
Research Department Marine Perception

Scientific Director: Professor Oliver Zielinski

Marie-Curie-Str. 1
26129 Oldenburg
Germany

www.dfki.de/map

map-info@dfki.de

Workshop Explainable AI
Part 3: Marine Application Cases

1

https://bluerobotics.com/store/rov/bluerov2/

Dr. Christoph Tholen

Mattis Wolf, M.Sc.

Dr. Frederic Stahl 
christoph.tholen@dfki.de

mattis.wolf@dfki.de

Marie-Curie-Str. 1
26129 Oldenburg
Germany

www.dfki.de/map

map-info@dfki.de



DFKI – German Research Center for Artificial 
Intelligence

Bremen

Berlin

Kaiserslautern
Saarbrücken

Oldenburg

Osnabrück

350
ongoing
projects

130
Mio. €
project volume

98
spin-offs

1.200
employees

629researcher

DFKI is one of the leading (applied) AI research centers

Lübeck

DarmstadtTrier



DFKI Marine Perception (MAP)
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Sensing is believing…

▪ Intelligent sensors and distributed systems for 
automatic perception and classification in the 
aquatic environment 

▪ Autonomous analysis of multisensory data 
using artificial intelligence methods, techniques 
and tools

▪ Real-time data stream analysis and integration 
into a high-dimensional situation picture

➔ We combine sensor technology and artificial
intelligence to evaluate environmental 
situations and identify options for action



Blue planet: oceans are the lungs of the planet.

50% of the global oxygen production is produced by photosynthesis of marine algae.

Oceans

connect

us

Why marine sciences?



Oceans are home to the world’s largest diversity of species and habitats.

Annually 100 Mio tons of marine organisms are exploited as food source.

Why marine sciences?

terrestrial

marine

Oceans are diverse

Archaea

Eukarya

Bacteria



50% of the human population lives in coastal areas (< 100km).

Including 12 out of 16 mega cities (> 10 Mio. inhabitants).

Why marine sciences?

Oceans

provide

habitat



Why marine sciences?

Global warming is causing sea levels to rise. Pesticides and nutrients end up in coastal

waters. Sewage discharge and litter runoff into the oceans. And many more…

Oceans are at risk!
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Marine 

Perception

Plastic waste 

and emission 

detection 

Intelligent 

sensors and 

situational 

awareness



DFKI MAP Projects

• Common in all past projects is a strong connection to different 
stakeholders from various different fields like 

− Local Governments

− NGOs 

− UN

− Etc. 

• Often stakeholders questioned the outcome of the AI algorithms, 
especially if the results did not help their own agenda 

• Here XAI methods can help to increase the trust of stakeholders 

→ XAI next natural step 
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Agenda
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Plastic 
waste 

detection 

Assistance 
System for 

Nautical 
Officers 



Floating Litter Detection:
Machine learning on 
drone image data 
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Plastic Waste

A global 

problem that

affects many

aspects of

human and 

natural life 



Plastic waste detection in ASEAN

Conducted monitoring projects in five ASEAN 
countries

▪ Collaborated with local universities / 
companies

▪ Projects involved plastic waste assessment 
using: 

▪ Drone / action cam surveys with AI-based 
waste analysis

▪ Field surveys (net surveys)

▪ Remote sensing via satellites 

▪ Impact & Capacity Building: local, regional and 
national scope

▪ Focus on easy-to-use methodologies that 
enable assessment and monitoring
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AI-based waste monitoring example:
Cisadane river mouth
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Level A:

High resolution imagery of river

section

→ Identify waste hotspots

Level B:

Very high resolution imagery for

waste accumulations

→ Assess waste quantities & waste 

types



Cisadane river mouth
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Cisadane river mouth
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Cisadane river mouth
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How accurate are the results?



Image / video analysis with an AI based approach

Plastic litter detection with 

machine learning using a two-

step approach

▪ Assessment of plastic waste in 

images (JPG, PNG, TIFF)

▪ Assessment of:

− area covered

− waste volume 

− types of waste

− top 10 items

➔ Quantitative results and characterization of 

dominant pollution classes for plastic waste 

and other litter

APLASTIC-Q GitHub Link to improved APLASTIC-Q algorithm and 

CNNs trained on ~6x larger dataset compared to Wolf et al. 2020.
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PLD CNN architecture and training details
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128x128x3

8

8

Adam(lr=0.001, beta_1=0.9, beta_2=0.999, 

amsgrad=False)

Dense Layers with L2 regularization

Data augmentation enabeld during training



1st CNN: Plastic Litter Detection - dataset
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26.147 Training samples from 

multiple Southeastasian and 

European countries.

Split: 70 / 15 / 15 (Training, 

Validation, Test)

Example dataset

from Cambodia

project (enhanced

dataset is planned to

make OpenSource

soon)



CNN probability outputs for test samples
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CNN probability outputs for test samples
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CNN probability outputs for test samples
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Investigation of result samples

• What features occour (or do not occour), if
the CNN is certain about classifications?

• What features occour (or do not occour), if
the CNN is making mistakes?
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Worst results ----- 10% steps ----- best results



2nd CNN: Plastic Litter Quantifier - dataset
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38.417 Training 

samples from 

multiple 

Southeastasian 

and European 

countries.

Split: 70 / 15 / 15 

(Training, 

Validation, Test)



Recall probabilities for waste type classifications
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Waste type classifications: worst to best

13/12/2022 27

Which waste 

types can the

CNN detect?

How certain are

classifications?

-> info needs to

be provided to

give context for

waste assessment



Next steps

• Use of well known explaination methods like 

− Local Interpretable Model-agnostic Explanations (LIME)

− SHapley Additive exPlanations (SHAP)

• Problems: 

− APLASTIC-Q works on small tiles of the image 

− Explanations also must work on tiles

− Usefulness questioned for larger images 

• Approach: 

− Use methods on the training samples 

− Show users what part of the image the algorithms used for decision
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Worst results ----- 10% steps ----- best results



iMagine - AI as a web service: APLASTIC-Q as
application

• Enable Natural Scientists to use AI 
Techniques

• Plastic Waste Analysis as Use Case 

• Offering pre-trained AI-Modules 

• Allow Training with User Images 

• Free at point of use 

• image datasets

• image analysis tools

• Enable better and more efficient 
processing and analysis of imaging data

• Accelerating scientific insights
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Overall vision: From perception to action
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= Plastikfundort

= Plastikfundort

BERKY.de

Combining local remote sensing (drones + 

bridges), satellite-based information and 

models in an AI-enhanced digital twin 

providing automated analysis for decision 

support and near real-time guidance for 

clean-up activities.    

Detect, identify, quantify and track 

floating plastic litter



Assistance System for 

Nautical Officers 



Assistance System for Nautical Officers 

90 % of world trade carried over the oceans

• reduce staff onboard

• faster operations 

• larger ships

• force automatisation of processes 

reducing costs of operation is mandatory

• dangerous situations 

• situational awareness errors account for almost every 
third accident (Grech et al. 2002)

increasing mental load of staff 
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marineinsight.com

Instagram/fallenhearts17



Assistance System for Nautical Officers 
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• Autonomous ships could be a solution 

• Many different directions of research in this 
field

− (small) prototypes unmanned surface vehicles

− autonomous ferries (NTNU)

• Main reasons for automatisation

− Reducing risks 

− Saving energy

− Reducing emissions 

− Reducing costs 

− Protecting humans 

IBM and ProMare

norwegianscitechnews.com maritimerobotics.com



Assistance System for Nautical Officers 

• Current rules and standards are not made for 
autonomous ships 

− International Regulations for Preventing 
Collisions at Sea (COLREGS) (Ventura 2005) 

• Regularisation is done by international and 
national organisations (IMO, DNVGL, etc.)

• IMO defined four levels of autonomy for sea 
going vessels 

• Autonomous systems must ensure to follow 
the COLREGS (DNVGL 2018)

− Need of certification

•Vessel with automated processes 
and decision support systems 

•Crew on board

Autonomy 
level 1

•Remotely operated vessel

•Crew onboard
Autonomy 

level 2

•Remotely operated vessel

•No crew onboard
Autonomy 

level 3

• fully autonomous vessel

•No crew onboard
Autonomy 

level 4
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maritimerobotics.com

Assistance System for Nautical Officers 

•Vessel with automated processes 
and decision support systems 

•Crew on board

Autonomy 
level 1

•Remotely operated vessel

•Crew onboard
Autonomy 

level 2

•Remotely operated vessel

•No crew onboard
Autonomy 

level 3

• fully autonomous vessel

•No crew onboard
Autonomy 

level 4
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norwegianscitechnews.com
IBM and ProMare



Assistance System for Nautical Officers 
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Assistance System for 
Nautical Officers 

• Development of explainable assistance 
system for nautical officers 

• Provide COLREG conform recommended 
actions 

• Deliver explanations for decisions

• First step towards autonomous ships

• Planned start: Summer 2023



Conclusions 
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• Explanations helped stakeholders to gain 
confidence in AI solutions 

• Explanations helped to identify worse working 
classes in plastic waste quantification 

• Potentially further use of model agnostic 
methods to improve explainability 

APLASTIC-Q

• Long way towards autonomous ships

• Research is needed in this area

• XAI could be a tool to enable certification of 
autonomous ships in  the future 

Assistance System for Nautical Officers 
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