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Abstract. Graph embedding techniques have been introduced in re-
cent years with the aim of mapping graph data into low-dimensional
vector spaces, so that conventional machine learning methods can be ex-
ploited. In particular, in the DeepWalk model, truncated random walks
are employed in random walk-based approaches to capture structural
links-connections between nodes. The SkipGram model is then applied
to the truncated random walks to compute the embedded nodes. In this
work, the proposed DeepWalk model provides a faster convergence speed
than the standard one by introducing a new trainable parameter in the
model. Furthermore, experimental results on real-world datasets show
that the performance in downstream community detection and link pre-
diction task is improved by using the proposed DeepWalk model.

Keywords: Graph Embedding · DeepWalk · Community Detection ·
Link Prediction.

1 Introduction

In the past few years, there has been a significant increase in the volume of data
generated by services that utilise various type of networks. Graphs analysis is
used for representing information in various networks (e.g., citation networks,
sensor networks, social networks [8] etc.) as graphs, taking into account the
interactions between the network entities. Consequently, inherent properties of
the network (a.k.a graph) can be discovered, using graph analytical tasks, such
as node classification [2], community detection [15], link prediction [18] and
visualization [20].

Recently, graph embedding methods that represent graph nodes in a vector
space have been developed. The main goal of graph embedding methods is to
map graph nodes into a low-dimensional latent vector space, while maximally
preserving the properties of the graph structure. Therefore, node similarity in the
original complex irregular spaces can be quantified based on various similarity



2 K. Loumponias et al.

measures in the latent vector space (or embedded space). In addition, more
accurate graph analytics tasks can be leveraged from the learned embedded
space, as opposed to directly performing such tasks in the high-dimensional
complex graph domain. Graph embedding methods can be classified into three
main categories [3, 8]: (i) factorization-based, (ii) random walk-based, and (iii)
deep learning-based.

Factorization-based methods describe the connections between nodes as a
matrix and factorize this matrix to obtain the embedded nodes. The most com-
mon matrices used to represent the connections between nodes are the node
adjacency matrix, Laplacian matrix, and node transition probability matrix.
Based on the characteristics of the representative matrix, different approaches
to factorization might be used. In the case of the Laplacian matrix, eigenvalue
decomposition can be used if the obtained matrix is positive semi-definite. Gradi-
ent descent algorithms can be used to speed up the factorization-based methods.

Random walk-based methods are used to obtain the topological relationships
between nodes by performing truncated random walks. To that end, a graph is
converted into a collection of node sequences (using truncated random walks),
in which the frequency of node pairs measures the structural distance between
them. Then, machine-learning (ML) based methods are used for obtaining the
embedding. The most common method used to calculate the embedded nodes
using truncated random walks is the SkipGram model [21].

Deep learning-based methods apply well-established deep learning (DP) mod-
els on a whole graph (or the corresponding proximity matrix) to obtain the em-
bedded nodes. Autoencoders have been utilised for dimensionality reduction [23]
due to their ability to model non-linear structure in the data. Furthermore, as
an extension of the standard Convolutional Neural Network, the Graph Con-
volution Neural Network [29] has been proposed to deal with non-Euclidian
structural data, such as the graphs.

In this work, we focus on random walk-based methods, proposing a novel
SkpGram model that provides a faster convergence speed in calculating the
embedded nodes. The proposed approach introduces a new function, called sig-
moid b σb(x), in order to tackle some of the limitations of the typical sigmoid
function, such as the saturated values [11]. Subsequently, the forward and back-
propagation stage of the proposed SkipGram model are calculated and the cal-
culated embedded nodes are utilised in the community and link prediction tasks.
More precisely, the k-means algorithm [10] is applied to embedded nodes to cal-
culate the network communities, while the logistic regression model [12] is used
to predict the existence of edges (links) between two nodes in the graph.

This work extends our previous work [18] as follows: First of all, proofs of the
proposed SkipGram model (not included in [18]) are provided in detail, along
with a more comprehensive description of the standard SkipGram model. More-
over, further extensive evaluation experiments are performed for demonstrating
the effectiveness of the proposed method by considering additional real-world
datasets and by examining in depth the effect of the different hyperparameters
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of the proposed model on the performance for the community detection and
node classification tasks.

The rest of the paper is organised as follows: In Section 2, random walk-
based methods are described. In Section 3, the proposed method is provided.
In Section 4, experimental results are presented using real-world networks to
demonstrate the effectiveness of the proposed framework. Finally, in Section 5,
conclusions and future work are discussed.

2 Related Work

The DeepWalk (DW) method [25] adopts the SkipGram model, which is a neu-
ral language model for producing graph embeddings. More specifically, the Skip-
Gram model attempts to maximize the likelihood of words that appear within
the same sentence. Thus, DW first performs truncated random walks (with fixed
length t) for each node of the graph to obtain a set of node sequences. This pro-
cess is repeated n times (number of walks) and it follows that a node and a node
sequence can be interpreted as a word and a sentence, respectively. Then, the
SkipGram model is applied on the node sequence to maximize the likelihood of
observing a node’s neighbourhood conditioned on its embedded nodes. Hence,
nodes with similar neighbourhoods (second order proximity) share similar em-
beddings.

In the same way as in DW, the node2vec (n2v) method [9] preserves higher-
order proximity between nodes using truncated random walks (with fixed length)
and the SkipGram model. The main difference between DW and node2vec is that
n2v employs biased-random walks that provide a trade-off between breadth-first
(BFS) and depth-first (DFS) graph searches. The results have shown that in
many network tasks, such as community detection and node classification tasks,
n2v produces higher-quality and more informative nodes embedded than DW.

In the DW and n2v methods, the embedded nodes are randomly initialized.
However, such initializations may end up trapped in local optima, since the
objective function of DW and n2v is non-convex. In order to tackle this limita-
tion, hierarchical representation learning for networks (HARP) [5] was proposed,
where it provides a novel method to initialize the model weights. HARP aims
to find a smaller graph which approximates the global structure of the original
graph. This simplified graph is utilised to learn a set of initial representations,
which serve as good initializations for learning representations in the original
graph. HARP is a general meta-strategy to improve all graph embedding meth-
ods, such as DW and n2v.

Moreover, the WALKLETS method [26] generates multi-scale representa-
tions of graph nodes, by sub-sampling short random walks on the nodes. By
skipping some nodes, WALKLETS alters the random walk method used in DW
and n2v. To that end, a similar to factorizing GraRep approach [4] is performed
for multiple skip lengths. The resulting node sequences are used for training
the SkipGram model. Finally, other variations of the above methods are Deep
Random Walk [17] and Tri-party Deep Network Representation [24].
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3 Graph Embedding: Random Walk Based Technique

In this section, a brief description of the DW method is provided, considering
the negative sampling approach [22] in SkipGram model. Next, the proposed
SkipGram model is presented, providing detailed proofs. Following that, the
proposed SkipGram model is used as an initial step for the community detection
and link prediction downstream tasks.

3.1 Standard SkipGram Model: Negative Sampling Approach

The DW (and n2v) method consists of two steps, (i) random walk sampling and
(ii) the SkipGram model (see Fig. 1). In this work, we focus on the SkipGram
model, thus, no additional details about random walks are reported from here on.
Let G = (V,E) be a graph, where V and E ⊆ (V × V ) stands for the node and
edge set of graph G, respectively. The standard SkipGram model corresponds to
a fully connected neural network with one hidden layer (without any activation
function) and multiple outputs (see Fig. 1). The main goal of SkipGram model
is to predict the surrounding nodes (context nodes) of a given target node. To
that end, the embedded vectors of the nodes are calculated.

Sampling 
Random Walks

Original graph Node sequences

SkipGram
Model

Input
Layer:
𝒖𝑘

Hidden
Layer:
𝑾𝒔

𝟏

Output
Layer:
ෝ𝒚𝟏, … , ෝ𝒚𝑪

Output 

Fig. 1. The DeepWalk model.

Next, the notation of SkipGrammodel parameters are provided and described
in detail. The input vector uk is the one-hot vector of target node uk ∈ V , W1 ∈
M|V |×d

1 is the embedded matrix, where |V | denotes the total number of the

nodes and d the embedding size. Each row (i = 1, 2, ..., |V |) of W1 represents the
embedded vector of node ui ∈ V . W2 ∈ Md×|V | is the output embedded matrix,
while {ŷk−w, ..., ŷk−1, ŷk+1, ..., ŷk+w} are the predicted context nodes (one-hot

1 Mn×m denotes the set of matrices n×m.
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vectors) when the input-target node is uk, (or equivalently uk), where w denotes
the window size. The sets of predictions {ŷk+i}i=−w:w,i̸=0 for convenience will
be denoted as {ŷ1, ..., ŷC}.

From now on, it assumed that W1
s = W1′ · uk, where W1

s corresponds to
the s-row of W1, since uk is one-hot-vector. Furthermore, W1

s stands for the
embedded vector of target node uk. In the standard SkipGram model, the cost
function for the embedded target W1

s is calculated as

J(θ) = −
C∑

c=1

log
exp

(
W2′

c ·W1
s

)
∑|V |

i=1 exp
(
W2′

i ·W1
s

) , (1)

where θ = [W1,W2] and W2
c represents the c-th column of W2. In addition,

the function

P (uc|uk; θ) =
exp

(
W2′

c ·W1
s

)
∑|V |

i=1 exp
(
W2′

i ·W1
s

) (2)

represents the conditional probability of observing a context node uc (embedded
output W2

c) given the target node uk (embedded target W1
s) . It is clear that

the cost function (1) is computationally inefficient, since the denominator in
(1) requires |V | iterations (total number of nodes). Due to this computational
burden, cost function (1) is not used in most implementations of SkipGram
model.

In order to overcome this limitation, the negative sampling process is used,
which reduces the complexity of the SkipGram model. In a nut shell, the negative
sampling process draws K number of negative samples (pair of nodes with low
proximity) using the noise distribution Pn(w) [22], for each positive pair (pair
of nodes with high proximity). Thus, the logarithm of condition probability
function (2) is approximated by

logP (uc|uk; θ) = log σ
(
W2′

c ·W1
s

)
+

K∑
i=1

log σ
(
−W2′

neg(i) ·W
1
s

)
, (3)

where σ(x) is the sigmoid function, while the row W2
neg(i) is randomly selected

from matrix W2, using the noise distribution Pn(w). The first term of (3) indi-
cates the logarithmic probability of uc (embedded vector W2

c) to appear within
the context window of the target node uk (embedded vector W1

s), while, the sec-
ond term indicates the logarithmic probability of node uneg(i) (embedded vector

W2
neg(i)) not appearing in the context window of uk.
In the negative sampling process, K + 1 columns of the output embedded

matrix W2 are updated, while in the embedded matrix W1 only the row W1
s is

updated, since the input uk is one-hot vector. The number of negative samples
K usually is set equal to 5. Finally, the update equations of SkipGram model
parameters are calculated as follows:

cj = ci − η · (σ(xi)− ti) ·W1
s, (4)
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W1
s = W1

s − η ·
K+1∑
i=1

(σ(xi)− ti) · ci, (5)

where ci =

{
W2

c , i = 1

W2
neg(j−1), i = 2, ...,K + 1

, ti =

{
1, i = 1

0, i = 2, ...,K + 1
,

xi = c
′

i ·W
1
s and η is the learning rate.

The term (σ(xi)− ti) in the update equations (4), (5) is derived from the
derivatives of − log σ(xi) with respect to ci and W1

s for i = 1, ...,K + 1, re-
spectively. In the case of positive sample (i.e., i = 1) and low values of xi (i.e.,
xi → −∞), the term (σ(xi)− ti) is maximized. Therefore, the SkipGram model
updates-corrects the weights θ = [W1,W2] for low values of xi, otherwise, when
the values of xi are high, the updates (values of (σ(xi)− ti)) are negligible. In
the case of negative samples (i ̸= 1) and low values of xi, the updates are neg-
ligible, otherwise for high values of xi the updates are maximized. Thus, the
inner product xi = c

′

i · W
1
s defines a proximity between the nodes uk and uc,

and the aim of the SkipGram model is to maximize and minimize it for positive
and negative samples, respectively.

3.2 Proposed SkipGram Model

In the standard negative sampling approach described earlier, the conditional
probability function (2) is approximated using the sigmoid function (3). As it
is known, the values of a probability function must lie in the interval [0, 1];
this makes the sigmoid function an appropriate choice. However, one of the
main drawbacks of the sigmoid function is the saturated values of its derivatives
(gradients). More specifically, the derivatives of log σ(x) converge to 0 for x →
+∞ and to 1 for x → −∞. Therefore, for any low value of x, the derivative is
essentially equivalent to 1. Thus, the range of the updates is constrained, and
its maximum value is 1. This can lead to a significant computing cost until the
weights θ converge, according to the gradient descent method.

In order to tackle the above restriction, the sigmoid b function is proposed

σb(x) =
1

1 + exp(−b · x)
, (6)

where b > 0. It is clear that the values of the proposed function lie in the interval
[0, 1], since it approximates the conditional probability (3). Next, in Lemma 1 the
derivatives of the proposed σb(x) with respect to (w.r.t.) x and b are provided.

Lemma 1. The derivatives of log σb(x) w.r.t. x and b are equal to:

∂ log σb(x)

∂x
= b · (1− σb(x)),∀x ∈ R, (7)

∂ log σb(x)

∂b
= x · (1− σb(x)). (8)
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Proof.

∂ log σb(x)

∂x
=

1

σb(x)
· ∂σb(x)

∂x
=

1

σb(x)
· ∂

∂x

(
1

1 + exp(−b · x)

)
=

1

σb(x)
· b · exp(−b · x)
(1 + exp(−b · x))2

= b · 1

σb(x)
· 1

1 + exp(−b · x)
· exp(−b · x)
1 + exp(−b · x)

= b · (1− σb(x)).

since σb(x) ̸= 0,∀x ∈ R. Next, in the same way is proved that

∂ log σb(x)

∂b
= x · (1− σb(x)).

⊓⊔
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Fig. 2. The derivatives of log σb(x).

Figure 3.2 illustrates the derivative of log σb(x) (eq. 7) w.r.t x for different
values of parameter b. It is clear that, in the case of b = 1, the derivative
of log σb(x) is similar to the derivative of log σ(x). Furthermore, the range of
updates (derivatives) for b > 1 are higher than the corresponding for b = 1.
Next, in Proposition 1 the update equations of W2

c ,W
2
neg(i),W

1
s and b using

σb(x) and the gradient descent technique are provided.
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Proposition 1. The update equations of the negative logarithm conditional prob-
ability function

− logP (uc|uk; θ) =− log σb

(
W2′

c ·W1
s

)
−

K∑
i=1

log σb

(
−W2′

neg(i) ·W
1
s

)
, (9)

w.r.t. W2
c ,W

2
neg(i),W

1
s and b using the gradient descent technique are

ci = ci − η · b · (σb(xi)− ti) ·W1
s, (10)

W1
s = W1

s − η · b ·
K+1∑
i=1

(σb(xi)− ti) · ci, (11)

and

b = b− ηb ·
K+1∑
i=1

xi · (σb(xi)− ti), (12)

where ηb is the learning rate of parameter b.

Proof. Initially, the derivatives of (9) w.r.t. W2
c ,W

2
neg(i),W

1
s and b are calcu-

lated.

The derivative of (9) w.r.t. W2
c is equal to

−∂ logP (uc|uk; θ)

∂W2
c

= −∂ log σb(xc)

∂W2
c

= −∂ log σb(xc)

∂xc
· ∂xc

∂W2
c

(7)
= −b · (1− σb(xc)) ·W1

s = b · (σb(xc)− 1) ·W1
s (13)

where xc = W2′

c ·W1
s.

The derivative of (9) w.r.t W2
neg(j) (where j = 1, ...,K) is equal to

−∂ logP (uc|uk; θ)

∂W2
neg(j)

= − ∂

∂W2
neg(j)

K∑
i=1

log σb(x
−
neg(i))

= −
∂ log σb(x

−
neg(j))

∂x−
neg(j)

·
∂x−

neg(j)

∂W2
neg(j)

(7)
= b · (1− σb(x

−
neg(j))) ·W

1
s

= b · (σb(W
2′

neg(j) ·W
1
s)) ·W

1
s (14)

where x−
neg(j) = −W2′

neg(j) ·W
1
s.

The derivative of (9) w.r.t W1
s is equal to
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−∂ logP (uc|uk; θ)

∂W1
s

= −∂ log σb(xc)

∂W1
s

− ∂

∂W1
s

K∑
i=1

log σb(x
−
neg(i))

=
∂ log σb(xc)

∂xc
· ∂xc

∂W1
s

−
K∑
i=1

∂ log σb(x
−
neg(i))

∂x−
neg(i)

·
∂x−

neg(i)

∂W1
s

(7)
= −b · (1− σb(xc)) ·W2

c +

K∑
i=1

b · (1− σb(x
−
neg(i))) ·W

2
neg(i)

=

K+1∑
i=1

b · (σb(xi)− ti) · ci, (15)

where the definitions of xi, ti and ci are provided and described in subsection
3.1.

Next, the objective function (9) can be written as

− logP (uc|uk; θ) =− log σb (x1)−
K∑
i=1

log σb (−xi+1) ,

therefore, the derivative of the above objective function w.r.t b is calculated as:

−∂ logP (uc|uk; θ)

∂b
= −∂ log σb(x1)

∂b
−

K∑
i=1

∂ log σb(−xi+1)

∂b

(8)
= −x1 · (1− σb(x1)) +

K∑
i=1

xi+1 (1− σb(−xx+i))

= x1 · (σb(x1)− 1) +

K∑
i=1

xi+1 (σb(xi+i)− 0)

=
K+1∑
i=1

xi (σb(xi)− ti) . (16)

Finally, using the gradient descent technique [13] and the derivatives (13)-(16),
the update equations of the proposed SkipGram model are calculated. ⊓⊔

The results in Proposition 1 show that the proposed model (SkipGramb) and
σb(x) can be used to replace the standard one (SkipGram and σ(x)) in any ma-
chine learning model. However, the updates equations (10)-(12) must be adjusted
to the particular machine learning model.

It is important to note that numerous activation functions have been pre-
sented in literature in an effort to improve performance in various scientific do-
mains. The SM-Taylor softmax function was used in [1] for image classification
tasks and the results showed that it performed better than the standard softmax
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function. In addition, some of the best known and well established alternative
activation functions are the Exponential Linear Unit (ELU) [6] and Scaled expo-
nential Linear Unit (SELU) [14]. However, the aforementioned functions cannot
be applied to embedding methods, since the function must be bounded in the
interval [0, 1] as previously explained.

3.3 Community Detection and Link Prediction Tasks

The proposed DeepWalkb (DWb) method has similar framework to standard
DW, with the main difference being the use of the SkipGramb model instead
of the standard one. In Algorithm 1, the proposed framework for community
detection is presented. More precisely, lines 1 − 7 represent the DWb process.
Then, the k−means algorithm is applied on the embedded nodes to detect the
communities of the graph (Com). Moreover, the proposed SkipGramb model
can be also applied to the n2v process, since DW and n2v differ only in how
truncated random walks are performed, as shown in line 4 of Algorithm 1.

Algorithm 1 DeepWalkb for community detection

Require: Graph G, number of communities k, window size w, embedding size d, walk
length t, number of walks n

1: for i=1:n do
2: O = Shuffle(V )
3: for ui ∈ O do
4: RWui = RandomWalk(G, ui, t)
5: θ = SkipGramb(RWui , w)
6: end for
7: end for
8: Com = k-means(θ,k)
9: return Com

The process of link prediction and evaluation are provided in Algorithm 2.
Three sub-graphs, denoted Gtr, Gmod and Gts are explicitly derived from the
original graph G. To that end, the StellarGraph tool [9] is used to split the
graph G = (V,E) to Gtr = (V,Etr), Gmod = (V,Emod) and Gts = (V,Ets).
The embedded nodes θtr are first calculated using the train graph Gtr. Then,
using four distinct operators (oprtr): Hadamard product, L1, L2 norm [19]
and the simple average, the similarities between embedded nodes are calculated.
Afterwards, the classifiers, one for each operator, are calculated using the logistic
regression model (whether the nodes are connected or not). Then, the classifiers
are evaluated considering the model selection graph Gmod and the embedded
nodes θtr. The operator with the highest accuracy score is used to evaluate the
classifier for the test graph Gts.
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Algorithm 2 DeepWalkb for link prediction

Require: Graph G, window size w, embedding size d, walk length t, number of walks
n

1: Gtr, Gmod, Gts = split(G)
2: θtr = DWb(Gtr, w, d, t, n)
3: for i=1:νoprtr do
4: clsfr(i) = Logistic Regression(θtr, operator(i))
5: AccScore(i) = evaluate(clsfr(i), Gmod, θtr, oprtr(i))
6: end for
7: imax = argmax(AccScore)
8: clsfrmax, oprtrmax = clsfr(imax), oprtr(imax)
9: θts = DWb(Gtsr, w, d, t, n)
10: Test Score = evaluate(clsfrmax, Gts, θts, oprtrmax)

4 Experimental Evaluation

In this section, the proposed method, DWb is evaluated against the baseline of
DW on community detection and link prediction tasks. Implementation details
are discussed before presenting results on real-world datasets.

4.1 Data Description and Implementation Details

The proposed method DWb and DW are evaluated on five publicly available
real-world datasets with ground-truth communities: Cora, CiteSeer, PubMed
[27], ego-Facebook and Amazon [16]. Cora (2708 nodes and 5429 edges), Cite-
Seer (3312 nodes and 4732 edges) and PubMed (19717 nodes and 44338 edges)
contain publications, ego-Facebook (2871 nodes and 62334 edges) contains social
circles formed from users of Facebook, while Amazon (15,716 nodes and 48739
edges) contains products found in the Amazon website that are frequently bought
together. Table 4.1 showcases the real-world datasets used in the evaluation, as
well as the number of their communities.

Table 1. Real-world datasets.

Dataset Nodes Edges Communities

Cora 2,708 5,429 7
CiteSeer 3,312 4,732 6
PubMed 19,717 44,338 3
ego-Facebook 2,871 63,334 147
Amazon 15,716 48,739 1,229

Next, the parameters used in methods DWb and DW are w = 10 (window
size), d = 128 (embedding size), t = 80 (walk-length), while the number of
epochs and the batch-size are equal to 15 and 1000, respectively. The learning
rate η is set equal to 0.02 for both methods. In [18] it was shown that a larger
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η value increases the convergence speed of DW with a trade-off in community
detection performance. However, DWb outperforms DW in convergence speed
even for larger η values [18]. Thus, the scope of this work is to evaluate DWb

on the learning rate of parameter b. To that end, the experimental sets in DWb

are conducted considering different values of learning rate, ηb ∈ {0.01, 0.05, 0.2}.
Finally, both methods use the stochastic gradient descent technique with mo-
mentum 0.9, for the back propagation process.

In each experiment, the Adjusted Rand Index (ARI), the Normalized Mutual
Information (NMI) and the graph’s modularity (Mod) [28] are calculated for the
community detection task, while the Area Under the Curve (AUC) score [7] is
calculated for the link prediction task. In addition, the edge sets of the sub-
graphs generated by the StellarGraph tool are defined in all experimental sets as
follows: Ets includes 90% of the total edges (E), while the Etr and Emod include
75% and 25% of Ets, respectively.

4.2 Evaluation of DeepWalkb Model

Table 2. The best performances of DW and DWb regarding the metrics ARI, NMI,
Mod and AUC. The columns cd epochs and lp epochs contain the required number of
epochs in order for the community detection metrics (i.e. ARI, NMI, Mod) and link
prediction metric (AUC), respectively, to converge.

Dataset Method ARI NMI Mod AUC cd epochs lp epochs

DWb ηb = 0.01 0.389 0.457 0.745 0.893 2 6
Cora DWb ηb = 0.05 0.392 0.463 0.743 0.893 1 2

DWb ηb = 0.2 0.389 0.457 0.741 0.903 2 2
DW 0.390 0.463 0.747 0.879 7 14

DWb ηb = 0.01 0.127 0.457 0.725 0.913 2 4
CiteSeer DWb ηb = 0.05 0.151 0.462 0.727 0.905 2 3

DWb ηb = 0.2 0.124 0.462 0.737 0.911 1 4
DW 0.127 0.463 0.701 0.870 8 12

DWb ηb = 0.01 0.318 0.299 0.602 0.761 1 1
PubMed DWb ηb = 0.05 0.319 0.301 0.601 0.771 1 1

DWb ηb = 0.2 0.318 0.299 0.603 0.877 1 1
DW 0.302 0.296 0.601 0.768 6 6

DWb ηb = 0.01 0.361 0.647 0.478 0.943 4 6
ego-Facebook DWb ηb = 0.05 0.364 0.648 0.461 0.921 3 6

DWb ηb = 0.2 0.361 0.646 0.453 0.923 2 7
DW 0.318 0.621 0.369 0.892 13 8

DWb ηb = 0.01 0.569 0.904 0.941 0.995 2 2
Amazon DWb ηb = 0.05 0.572 0.904 0.946 0.996 2 1

DWb ηb = 0.2 0.570 0.904 0.943 0.996 1 1
DW 0.576 0.903 0.820 0.970 11 15
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Fig. 3. The performances of DW and DWb in community detection and link prediction
task, considering the Cora, PubMed, CiteSeer, ego-Facebook and Amazon dataset, for
different values of learning rate ηb.

Table 2 details the performances of DWb (for various values of ηb) and stan-
dard DW in community detection and link prediction tasks, where cd epochs
and lp epochs denote the required number of epochs in order the community
detection metrics (i.e. ARI, NMI, Mod) and link prediction metric (AUC) to
converge. Moreover, Figure 3 illustrates the performance of DW and DWb con-
sidering the metrics ARI, NMI, Mod and AUC (y axis) for different values of
ηb in Cora, CiteSeer, PubMed, eqo-Facebook and Amazon dataset, where the x
axis (in the sub-figures) stands for the number of epochs.

As it is expected, DWb converges faster than the standard DW in all datasets
for both tasks due to the trainable parameter b. It is clear that the learning rate
ηb has a low impact on convergence speed for DWb. Only in the Cora and ego-
Facebook datasets, (significantly) fewer epochs are required using higher values
of ηb in link prediction and community detection task, respectively. Furthermore,
the parameter b gets larger values during the training stage, when large values
of ηb are used, while when community detection and link predictions metrics
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Fig. 4. The values of trainable parameter b per epoch, considering the Cora, PubMed,
CiteSeer, ego-Facebook and Amazon datasets, for different values of learning rate ηb.

converge, the values of b either remain unchanged or decrease (see Figure 4).
This property of parameter b is expected, since when the DWb model converges,
large updates to the model parameters are no longer required.

In addition, the proposed DWb performs the community detection and link
prediction tasks as well as (or better than) standard DW in fewer epochs. The
best performances (for both methods) for all metrics within 15 epochs are de-
tailed in Table 2. As it can be seen, DWb provides the same performances (dif-
ferences less than 0.02) regardless the learning rate ηb for all experimental sets
with the exception of two cases. In the CiteSeer dataset, DWb with ηb = 0.05
has ARI score equal to 0.151, while the other methods have ARI score close
to 0.12. Moreover, in the ego-Facebook dataset, DWb with ηb = 0.01 has AUC
score equal to 0.943, while the rest DWb (ηb = 0.05 and ηb = 0.2) and DW have
AUC score close to 0.92 and 0.89, respectively. Next, the standard DW model
provides a poor performance in link prediction task compared to DWb in all
dataset (differences greater than 0.02). Finally, in ego-Facebook dataset, DWb
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(regardless of ηb) outperforms DW in all metrics, while providing better Mod.
scores on the CiteSeer and Amazon datasets.

5 Conclusions

The scope of this work was to propose a method for accelerating the conver-
gence of the standard DW model, while preserving the accuracy in community
detection and link predictions tasks. To this end, the DWb model with the ad-
ditional trainable parameter b was introduced. The new update equations of
the proposed DWb were proved in detail. Then, the calculated embedded nodes
were used to detect communities and predict links between the nodes, using the
k-means algorithm and the logistic regression model, respectively. According to
the experimental results using real-world datasets, DWb converged faster than
DW in all experimental settings. Additionally, DWb provided better AUC score
than DW on all datasets, as well as better performance on the other metrics
(i.e., ARI, NMI, Mod) in most cases. Finally, the experimental results showed
that different values of learning rate ηb have a low impact on the convergence
speed of DWb, due to the ability of the proposed method to increase or decrease
the values of b in a proper way.
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