
Baler: Deep Autoencoders for Scientific Data Compression

Final Report - Google Summer of Code 2023

Aman Singh Thakur1,∗, Per Alexander Ekman2,∗∗, and Caterina Doglioni3,∗∗∗

1University of Massachusetts Amherst, USA
2Lund University, Sweden
3University of Manchester, England

Abstract. Today the experiments at CERN output roughly one petabyte of data
per day [1]. After the planned upgrades to its main experiments, in 2032 these
will produce 2-5 times more data than the available storage resources [2]. To
tackle this challenge, an exploration of lossy compression methods is neces-
sary. Aiming to address this issue we present Baler, an Autoencoder-based
lossy compression tool currently under development at the universities of Lund,
Manchester, and Warwick. This report investigates improvements of Baler, with
a focus on 2D Convolutional SZ Autoencoders, and compares its performance
to its existing Dense network and leading off-the-shelf SZ3[3] lossy compres-
sion tool. Finally, we conclude by providing substantial evidence indicating that
Dense networks outperform Convolutional models in both offline and online
compression scenarios, while concurrently preserving an similar compression
ratio to that of SZ3.

∗e-mail: amansinghtha@umass.edu
∗∗e-mail: alexander.ekman@hep.lu.se
∗∗∗e-mail: caterina.doglioni@manchester.ac.uk

Contents

1 Introduction 3
1.1 Loss-less Data Compression . 3
1.2 Lossy Data Compression and AutoEncoders 3
1.3 Baler - Open Source Tool Development . 4

2 Baler Datasets 4
2.1 Scientific Datasets . 4
2.2 Hurricane Isabel Dataset . 5

3 Methodology 5
3.1 Previous Work on Baler . 5
3.2 Literature Review . 6
3.3 Enhancements of Baler . 7

3.3.1 Blocked Training, Compression and Decompression 7
3.3.2 Generalized Divisive Normalization (GDN) 7
3.3.3 Slized WAE (SZ) Regularizer . 7
3.3.4 Error Bounded Compression . 8
3.3.5 3D Convolutional Neural Networks 8
3.3.6 Evaluation of Offline and Online Performance 8

4 Results 9
4.1 Offline Reconstructions and Observations 9
4.2 Online Reconstruction and PSNR . 11

5 Conclusion 12
5.1 Conclusion . 12
5.2 Future Scope . 13

6 My Contributions 14

2

Figure 1: This is a simplified diagram of an autoencoder, comprising an input layer, hidden
layers, and an output layer. The lower-dimensional latent space serves as a compression
mechanism reducing AE dimensionality compared to the input and output layers. Modified
from Website [7].

1 Introduction

1.1 Loss-less Data Compression

When data is compressed and decompressed using lossless techniques, the original data is
fully reconstructed without any degradation in quality. This type of compression is called
Lossless Data compression [4]. Lossless compression finds widespread application in tasks
such as file archiving and data transmission. Prominent examples of lossless compression
techniques include Huffman Coding, Run-Length Encoding (RLE), PNG, and MPEG-4 [5].

Classic lossless compression methods rely on the repetition of data for its bulk compres-
sion and they typically achieve a compression ratio, sizebe f ore/sizea f ter, of 3x depending on
the dataset. It is constrained by the total number of unique elements within the dataset, which
becomes problematic for scientific data with very accurate float values or no zeros as this
leaves few repeating values.

1.2 Lossy Data Compression and AutoEncoders

The large experiments at CERN, ATLAS, ALICE, LHCb, and CMS, are currently generat-
ing an astonishing 1 Petabyte of data every second[6]. Although, not all of it is archived, it
presents significant challenges in terms of available bandwidth and storage capacity. Conse-
quently, there is a compelling need for selective data retention, even in the face of substantial
volume reduction efforts. The impending tenfold increase in particle collisions, anticipated
with the High Luminosity LHC upgrade scheduled for 2029, only exacerbates the ongoing
data storage crisis [2]. Traditional lossless compression techniques, including those employed
with highly compressed data formats like ROOT and ZIP, prove inadequate to address this
crisis.

In this context, the adoption of lossy data compression emerges as a pragmatic solution,
offering the potential to achieve compression ratios ranging from 10 to 1000 times the original
data size. While lossy compression entails some sacrifices in data precision, it facilitates the
storage of a significantly larger data volume. In this case, the gain in statistical precision can
outweigh the loss in precision form the compression technique.

Some well-known compression methods such as quantization, transform coding Princi-
pal Component Analysis (PCA), and predictive coding, primarily embody the principles of

3

reducing dimensionality at a broad level. In this report, our main focus is on a type of Neural
Network architecture known as Autoencoders which also performs dimensionality reduction.

Autoencoders (AE) were first introduced by Kramer [8] in 1991 and fall into the category
of unsupervised deep neural networks. They are distinguished by their structure, shown in
Figure 1. They consist of an encoder, a central latent space, a decoder, and a target space
with the same dimensionality as the input space. The encoder serves as a neural network that
maps each input to an abstract latent point. Typically, this latent space has a lower dimension
compared to the input space. Subsequently, the decoder reconstructs the latent space back to
the original input dimensions, resulting in an output that closely resembles the input.

The primary function of autoencoders is to learn the essential features of the input data for
reconstruction, with their bottleneck structure preventing them from simply copying the input
as-is. The dimensionality of the latent space is a crucial parameter, as it dictates the level of
compression, with the latent points serving as the compressed data and the decoder acting as
the decompression algorithm. Autoencoder-based data compression has exhibited promising
results in various scientific domains, including meteorology, cosmology, computational fluid
dynamics, crystallography, and others [9].

1.3 Baler - Open Source Tool Development

Baler’s third-time participation in the Google Summer of Code (GSoC) underscores its
prominent position in the software development landscape. In 2021, Dialektakis[10] utilized
the GSoC platform to investigate the comparative performance of standard autoencoders and
variational autoencoders. More recently, Manas[11] employed Baler to estimate the energy
cost of scientific software.

Baler, originally a collaboration between Lund University and the University of Manch-
ester, offers three primary working modes - Train, Compress, and Decompress, featuring a
robust neural network that efficiently handles tabular data, images, and videos without neces-
sitating intricate user adjustments.

Notably, Baler serves as an open-source tool catering to both industry professionals and
academia. Collaborative endeavors have facilitated the acquisition of diverse datasets, en-
abling comprehensive testing and validation of Baler’s capabilities, resulting in impressive
performance outcomes. This cooperative effort highlights the tool’s commitment to advanc-
ing collective knowledge and practices in the compression domain. The source code for Baler
is accessible at url1.

2 Baler Datasets

All Baler Datasets can be found in their respective workspace/data folder on the original
repository 2. All datasets are visualized in Figure 2.

2.1 Scientific Datasets

CERN’s Computational Fluid Dynamics (CFD) team supports CERN engineers, physicists,
and scientists by providing CFD tools and techniques for flow and thermal analysis, address-
ing fluid flow and heat transfer challenges [12]. The CFD dataset used here is a simpler
proof-of-concept dataset of a mineral oil flowing over a wall-mounted cube. CFD datasets
like this one is amenable to lossy compression due to minimal motion in both the background

1https://github.com/baler-collaboration/baler
2https://github.com/baler-collaboration/baler/tree/1f8b/workspaces

4

(a) CFD Dataset (b) Exafel Dataset (c) Hurricane Isabel Dataset

Figure 2: Scientific Datasets tested successfully with Baler

and subject, typically following a predictable pattern. We assessed Baler’s performance on
two distinct data types: the CFD Dataset, consisting of a 2D image time series capturing
subjects under fluid flow. The CFD Dataset is 1.14MB, containing 60 pieces of 50x50 pixel
frames.

SLAC’s Linac Coherent Light Source (LCLS) users employ rigorous computational anal-
ysis to process data obtained from ultrafast x-ray pulses, allowing them to capture atom and
molecule behavior as "stop-action movies." LCLS’s high repetition rate and brightness fa-
cilitate precise determination of individual molecule structures, revealing variations in shape
and flexibility. This understanding underpins advancements in biological, material, and en-
ergy sciences. The Exafel dataset [13], notable for its rapid and intricate pattern changes,
presents challenges for lossy compression, but Baler successfully compresses the 12.8MB
dataset with 151 frames of 151x151 pixels each.

2.2 Hurricane Isabel Dataset

This report utilizes a public dataset obtained from the National Center for Atmospheric Re-
search in the United States, simulating the 2003 Hurricane Isabel [14]. The dataset comprises
various time-dependent scalar and vector variables with significant fluctuations. However, its
substantial size presents challenges for interactive analysis. To enhance the dataset’s suit-
ability for our research, we have excluded the final 10 frames, which depict landmass. This
exclusion is motivated by our current limitations for accurately reconstructing zero value
data points. In this report, the Hurricane Isabel dataset consists of 90 frames, each measur-
ing 500x500 pixels, where each (X, Y) coordinate corresponds to a specific longitude and
latitude. These frames provide X-velocity data at the 20th hour of the hurricane [15].

We would like to thank Bill Kuo, Wei Wang, Cindy Bruyere, Tim Scheitlin, and Don
Middleton of the U.S. National Center for Atmospheric Research (NCAR), and the U.S. Na-
tional Science Foundation (NSF) for providing the Weather Research and Forecasting (WRF)
Model simulation data of Hurricane Isabel.

3 Methodology

3.1 Previous Work on Baler

In May 2023, Baler was introduced as a proof of concept[16], designed for compatibility with
numpy datasets. Baler employed a 3-layer Dense AutoEncoder Network (200X100X50X

5

(z-dim) X50X100X200) with MSE loss and L1 regularization during training. Baler was
successfully able to achieve 20x compression on its CFD dataset, with completion in under
1-2 minutes, attributed to the dataset’s size and network efficiency.

Figure 3: Baler enhancements based on the design of AE-SZ discussed in Reference
Paper[17]

3.2 Literature Review

Recent advancements in deep autoencoders, particularly Variational Autoencoders (VAEs) as
introduced in "An Introduction to Variational Autoencoders" [18], have become potent tools
for compressing scientific data, offering efficient data compression while preserving crucial
features. Autoencoders, as emphasized in "Autoencoders, Unsupervised Learning, and Deep
Architectures" [19], play a pivotal role in feature learning and representation for scientific
data compression. Deep architectures, including stacked autoencoders, enhance compres-
sion performance by modeling complex relationships in scientific datasets. Additionally, the
transition "From Variational to Deterministic Autoencoders" [20] highlights the adaptability
of autoencoders in scientific data compression, with deterministic autoencoders offering pre-
cise and non-probabilistic data reconstruction. In summary, deep autoencoders are versatile
and practical for scientific data compression, spanning diverse domains and accommodating
various compression requirements while ensuring data preservation and anomaly handling.

In this report, we predominantly center our attention on paper "Exploring Autoencoder-
based Error-bounded Compression for Scientific Data" [17], which currently represents the
state-of-the-art in the realm of Deep Autoencoders applied to the compression of scientific
data. It is important to note that it is not yet published in a peer-reviewed journal.

The aforementioned work elucidates various techniques, as illustrated in Figure 3, en-
compassing linear-scale quantization, dataset blocking, error-bounded data compression, as
well as offline and online compression strategies. Our research leverages the Hurricane Isabel
dataset to implement some of these techniques and perform a performance evaluation of our
results.

6

3.3 Enhancements of Baler

With inspiration from the techniques used and developed in reference [17], we implemented
the following features into Baler and its source code.

3.3.1 Blocked Training, Compression and Decompression

As described in the reference paper [17], optimal model performance is attained when all
frames are processed within a single batch, which facilitates the discernment of non-linear
patterns within the dataset. Nonetheless, datasets of considerable size, such as SLAC’s Exafel
(151x151x151) and Hurricane Isabel (90x500x500), pose a significant challenge for efficient
handling by the model in the absence of a highly capable GPU. To overcome this challenge,
the report proposes a solution involving the partitioning of datasets into user-configurable
blocks, enabling batch processing. This approach, while introducing a discernible algorith-
mic deceleration due to the additional computational workload associated with interconnect-
ing these blocks, represents a pivotal strategy to counteract overfitting and ultimately enhance
the quality of results in online testing scenarios. Within Baler, The old and new shape rela-
tionship of the blocked dataset is depicted in the below equation 1 -

Frames · X · Y = (Frames · N · M) ·
(X

N

)
·

(Y
M

)
(1)

3.3.2 Generalized Divisive Normalization (GDN)

Covariate shift presents a challenge in neural networks, manifesting as a discrepancy in the
input data distribution between the training and testing phases. This discrepancy results in
a decline in network performance. Batch Normalization emerges as an effective strategy to
mitigate this issue. It achieves this by normalizing input data within mini-batches, thereby
stabilizing the training dynamics, enhancing convergence, reducing over-fitting, and facilitat-
ing the utilization of higher learning rates. Consequently, it effectively alleviates the impacts
of covariate shift and enhances the model’s generalization capabilities.

In this report, we opt for a novel approach, employing the Generalized Divisive Normal-
ization Activation Function [21] instead of Batch Normalization with Activation Function.
This novel activation function is specially tailored to parametrically transform data, render-
ing it particularly well-suited for the task of Gaussianizing image data. The GDN Activation
Functions essentially generate a probability density model based on the outputs of Convo-
lutional Layers. The differentiability of these models contributes to expedited model con-
vergence, as substantiated by the observed loss plot trends. In our implementation in Baler,
we utilize Jorge Pessoa’s[22] PyTorch implementation of the GDN Function, inspired by the
original paper’s [21] implementation in TensorFlow.

3.3.3 Slized WAE (SZ) Regularizer

Inspired by reference paper [17], we apply a Sliced-Wasserstein Autoencoders (SZ AE), a
technique introduced by Kolouri et al [23]. The primary objective of SZ AE is to minimize
the sliced-Wasserstein distance between the reconstructed output and the original data. The
Wasserstein distance quantifies the amount of effort required to transform one probability dis-
tribution into another. In our report, we employ Generalized Density Normalization (GDN)
functions, which facilitate the transformation of images into Gaussian density models. Subse-
quently, we utilize the Sliced Wasserstein distance to guide our model’s convergence towards
the desired target Gaussian distribution.

7

In Baler, we make use of an open-source implementation of SWAE [24] that adheres to
the methodology outlined in the original paper. Within this framework, we incorporate the
Sliced Wasserstein distance as an L1 regularizer in conjunction with the Mean Squared Error
(MSE) loss. This strategic combination has been chosen to enhance the convergence of our
model.

3.3.4 Error Bounded Compression

Incorporating error-bounded compression into the Baler framework, as detailed in the ref-
erence paper[17], we introduce an innovative approach that functions independently of the
training paradigm. This compression technique enables users to specify their desired error
tolerance as a percentage. Throughout the compression process, the model initially decom-
presses the data and subsequently assesses the disparities between the decompressed output
and the original output. Whenever discrepancies surpass the predetermined error threshold,
the system records these variations, along with their positional information (batch ID, X, Y)
and their values represented as 8-bit floating-point numbers. Given that the indices are ex-
clusively integers, we apply a conventional lossless compression method, such as "numpy
savez", to minimize their storage footprint. The precision of the delta values is not critical, as
we employ an 8-bit floating-point representation prior to applying lossless compression.

3.3.5 3D Convolutional Neural Networks

In this work, we introduce a 3D Convolutional Neural Network with a multi-layer architecture
(1x4x8x16x32x64) in Baler. Our primary focus is to ensure the compatibility of the existing
codebase with both dense 2D CNN and memory-intensive 3D CNN. Notably, 3D CNNs
are renowned for their high memory usage. We have successfully conducted a proof-of-
concept study using a Computational Fluid Dynamics (CFD) dataset, with opportunities for
enhancement through hyper-parameter optimization. When applying the compression and
decompression techniques to the Exafel and Hurricane datasets, which are 3 to 10 times
larger than the CFD dataset, we encountered memory-related challenges. However, we were
able to successfully train the datasets on NVIDA A100 with 16GB RAM, which exposed a
current drawback in our system pertaining to the lack of optimization in the compression and
decompression of Baler processes on GPUs.

3.3.6 Evaluation of Offline and Online Performance

Traditional compression tools like gzip and SZ work by installing a piece of software which
is able to compress and decompress various different datasets using the exact same software.
Machine learning based compression methods on the other hand fundamentally is different in
the respect that they require more auxilliary files to perform compression and decompression.
Auxilliary files are files required other than the compressed data itself, in our case these files
are the autoencoder model itself, including architecture and weights. These files can also
include normalization factors, label headers, list of deltas. The presence of auxilliary files
opens up for two different modes of compression: Offline and online compression.

In offline compression, the data set is already taken in whole, and a model is trained to just
compress this one dataset. This means that the training can be performed without validation
and overtraining is encouraged as the model will only ever be used to reconstruct this one
datset. The problem with offline compression is that the model is specific to this dataset and
should be included in calculating the compressed size of the data. Large model sizes is our
main blocker right now, and is the reason why we pursue online compression.

8

Contrary to offline compression, in online compression multiple different datasets are
used to derive a model which will be used to compress future similar datsets. This means
that the model is not specific to each dataset and therefore is included in the size of the
tool itself, not the size of the compressed file. This model of compression makes Baler more
competetive and also opens up the field of real-time compression and bandwidth compression
implementations.

This report presents the studies we conducted evaluating Baler’s performance in both
offline and online compression for various configurations and datasets.

4 Results

To gauge the efficacy of contemporary and historical methodologies and draw comparisons
with the conclusions presented in the referenced paper [17], our study will center on the
publicly accessible Hurricane Isabel dataset. As we scrutinize the outcomes, our initial phase
will entail an assessment of the top-performing model’s performance through the execution
of offline training, employing the unaltered image as a benchmark.

In addition to intrinsic Baler analysis, we’ll conduct a comparative analysis between
Baler’s models and the contemporary state-of-the-art SZ3[3][25][26] lossy compressor. SZ3
is an innovative modular compression framework that has been specially crafted to address
the challenges associated with data volume reduction in scientific simulations. This frame-
work is designed to accommodate the diverse characteristics inherent in various datasets and
to cater to the compression quality and performance preferences of users. One of the key
features of SZ3 is its abstraction for prediction-based compression, which facilitates the cus-
tomization of compression modules based on the specific attributes of the data and user re-
quirements. SZ3’s effectiveness has been empirically established through the development
of tailored compression pipelines for specific datasets like GAMESS and APS data. For the
context of this research, we will utilize the default configuration of SZ3 without any custom
modifications.

4.1 Offline Reconstructions and Observations

Offline model training involved training on the Hurricane dataset’s 20th hour, with the hurri-
cane positioned in the center of the data. We tested different model architectures, all under-
went 2000 epochs of training on an NVIDIA A100 GPU using 50x50 blocks. Compression
ratio adjustments were made to ensure comparability with other models.

Reconstruction after decompression is shown in Figure 5 to reveal superior performance
of the Dense Network over the Convolutional Network, yielding accurate hurricane data re-
constructions. Additionally, Table 1 shows that SZ3 compression achieves a form factor sim-
ilar to the Dense Network (excluding the model), demonstrating competitive compression
capabilities.

The training duration of a Dense Network concludes in a mere 20 minutes, in stark con-
trast to the protracted 7-hour training period required by a Convolutional Network. This stark
contrast underscores the substantial efficiency advantage of the Dense Network architecture.
Moreover, as seen in Figure 4 it is evident that the Dense Network manifests closely aligned
training and validation loss curves, denoting its capacity for robust training. Conversely, the
Convolutional Network demonstrates discrepancy between training and validation loss, sig-
nifying the presence of potential overfitting issues or challenges pertaining to generalization.

In summary, this report highlights the competitive reconstruction quality and training
efficiency of the Dense Network, while SZ3 compression offer superior results (Table 2). The
Convolutional Network will require further optimization to address overfitting concerns.

9

Model Name Block Size Compressed
File Size

Model
Size

Decompressed
File Size

Execu-
tion/Training

Time

Compres-
sion Ratio

SZ3 - 0.9 MB - 85.8 MB ∼ 1 min ∼ 99
Dense 10x50x50 0.9 MB 4.03MB 85.8 MB ∼ 20 mins ∼ 100

2D CNN w GDN+SZ 10x50x50 44.8MB 1.09GB 85.8 MB ∼ 7 hour ∼ 2

Table 1: Observation Metrics for Offline Training of Hurricane Dataset

(a) Dense Network

(b) Convolutional Network

Figure 4: Train and Validation Loss Plots for Dense (a) and 2D convolutional (b) networks
for 2000 epochs and same hyper-parameters

10

(a) Original (b) Dense (c) 2D CNN w GDN+SZ

Figure 5: Offline Reconstruction for Hour 20th of the Hurricane

4.2 Online Reconstruction and PSNR

In order to evaluate online compression, we initially trained each model using modified data
that involved concatenating data from both the first and the final hour (0th and 48th) of the
hurricane dataset whilst randomly transposing, flipping, and rotating the. This was done to
ensure that the network was trained on multiple different locations and shapes of the hur-
ricane. Online compression was implemented by training 2000 epochs on the concatenated
and transformed 0th and 48th hour dataset, and then using this pre-trained model to compress,
decompress, and evaluate data form the 20th hour. At the 20th hour the hurricane is at the
center of the frame.

Our analysis commences with an evaluation of Peak Signal-to-Noise Ratio (PSNR)[27].
PSNR quantifies the ratio between the maximum potential power of a signal and the power of
disruptive noise that impacts the accuracy of its representation, defined in (2). Where D rep-
resents the original dataset, D′ the reconstructed data after compression and decompression,
and MS E the mean squared error of the two.

PS NR = 20 · log(D) − 10 · MS E(D,D′) (2)

The results in Table 2 clearly indicate that SZ3 outperforms both Baler’s Dense network
and the Convolutional Network in this context. Based on the reconstructed images, it is
evident that SZ accurately reproduces the original image, whereas Dense and Convolutional
networks encounter challenges in achieving a faithful reconstruction.

In Table 2, it is evident that the Dense Network achieves results that are remarkably
similar to those of the SZ, even though the compression ratio of the convolutional network
is considerably lower than that of the Dense network. Analysis of the Online Image re-
constructions reveals that the Dense network correctly captures the overall image but lacks
smoothness, whereas the Conv Net has a vague understanding of the image but struggles
significantly in the reconstruction process. Additionally, figure 6 illustrates the distribution
of relative differences (D − D′/D), demonstrating that SZ performs notably better with its
reconstruction, while both Dense and Convolutional networks exhibit significant variability.

One approach to improving distribution accuracy involves the utilization of Error
Bounded techniques, even though this may result in a reduced compression ratio. The sub-
stantial gap between the Training and Validation performance of Convolutional networks, as
illustrated in Figure 5, indicates a significant overfitting issue. By fine-tuning hyperparame-
ters, we can increase the importance of the SZ regularizer to mitigate model overfitting.

11

Model Name Offline PSNR Online PSNR
SZ3 132.78 132.78

Dense Network 108.8 89.32
2D CNN w GDN+SZ 45.62 45.23

Table 2: PNSR Ratio

(a) Dense (b) SZ (c) Conv2D

(d) Dense (e) SZ (f) Conv2D

Figure 6: (a-c) Online Reconstructions for 20th Hour of Hurricane. (d-f) Differences distri-
bution from original plotted as histrograms for each model

5 Conclusion

5.1 Conclusion

Given that Baler’s Dense network is relatively new, unrefined, and straightforward, it achieves
reconstructions that are remarkably similar to SZ. Where SZ is a well regarded off-the-shelf
lossy compression tool. By employing methods such as error-bounded models and quantiza-
tion, Dense networks can potentially in the future produce competitive reconstructions.

In contrast, 2D Convolution Networks encounter challenges with this dataset. At lower
compression ratios, they excel in image reconstruction, but as the compression ratio increases,
they tend to lose substantial image information, making reconstruction difficult. It appears
that achieving block-by-block reconstruction is more challenging than pixel-by-pixel recon-
struction. Nevertheless, there exist various hyperparameter tuning techniques and regulariza-

12

tion methods that may help approach the reconstruction performance of the Dense model and
SZ.

5.2 Future Scope

In our upcoming research efforts, we plan to build upon the current study by integrating
ideas from the ’Error-Controlled Quantization’ paper[28]. Furthermore, we intend to har-
ness advanced distributed computing technologies such as SPARK to enhance the efficiency
of compression and decompression processes. This will enable concurrent processing for
a multitude of files within the Baler framework. It’s important to acknowledge that Baler
currently faces several challenges, including discrepancies between actual compression and
user-specified compression ratios, suboptimal code optimization for GPUs, and the utilization
of error-bounded methods in dense networks. We are dedicated to addressing and resolving
these issues to enhance the overall performance of Baler.

13

6 My Contributions

A detailed description of the improvements I implemented in the Baler compression tool can
be found in Section 3.3. All my Baler GitHub Issues can be searched from link3.

• Major Issues and Pull Requests

– Issue #270 - Running 2D CFD Data with 3D Conv Net
In this pull request, I enhance Baler with a 3D CNN by introducing memory-adaptive
flags for flexible execution on either local or high-performance computing (HPC)
https://github.com/baler-collaboration/baler/pull/284

– Issue #285 - Error Bounded AutoEncoder Support
Using this PR, I introduce a framework to preserve deltas exceeding error-bound
requirements during compression and subsequently reintegrate them into the decom-
pressed output to improve reconstruction fidelity with the original image.
https://github.com/baler-collaboration/baler/pull/288

– Issue #299 - Hurricane Isabel Dataset
I incorporate the Hurricane Isabel dataset[14] with its visualization and analysis
sub-routines in this PR.
https://github.com/baler-collaboration/baler/pull/300

– Issue #305 - Adding Blocking of Datasets | GDN Activation Function
In this significant pull request, I introduce the capability to block datasets according to
user-configurable settings and incorporate GDN Activation Function[22]
https://github.com/baler-collaboration/baler/pull/306

– Issue #309 - Slized WAE (SWAE) Loss Function
In this pull request, I integrate the Sliced WAE[24] after evaluating it with the Baler
Dense and Convolutional Network. I also enhance code modularity, enabling users to
select MSE or SWAE loss functions from the configuration.
https://github.com/baler-collaboration/baler/pull/308

• Minor Bug Fixes

– Issue #242 - torch can’t load models trained on GPUs on CPU only machines
– Issue #264 - Decoder CUDA Device Issue
– Issue #266 - Decoder Fails for large files
– Issue #272 - Error when running tutorial decompression step
– Issue #261 - compression ratio bug
– Issue #295 - Global flag for error-bound compression
– Issue #307 - Data dimensionality not preserved

3https://github.com/baler-collaboration/baler/issues/assigned/singh96aman

14

References
[1] M. Gaillard, Cern data centre passes the 200-petabyte milestone, https://home.cern/

news/news/computing/cern-data-centre-passes-200-petabyte-milestone (2017), [Ac-
cessed 5-11-2023]

[2] P. Calafiura, J. Catmore, D. Costanzo, A. Di Girolamo, Tech. rep., CERN, Geneva
(2020), http://cds.cern.ch/record/2729668

[3] X. Liang, K. Zhao, S. Di, S. Li, R. Underwood, A.M. Gok, J. Tian, J. Deng, J.C. Cal-
houn, D. Tao et al., IEEE Transactions on Big Data 9, 485 (2023)

[4] K. Sayood, Introduction to Data Compression, Third Edition, The Morgan Kaufmann
Series in Multimedia Information and Systems (Morgan Kaufmann, 500 Sansome
Street, Suite 400, San Francisco, CA 94111, 2006)

[5] Lossless Compression - an overview | ScienceDirect Topics — sciencedi-
rect.com, https://www.sciencedirect.com/topics/computer-science/
lossless-compression#:~:text=Typically%2C%20depending%20on%20the%
20image,no%20loss%20in%20visual%20fidelity, [Accessed 31-10-2023]

[6] CERN, dataexplosion, https://information-technology.web.cern.ch/
sites/default/files/CERNDataCentre_KeyInformation_Nov2021V1.pdf,
[Accessed 31-10-2023]

[7] Izaak Neutelings, Neural networks (2021), [Online; accessed 02-May-2023; Last edited
11 September 2022], https://tikz.net/neural_networks/

[8] M.A. Kramer, AIChE Journal 37, 233 (1991),
https://aiche.onlinelibrary.wiley.com/doi/pdf/10.1002/aic.690370209

[9] T. Liu, J. Wang, Q. Liu, S. Alibhai, T. Lu, X. He, IEEE Transactions on Big Data 9, 22
(2023)

[10] Deep Autoencoders for ATLAS Data Compression - George Dialektakis - Google Sum-
mer of Code 2021 Project — zenodo.org, https://zenodo.org/records/5482611#
.Y3Yysy2l3Jz, [Accessed 31-10-2023]

[11] Google Summer of Code — summerofcode.withgoogle.com, https://summerofcode.
withgoogle.com/programs/2023/projects/Nks9akq7, [Accessed 31-10-2023]

[12] Index — cfd.web.cern.ch, https://cfd.web.cern.ch/, [Accessed 31-10-2023]
[13] ExaFEL - Exascale Computing Project — exascaleproject.org, https://www.

exascaleproject.org/research-project/exafel/, [Accessed 31-10-2023]
[14] hurricaneisabel, hurricaneisabel, https://www.earthsystemgrid.org/dataset/

isabeldata.html, [Accessed 31-10-2023]
[15] D.T.J. Jankun-Kelly, IEEE Visualization 2004 Contest: Data Set — vis.computer.org,

http://vis.computer.org/vis2004contest/data.html, [Accessed 31-10-
2023]

[16] arxiv.org, https://arxiv.org/pdf/2305.02283.pdf, [Accessed 31-10-2023]
[17] Exploring Autoencoder-based Error-bounded Compression for Scientific Data —

arxiv.org, https://arxiv.org/abs/2105.11730, [Accessed 31-10-2023]
[18] now publishers, now publishers - An Introduction to Variational Autoencoders — now-

publishers.com, https://www.nowpublishers.com/article/Details/MAL-056,
[Accessed 31-10-2023]

[19] Autoencoders, Unsupervised Learning, and Deep Architectures — proceed-
ings.mlr.press, https://proceedings.mlr.press/v27/baldi12a.html, [Ac-
cessed 31-10-2023]

[20] From Variational to Deterministic Autoencoders — arxiv.org, https://arxiv.org/
abs/1903.12436, [Accessed 31-10-2023]

15

[21] Density Modeling of Images using a Generalized Normalization Transformation —
arxiv.org, https://arxiv.org/abs/1511.06281, [Accessed 31-10-2023]

[22] GitHub - jorge-pessoa/pytorch-gdn: PyTorch implementation of the Generalized
divisive normalization non-linearity layer — github.com, https://github.com/
jorge-pessoa/pytorch-gdn, [Accessed 31-10-2023]

[23] Sliced-Wasserstein Autoencoder: An Embarrassingly Simple Generative Model —
arxiv.org, https://arxiv.org/abs/1804.01947, [Accessed 31-10-2023]

[24] PyTorch-VAE/models/swae.py at master · AntixK/PyTorch-VAE — github.com,
https://github.com/AntixK/PyTorch-VAE/blob/master/models/swae.py,
[Accessed 31-10-2023]

[25] K. Zhao, S. Di, M. Dmitriev, T.L.D. Tonellot, Z. Chen, F. Cappello, Optimizing Error-
Bounded Lossy Compression for Scientific Data by Dynamic Spline Interpolation, in
2021 IEEE 37th International Conference on Data Engineering (ICDE) (2021), pp.
1643–1654

[26] X. Liang, S. Di, D. Tao, S. Li, S. Li, H. Guo, Z. Chen, F. Cappello, Error-Controlled
Lossy Compression Optimized for High Compression Ratios of Scientific Datasets, in
2018 IEEE International Conference on Big Data (Big Data) (2018), pp. 438–447

[27] Peak signal-to-noise ratio - Wikipedia — en.wikipedia.org, https://en.wikipedia.
org/wiki/Peak_signal-to-noise_ratio, [Accessed 05-11-2023]

[28] linearscalequant, linearscalequant, https://arxiv.org/abs/1706.03791, [Ac-
cessed 31-10-2023]

16

