
Understanding and Mitigating Memory
Interference in FPGA-based HeSoCs

Gianluca Brilli, Alessandro Capotondi, Paolo Burgio, Andrea Marongiu
University of Modena and Reggio Emilia, Italy

name.surname@unimore.it

Abstract—Like most high-end embedded systems,
FPGA-based systems-on-chip (SoC) are increasingly
adopting heterogeneous designs, where CPU cores, the
configurable logic and other ICs all share interconnect
and main memory (DRAM) controller. This paradigm
is scalable and reduces production costs and time-to-
market, but creates resource contention issues, which
ultimately affects the programs’ timing. This problem has
been widely studied on CPU- and GPU-based systems,
along with strategies to mitigate such effects, but little
has been done so far to systematically study the problem
on FPGA-based SoCs. This work provides an in-depth
analysis of memory interference on such systems, tar-
geting two state-of-the-art commercial FPGA SoCs. We
also discuss architectural support for Controlled Memory
Request Injection (CMRI), a technique that has proven
effective at reducing the bandwidth under-utilization
implied by naive schemes that solve the interference
problem by only allowing mutually exclusive access to the
shared resources. Our experimental results show that: i)
memory interference can slow down CPU tasks by up to
16× in the tested FPGA-based SoCs; ii) CMRI allows to
exploit more than 40% of the memory bandwidth avail-
able to FPGA accelerators (normally completely unused
in PREM-like schemes), keeping the slowdown due to
interference below 10%.

Index Terms—FPGA SoCs, Memory interference

I. INTRODUCTION

Heterogeneous on-chip Systems (HeSoC) based on spe-
cialized acceleration logic like GP-GPU and FPGA have
revolutionized the design of embedded systems, allowing
the creation of increasingly sophisticated applications.
In HeSoCs the very high peak performance and energy
efficiency enabled by the accelerators is coupled to the flex-
ibility of a multi-core, general-purpose host CPU. FPGA-
based ICs further add to the flexibility by leveraging
the concept of reconfigurability. Commercial-of-the-shelf
(COTS) products based on this architectural template
reduce production costs and time-to-market.

These systems typically rely on a shared-memory or-
ganization, where several distinct IPs are interconnected
through a shared bus or network-on-chip (NoC) to the
main system DRAM. While this solution simplifies the de-
ployment of applications, and provides very good average-
case performance, it does not cope well with those sce-
narios where timing guarantees must be provided. As the
number of cores and other blocks sharing memory, inter-
connect and I/O resources grows, the effect of interference
is more and more impactful on the worst-case latency
observed from a task [1]–[3].

The Predictable Execution Model (PREM) [4] is a no-
table paradigm for the development of parallel software
that is robust to memory interference, offering a task
model where execution is structured as a repeating se-
quence of memory phases (that access the shared mem-
ory) and compute phases (that only use local caches and
registers). By allowing only a single actor at a time to
execute its memory phase, PREM avoids timing delays
due to memory interference by construction.

PREM has been studied in the context of single-core
CPU and I/O [4], multicore CPUs [5] and HeSoCs [6].
Although effective at guaranteeing predictable timing of
memory accesses, PREM and PREM-like approaches [7],
[8] greatly under-utilize memory bandwidth, which in
HeSoCs is designed to concurrently serve multiple comput-
ing units. Recently, Controlled Memory Request Injection
(CMRI) has been proposed as a technique that can oper-
ate on top of PREM-like schemes, enabling fine-grained
control of the unexploited bandwidth [9].

Most papers studying this problem target multi-core
CPUs [1], [10] or GPU-based HeSoCs [2], [6], [11], while
not much has been done so far in the context of FPGA-
based HeSoCs. This paper aims at filling this gap by
means of: i) extensive memory interference characteri-
zation on two state-of-the-art FPGA-based HeSoCs for
high-end embedded systems: the Xilinx Zynq UltraScale+
ZU9EG and the Xilinx Versal VC1902 ACAP; ii) an imple-
mentation of the CMRI technique [9] suitable for generic
FPGA accelerators; iii) a thorough assessment of the
resulting benefits on the memory bandwidth exploitation.

The paper is organized as follows: in Section II we
discuss related work and motivate our own. In Section
III we describe the architecture of the target platforms of
this work. In Section IV we introduce the generic accel-
erator template considered and its extensions to support
CMRI. The experimental setup and results are described
in Section V. Section VI provides concluding remarks.

II. RELATED WORK

Memory interference has been extensively studied in
the context of multi-core CPU and GP-GPU HeSoCs [2]
[11] but only very few papers have addressed the problem
in FPGA-based HeSoCs. A. Bansal et al. [1] characterize
the memory subsystem of the ZU9EG MPSoC, through
micro-benchmarks. They also propose a hardware/soft-
ware infrastructure capable of guaranteeing isolation. K.
Manev et al. propose a characterization of the memory



subsystem of two SoCs belonging to the Zynq Ultra-
Scale+ family: ZU9EG and ZU3EG [12]. Their experiments
involve memory-mapped accelerators interconnected in
DRAM through the AXI HP ports. Memory interference
between Host CPUs and FPGA is not addressed. The
closest exploration to ours is from M. Mattheeuws et
al. [3], which conduct a similar analysis on the Xilinx
ZU9EG SoC, evaluating the performance slowdown that
a task running on the ARM cluster experiences when
traffic generators instantiated on the FPGA contend for
the DRAM bandwidth. While the aims are very similar
to ours, here the analysis is overall less comprehensive,
carried out on a single SoC and neglectful of solutions to
mitigate the effects of interference.

Memory interference mitigation has been studied both
at the hardware and software level. Concerning the former,
F. Restuccia et al. [13], [14] have explored the fairness of
the AXI Interconnect IP of the Xilinx ecosystem, showing
that although the bus access mechanisms implement a
Round-Robin arbitration, in certain conditions fairness
may not be guaranteed. F. Farshchi et al. [15] try to
mitigate memory contention exploiting bandwidth regula-
tions on host cores via an FPGA-based component sitting
between host and shared buses. The focus is on multi-core
systems, not on heterogeneous, FPGA-based SoCs.

On the software side, both the Certification Authori-
ties [7] and a number research groups [4]–[6], [8] have
outlined mutually exclusive access to the DRAM as the
practical solution to address the adverse effects of memory
interference in shared-memory SoCs. These approaches
are typically too pessimistic, as their one-at-a-time execu-
tion model causes severe under-utilization of the system
DRAM bandwidth [5], [8], [16]. Attempts to overcome
such pessimism have been made. G. Yao et al. [17] al-
low multiple tasks to access DRAM at the same time
to increase the memory bandwidth utilization, but the
granularity of the approach is too coarse, failing to provide
timing guarantees. Controlled Memory Request Injection
(CMRI) [9] also allows more than a single PREM task at
a time to access DRAM. The memory phases of such tasks
are implemented as fine-grained controllable duty cycles,
where memory requests are interspersed with idle cycles
(via compiler-level instrumentation or via dynamic task
throttling [18]). CMRI has proven effective at increasing
bandwidth utilization with little impact on the latency of
the main PREM task in multi-cores CPUs.

In this paper we build upon these findings to study the
problem of memory interference in FPGA-based SoCs. We
propose a scheme to deploy CMRI on FPGAs, to target
generic FPGA-based accelerators, and thoroughly study
the benefits that can be reaped from such support. We
also investigate applicability of this approach applied to
real world use-cases.

III. PLATFORM DESCRIPTION

FPGA-based HeSoCs feature a host complex, composed
of several general-purpose CPUs coupled to an FPGA
subsystem and other application-specific accelerators (e.g.

GP-GPU, NN Inference Engines). As a representative
embodiment of such a general template we study two
commercial-of-the-shelf (COTS) platforms from Xilinx: the
Zynq UltraScale+ MPSoC and the Versal ACAP.

Xilinx Zynq UltraScale+: it is composed of a het-
erogeneous host processor (PSU) alongside an FPGA for
the acceleration of compute-intensive tasks. The PSU
is composed of two processor islands, named APU and
RPU. The APU consists of a quad-core ARM Cortex A53
processor implementing the ARMv8-A micro-architecture,
and constitutes the target choice for general-purpose com-
puting. The RPU consists of a dual-core ARM Cortex
R5F, which is used to deploy control tasks with real-
time requirements. The FPGA fabric is interfaced with
the system via different AXI4 ports, some of which allow
for coherent transactions with the PSU through the CCI.
In contrast, some others leverage a dedicated path to the
DRAM controller. In this work, we focus on the AXI High-
Performance Ports (HP), which can sustain the maximum
bandwidth to the DRAM [19]. Each of the HP ports has a
width of 128 bits and can reach a maximum frequency of
300MHz. The maximum nominal DRAM bandwidth is 17
GB/s. Aa a representative implementation of Xilinx Zynq
UltraScale+ we selected the ZU9EG.

Xilinx Versal ACAP: in this SoCs, the concept of het-
erogeneity is further developed by combining three main
computational units: host cores, FPGA and AI Engines
(AIE). As host CPUs the VC1902 embeds an ARM Cortex
A72 dual-core processor for general-purpose computing
and an ARM Cortex R5F dual-core processor for real-time
workloads. The RPU is the same as the Zynq Ultrascale+
MPSoC. The AIE is composed of VLIW cores organized
as a systolic two-dimensional array to accelerate Deep
Learning workloads. The AIE subsystem is connected to
the main memory through the FPGA. In our test envi-
ronment, we joined the AIE and main memory through
the Deep Learning Processing Unit (DPU) IP, which also
implements some layers not supported yet by the AIE.
The three computational units can access DRAM through
a configurable Network-on-Chip (NoC). Unlike on Zynq
UltraScale+, it is possible to enable a greater number of
ports to interconnect the FPGA to the NoC. The width of
these AXI4 ports is 128 bit, and their maximum working
frequency is 300MHz. The maximum nominal memory
bandwidth is 25.6 GB/s. Aa a representative implemen-
tation of Xilinx Versal we selected the VC1902.

IV. ACCELERATOR TEMPLATE WITH CMRI SUPPORT

To conduct an in-depth analysis and characterization of
the memory interference in a SoC a typical methodology is
that of relying on synthetic workloads aimed at stressing
corner cases [2], [9]. When focusing on a FPGA-based
HeSoC, a typical way of generating configurable synthetic
memory traffic is that of deploying some form of traffic
generators [3]. More in general, full-custom acceleration
logic is typically designed as shown in left part of Figure
1, where the core acceleration logic (datapath) is coupled
to some sort of data mover or DMA engine and a local



Fig. 1: Two architectural designs for accelerator deploy-
ment. Left: a traditional design, where the accelerator
and DMA datapaths are controlled by an FSM. Right:
architectural design used in this work, where the control
is implemented by a soft-processor.

Fig. 2: Impact of adopting fine-grained subcopies.

memory. The data mover leverages a Finite State Machine
(FSM) or DMA controller to supervise the flow of data in
and out the local memory as the datapath executes.

We build on top of this general block diagram to design
our extensions to support Controlled Memory Request
Injection (CMRI). Our Accelerator Cluster Template is
shown in Figure 1 (right). Here, we consider the DMA
and local memory as immutable parts of an IP, the Smart
DMA, that can be interfaced to different datapaths. To
flexibly support different types of control logic for the DMA
(and the datapath itself) we rely on a programmable core –
the proxy core – rather than on a FSM logic. This paradigm
moves the control on the software side, allowing for higher
flexibility and better data management [20], [21].

The Smart DMA component allows for controllable DMA
operation, which can be used to ensure that the bandwidth
request generated from the FPGA accelerators does not
impact the performance of other active cores/tasks in the
system beyond what can be tolerated.

As we have already explained in Section III, the Pro-
grammable Logic blocks can generate much higher sus-
tained bandwidth request to the DRAM controller than
what can be done on the ARM Application Processors. On
the other hand, if we decided to stick to a PREM-like one-
at-a-time arbitration of memory accesses and prevent com-
pletely the FPGA accelerators from accessing DRAM while
the host CPU tasks are also accessing DRAM, we would
end up severely under-utilizing the system bandwidth.
Given this scenario, our goal is that of controlling DMA

requests from FPGA accelerators in a way that at any
moment we only allow up to the maximum bandwidth that
does not degrade the execution latency of the CPU tasks
beyond a determined threshold. This has been achieved
on multi-core CPU SoCs via throttling of the memory
requests, which we implement on our Smart DMA through
duty cycling.

Listing 1 shows a small piece of code that highlights
the main idea of the duty-cycled loop executed on the
Smart-DMA component described above. Given a standard
DMA transfer request to the Smart DMA, described as the
triple < destination, source, size >, the Proxy Core splits
up this request into smaller transfer requests interleaved
with a configurable amount of idle cycles. This allows a
fine-grained adjustment of the bandwidth requested to the
shared memory subsystem. We define the notion of Cluster
Load Intensity (CLI) to indicate in our experiments the
amount of throttling (IDLE_CYCLES) that we apply to
the system. Intuitively, when IDLE_CYCLES is zero we
operate the accelerator clusters at full throttle, which cor-
responds to 100% cluster load intensity (CLI). Altering the
IDLE_CYCLES parameter produces different, controllable
amounts of cluster load intensity.

for(size_t i = 0; i < transactions; ++i){
// a single transaction is split in
// subcopies to interleave idleness
for(size_t j = 0; j < subcopies; ++j) {

dma_memcpy(&dma,
dst_buffer+j*(SIZE/subcopies),
src_buffer+j*(SIZE/subcopies),
SIZE/subcopies

);
idle(IDLE_CYCLES);

}
}

Listing 1: firmware running on the Proxy Cores to
implement CMRI.

In Figure 2 we can see the effect of having a fine-grained
smart-DMA, i.e. able to operate even on small PREM
regions. We can see that in the fine-grained case, it is
possible to interleave memory transactions with idleness,
allowing for finer bandwidth adjustments. The coarse-
grained version operates with larger copies, which does
not allow for bandwidth adjustment within the memory-
phase in the example considered.

V. EXPERIMENTAL RESULTS

Our experimental evaluation is organized in three main
sections. First (Section V-A), we study the self-interference
that various processing elements from the same block can
experience (multiple cores from the same APU or RPU,
or multiple accelerator clusters from the FPGA). Second
(Section V-B), we characterize the combined effect of inter-
plus intra-block memory interference by measuring the
worst-case delay a task running on one processing element
under test (one of the APU/RPU cores or the AI Engine
on VC1902) can experience when the rest of the cores
and the FPGA accelerator clusters are generating traffic



TABLE I: Comparison of maximum measured DRAM
bandwidth in GB/s, on host cores (varying memory access
pattern) and Accelerator Clusters of the two systems.

#Active Cores
SoC PE Type Pattern 1 2 3 4

ZU9EG

A53 sequential 2.50 4.77 6.50 7.20
A53 random 0.39 0.76 1.12 1.46
R5F sequential 0.27 0.52 - -
R5F random 0.21 0.42 - -

VC1902

A72 sequential 6.98 7.28 - -
A72 random 0.35 0.68 - -
R5F sequential 0.22 0.41 - -
R5F random 0.19 0.38 - -

#Active Clusters
SoC PE Type 1 2 3 4
ZU9EG Acc. Cluster 8.93 13.6 13.2 14.0
VC1902 Acc. Cluster 8.68 17.3 21.6 24.0

at full throttle. Third (Section V-C), we study the benefits
of CMRI by allowing the FPGA cluster(s) to inject memory
requests at increasing CMRI rates and observing the effect
that this has on the task running on one of processing
elements under test.

Both for the ZU9EG and the VC1902 we instantiate four
clusters, connecting them to each of the available four AXI
HP ports. The accelerator clusters operate @300MHz. The
small control firmware of the Smart DMAs runs on the
Proxy Core of each accelerator cluster.

As reference tasks running on the ARM cores we con-
sider both micro-benchmarks – capable of generating both
sequential and random memory traffic patterns towards
the DRAM and modeled after the lmbench test suite1 –
and real benchmarks from the Polybench suite2. In both
cases the benchmarks are configured with a working-set-
size that exceeds the L2-cache of the two SoCs. These
benchmarks are executed on top of Linux for the ARM
A53 and A72 and on bare metal for the Cortex R5F. As
reference tasks running on the AI Engines of the VC1902
SoC we consider several popular CNNs for object detection
and classification, widely adopted on embedded platforms.
Pre-trained versions of these networks are available on
Xilinx Model Zoo3.

A. Self-Interference among CPU cores

Table I shows the maximum memory bandwidth gen-
erated by the various IPs (cores and FPGA accelerator
clusters) when running at full throttle on the two SoCs.

The topmost part of the table shows the maximum
DRAM bandwidth available on the RPU and APU of the
two systems. In this case all the cores execute the micro-
benchmarks simultaneously. Focusing on the sequential
traffic pattern (the most memory-intensive) we observe a
difference between the two SoCs. In the ZU9EG MPSoC
a single core from both the APU or RPU complex only
uses a fraction of the total bandwidth, and an almost
additive behaviour is observed as more cores are used. On

1http://lmbench.sourceforge.net/
2https://web.cse.ohio-state.edu/ pouchet.2/software/polybench/
3https://github.com/Xilinx/Vitis-AI/tree/master/models/AI-Model-Zoo

the VC1902 system the same applies to the RPU, but on
the APU a single core can saturate the available memory
bandwidth to the whole APU complex. When the second
core is activated, this total bandwidth is evenly shared
between the two cores.

The bottom part of the table highlights the memory
bandwidth that the FPGA can achieve on the two reference
platforms. The ZU9EG reaches ≈ 14GB/s, which is 82%
of its nominal maximum bandwidth (i.e., of the whole
SoC). Similar to what happens on the APU, this suggests
that static partitioning of the bandwidth is applied, cor-
roborated by the fact that two clusters alone (i.e., two
AXI HP ports at full throttle) can saturate the available
bandwidth, and adding more does not increase it further.
The VC1902 reaches 24GB/s, which is 94% of its nominal
maximum bandwidth. Again, similar to what happens on
the APU in this case there are no evident effects of static
bandwidth partitioning: it takes the whole four clusters to
saturate the bandwidth of the VC1902.

B. Memory Interference Characterization

The experiments described in this section aim to quan-
tify the impact of memory interference from the FPGA
clusters on the workload under test.

As processing elements under test (UT) we consider
three IPs: (i) RPU cores; (ii) APU cores (A53 and A72);
(iii) AI Engines (AIE - on VC1902 only). As workload,
we execute micro-benchmarks on the RPUs, Polybench
benchmarks on the APUs, and various CNNs on the AIE.
As we are interested in studying the worst-case scenario,
we set the number of active FPGA accelerator clusters to
the maximum (four) and we execute an instance of each
benchmark on each IP under test (on the APUs and RPUs
one instance on each core).

Table II shows the slowdown due to interference when
the clusters are running with cluster load intensity CLI =
100%. The table is divided in three parts, one for each IP
under test: APU, RPU and AI Engines.

Focusing on the RPUs, for sequential traffic – the most
sensitive to interference – the four accelerator clusters can
slow down the execution of the task under test by 3.97× on
ZU9EG and by 5.58× on VC1902. Random patterns, which
are usually less affected by interference, still suffer from
up to 3.18× and 4.95× slowdowns on ZU9EG and VC1902,
respectively. This finding is particularly relevant if we
consider that RPU cores are typically used for latency-
critical tasks, as they can exploit dedicated resources
which are physically not shared with the rest of the
system. Yet, if we do rely on those memory paths that are
shared with the rest of the system the effects on timing
can be severe.

Focusing on APUs, we can see different behaviours for
each tests, as the real benchmarks exhibit very diverse
computation-to-communication-ratios. On the ZU9EG we
see up to 7.4× slowdown. On the VC1902 we see even
greater interference, due to the larger fraction of memory
bandwidth used by the FPGA and the effects of self
interference (as we observed earlier the APU cores have



TABLE II: Effect of memory interference (slowdown) from
four FPGA clusters on different Under Test (UT) IPs : APU
cores (A53, A72), RPU cores (R5F) and AI Engines (AIE).

RPU APU AIE

ZU9E
G

VC19
02

A53 A72 VC19
02

seq 3.97 5.58 adi 2.0 3.9 Inceptionv2 2.44
ran 3.18 4.95 atax 1.4 4.3 Refinedet 2.45

bicg 1.3 2.4 Resnet50 1.12
conv2d 1.5 2.0 Yolov3-Tiny 2.07
covariance 1.9 2.2 Yolov2-pruned 1.48
fdtd-2d 3.1 16 Yolov2 1.94
cholesky 2.3 10 Yolov3 1.98
mvt 3.9 5.1 Yolov4 2.02
trisolv 1.7 11
durbin 7.4 8.6
gramschmidt 6.0 13
lu 3.2 13

(a) ZU9EG (A53) PolyBench (b) VC1902 (A72) PolyBench

(c) VC1902 (AIE) CNNs (d) R5F micro-benchmarks

Fig. 3: CMRI on different Processing Elements and plat-
forms. (3a and 3b): Polybench on APUs; (3c): CNNs on AI
Engines; (3d): Micro-benchmarks on R5F.

non additive behavior in terms of bandwidth usage). In
this case the slowdown can go as high as 16×.

Finally, focusing on the AI Engine of the VC1902, we
study the effect of memory interference from the FPGA
on the CNN workloads. Like in the previous case, to also
consider self interference within the IP under test we
execute two instances of each CNN in parallel.

Also in this case we see that different CNNs have
different sensitivity to interference: while the most sen-
sitive one, refinedet, can suffer up to ≈ 2.5× slow-

down, the least sensitive ones (yolov2_voc_pruned
and resnet50) experience less than 1.5× slowdown
even in the worst case. This observation further con-
solidates the intuition that CMRI schemes should be
beneficial in FPGA-based heterogeneous SoCs, too, as a
conservative scheme like PREM would severely under-
utilize the system memory bandwidth for CNNs with poor
communication-to-computation ratios.

C. Controlled Injection

The experiments presented in this section aim at study-
ing to which extent it is possible to allow concurrent
execution of FPGA accelerators and CPU or AIE work-
loads – provided that we can control and bound the
effects of interference – as opposed to PREM-like DRAM-
arbitration schemes, where only one task at a time is
allowed to access the main memory. In particular, similar
to the original CMRI setup [9], we measure the mem-
ory bandwidth that the throttled entity (here, the FPGA
accelerators) can utilize while maintaining the slowdown
imposed on the tasks under test below a given threshold.
We consider two thresholds, at 1.1× and 1.2× slowdown,
and we measure the Cluster Load Intensity (CLI), i.e.,
the maximum injection rate that does not exceed such
thresholds. Clearly these threshold values are only for
illustration purposes: different applications/systems will
have different maximum tolerated latency increase. Note
that in this context CLI acts as an indicator of FPGA
bandwidth usage efficiency (BWE), as it represents the
bandwidth injected by the FPGA cluster(s) normalized to
the maximum bandwidth they can request (see Table I).

Like in the previous section, we consider both the case
where the task under test runs on the RPU/APU and the
case where the task under test runs on the AIE. The setup
in terms of benchmarks and configurations is the same.

Figure 3 shows the results for this experiment, where
a single FPGA cluster is injecting traffic at various CLI
rates. Due to the lack of space we don’t report plots for the
experiment with four clusters, but we will report the key
findings in the discussion. The plots in this figure show
workload slowdown with increasing CLI. The markers
with circular and rhomboidal ends highlight the ranges in
which CMRI operates within the tolerated 10% and 20%
thresholds, respectively.

Focusing on the APUs as units under test (Figures
3a and 3b), we see that CMRI allows to exploit 22-to-
43% of the maximum bandwidth that a single cluster
can generate on the ZU9EG (8.93GB/s) and 28-to-72% on
the VC1902 (8.68GB/s), while guaranteeing a maximum
latency increase of the workload under test of up to 10%.
If the tolerance threshold is increased to 20% CMRI can
exploit 23-to-53% of the maximum cluster bandwidth on
the ZU9EG and 40-to-78% on the VC1902. Note that if
the same experiment is repeated on four clusters we only
observe a difference in the minimum CLI allowed for the
most conservative threshold on ZU9EG, which is reduced
to 0.2%. In all the other cases the CLI values remain
nearly identical, but the maximum bandwidth to which



they refer is in this case much higher (see Table I): 14
GB/s for ZU9EG and 24 GB/s for VC1902.

On the RPUs (Figure 3d) CMRI allows to exploit 41-to-
78% of the maximum bandwidth for a single cluster on
both SoCs for the 10% threshold, and 59-to-93% for the
20% threshold. If we consider four clusters CMRI allows
to exploit 8-to-49% of their maximum bandwidth for the
10% threshold, and 29-to-54% for the 20% threshold.

On the AIE (Figure 3c) CMRI allows to exploit 50-to-
72% of the maximum bandwidth that a single cluster can
generate on VC1902 for the 10% threshold, and 59-to-93%
for the 20% threshold. Even when considering four active
clusters the CLI values remain nearly identical, which
means there are cases in which we can exploit nearly
the whole bandwidth generated by the FPGA without
significantly impacting the timing of the CNN workloads.

VI. CONCLUSION

In this work we presented an in-depth memory inter-
ference analysis for two last-generation FPGA-based HeS-
oCs belonging to the Zynq UltraScale+ and Versal ACAP
families. This fills a gap in the literature, which mostly
focuses on multi-core CPUs and GPU-based HeSoCs, and
confirms the fact that memory interference strongly affects
also FPGA-based devices. When all the CPU cores and the
FPGA logic are executing in parallel, memory interference
can slow down APU tasks by more than 16×, RPU cores
by up to 5.58× and the AI Engines on the VC1902 by
up to ≈ 2.5×. Our analysis highlights thus that Real-
Time RPU cores are potentially impacted by memory
interference, which must be taken into account. Globally,
the analysis points out that also in FPGA-based HeSoCs
PREM-like approaches that arbitrate accesses to DRAM in
a mutually exclusive manner are bound to severely under-
utilize the available memory bandwidth. We propose an
approach to support state-of-the-art CMRI technique on
FPGA-bases HeSoCs, integrated in a generic template for
FPGA accelerator clusters based on a smart DMA.

Our experiments show that CMRI, previously only ap-
plied to multi-core CPUs, is very effective also in FPGA-
based HeSoCs, allowing in the best case to exploit over
90% of the available bandwidth to the FPGA accelerators,
while providing analogous timing guarantees to what is
offered by PREM-like schemes [4], [7].

VII. ACKNOWLEDGEMENTS

This project has received funding from the Key Digital
Technologies Joint Undertaking (KDT JU) under grant
agreement No 877056. The JU receives support from the
European Union’s Horizon 2020 research and innovation
programme and Spain, Italy, Austria, Germany, Finland,
Switzerland.

This project has received funding from the ECSEL Joint
Undertaking (JU) under grant agreement No 101007326.
The JU receives support from the European Union’s
Horizon 2020 research and innovation programme and
Germany, Austria, Belgium, Czech Republic, Italy, Nether-
lands, Lithuania, Latvia, Norway.

REFERENCES

[1] A. Bansal, R. Tabish, G. Gracioli, R. Mancuso, R. Pellizzoni, and
M. Caccamo, “Evaluating the memory subsystem of a configurable
heterogeneous mpsoc,” in Workshop on Operating Systems Platforms
for Embedded Real-Time Applications (OSPERT), 07 2018, p. 55.

[2] N. Capodieci, R. Cavicchioli, I. S. Olmedo, M. Solieri, and
M. Bertogna, “Contending memory in heterogeneous socs: Evolution
in nvidia tegra embedded platforms,” in 2020 IEEE 26th Interna-
tional Conference on Embedded and Real-Time Computing Systems
and Applications (RTCSA), 2020, pp. 1–10.

[3] M. Mattheeuws, B. Forsberg, A. Kurth, and L. Benini, “Analyzing
memory interference of fpga accelerators on multicore hosts in
heterogeneous reconfigurable socs,” in 2021 Design, Automation Test
in Europe Conference Exhibition (DATE), 2021, pp. 1152–1155.

[4] R. Pellizzoni, E. Betti, S. Bak, G. Yao, J. Criswell, M. Caccamo, and
R. Kegley, “A predictable execution model for cots-based embedded
systems,” in 2011 17th IEEE Real-Time and Embedded Technology
and Applications Symposium, 2011, pp. 269–279.

[5] A. Alhammad and R. Pellizzoni, “Time-predictable execution of
multithreaded applications on multicore systems,” in 2014 Design,
Automation Test in Europe Conference Exhibition (DATE), 2014, pp.
1–6.

[6] B. Forsberg, L. Benini, and A. Marongiu, “Heprem: Enabling
predictable gpu execution on heterogeneous soc,” in 2018 Design,
Automation Test in Europe Conference Exhibition (DATE), 2018, pp.
539–544.

[7] C. A. S. T. (CAST), “Multi-core processors,” Position Paper CAST-
32A, 2016.

[8] J. Martinez, I. Sañudo, and M. Bertogna, “Analytical characteri-
zation of end-to-end communication delays with logical execution
time,” IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, vol. 37, no. 11, pp. 2244–2254, 2018.

[9] R. Cavicchioli, N. Capodieci, M. Solieri, M. Bertogna, P. Valente,
and A. Marongiu, Evaluating Controlled Memory Request Injection
to Counter PREM Memory Underutilization, 11 2020, pp. 85–105.

[10] R. Pellizzoni, A. Schranzhofer, Jian-Jia Chen, M. Caccamo, and
L. Thiele, “Worst case delay analysis for memory interference in
multicore systems,” in 2010 Design, Automation Test in Europe
Conference Exhibition (DATE 2010), 2010, pp. 741–746.

[11] H. Wen and W. Zhang, “Interference evaluation in cpu-gpu hetero-
geneous computing,” IEEE High Performance Extreme Computing
Conference (HPEC), 2017.

[12] K. Manev, A. Vaishnav, and D. Koch, “Unexpected diversity: Quan-
titative memory analysis for zynq ultrascale+ systems,” in 2019 In-
ternational Conference on Field-Programmable Technology (ICFPT),
2019, pp. 179–187.

[13] F. Restuccia, M. Pagani, A. Biondi, M. Marinoni, and G. Buttazzo,
“Is your bus arbiter really fair? restoring fairness in axi intercon-
nects for fpga socs,” ACM Transactions on Embedded Computing
Systems, vol. 18, pp. 1–22, 10 2019.

[14] F. Restuccia, A. Biondi, M. Marinoni, G. Cicero, and G. Buttazzo,
“Axi hyperconnect: A predictable, hypervisor-level interconnect for
hardware accelerators in fpga soc,” in 2020 57th ACM/IEEE Design
Automation Conference (DAC), 2020, pp. 1–6.

[15] F. Farshchi, Q. Huang, and H. Yun, “Bru: Bandwidth regulation
unit for real-time multicore processors,” in 2020 IEEE Real-Time
and Embedded Technology and Applications Symposium (RTAS),
2020, pp. 364–375.

[16] M. R. Soliman and R. Pellizzoni, “PREM-Based Optimal Task
Segmentation Under Fixed Priority Scheduling,” in 31st Euromicro
Conference on Real-Time Systems (ECRTS 2019), ser. Leibniz
International Proceedings in Informatics (LIPIcs), S. Quinton,
Ed., vol. 133. Dagstuhl, Germany: Schloss Dagstuhl–Leibniz-
Zentrum fuer Informatik, 2019, pp. 4:1–4:23. [Online]. Available:
http://drops.dagstuhl.de/opus/volltexte/2019/10741

[17] G. Yao, R. Pellizzoni, S. Bak, H. Yun, and M. Caccamo, “Global
real-time memory-centric scheduling for multicore systems,” IEEE
Transactions on Computers, vol. 65, no. 9, pp. 2739–2751, 2016.

[18] H. Yun, G. Yao, R. Pellizzoni, M. Caccamo, and L. Sha, “Memguard:
Memory bandwidth reservation system for efficient performance
isolation in multi-core platforms,” in 2013 IEEE 19th Real-Time
and Embedded Technology and Applications Symposium (RTAS),
2013, pp. 55–64.

[19] S. W. Min, S. Huang, M. El-Hadedy, J. Xiong, D. Chen, and W.-m.
Hwu, “Analysis and optimization of I/O cache coherency strategies



for SoC-FPGA device,” in 2019 29th International Conference on
Field Programmable Logic and Applications (FPL). IEEE, 2019.

[20] G. Bellocchi, A. Capotondi, F. Conti, and A. Marongiu, “A risc-v-
based fpga overlay to simplify embedded accelerator deployment,”
in 2021 24th Euromicro Conference on Digital System Design (DSD),
2021, pp. 9–17.

[21] A. Kurth, A. Capotondi, P. Vogel, L. Benini, and A. Marongiu,
“HERO: An open-source research platform for HW/SW exploration
of heterogeneous manycore systems,” in Proceedings of the 2nd
Workshop on AutotuniNg and aDaptivity AppRoaches for Energy
efficient HPC Systems, 2018, pp. 1–6.


