
Towards the Integration of TAPRIO-based
Scheduling with Centralized TSN Control

George Papathanail, Lefteris Mamatas, and Panagiotis Papadimitriou
University of Macedonia, Greece

{papathanail, emamatas, papadimitriou}@uom.edu.gr

Abstract—Time-Sensitive Networking (TSN) aspires to provide
a solid underpinning for meeting latency guarantees across traffic
classes with diverse requirements. Despite the emergence of
various specifications from the TSN family of standards, there is
a shortage of prototype implementations with support for both
TSN-based scheduling and its configuration by a Centralized
Network Controller (CNC).

To this end, we present the design and implementation
of a TSN platform that couples Time-Aware Priority Shaper
(TAPRIO) with CNC. The CNC is utilized to convey TSN
schedules into TAPRIO using NETCONF and YANG. We employ
this platform for assessing the impact of TAPRIO on the latency
and jitter experienced by scheduled traffic. Furthermore, we
quantify the TAPRIO configuration overhead by populating TSN
schedule configurations by the CNC. Our experimental results
corroborate the proper operation of TAPRIO and its efficient
interaction with the CNC.

I. INTRODUCTION

Deterministic networking has evolved into a crucial research
topic and is constantly gaining traction and appeal across var-
ious types of networks, such as industrial, vehicular, wireless,
as well as service provider networks [1]–[4]. In this respect,
deterministic networking introduces mechanisms either at the
network or the data-link layer towards traffic prioritization
with the aim of satisfying the strict requirements of delay-
sensitive flows and ensuring that their data is delivered within
certain deadlines. More specifically, on the network layer, the
IETF DETerministic NETwork (DETNET) [5] working group
investigates new techniques for deterministic QoS, spanning
from explicit routes, packet replication and elimination to
congestion protection with end-to-end synchronization. On the
other hand, similar efforts over Ethernet are concentrated on
enabling asynchronous and deterministic low-latency services.
In this scope, IEEE 802.1 Time-Sensitive Networking (TSN)
has introduced various standards, such as IEEE 802.1 Qbv,
also known as Time-Aware Shaper (TAS), which essentially
provides support for fine-grained scheduling across multiple
queues on switch egress ports [6].

Despite the various recent advancements, TSN still entails
significant challenges, such as the synchronization among
talkers and TSN switches for efficient operation, the translation
of high-level flow requirements or intents into low-level Gate
Control List (GCL) configurations. Such problems can be
thoroughly investigated only using a TSN platform that en-
compasses both data and control plane elements. With respect
to the latter, TSN is associated with Centralized Network

Control (CNC), which has full knowledge of the network
topology and flow requirements [7]. In the fully centralized
TSN control plane model, the flow requirements are conveyed
to the CNC via a logical entity, namely Centralized User
Configurator (CUC), based on IEEE 802.1Qdj. Despite the
emergence of TSN control-plane specifications, there is a
shortage of TSN prototype implementations that integrate TSN
schedulers with a CNC. In particular, we are mainly aware of
[3] that jointly performs flow re-routing and TSN schedule
configuration using segment routing over IPv6.

In this respect, we present a TSN platform that facilitates
experimentation with TSN mechanisms (e.g., Time-Aware
Priority Shaper - TAPRIO) in a testbed environment. The TSN
platform encompasses (i) a TAPRIO-enabled switch datapath
that can be configured to assign traffic flows to certain queues
(on egress ports), which are associated with configurable
GCLs, and (ii) a prototype implementation of a CNC that
generates TSN schedules for installation into TSN datapath.
To this end, we rely on the NETCONF [8] communication
protocol, whereas YANG [9] is utilized for the representation
of TSN schedule configurations. We further provide the means
for experimentation with TSN in emulation environments, such
as Mininet, by porting TAPRIO into Mininet based on our
previous work [1].

We take advantage of our TSN platform for assessing
various data and control plane aspects of TSN within Mininet.
More specifically, we assess the impact of diverse TSN
schedules on latency and jitter using TAPRIO. Furthermore,
we quantify and decompose the TAPRIO configuration over-
head by conveying TSN schedule configurations from CNC
into TAPRIO using NETCONF. Our experimental results
corroborate the proper operation of TAPRIO scheduler and
also indicate an efficient interaction between CNC and the
underlying TAPRIO.

The remainder of the paper is organized as follows. Section
II provides background on TSN and further discusses TSN
mechanisms pertaining to IEEE 802.1Qbv. In Section III,
we elaborate on the design and implementation of the TSN
platform. Section IV discusses our evaluation results using
the proposed TSN platform, whereas Section V provides an
overview of related work. Finally, Section VI highlights our
conclusions and provides directions for future work.



II. TIME-SENSITIVE NETWORKING

TSN encompasses a set of standards developed by the Time-
Sensitive Networking task group within the IEEE 802.1 work-
ing group. These TSN standards specify methods for trans-
mitting data with high time-sensitivity over Ethernet networks
that are deterministic. The majority of TSN projects extend
the IEEE 802.1Q – Bridges and Bridged Networks standards,
which deal with Virtual Local Area Networks (VLAN) and
network switches. These extensions aim at data transmission
with bounded latency and high reliability [4]. TSN mecha-
nisms are particularly relevant to areas, such as automotive
and industrial control, where real-time Audio/Video Streaming
and control streams are used in converged networks.

Numerous IEEE 802.1 specifications are available, includ-
ing 802.1Qbv – Time Aware Shaper [6], IEEE 802.1 Qbu
Preemption [10], and IEEE 802.1AS Timing and Synchro-
nization [11]. These specifications provide support for various
features and functionalities for network communication. For
instance, 802.1Qbv is associated with the Time-Aware Shaper
(TAS) mechanism for controlling latency, whereas 802.1Qbu
offers the Preemption feature for interrupting and resuming
frame transmission. In addition, 802.1AS focuses on timing
and synchronization within the network. These IEEE 802.1
standards are integral components of modern networking,
providing essential tools for the transmission of data over
networks with different performance requirements.

In the following, we elaborate further on IEEE 802.1Qbv,
which is currently supported by our TSN platform.

IEEE 802.1Qbv. In the context of IEEE 802.1 standards,
802.1Qbv introduces a transmission gate operation concept for
each traffic class queue, as depicted in Fig. 1. At the egress
port of a TSN switch, outgoing frames go through a Traffic
Classification block that categorizes different streams to their
respective traffic classes. This classification process is vital
in preventing traffic overload, which could otherwise affect
the switches. At T1, the traffic class 0, which is assigned to
traffic priority 0, is open for transmission. The packets are then
queued into various traffic classes based on the state of the
transmission gates. These gates are either open or closed, and
their status is controlled by a GCL. A GCL contains multiple
schedule entries for each output port, allowing selected traffic
to pass through open gates to the transmission selection block,
which provides access to the medium. For a TSN switch with
IEEE 802.1Qbv schedules to function as expected, the clocks
of all switches should be synchronized. This would ensure
that all TSN switches reference the same cycle base time in
their schedules. Such synchronization can be attained via the
Precision Time Protocol (PTP). In essence, IEEE 802.1Qbv
coupled with PTP provides the means for the implementation
of appropriate GCL schedules and time synchronization, which
can guarantee the transmission of high-priority critical traffic
without interference from other best-effort traffic. This even-
tually can ensure bounded delay and low jitter of scheduled
traffic, as well as protection of high-priority flows.

Fig. 1. Example of IEEE 802.1Qbv.

III. TSN PLATFORM

In this section, we present our TSN platfrom design and
implementation. The platform couples a TAPRIO-based TSN
datapath with a TSN controller (i.e., CNC), empowering exper-
imentation with a fully-fledged TSN bridge that encompasses
both data and control plane elements (Fig. 2). In the following,
we discuss in detail the functionality of the TSN platform.

A. TSN Data Plane

In order to utilize TSN, we activate it by employing
TAPRIO. TAPRIO is a queuing discipline for Linux and is
included in the traffic control tc tool of Linux, which allows
us to implement the 802.1Qbv Time-Aware Shaper. TAPRIO
empowers the configuration of a series of gate states, each one
enabling outgoing traffic for a subset of traffic classes based
on the concept of a time slice. TAPRIO implements packet
classification to a specific traffic class by utilizing the priority
field of the socket buffer employed by the network stack of
the Linux kernel (skb to priority).

As we utilize IPV6 addressing, the mapping of the traffic
classes to queues is carried out by modifying the DSCP field
of the IPV6 packet header. To modify the skb priority field
of the socket buffer based on the DSCP field in the packet
header, we employ the iptables method in order to establish
the priority field of SKB, before packets are directed to the
Qdisc. iptables is a packet filter tool at the IP layer that is used
to configure, sustain, and inspect the IP packet filter rule tables
in the Linux kernel. We incorporate the relevant classifier rules
into iptables to modify the skb priority field appropriately.

The mangle table at the IP layer is employed to modify
packets. The classifier rule is added to the POSTROUTING



Fig. 2. TSN platform overview.

chain, which is triggered after the forwarding decision, just
before the packet reaches the Qdisc. This empowers TAPRIO
Qdisc to recognize the priority field designated by the iptables
rule (classifier).

B. TSN Control Plane

Regarding the control plane, we utilize a hybrid TSN imple-
mentation, as described in the IEEE 802.1Qcc standard [12],
in order to automate the TAPRIO configuration process. More
specifically, we have implemented a CNC that has the ca-
pability to compute TSN 802.1Qbv schedules and populate
these schedules into TSN-enabled switch datapaths. The CNC
communicates with the switches using the NETCONF [8]
remote communication protocol to establish communication
and IETF YANG data models.

A YANG parser module parses the YANG-TSN models
and translate them into a set of tc commands that affect the
queuing disc layer of the Linux kernel. As such, the CNC
is enabled to remotely access and configure the switches to
support TAPRIO and other TSN features, thus simplifying
the network management process. The interaction between the
CNC and the TAPRIO is aligned with [3], which also relies on
NETCONF and YANG for the installation of TSN schedules
into the datapath.

IV. EXPERIMENTAL STUDY

In this section, we utilize our TSN platform and conduct
a set of experiments to assess various aspects of TSN. More
specifically, we assess the impact of TAPRIO scheduling on
high-priority and best-effort traffic, and we also quantify the

Fig. 3. Experimental topology in Mininet.

control communication overhead in relation to the CNC. In
order to assess the benefits of TSN, we activate TAPRIO on the
egress port of an IoT Gateway using the topology depicted in
Fig. 3, which is created through a modified version of Mininet
2.3.1 [13]. In order to use TAPRIO in this topology, based on
[1] we modify Mininet in order to support multi-queued NIC
interfaces, since by default Mininet only supports single-queue
interfaces. More specifically, the modified Mininet version can
support up to 8 TX/RX queues. We also use IPMininet [14] in
order to support IPV6 addressing. All experiments are carried
out on an Ubuntu 20.04.1 LTS Virtual Machine with 8 virtual
CPUs and 8 GB of RAM, running kernel version 5.4.0-139.

A. Impact of Diverse TAPRIO Schedules

The goal of this experiment is to demonstrate the impact of
TAPRIO scheduling on an IoT Gateway. Based on the Mininet
topology depicted in Fig. 3, we set up the TAPRIO Qdisc
with two traffic classes: (i) High Priority and (ii) Best Effort,
where the former is configured to match traffic with DSCP
field value of 0x40, wheras the latter matches best-effort traffic
with DSCP field value of 0x00. To generate traffic, we rely on
Iperf [15]. Specifically, we inject packets of size 1,440 bytes
at a rate of 2,000 packets/s for High-Priority traffic and CBR
traffic of 1,440 bytes packet size for Best-Effort traffic.

The impact of 802.1Qbv scheduling on latency and jitter
for a 1 ms cycle time is shown in Figs. 4 and 5, by varying
the allocated time ratio between High-Priority and Best-Effort
traffic. For the sake of simplicity, only average values are
presented as the network cycle is not synchronized with the
application cycle (such synchronization is extremely difficult
to attain within Mininet).

The average latency and jitter for High-Priority traffic yield
a linear increase as the percentage of allocated cycle time
decreases. Conversely, the average latency and jitter for Best-
Effort traffic decreases as the percentage of allocated time for
this traffic class increases. It is important to note that these
results are consistent with the expected behavior of TAPRIO’s



Fig. 4. Impact of 802.1Qbv on jitter for High-Priority and Best-Effort traffic.
Fig. 5. Impact of 802.1Qbv on latency for High-Priority and Best-Effort
traffic.

scheduling mechanism, where High-Priority traffic is prior-
itized over Best-Effort traffic. In addition, we observe that
the maximum latency and jitter are highly dependent on the
current policy in effect, which is determined by the allocated
time ratio between the two traffic classes. Overall, these results
highlight the effectiveness of TAPRIO in managing traffic and
prioritizing delay-sensitive traffic in a network environment.

B. Impact of TAPRIO 800:200

We conduct another experiment, at which we utilize again
the Mininet topology of the previous experiment and send
1440-byte packets at a rate of 2000 packets per second both
for High-Priority and Best-Effort traffic. The traffic is injected
using Iperf, and the primary goal of this experiment is to
measure the effect of different allocation times in the GCL.
More specifically, we allocate 80% of the time to high-priority
traffic and 20% to low-priority traffic on a cycle time of 1
ms. We measure the impact of this allocation on jitter and
latency, by plotting the CDF for each metric (Figs. 6 and 7,
respectively).

Fig. 6 illustrates the distribution of jitter for High-Priority
and Best-Effort traffic. This plot confirms that High-Priority
is associated with lower jitter compared to Best-Effort traffic.
Specifically, the measurements of High-Priority traffic indicate
a jitter of less than 1 ms for 80 percent of the observations,
whereas Best-Effort traffic experiences jitter of less than 1.6
ms for the same percentage of observations. These results
imply that allocating a higher percentage of the GCL time
to High-Priority traffic can lead to reduced (and potentially
bounded) jitter in the network, which is beneficial for real-
time applications that require both low latency and jitter.

The plot in Fig. 7 depicts the distribution of latency for
High-Priority and the Best-Effort traffic. We reach a similar
observation, as High-Priority traffic exhibits lower latency. In
particular, on the 80 percent of the observations, the latency
for High-Priority traffic does not exceed 13 ms, whereas Best-
Effort traffic can experience latency up to 23 ms. Furthermore,

we observe a long tail in the latency distribution of Best-Effort
traffic (as opposed to High-Priority). This implies that TAPRIO
can practically lead to bounded latency for traffic scheduled
with high priority.

It is important to note that the high latency measurements
in our experiments are an artifact of Mininet. Achieving stable
and accurate measurements in a software-based emulation
environment is difficult, and as such, high-precision measure-
ments mandate hardware solutions, such as programmable
NICs or NetFPGAs, in conjunction with specialized capture
cards. Also, recall the difficulty in enabling synchronization
among the TSN switches and the talkers within an emulation
environment. In the future, we will seek to gain access
to such specialized equipment and utilize our platform for
measurements over TSN with higher precision.

C. Control Communication Overhead

In addition to the previous experiments on the effect of
TAPRIO on scheduled traffic, we extend our experimentation
to the interaction between the CNC and the TSN datapath.
In particular, our aim is to measure and understand the
communication overhead of the CNC when TSN schedules
are populated into the switch. To this end, we perform tests on
a topology consisting of a talker-listener pair, 1–10 switches,
and the CNC (Fig. 8).

Initially, we measure the control communication overhead
when inserting the TSN schedule configuration into only one
switch. Subsequently, we increase the number of switches and
measure the delay, as we populate configurations into switches
ranging from two to ten. To better reason about the time spent
for TAPRIO configuration, we measure (i) the time required
to generate the TAPRIO configuration at the CNC, (ii) the
communication delay between the NETCONF server and the
NETCONF client, and (iii) the delay incurred by the server to
parse the configuration from the NETCONF client and convert
it to the appropriate format. These essentially comprise three
subsequent steps for the configuration of TAPRIO by the CNC.



Fig. 6. CDF of jitter with TAPRIO 800:200 (80% of the time allocated to
High-Priority traffic and 20% to Best-Effort traffic on a cycle time of 1 ms).

Fig. 7. CDF of latency with TAPRIO 800:200 (80% of the time allocated
to High-Priority traffic and 20% to Best-Effort traffic on a cycle time of 1
ms).

Fig. 8. Experimental setup for the measurement of control communication
overhead (N = 1...10).

The corresponding results are shown in Table I. The time
required by the CNC to generate the TAPRIO configuration
represents a significant portion of the control communication
overhead, in comparison to the communication delay and the
XML parsing overhead. More specifically, we observe that
the time required to complete the first step (i.e., TAPRIO
schedule generation at the CNC) increases linearly with the
number of switches, as illustrated more clearly in Fig 9. The
delays incurred for the subsequent steps (2 and 3) are minimal
and mostly unaffected by the increase in the number switches.
This stems from the parallelization of each process across the
switches. Overall, the low control communication overhead
measured in our experiments corroborates the efficacy of our
TSN platform, especially in terms of CNC and TAPRIO
interaction.

V. RELATED WORK

In this section, we provide an overview of related work
on (i) TSN data plane and (ii) TSN control plane. Both have
attracted significant attention, especially with respect to IEEE
802.1Qbv.
Data Plane. Authors in [5] provide an overview of various
existing strategies, including TSN, in order to achieve ultra-

low latency. Furthermore, [16] performs a comparison be-
tween IEEE 802.1Qbv and 802.1Qbu based on simulations,
highlighting the drawbacks of TAS in terms of configuration
complexity and guard bands inefficiencies. The TSN 802.1Qbv
scheduling problem has been addressed using various tech-
niques. For example, the problem has been tackled using
Satisfiability Modulo Theory (SMT) and Optimization Mod-
ulo Theory (OMT) [17], [18]. Authors in [19] implement a
simulation TSN environment by leveraging on OMNet++ and
examine the impact of TSN scheduling on different classes of
traffic. Finally, the work in [20] describes the development of
a TSN system that is reliable and scalable. The system has
successfully implemented the IEEE 802.1ASrev standard for
clock synchronization and the IEEE 802.1Qbv standard for
ordered packet sending on Linux end-devices.

Control Plane. As far as the control plane is concerned, au-
thors in [2] present an approach for ultra-fast recovery of TSN
using Software-Defined Networking (SDN). More specifically,
they employ Source Routing for a nearly-stateless data plane
in order to achieve fast failure recovery. Another approach

TABLE I
CONTROL COMMUNICATION OVERHEAD

Switches TAPRIO Config-
uration Genera-
tion (sec)

NETCONF
Communication
(sec)

YANG Parsing
(sec)

1 0,128 0,026 0,019
2 0,257 0,024 0,019
3 0,482 0,025 0,020
4 0,625 0,025 0,020
5 0,803 0,022 0,021
6 1,017 0,024 0,021
7 1,198 0,025 0,020
8 1,379 0,024 0,020
9 1,599 0,025 0,022

10 1,781 0,027 0,021



Fig. 9. Control communication overhead vs. number of switches.

introduces a mechanism for managing reliability in SDN-
controlled TSN networks, by utilizing NETCONF and Finite
State Machines (FSMs) [21]. By proactively instructing nodes
to perform specific actions in response to certain events such
as performance degradation or failures, the proposed approach
reduces recovery time and can effectively bypass the SDN
controller. Alvarez et al. [7] have implemented a Dockerized
CNC, which supports various TSN implementations. Authors
in [22] argue that P4 is not sufficiently abstract to program
a TSN-enabled switch on its own, but can be used instead
in combination with other tools or platforms (e.g., tc, DPDK,
OpenvSwitch) in order to achieve the necessary modularity.

VI. CONCLUSIONS

In this paper, we presented a TSN platform that enables
experimentation with TSN mechanisms in both testbed and
network emulations environments. Our TSN platform encom-
passes (i) a TAPRIO-enabled switch datapath that can be con-
figured to handle traffic under pre-defined TSN schedules and
(ii) a prototype implementation of a CNC that generates TSN
schedules and installs them into TAPRIO using NETCONF.

Our evaluation results show that TSN schedules have a
significant impact on latency and jitter experienced by sched-
uled traffic. In terms of CNC and TAPRIO interaction, we
investigated and decomposed the process of generation of TSN
schedules and conveying them into TAPRIO. In this respect,
we measured a low control communication overhead, which
corroborates the feasibility of our TSN platform design.

Future work will be focused on the utilization of this
TSN platform in a testbed environment for the investigation
of challenges entailed by TSN, such as the synchronization
among talkers and TSN switches for the prioritization of time-
critical traffic under strict delay bounds.

VII. ACKNOWLEDGMENTS

This work was funded by the European Union’s Horizon
Europe research and innovation program under grant agree-
ment No. 101070487 (NEPHELE).

REFERENCES

[1] G. N. Kumar, K. Katsalis, and P. Papadimitriou, “Coupling source
routing with time-sensitive networking,” in IFIP Networking Conference
(Networking), 2020, pp. 797–802.

[2] G. N. Kumar, K. Katsalis, P. Papadimitriou, P. Pop, and G. Carle,
“Failure handling for time-sensitive networks using sdn and source rout-
ing,” in 7th IEEE International Conference on Network Softwarization
(NetSoft), 2021, pp. 226–234.

[3] ——, “Srv6-based time-sensitive networks (tsn) with low overhead
rerouting,” International Journal of Network Management, Wiley, 2022.

[4] S. Fu, H. Zhang, and J. Chen, “Time sensitive networking technology
overview and performance analysis,” ZTE Communications, vol. 16,
no. 4, pp. 57–64, 2018.

[5] A. Nasrallah, A. S. Thyagaturu, Z. Alharbi, C. Wang, X. Shao,
M. Reisslein, and H. ElBakoury, “Ultra-low latency (ull) networks: The
ieee tsn and ietf detnet standards and related 5g ull research,” IEEE
Communications Surveys & Tutorials, vol. 21, no. 1, pp. 88–145, 2018.

[6] IEEE, IEEE Standard for Local and Metropolitan Area Net-
works—Bridges and Bridged Networks—Amendment 25: Enhancements
for Scheduled Traffic, ser. IEEE Std 802.1Qbv-2015. IEEE, Mar. 2016.

[7] I. Álvarez, A. Servera, J. Proenza, M. Ashjaei, and S. Mubeen, “Imple-
menting a first cnc for scheduling and configuring tsn networks,” in 27th
IEEE International Conference on Emerging Technologies and Factory
Automation (ETFA), 2022, pp. 1–4.

[8] R. Enns, M. Bjorklund, J. Schoenwaelder, and A. Bierman, “Network
Configuration Protocol (NETCONF),” in RFC 6241, 2011.

[9] M. Bjorklund, “Yang-a data modeling language for the network config-
uration protocol (netconf),” Tech. Rep., 2010.

[10] IEEE, IEEE Standard for Local and Metropolitan Area Net-
works—Bridges and Bridged Networks—Amendment 26: Frame Preemp-
tion, ser. IEEE Std 802.1Qbu-2016. IEEE, Aug. 2016.

[11] IEEE, Standard for Local and Metropolitan Area Networks—Timing and
Synchronization for Time-Sensitive Applications in Bridged Local Area
Networks, IEEE Standard 802.1AS-2011, pp. 1–292, Mar. 2011.

[12] IEEE, Std 802.1Qcc-2019: Standard for Local and Metropolitan Area
Networks–Bridges and Bridged Networks–Amendment 9: Stream Reser-
vation Protocol (SRP) Enhancements and Performance Improvements,
2019.

[13] “Mininet,” http://mininet.org/, accessed: 2023-02-28.
[14] “IPMininet,” https://ipmininet.readthedocs.io/en/latest/, accessed: 2023-

02-28.
[15] V. GUEANT, “iperf-iperf3 and iperf2 user documentation,” Iperf. fr. Np,

2017.
[16] A. Arestova, K.-S. J. Hielscher, and R. German, “Simulative evaluation

of the tsn mechanisms time-aware shaper and frame preemption and
their suitability for industrial use cases,” in IFIP Networking Conference
(IFIP Networking), 2021, pp. 1–6.

[17] W. Steiner, S. S. Craciunas, and R. S. Oliver, “Traffic planning for time-
sensitive communication,” IEEE Communications Standards Magazine,
vol. 2, no. 2, pp. 42–47, 2018.

[18] S. S. Craciunas, R. S. Oliver, M. Chmelı́k, and W. Steiner, “Scheduling
real-time communication in ieee 802.1 qbv time sensitive networks,”
in Proceedings of the 24th International Conference on Real-Time
Networks and Systems, 2016, pp. 183–192.

[19] C. Park, J. Lee, T. Tan, and S. Park, “Simulation of scheduled traffic for
the ieee 802.1 time sensitive networking,” in Information Science and
Applications (ICISA) 2016. Springer, 2016, pp. 75–83.

[20] J. Lázaro, J. Cabrejas, A. Zuloaga, L. Muguira, and J. Jiménez, “Time
sensitive networking protocol implementation for linux end equipment,”
Technologies, vol. 10, no. 3, p. 55, 2022.

[21] N. Sambo, S. Fichera, A. Sgambelluri, G. Fioccola, P. Castoldi, and
K. Katsalis, “Enabling delegation of control plane functionalities for
time sensitive networks,” IEEE Access, vol. 9, pp. 136 151–136 163,
2021.

[22] S. T. Borda and J. Ermont, “An evaluation of software-based tsn traffic
shapers using linux tc,” in 2022 IEEE 18th International Conference on
Factory Communication Systems (WFCS), 2022, pp. 1–4.


