs of
contradicting functions are undistinguishable and thus
at least one function of each pair is removed. By the
symmetry, this means that true literals in E (resp. C\E)
do not contradict true literals in the same set. Thus, if at
most K = 4 ·n functions are removed in FH then ϕ must
be satisfiable.

Next we formally construct an FH instance
(C,E, I, O, 6⊜, I,H,K) from the 3-SAT instance
ϕ ≡ (l11 ∨ l12 ∨ l13) ∧ . . . ∧ (ln1 ∨ ln2 ∨ ln3), where
we consider props(ϕ) = {p1, . . . , pm}. Each literal ljk
will be represented by a function (outsjk) ∈ E and
(outs′jk) ∈ C\E including the (unique) output symbol αj

k

and α′j
k , respectively. Two functions denoting opposite

literals in E and C\E will be made undistinguishable
by including the same output βq

y , where q identifies the
propositional symbol and y ∈ {⊤,⊥}. A function from
E (resp. C\E) will be made undistinguishable from
the functions denoting the other literals from the same
clause in C\E (resp. E) by including βj

k (resp. β′j
k).

• C = {(outsjk)|1 ≤ j ≤ n, 1 ≤ k ≤ 3}
⋃

{(outs′jk)|1 ≤ j ≤ n, 1 ≤ k ≤ 3}
where:

– for all 1 ≤ j ≤ n, 1 ≤ k ≤ 3 we have
outsjk = {αj

k, β
q
y, β

j
k, β

′j
k1
, β′j

k2
} where ljk ≡ pq or

ljk ≡ ¬pq (in the first case, y = ⊤ else y = ⊥)
and {k1, k2} = {1, 2, 3}\{k}.

– for all 1 ≤ j ≤ n, 1 ≤ k ≤ 3 we have
outs′jk = {α′j

k , β
q
y , β

′j
k , β

j
k1
, βj

k2
} where ljk ≡ pq or

ljk ≡ ¬pq (in the first case, y = ⊥ else y = ⊤)
and {k1, k2} = {1, 2, 3}\{k}.

• E = {(outsjk)|(outs
j
k) ∈ C}

• I = {i}

• O = {αj
k|1 ≤ j ≤ n, 1 ≤ k ≤ 3}∪

{α′j
k |1 ≤ j ≤ n, 1 ≤ k ≤ 3}∪

{βj
k|1 ≤ j ≤ n, 1 ≤ k ≤ 3}∪

{β′j
k |1 ≤ j ≤ n, 1 ≤ k ≤ 3}∪

{βq
y |1 ≤ q ≤ m, y ∈ {⊤,⊥}}

• 6⊜ = {(o1, o2)|o1, o2 ∈ O ∧ o1 6= o2}
• I = {i}
• H = {{(outsjk), (outs

′j
k)}|1 ≤ j ≤ n, 1 ≤ k ≤ 3}

• K = 4 · n

We show that the construction of
(C,E, I, O, 6⊜, I,H,K) from ϕ requires polynomial
time with respect to the size of ϕ. There are 6 · n
functions in C, and for each of them the answer to
a single input (i) is defined. This answer consists of
5 outputs. Besides, there are 12 · n + 2 · m outputs
in O. Even if 6⊜ is extensionally defined, we have
| 6⊜ | = |O|2, and we have |H| = |C|/2. In conclusion,
(C,E, I, O, 6⊜, I,H,K) can be constructed from ϕ in
polynomial time.

Let us show that the answer of FH to
(C,E, I, O, 6⊜, I,H,K) is yes iff ϕ is satisfiable.

=⇒: Let us suppose that there is a set R ⊆ H with
|
⋃

H∈H H | ≤ K such that I is a complete test suite
for

(

C\(
⋃

H∈R H), E\(
⋃

H∈R H)
)

. Then, by Lemma 3 we
have that f ∈

⋃

H∈R H or f ′ ∈
⋃

H∈R H for all f ∈ C
and f ′ ∈ C\E such that di (f, f ′, I) does not hold. Since
functions representing opposite literals are made undis-
tinguishable in the construction of the FH instance, for
each pair of functions representing opposite literals, at
least one of these functions must be included in

⋃

H∈R H .
By the definition of H, all H ∈ H is such that H = {f, f ′}
for some f ∈ E and f ′ ∈ C\E representing the same
literal of ϕ. Thus, for all f ∈ E such that f ∈

⋃

H∈R H ,
the function f ′ representing the same literal as f in
C\E is such that f ′ ∈

⋃

H∈R H , and vice versa. Since
there is no pair of functions representing opposite literals
formed by a function in E and a function in C\E in
the set C\(

⋃

H∈R H), by the symmetry between E and
C\E there is no pair of opposite functions formed by
two functions from the same set either E or C\E. Thus,
either literals represented by functions in E\(

⋃

H∈R) or
literals represented in (C\E)\(

⋃

H∈R H) can be used to
form a (consistent) valuation of propositional symbols
as follows: We define a valuation ν where ν(p) = ⊤ iff
for some 1 ≤ j ≤ n and 1 ≤ k ≤ 3 we have ljk ≡ p and
(outsjk) 6∈ (

⋃

H∈R H). Let us note that if ν makes true
at least one literal from each clause then ν satisfies ϕ.
By the construction of C and E, the function f ∈ E
representing a literal l is undistinguishable from the
functions denoting the other two literals from the same
clause in C\E and vice versa. Besides,

⋃

H∈R H cannot
have a function f ∈ E without having the function
f ′ ∈ C\E representing the same literal in C\E, and
vice versa. Thus at most two functions, out of the six
functions denoting the literals of a clause in E and C\E,
can be in C\(

⋃

H∈R H). Consequently, the condition
|
⋃

H∈H H | ≤ K = 4 · n can be achieved only if, from

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. Y, OCTOBER 2013 32

the six functions denoting each clause, exactly four of
them are in

⋃

H∈R H . Since we have |
⋃

H∈H H | ≤ K
indeed, the valuation ν, which satisfies all literals not in
⋃

H∈R H , satisfies at least one of the literals from each
clause. Therefore, ν satisfies ϕ.
⇐=: Let us suppose that ϕ is satisfiable. We show

that there exists R ⊆ H such that |
⋃

H∈H H | ≤
K and I is a complete test suite for the pair
(C\(

⋃

H∈R H), E\(
⋃

H∈R H)). Let ν be a valuation of
props(ϕ) satisfying ϕ. Let Q ⊆ C be such that, for all
literal cj ≡ lj1 ∨ lj2 ∨ lj3 of ϕ, we have

• (outsjk), (outs
′j
k) ∈ Q for some 1 ≤ k ≤ 3 such that

either (a) for some q we have ljk ≡ pq and ν(pq) = ⊤;
or (b) for some q we have ljk ≡ ¬pq and ν(pq) = ⊥

(since ν satisfies cj ≡ lj1 ∨ lj2 ∨ lj3, there exists such
k)

• (outsjk1
), (outs′jk1

), (outsjk2
), (outs′jk2

) 6∈ Q, where
{k1, k2} = {1, 2, 3}\{k}.

Let us consider R = {H |H ∈ H, H ∩ Q = ∅}. Let
us recall that, by the construction of H, we have H =
{{(outsjk), (outs

′j
k)}|1 ≤ j ≤ n, 1 ≤ k ≤ 3}. Therefore,

we have Q = C\(
⋃

H∈R H) and |
⋃

H∈R H | = 4 · n. By
Lemma 3, if for all f1 ∈ E and f2 ∈ C\E such that
di (f1, f2, I) does not hold we have either f1 ∈

⋃

H∈R H
or f2 ∈

⋃

H∈R H , then I is a complete test suite for
(C\(

⋃

H∈R H), E\(
⋃

H∈R H)). By the construction of E
and C\E, a pair of functions is undistinguishable if
either (a) they represent opposite literals or (b) they
represent different literals from the same clause. By the
construction of Q from ν, Q does not have a pair of
functions representing opposite literals, and it does not
have a pair of functions representing different literals
from the same clause. Thus, there do not exist f1 ∈
E ∩ Q and f2 ∈ (C\E) ∩ Q such that di (f1, f2, I)
does not hold. Since we have E ∩Q = E\(

⋃

H∈R H) and
C ∩Q = C\(

⋃

H∈R H), we conclude that the set I is a
complete test suite for (C\(

⋃

H∈R H), E\(
⋃

H∈R H)).

(c): We prove HA ∈ NP-complete. Given C, E, I , O,
6⊜, I, H, K as input of HA, checking whether some given
R ⊆ H is such that |R| ≤ K and I is a complete test
suite for (C\(

⋃

H∈R H), E\(
⋃

H∈R H)) requires polyno-
mial time (we can prove it similarly as in the beginning
of the proof of Theorem 2 (b)). Thus, HA ∈ NP. In order
to prove HA ∈ NP-complete, we polynomially reduce
an NP-complete problem, the Set Cover problem, to HA.
The Set Cover problem, already considered in the proof
of Theorem 1, is defined as follows: Given a set S, a
collection J of subsets of S, and a natural number K ∈ N,
find a set cover J ′ for S (i.e., find a subset J ′ ⊆ J such
that every element in S belongs to at least one member
of J ′) such that |J ′| ≤ K .

Given a problem instance of Set Cover, that is, a set
S = {x1, . . . , xn}, a collection of sets J = {S1, . . . , Sk}
with Sj ⊆ S for all 1 ≤ j ≤ k, and K ∈ N, we
will construct in polynomial time an HA instance from
them, that is, we construct some C, E, I , O, 6⊜, I,

H, K ′ from S, J , K , where C and E represent some
computation formalism C and some specification E,
respectively. This instance is such that the solution of
HA for (C,E, I, O, 6⊜, I,H,K ′) is yes iff the solution of
Set Cover for (S, J,K) is yes as well. The idea of the
transformation from a Set Cover instance to a HA instance
is the following. We consider a test suite I with a single
input i. Each element x ∈ S is represented by a function
in E and a function in C\E, and there are no more func-
tions in C. By defining responses of functions to input
i in a similar way as in the proof of Theorem 2 (b), we
make undistinguishable some specific pairs of functions.
In particular, functions representing the same element
x ∈ S in E and C\E are made undistinguishable, and
there are no more undistinguishable pairs of functions.
In order to do this, each function produces some unique
output α in response to i, and functions representing the
same element x ∈ S in E and C\E answer some shared
output β too. This will make them undistinguishable,
because we will consider o1 6⊜ o2 iff o1 6= o2. For each set
{x1, . . . , xl} ∈ J , we have a hypothesis H ∈ H consisting
of the functions representing the elements x1, . . . , xl in
E, and there are no more hypotheses in H. Solving HA
requires that, for each pair of undistinguishable func-
tions, at least one of them is removed by the set R of
selected hypotheses. Only functions in E can be removed
by hypotheses. Since all functions are involved in a pair
of undistinguishable functions, solving HA consists in
choosing some hypotheses such that all functions from
E are removed. Since hypotheses represent sets in J ,
finding a set of hypotheses R such that all functions in
E are removed and |R| ≤ K is equivalent to finding K
or less sets of J such that they cover all elements in S.
Thus, the answer of HA is yes iff the answer of Set Cover
is yes.

Next we formally construct the HA instance
(C,E, I, O, 6⊜, I,H,K ′) from (S, J,K). Let us consider
S = {x1, . . . , xn} and J = {S1, . . . , Sk}. Each element
xj ∈ S is represented by a function (outsj) ∈ E and a
function (outs′j) ∈ C\E, where outsj and outs′j denote
the set of outputs answered by the corresponding
functions when input i is given. The unique outputs αj

and α′j are included in outsj and outs′j , respectively.
Besides, the output βj is included in both outsj and
outs′j .

• C = {(outsj)|1 ≤ j ≤ n}
⋃

{(outs′j)|1 ≤ j ≤ n}
where:

– for all 1 ≤ j ≤ n we have outsj = {αj , βj}
– for all 1 ≤ j ≤ n we have outs′j = {α′j , βj}

• E = {(outsj)|(outsj) ∈ C}
• I = {i}
• O = {αj |1 ≤ j ≤ n} ∪ {α′j |1 ≤ j ≤ n}∪

{βj |1 ≤ j ≤ n}
• 6⊜ = {(o1, o2)|o1, o2 ∈ O ∧ o1 6= o2}
• I = {i}
• H = {{(outsj1), . . . , (outsjl)}|{xj1 , . . . , xjl}∈ J}
• K ′ = K

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. Y, OCTOBER 2013 33

We consider the cost of constructing
(C,E, I, O, 6⊜, I,H,K ′) from (S, J,K). We have
|C| = 2 · |S|. For each function in C, the answer
to a single input i is defined, and this answer consists of
two outputs. Even if 6⊜ is extensionally defined, we have
| 6⊜ | = |O|2, and we have |O| = 3 · |S|. Besides, |H| = |J |.
Thus, (C,E, I, O, 6⊜, I,H,K ′) can be constructed from
(S, J,K) in polynomial time.

Let us show that the answer of HA to
(C,E, I, O, 6⊜, I,H,K ′) is yes iff the answer of the
Minimum Set Cover to (S, J,K) is yes.

=⇒: Let us suppose that there exists R ⊆ H with
|R| ≤ K ′ such that I is a complete test suite for
(C\(

⋃

H∈R H), E\(
⋃

H∈R H)). By Lemma 3, we have that
f1 ∈

⋃

H∈R H or f2 ∈
⋃

H∈R H for all f1 ∈ E and
f2 ∈ C\E such that di (f1, f2) does not hold. By the
construction of H, H ⊆ E for all H ∈ H. Besides, by
the construction of C and E, for all function f1 ∈ E
there exists f2 ∈ C\E such that di (f1, f2, I) does not
hold. We conclude

⋃

H∈R H = E. Each function f ∈ E
represents an element x ∈ S and, for all H ∈ H,
the set H = {(outsh1), . . . , (outshj)} represents a set
{xh1

, . . . , xhj
} ∈ J . Since

⋃

H∈R H = E, R is a set cover of
S. By construction, K ′ = K . Thus, we conclude |R| ≤ K .
⇐=: Let J ′ = {S1, . . . , Sl} ⊆ J be a set cover of S

with |J ′| ≤ K . By the construction of H, for all H =
{(outsj1), . . . , (outsjl)} ∈ H there exists S′ ∈ J with S′ =
{xj1 , . . . , xjl}. Let R ⊆ H be such that, for all S′ ∈ J ′, we
have H ∈ R for some H = {(outsg1), . . . , (outsgk)} with
S′ = {xg1 , . . . , xgk}, and there are no more hypotheses
in R. Since J ′ is a set cover of S and all functions in
E represent an element of S, we have

⋃

H∈R H = E.
By the definition of R from J ′ we have |R| = |J ′|,
so |R| ≤ K ′ = K . Besides, E\(

⋃

H∈R H) = ∅ since
⋃

H∈R H = E. Thus, I is a complete test suite for
(C\(

⋃

H∈R H), E\(
⋃

H∈R H)).
⊓⊔

7 CONCLUSIONS AND FUTURE WORK

Formal Testing Techniques have reached a high level
of maturity during the last few years. However, some
common roots allowing us to relate testing methods with
each other are still missing. In particular, a classification
of testing problems would allow us to use our expertise
about old testing problems to solve new problems. This
paper tries to contribute to this (long term) goal. We
have presented some general notions of testability and
we have identified five classes of testability. We have
studied some properties of the first class, i.e. finitely
testable problems, including the complexity of finding
a minimum complete test suite or measuring the com-
pleteness degree of incomplete test suites, alternative
characterizations, transformations keeping the testability,
the effect of adding testing hypotheses, and methods
of reducing one testing problem into another. From a
theoretical point of view, these techniques allow us to
relate testing problems to each other as well as to classify

them. From a practical point of view, they allow us to
determine the (im-)possibility of finding complete test
suites in different scenarios. They also allow us to reason
about how far an incomplete test suite is from being
complete, thus providing an implicit way to compare
and select incomplete test suites. The proposed frame-
work endows us with these capabilities even though it is
highly abstract. In particular, many examples have been
given to illustrate these capabilities, and new knowledge
about some known testing frameworks and other useful
settings have been discovered by applying our notions
in the case studies section. Going one step further, the
proposed general properties could be particularized and
refined for specific computation formalisms.

More generally, properties presented in Section 4 allow
us to envisage new paths to improve our understanding
about testing in the future. This study should not be
restricted to Class I; on the contrary, the properties of
classes II, III, IV, and V must be studied in detail as well.
In particular, the testing reduction notion could play a
key role in organizing the five proposed classes into a
big variety of subclasses that should be defined, related,
and studied as well: e.g. bounded finite testability (what is
the size of minimum complete test suites with respect to
the size of the system representation? e.g. polynomial or
exponential?), adaptive testability [23], probabilistic testa-
bility [32], heuristic testability, that is, using heuristics to
find non-optimal (but good enough) test suites, etc.

Regarding adaptive testability, we will study the prob-
lem of testing systems in the case where the test suite
is not set a priori, but the decision of which test is
applied next can depend on results observed in response
to previously applied tests. Let us consider the following
example: We wish to check, by means of testing, whether
some (terminating) programming function f from natu-
ral numbers to natural numbers fulfills the specification
condition “f(f(3)) = 4”. Since we do not know f(3) a
priori, any test suite constructed a priori must check all
natural numbers, so this problem is not in Class I if
only preset test suites are considered. However, if tests
can depend on previous responses then we can apply
input 3 and next input f(3). Thus, the set {3, f(3)}
is a finite complete test suite in the adaptive testing
case, and so this problem would belong to a kind of
AdaptiveClass I. The differences between the classes
presented in this paper (if they are considered as preset)
and their corresponding adaptive counterparts should
be studied. Also, we wish to study the applicability of
the proposed testability notions to the related problem
of learnability [16], [1].

Finally, we will develop a subdivision of Class II
(the class of testing cases which are unboundedly-
approachable by finite testing) in terms of the speed of
the convergence towards distinguishing rate 1 (i.e. com-
pleteness) in the limit. In particular, given a pair (C,E)
(and perhaps also a specific sequence C1 ⊆ C2 ⊆ . . .
converging towards C), how does the size of finite test
suites grows with respect to the required distinguishing

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. Y, OCTOBER 2013 34

rate ε < 1? Would the size of required test suites be
in e.g. O(n2) with respect to 1

1−ε? Or would it be in
e.g. O(n · log(n))? These kind of asymptotic measures
would allow us to know how fast we can converge,
in each case, towards completeness in the limit. More
importantly, this would provide us with a measure of
marginal utility of tests: After applying n tests, what is
the utility of applying one more test, in terms of gained
distinguishing rate? When should we stop applying
more tests, because the marginal utility of a new test (i.e.
the gained distinguishing rate) would be too small? This
would allow testers to calculate the appropriate amount
of time they should assign to testing.

ACKNOWLEDGMENTS

We thank Fernando Rubio, Alberto de la Encina, Car-
los Molinero, and Manuel Núñez for their suggestions,
Diego Rodríguez for his support, and the anonymous
reviewers of this paper as well as those of CONCUR’09
for their interesting comments.

REFERENCES

[1] D. Angluin. Computational learning theory: survey and selected
bibliography. In Proceedings of the twenty-fourth annual ACM
symposium on Theory of computing, STOC ’92, pages 351–369. ACM,
1992.

[2] G. Bernot, M.-C. Gaudel, and B. Marre. Software testing based
on formal specification: a theory and a tool. Software Engineering
Journal, 6:387–405, 1991.

[3] I. Berrada, R. Castanet, P. Félix, and A. Salah. Test case mini-
mization for real-time systems using timed bound traces. In 18th
IFIP TC6/WG6.1 International Conference, TestCom 2006, LNCS 3964,
pages 289–305. Springer, 2006.

[4] J.A. Bondy and U.S.R. Murty. Graph Theory with Applications.
North Holland, 1976.

[5] E. Brinksma and J. Tretmans. Testing transition systems: An
annotated bibliography. In 4th Summer School on Modeling and
Verification of Parallel Processes, MOVEP’00, LNCS 2067, pages 187–
195. Springer, 2001.

[6] Y. Cheon and G.T. Leavens. A simple and practical approach to
unit testing: The JML and JUnit way. In 16th European Conference
on Object-oriented programming, ECOOP 2002, LNCS 2374, pages
231–255. Springer, 2002.

[7] J.C. Cherniavsky and C.H. Smith. A recursion theoretic approach
to program testing. IEEE Transactions on Software Engineering,
13:777–784, 1987.

[8] J.C. Cherniavsky and R. Statman. Testing: An abstract approach.
In Proceedings of the 2nd Workshop on Software Testing, pages –. IEEE
Computer Society Press, 1998.

[9] T.S. Chow. Testing software design modeled by finite-state
machines. IEEE Transactions on Software Engineering, SE-4(3):178–
187, 1978.

[10] M. Davis and E. Weyuker. Metric space-based test-base adequacy
criteria. The Computer Journal, 31(1):17–24, 1988.

[11] R.A. DeMillo, R.J. Lipton, and F.G. Sayward. Hints on test data
selection: Help for the practicing programmer. IEEE Computer,
11:34–41, 1978.

[12] H. Do, G. Rothermel, and A. Kinneer. Prioritizing JUnit test cases:
An empirical assessment and cost-benefits analysis. Empirical
Software Engineering, 11(1):33–70, 2006.

[13] R. Dorofeeva, K. El-Fakih, S. Maag, A.R. Cavalli, and N. Yev-
tushenko. FSM-based conformance testing methods: A survey
annotated with experimental evaluation. Information & Software
Technology, 52(12):1286–1297, 2010.

[14] C. Gaston, P. Le Gall, N. Rapin, and A. Touil. Symbolic execution
techniques for test purpose definition. In 18th IFIP TC6/WG6.1
International Conference, TestCom 2006, LNCS 3964, pages 1–18.
Springer, 2006.

[15] M.-C. Gaudel. Testing can be formal, too. In 6th CAAP/FASE,
Theory and Practice of Software Development, TAPSOFT’95, LNCS
915, pages 82–96. Springer, 1995.

[16] E. Mark Gold. Language identification in the limit. Information
and Control, 10(5):447–474, 1967.

[17] M. Hennessy. Algebraic Theory of Processes. MIT Press, 1988.
[18] R.M. Hierons. Comparing test sets and criteria in the presence

of test hypotheses and fault domains. ACM Trans. on Software
Engineering and Methodology, 11(4):427–448, 2002.

[19] R.M. Hierons. Verdict functions in testing with a fault domain
or test hypotheses. ACM Transactions on Software Engineering and
Methodology, 18(4), 2009.

[20] J.E. Hopcroft and R.M. Karp. An n5/2 algorithm for maximum
matchings in bipartite graphs. SIAM Journal on Computing,
2(4):225–231, 1973.

[21] W.E. Howden. Weak mutation testing and completeness of test
sets. IEEE Transactions on Software Engineering, 8:371–379, 1982.

[22] M. Krichen and S. Tripakis. Black-box conformance testing for
real-time systems. In 11th Int. SPIN Workshop on Model Checking
of Software, SPIN’04, LNCS 2989, pages 109–126. Springer, 2004.

[23] D. Lee and M. Yannakakis. Principles and methods of testing
finite state machines: A survey. Proceedings of the IEEE, 84(8):1090–
1123, 1996.

[24] N. López, M. Núñez, and I. Rodríguez. Specification, testing
and implementation relations for symbolic-probabilistic systems.
Theoretical Computer Science, 353(1–3):228–248, 2006.

[25] K. Meinke. A stochastic theory of black-box software testing. In
Algebra, Meaning, and Computation, volume 4060 of LNCS, pages
578–595. Springer, 2006.

[26] M. Merayo, M. Núñez, and I. Rodríguez. Extending EFSMs
to specify and test timed systems with action durations and
timeouts. IEEE Transactions on Computers, 57(6):835–844, 2008.

[27] A. Petrenko. Fault model-driven test derivation from finite state
models: Annotated bibliography. In 4th Summer School on Modeling
and Verification of Parallel Processes, MOVEP’00, LNCS 2067, pages
196–205. Springer, 2001.

[28] I. Rodríguez. A general testability theory. In CONCUR 2009 -
Concurrency Theory, 20th International Conference, LNCS 5710, pages
572–586. Springer, 2009.

[29] I. Rodríguez, M.G. Merayo, and M. Núñez. HOTL: Hypotheses
and observations testing logic. Journal of Logic and Algebraic
Programming, 74(2):57–93, 2008.

[30] K. Romanik and J.S. Vitter. Using vapnik-chervonenkis dimension
to analyze the testing complexity of program segments. Informa-
tion and Computation, 128(2):87–108, 1996.

[31] J. Springintveld, F. Vaandrager, and P.R. D’Argenio. Testing timed
automata. Theoretical Computer Science, 254(1-2):225–257, 2001.
Previously appeared as Technical Report CTIT-97-17, University
of Twente, 1997.

[32] M. Stoelinga and F. Vaandrager. A testing scenario for proba-
bilistic automata. In 30th Int. Colloquium on Automata, Languages
and Programming, ICALP’03, LNCS 2719, pages 464–477. Springer,
2003.

[33] J. Tretmans. Conformance testing with labelled transition systems:
Implementation relations and test generation. Computer Networks
and ISDN Systems, 29:49–79, 1996.

[34] J. Tretmans. Testing concurrent systems: A formal approach. In
10th Int. Conf. on Concurrency Theory, CONCUR’99, LNCS 1664,
pages 46–65. Springer, 1999.

[35] H. Zhu and X. He. A methodology of testing high-level petri nets.
Information and Software Technology, 44(8):473 – 489, 2002.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. Y, OCTOBER 2013 35

Ismael Rodríguez is an Associate Professor
in the Computer Systems and Computation
Department, Complutense University of Madrid
(Spain). He obtained his MS degree in Computer
Science in 2001 and his PhD in the same subject
in 2004. Dr. Rodríguez received the Best Thesis
Award of his faculty in 2004. He also received the
Best Paper Award in the IFIP WG 6.1 FORTE
2001 conference. Dr. Rodríguez has published
more than 80 papers in international refereed
conferences and journals. His research interests

cover formal methods, testing techniques, swarm and evolutionary opti-
mization methods, and functional programming.

Luis Llana is an Associate Professor in
the Computer Systems and Computation De-
partment, Complutense University of Madrid
(Spain). He obtained his MS degree in Mathe-
matics 1991 and his PhD in the same subject
in 1996. His main research interest fields are
formal methods and testing techniques. Cur-
rently he is opening new research fields such as
artificial vision and e-learning.

Pablo Rabanal is an Assistant Professor in
the Computer Systems and Computation De-
partment, Complutense University of Madrid
(Spain). He obtained his MS degree in Computer
Science in 2004 and his PhD in the same subject
in 2010, devoted to the development of nature-
inspired techniques to solve NP-complete prob-
lems. Dr. Rabanal has published more than 20
papers in international refereed conferences and
journals. His research interests cover swarm
and evolutionary optimization methods, formal

methods, testing techniques, and web services.

	Introduction
	Related work
	Contributions
	Paper structure

	Testability concepts
	Testability hierarchy
	Non-termination
	Definition of Class II

	Studying properties of Class I
	Characterizations of Class I
	Minimum Test Suites
	Using testing hypotheses to enable finite testability
	Testing reductions

	Case studies
	Case study: Hennessy's Framework
	Case study: Timeout Machines
	Case study: Finite State Machines, Turing Machines and Finite Automata
	Case study: Increasing Continuous Magnitude Machines

	Proofs of complexity results
	Conclusions and future work
	References
	Biographies
	Ismael Rodríguez
	Luis Llana
	Pablo Rabanal

