
libCEED User Manual
Release 0.12.0

Ahmad Abdelfattah Valeria Barra Natalie Beams

Jed Brown Jean-Sylvain Camier Veselin Dobrev

Yohann Dudouit Leila Ghaffari Sebastian Grimberg

Tzanio Kolev David Medina Will Pazner

Thilina Ratnayaka Rezgar Shakeri

Jeremy L. Thompson Stan Tomov James Wright III

Nov 01, 2023

Contents

1 Introduction 5

2 Getting Started 7
2.1 Building . 7

2.1.1 WebAssembly . 8
2.2 Additional Language Interfaces . 8
2.3 Testing . 9
2.4 Backends . 9
2.5 Examples . 11
2.6 Benchmarks . 12
2.7 Install . 13

2.7.1 pkg-config . 13
2.8 Contact . 13
2.9 How to Cite . 14
2.10 Copyright . 15

3 Interface Concepts 15
3.1 Theoretical Framework . 15
3.2 Finite Element Operator Decomposition . 16

1

3.2.1 Terminology and Notation . 16
3.2.2 Partial Assembly . 20
3.2.3 Parallel Decomposition . 20

3.3 API Description . 21
3.4 Gallery of QFunctions . 28
3.5 Interface Principles and Evolution . 30

4 Examples 30
4.1 Common notation . 30
4.2 Standalone libCEED . 30

4.2.1 Ex1-Volume . 31
4.2.2 Ex2-Surface . 31

4.3 CEED Bakeoff Problems . 31
4.3.1 Mass Operator . 32
4.3.2 Laplace’s Operator . 33

4.4 PETSc demos and BPs . 33
4.4.1 Area . 33

4.4.1.1 Cube . 33
4.4.1.2 Sphere . 34

4.4.2 Bakeoff problems and generalizations . 36
4.4.2.1 Bakeoff problems on the cubed-sphere . 36

4.4.3 Multigrid . 37
4.5 Compressible Navier-Stokes mini-app . 37

4.5.1 Running the mini-app . 37
4.5.1.1 Boundary conditions . 39
4.5.1.2 Advection . 40
4.5.1.3 Inviscid Ideal Gas . 42
4.5.1.4 Newtonian viscosity, Ideal Gas . 42

4.5.2 The Navier-Stokes equations . 50
4.5.2.1 Finite Element Formulation (Spatial Discretization) 51
4.5.2.2 Time Discretization . 52
4.5.2.3 Stabilization . 53
4.5.2.4 Subgrid Stress Modeling . 55
4.5.2.5 Differential Filtering . 56

4.5.3 Advection . 57
4.5.4 Isentropic Vortex . 58
4.5.5 Shock Tube . 58
4.5.6 Gaussian Wave . 59
4.5.7 Vortex Shedding - Flow past Cylinder . 60
4.5.8 Density Current . 60
4.5.9 Channel . 60
4.5.10 Flat Plate Boundary Layer . 61

4.5.10.1 Laminar Boundary Layer - Blasius . 61
4.5.10.2 Turbulent Boundary Layer . 61
4.5.10.3 Meshing . 65

4.5.11 Taylor-Green Vortex . 65
4.6 Solid mechanics mini-app . 65

4.6.1 Running the mini-app . 66
4.6.1.1 On algebraic solvers . 68
4.6.1.2 Nondimensionalization . 69
4.6.1.3 Diagnostic Quantities . 69

4.6.2 Linear Elasticity . 70
4.6.2.1 Constitutive modeling . 70

4.6.3 Hyperelasticity at Small Strain . 71

2

4.6.3.1 Newton linearization . 71
4.6.4 Hyperelasticity at Finite Strain . 72

4.6.4.1 Constitutive modeling . 72
4.6.4.2 Weak form . 75
4.6.4.3 Newton linearization . 75

4.6.5 Hyperelasticity in current configuration . 77
4.6.5.1 Push forward, then linearize . 78
4.6.5.2 Linearize, then push forward . 79
4.6.5.3 Jacobian representation . 80

5 Julia, Python, and Rust Interfaces 81

6 API Documentation 81
6.1 Public API . 81

6.1.1 Ceed . 81
6.1.1.1 Base library resources . 81

6.1.2 CeedVector . 88
6.1.2.1 Basic vector operations . 88

6.1.3 CeedElemRestriction . 96
6.1.3.1 Expressing element decomposition and degrees of freedom over a mesh . . 96

6.1.4 CeedBasis . 108
6.1.4.1 Discrete element bases and quadrature . 108

6.1.5 CeedQFunction . 118
6.1.5.1 Resolution/space-independent weak forms and quadrature-based operations 118

6.1.6 CeedOperator . 129
6.1.6.1 Discrete operators on user vectors . 129

6.2 Backend API . 144
6.2.1 Ceed . 144

6.2.1.1 Macros . 150
6.2.1.2 Typedefs and Enumerations . 151

6.2.2 CeedVector . 151
6.2.3 CeedElemRestriction . 153
6.2.4 CeedBasis . 157
6.2.5 CeedQFunction . 164

6.2.5.1 Macros . 172
6.2.6 CeedOperator . 173

6.3 Internal Functions . 180
6.3.1 Ceed . 180
6.3.2 CeedVector . 181
6.3.3 CeedElemRestriction . 181
6.3.4 CeedBasis . 182
6.3.5 CeedQFunction . 184
6.3.6 CeedOperator . 187

7 Floating Point Precision 193
7.1 Language-specific notes . 193

8 Developer Notes 194
8.1 Style Guide . 194
8.2 Clang-tidy . 194
8.3 Include-What-You-Use . 194
8.4 Shape . 195
8.5 restrict Semantics . 195
8.6 CeedVector Array Access Semantics . 195
8.7 Internal Layouts . 196

3

8.8 Backend Inheritance . 197

9 How to Contribute 197
9.1 Developer’s Certificate of Origin 1.1 . 198
9.2 Authorship . 198

10 Code of Conduct 199
10.1 Our Pledge . 199
10.2 Our Standards . 199
10.3 Enforcement Responsibilities . 199
10.4 Scope . 200
10.5 Enforcement . 200
10.6 Enforcement Guidelines . 200

10.6.1 1. Correction . 200
10.6.2 2. Warning . 200
10.6.3 3. Temporary Ban . 200
10.6.4 4. Permanent Ban . 201

10.7 Attribution . 201

11 Changes/Release Notes 201
11.1 Current main branch . 201

11.1.1 Interface changes . 201
11.1.2 New features . 201
11.1.3 Examples . 201

11.2 v0.12 (Oct 31, 2023) . 201
11.2.1 Interface changes . 201
11.2.2 New features . 202
11.2.3 Examples . 202

11.2.3.1 Bakeoff problems and generalizations . 202
11.2.3.2 Compressible Navier-Stokes mini-app . 202

11.3 v0.11 (Dec 24, 2022) . 203
11.3.1 Interface changes . 203
11.3.2 New features . 203
11.3.3 Bugfix . 203
11.3.4 Examples . 203

11.3.4.1 Compressible Navier-Stokes mini-app . 203
11.3.4.2 Bakeoff problems and generalizations . 204

11.3.5 Maintainability . 204
11.4 v0.10.1 (Apr 11, 2022) . 204

11.4.1 Interface changes . 204
11.4.2 New features . 204
11.4.3 Bugfix . 204

11.5 v0.10 (Mar 21, 2022) . 205
11.5.1 Interface changes . 205
11.5.2 New features . 206
11.5.3 Maintainability . 206

11.6 v0.9 (Jul 6, 2021) . 206
11.6.1 Interface changes . 206
11.6.2 New features . 207
11.6.3 Performance improvements . 207
11.6.4 Examples . 207
11.6.5 Deprecated backends . 207

11.7 v0.8 (Mar 31, 2021) . 207
11.7.1 Interface changes . 207

4

11.7.2 New features . 207
11.7.3 Performance improvements . 208
11.7.4 Examples . 208

11.8 v0.7 (Sep 29, 2020) . 208
11.8.1 Interface changes . 208
11.8.2 New features . 209
11.8.3 Performance improvements . 209
11.8.4 Examples . 209
11.8.5 Deprecated backends . 209

11.9 v0.6 (Mar 29, 2020) . 209
11.9.1 New features . 209
11.9.2 Performance Improvements . 210
11.9.3 Interface changes . 210
11.9.4 Examples . 210

11.10v0.5 (Sep 18, 2019) . 211
11.11v0.4 (Apr 1, 2019) . 212
11.12v0.3 (Sep 30, 2018) . 213
11.13v0.21 (Sep 30, 2018) . 214
11.14v0.2 (Mar 30, 2018) . 215
11.15v0.1 (Jan 3, 2018) . 216

12 Indices and tables 216

References 216

Index 219

1 Introduction

Historically, conventional high-order finite element methods were rarely used for industrial problems be-
cause the Jacobian rapidly loses sparsity as the order is increased, leading to unaffordable solve times and
memory requirements [Brown10]. This effect typically limited the order of accuracy to at most quadratic,
especially because quadratic finite element formulations are computationally advantageous in terms of float-
ing point operations (FLOPS) per degree of freedom (DOF)—see Fig. 1.1—, despite the fast convergence
and favorable stability properties offered by higher order discretizations. Nowadays, high-order numerical
methods, such as the spectral element method (SEM)—a special case of nodal p-Finite Element Method
(FEM) which can reuse the interpolation nodes for quadrature—are employed, especially with (nearly)
affine elements, because linear constant coefficient problems can be very efficiently solved using the fast
diagonalization method combined with a multilevel coarse solve. In Fig. 1.1 we analyze and compare the
theoretical costs, of different configurations: assembling the sparse matrix representing the action of the
operator (labeled as assembled), non assembling the matrix and storing only the metric terms needed as an
operator setup-phase (labeled as tensor-qstore) and non assembling the matrix and computing the metric
terms on the fly and storing a compact representation of the linearization at quadrature points (labeled as
tensor). In the right panel, we show the cost in terms of FLOPS/DOF. Thismetric for computational efficiency
made sense historically, when the performance was mostly limited by processors’ clockspeed. A more rele-
vant performance plot for current state-of-the-art high-performance machines (for which the bottleneck of
performance is mostly in the memory bandwith) is shown in the left panel of Fig. 1.1, where the memory
bandwith is measured in terms of bytes/DOF. We can see that high-order methods, implemented properly
with only partial assembly, require optimal amount of memory transfers (with respect to the polynomial

5

order) and near-optimal FLOPs for operator evaluation. Thus, high-order methods in matrix-free represen-
tation not only possess favorable properties, such as higher accuracy and faster convergence to solution, but
also manifest an efficiency gain compared to their corresponding assembled representations.

Fig. 1.1: Comparison of memory transfer and floating point operations per degree of freedom for different
representations of a linear operator for a PDE in 3D with 𝑏 components and variable coefficients arising due
to Newton linearization of a material nonlinearity. The representation labeled as tensor computes metric
terms on the fly and stores a compact representation of the linearization at quadrature points. The repre-
sentation labeled as tensor-qstore pulls the metric terms into the stored representation. The assembled repre-
sentation uses a (block) CSR format.

Furthermore, software packages that provide high-performance implementations have often been
special-purpose and intrusive. libCEED [BAB+21] is a new library that offers a purely algebraic inter-
face for matrix-free operator representation and supports run-time selection of implementations tuned for
a variety of computational device types, including CPUs and GPUs. libCEED’s purely algebraic interface
can unobtrusively be integrated in new and legacy software to provide performance portable interfaces.
While libCEED’s focus is on high-order finite elements, the approach is algebraic and thus applicable to
other discretizations in factored form. libCEED’s role, as a lightweight portable library that allows a wide
variety of applications to share highly optimized discretization kernels, is illustrated in Fig. 1.2, where a
non-exhaustive list of specialized implementations (backends) is provided. libCEED provides a low-level
Application Programming Interface (API) for user codes so that applications with their own discretization
infrastructure (e.g., those in PETSc, MFEM and Nek5000) can evaluate and use the core operations pro-
vided by libCEED. GPU implementations are available via pure CUDA and pure HIP as well as the OCCA
and MAGMA libraries. CPU implementations are available via pure C and AVX intrinsics as well as the
LIBXSMM library. libCEED provides a unified interface, so that users only need to write a single source
code and can select the desired specialized implementation at run time. Moreover, each process or thread
can instantiate an arbitrary number of backends.

6

https://www.mcs.anl.gov/petsc/
https://mfem.org/
https://nek5000.mcs.anl.gov/
https://developer.nvidia.com/about-cuda
https://rocmdocs.amd.com
http://github.com/libocca/occa
https://bitbucket.org/icl/magma
http://github.com/hfp/libxsmm

Fig. 1.2: The role of libCEED as a lightweight, portable library which provides a low-level API for efficient,
specialized implementations. libCEED allows different applications to share highly optimized discretization
kernels.

2 Getting Started

2.1 Building

The CEED library, libceed, is a C99 library with no required dependencies, and with Fortran, Python,
Julia, and Rust interfaces. It can be built using:

$ make

or, with optimization flags:

$ make OPT='-O3 -march=skylake-avx512 -ffp-contract=fast'

These optimization flags are used by all languages (C, C++, Fortran) and this makefile variable can also be
set for testing and examples (below).

The library attempts to automatically detect support for the AVX instruction set using gcc-style compiler
options for the host. Support may need to be manually specified via:

$ make AVX=1

or:

$ make AVX=0

if your compiler does not support gcc-style options, if you are cross compiling, etc.

7

To enable CUDAsupport, addCUDA_DIR=/opt/cuda or an appropriate directory to yourmake invocation.
To enable HIP support, add ROCM_DIR=/opt/rocm or an appropriate directory. To enable SYCL support,
add SYCL_DIR=/opt/sycl or an appropriate directory. Note that SYCL backends require building with
oneAPI compilers as well:

$. /opt/intel/oneapi/setvars.sh

$ make SYCL_DIR=/opt/intel/oneapi/compiler/latest/linux SYCLCXX=icpx CC=icx CXX=icpx

The library can be configured for host applications which use OpenMP paralellism via:

$ make OPENMP=1

which will allow operators created and applied from different threads inside an omp parallel region.

To store these or other arguments as defaults for future invocations of make, use:

$ make configure CUDA_DIR=/usr/local/cuda ROCM_DIR=/opt/rocm OPT='-O3 -march=znver2'

which stores these variables in config.mk.

2.1.1 WebAssembly

libCEED can be built for WASM using Emscripten. For example, one can build the library and run a stan-
dalone WASM executable using

$ emmake make build/ex2-surface.wasm

$ wasmer build/ex2-surface.wasm -- -s 200000

2.2 Additional Language Interfaces

The Fortran interface is built alongside the library automatically.

Python users can install using:

$ pip install libceed

or in a clone of the repository via pip install ..

Julia users can install using:

$ julia

julia>]

pkg> add LibCEED

See the LibCEED.jl documentation for more information.

Rust users can include libCEED via Cargo.toml:

[dependencies]

libceed = "0.12.0"

See the Cargo documentation for details.

8

https://emscripten.org
http://ceed.exascaleproject.org/libCEED-julia-docs/dev/
https://doc.rust-lang.org/cargo/reference/specifying-dependencies.html#specifying-dependencies-from-git-repositories

2.3 Testing

The test suite produces TAP output and is run by:

$ make test

or, using the prove tool distributed with Perl (recommended):

$ make prove

2.4 Backends

There are multiple supported backends, which can be selected at runtime in the examples:

CEED resource Backend Deterministic Capable

CPU Native
/cpu/self/ref/serial Serial reference implementation Yes
/cpu/self/ref/blocked Blocked reference implementation Yes
/cpu/self/opt/serial Serial optimized C implementation Yes
/cpu/self/opt/blocked Blocked optimized C implementation Yes
/cpu/self/avx/serial Serial AVX implementation Yes
/cpu/self/avx/blocked Blocked AVX implementation Yes

CPU Valgrind
/cpu/self/memcheck/* Memcheck backends, undefined value checks Yes

CPU LIBXSMM
/cpu/self/xsmm/serial Serial LIBXSMM implementation Yes
/cpu/self/xsmm/blocked Blocked LIBXSMM implementation Yes

CUDA Native
/gpu/cuda/ref Reference pure CUDA kernels Yes
/gpu/cuda/shared Optimized pure CUDA kernels using shared memory Yes
/gpu/cuda/gen Optimized pure CUDA kernels using code generation No

HIP Native
/gpu/hip/ref Reference pure HIP kernels Yes
/gpu/hip/shared Optimized pure HIP kernels using shared memory Yes
/gpu/hip/gen Optimized pure HIP kernels using code generation No

SYCL Native
/gpu/sycl/ref Reference pure SYCL kernels Yes
/gpu/sycl/shared Optimized pure SYCL kernels using shared memory Yes

MAGMA
/gpu/cuda/magma CUDAMAGMA kernels No
/gpu/cuda/magma/det CUDAMAGMA kernels Yes
/gpu/hip/magma HIP MAGMA kernels No
/gpu/hip/magma/det HIP MAGMA kernels Yes

continues on next page

9

https://testanything.org

Table 2.1 – continued from previous page

CEED resource Backend Deterministic Capable

OCCA
/*/occa Selects backend based on available OCCA modes Yes
/cpu/self/occa OCCA backend with serial CPU kernels Yes
/cpu/openmp/occa OCCA backend with OpenMP kernels Yes
/cpu/dpcpp/occa OCCA backend with DPC++ kernels Yes
/gpu/cuda/occa OCCA backend with CUDA kernels Yes
/gpu/hip/occa OCCA backend with HIP kernels Yes

The /cpu/self/*/serial backends process one element at a time and are intended for meshes with a
smaller number of high order elements. The /cpu/self/*/blocked backends process blocked batches
of eight interlaced elements and are intended for meshes with higher numbers of elements.

The /cpu/self/ref/* backends are written in pure C and provide basic functionality.

The /cpu/self/opt/* backends are written in pure C and use partial e-vectors to improve performance.

The /cpu/self/avx/* backends rely upon AVX instructions to provide vectorized CPU performance.

The /cpu/self/memcheck/* backends rely upon the Valgrind Memcheck tool to help verify that user
QFunctions have no undefined values. To use, run your code with Valgrind and the Memcheck backends,
e.g. valgrind ./build/ex1 -ceed /cpu/self/ref/memcheck. A ‘development’ or ‘debugging’
version of Valgrind with headers is required to use this backend. This backend can be run in serial or
blocked mode and defaults to running in the serial mode if /cpu/self/memcheck is selected at runtime.

The /cpu/self/xsmm/* backends rely upon the LIBXSMM package to provide vectorized CPU perfor-
mance. If linkingMKL andLIBXSMM is desired but theMakefile is not detectingMKLROOT, linking libCEED
against MKL can be forced by setting the environment variable MKL=1.

The /gpu/cuda/* backends provide GPU performance strictly using CUDA.

The /gpu/hip/* backends provide GPU performance strictly using HIP. They are based on the /gpu/
cuda/* backends. ROCm version 4.2 or newer is required.

The /gpu/sycl/* backends provide GPU performance strictly using SYCL. They are based on the /gpu/
cuda/* and /gpu/hip/* backends.

The /gpu/*/magma/* backends rely upon the MAGMA package. To enable the MAGMA backends, the
environment variable MAGMA_DIRmust point to the top-level MAGMAdirectory, with theMAGMA library
located in $(MAGMA_DIR)/lib/. By default, MAGMA_DIR is set to ../magma; to build the MAGMA back-
ends with a MAGMA installation located elsewhere, create a link to magma/ in libCEED’s parent directory,
or set MAGMA_DIR to the proper location. MAGMA version 2.5.0 or newer is required. Currently, each
MAGMA library installation is only built for either CUDA or HIP. The corresponding set of libCEED back-
ends (/gpu/cuda/magma/* or /gpu/hip/magma/*) will automatically be built for the version of the
MAGMA library found in MAGMA_DIR.

Users can specify a device for all CUDA, HIP, andMAGMAbackends through adding :device_id=# after
the resource name. For example:

• /gpu/cuda/gen:device_id=1

The /*/occa backends rely upon the OCCA package to provide cross platform performance. To enable
the OCCA backend, the environment variable OCCA_DIRmust point to the top-level OCCA directory, with
the OCCA library located in the ${OCCA_DIR}/lib (By default, OCCA_DIR is set to ../occa). OCCA
version 1.4.0 or newer is required.

Users can pass specific OCCA device properties after setting the CEED resource. For example:

10

https://valgrind.org/
https://github.com/libxsmm/libxsmm
https://bitbucket.org/icl/magma
http://github.com/libocca/occa

• "/*/occa:mode='CUDA',device_id=0"

Bit-for-bit reproducibility is important in some applications. However, some libCEED backends use
non-deterministic operations, such as atomicAdd for increased performance. The backends which are ca-
pable of generating reproducible results, with the proper compilation options, are highlighted in the list
above.

2.5 Examples

libCEED comes with several examples of its usage, ranging from standalone C codes in the /examples/
ceed directory to examples based on external packages, such as MFEM, PETSc, and Nek5000. Nek5000
v18.0 or greater is required.

To build the examples, set the MFEM_DIR, PETSC_DIR, and NEK5K_DIR variables and run:

$ cd examples/

libCEED examples on CPU and GPU

$ cd ceed/

$ make

$./ex1-volume -ceed /cpu/self

$./ex1-volume -ceed /gpu/cuda

$./ex2-surface -ceed /cpu/self

$./ex2-surface -ceed /gpu/cuda

$ cd ..

MFEM+libCEED examples on CPU and GPU

$ cd mfem/

$ make

$./bp1 -ceed /cpu/self -no-vis

$./bp3 -ceed /gpu/cuda -no-vis

$ cd ..

Nek5000+libCEED examples on CPU and GPU

$ cd nek/

$ make

$./nek-examples.sh -e bp1 -ceed /cpu/self -b 3

$./nek-examples.sh -e bp3 -ceed /gpu/cuda -b 3

$ cd ..

PETSc+libCEED examples on CPU and GPU

$ cd petsc/

$ make

$./bps -problem bp1 -ceed /cpu/self

$./bps -problem bp2 -ceed /gpu/cuda

$./bps -problem bp3 -ceed /cpu/self

$./bps -problem bp4 -ceed /gpu/cuda

$./bps -problem bp5 -ceed /cpu/self

$./bps -problem bp6 -ceed /gpu/cuda

$ cd ..

$ cd petsc/

$ make

$./bpsraw -problem bp1 -ceed /cpu/self

$./bpsraw -problem bp2 -ceed /gpu/cuda

$./bpsraw -problem bp3 -ceed /cpu/self

(continues on next page)

11

(continued from previous page)

$./bpsraw -problem bp4 -ceed /gpu/cuda

$./bpsraw -problem bp5 -ceed /cpu/self

$./bpsraw -problem bp6 -ceed /gpu/cuda

$ cd ..

$ cd petsc/

$ make

$./bpssphere -problem bp1 -ceed /cpu/self

$./bpssphere -problem bp2 -ceed /gpu/cuda

$./bpssphere -problem bp3 -ceed /cpu/self

$./bpssphere -problem bp4 -ceed /gpu/cuda

$./bpssphere -problem bp5 -ceed /cpu/self

$./bpssphere -problem bp6 -ceed /gpu/cuda

$ cd ..

$ cd petsc/

$ make

$./area -problem cube -ceed /cpu/self -degree 3

$./area -problem cube -ceed /gpu/cuda -degree 3

$./area -problem sphere -ceed /cpu/self -degree 3 -dm_refine 2

$./area -problem sphere -ceed /gpu/cuda -degree 3 -dm_refine 2

$ cd fluids/

$ make

$./navierstokes -ceed /cpu/self -degree 1

$./navierstokes -ceed /gpu/cuda -degree 1

$ cd ..

$ cd solids/

$ make

$./elasticity -ceed /cpu/self -mesh [.exo file] -degree 2 -E 1 -nu 0.3 -problem␣

↪Linear -forcing mms

$./elasticity -ceed /gpu/cuda -mesh [.exo file] -degree 2 -E 1 -nu 0.3 -problem␣

↪Linear -forcing mms

$ cd ..

For the last example shown, sample meshes to be used in place of [.exo file] can be found at https:
//github.com/jeremylt/ceedSampleMeshes

The above code assumes a GPU-capable machine with the CUDA backends enabled. Depending on the
available backends, otherCEED resource specifiers can be providedwith the-ceed option. Other command
line arguments can be found in examples/petsc.

2.6 Benchmarks

A sequence of benchmarks for all enabled backends can be run using:

$ make benchmarks

The results from the benchmarks are stored inside the benchmarks/ directory and they can be viewed
using the commands (requires python with matplotlib):

$ cd benchmarks

$ python postprocess-plot.py petsc-bps-bp1-*-output.txt

$ python postprocess-plot.py petsc-bps-bp3-*-output.txt

12

https://github.com/jeremylt/ceedSampleMeshes
https://github.com/jeremylt/ceedSampleMeshes
https://github.com/CEED/libCEED/blob/main/examples/petsc/README.md

Using the benchmarks target runs a comprehensive set of benchmarks which may take some time to run.
Subsets of the benchmarks can be run using the scripts in the benchmarks folder.

For more details about the benchmarks, see the benchmarks/README.md file.

2.7 Install

To install libCEED, run:

$ make install prefix=/path/to/install/dir

or (e.g., if creating packages):

$ make install prefix=/usr DESTDIR=/packaging/path

To build and install in separate steps, run:

$ make for_install=1 prefix=/path/to/install/dir

$ make install prefix=/path/to/install/dir

The usual variables like CC and CFLAGS are used, and optimization flags for all languages can be set using
the likes of OPT='-O3 -march=native'. Use STATIC=1 to build static libraries (libceed.a).

To install libCEED for Python, run:

$ pip install libceed

with the desired setuptools options, such as --user.

2.7.1 pkg-config

In addition to library and header, libCEED provides a pkg-config file that can be used to easily compile
and link. For example, if $prefix is a standard location or you set the environment variable PKG_CON-
FIG_PATH:

$ cc `pkg-config --cflags --libs ceed` -o myapp myapp.c

will buildmyappwith libCEED. This can be usedwith the source or installed directories. Most build systems
have support for pkg-config.

2.8 Contact

You can reach the libCEED team by emailing ceed-users@llnl.gov or by leaving a comment in the issue
tracker.

13

https://en.wikipedia.org/wiki/Pkg-config
https://people.freedesktop.org/~dbn/pkg-config-guide.html#faq
mailto:ceed-users@llnl.gov
https://github.com/CEED/libCEED/issues
https://github.com/CEED/libCEED/issues

2.9 How to Cite

If you utilize libCEED please cite:

@article{libceed-joss-paper,

author = {Jed Brown and Ahmad Abdelfattah and Valeria Barra and Natalie Beams␣

↪and Jean Sylvain Camier and Veselin Dobrev and Yohann Dudouit and Leila Ghaffari␣

↪and Tzanio Kolev and David Medina and Will Pazner and Thilina Ratnayaka and Jeremy␣

↪Thompson and Stan Tomov},

title = {{libCEED}: Fast algebra for high-order element-based␣

↪discretizations},

journal = {Journal of Open Source Software},

year = {2021},

publisher = {The Open Journal},

volume = {6},

number = {63},

pages = {2945},

doi = {10.21105/joss.02945}

}

The archival copy of the libCEED user manual is maintained on Zenodo. To cite the user manual:

@misc{libceed-user-manual,

author = {Abdelfattah, Ahmad and

Barra, Valeria and

Beams, Natalie and

Brown, Jed and

Camier, Jean-Sylvain and

Dobrev, Veselin and

Dudouit, Yohann and

Ghaffari, Leila and

Kolev, Tzanio and

Medina, David and

Pazner, Will and

Ratnayaka, Thilina and

Shakeri, Rezgar and

Thompson, Jeremy L and

Tomov, Stanimire and

Wright III, James},

title = {{libCEED} User Manual},

month = dec,

year = 2022,

publisher = {Zenodo},

version = {0.11.0},

doi = {10.5281/zenodo.7480454}

}

For libCEED’s Python interface please cite:

@InProceedings{libceed-paper-proc-scipy-2020,

author = {{V}aleria {B}arra and {J}ed {B}rown and {J}eremy {T}hompson and {Y}

↪ohann {D}udouit},

title = {{H}igh-performance operator evaluations with ease of use: lib{C}{E}{E}

↪{D}'s {P}ython interface},

booktitle = {{P}roceedings of the 19th {P}ython in {S}cience {C}onference},

pages = {85 - 90},

year = {2020},

editor = {{M}eghann {A}garwal and {C}hris {C}alloway and {D}illon {N}iederhut␣
(continues on next page)

14

https://doi.org/10.5281/zenodo.4302736

(continued from previous page)

↪and {D}avid {S}hupe},

doi = {10.25080/Majora-342d178e-00c}

}

The BibTeX entries for these references can be found in the doc/bib/references.bib file.

2.10 Copyright

The following copyright applies to each file in the CEED software suite, unless otherwise stated in the file:

Copyright (c) 2017-2023, Lawrence Livermore National Security, LLC and other CEED contrib-
utors. All rights reserved.

See files LICENSE and NOTICE for details.

3 Interface Concepts

This page provides a brief description of the theoretical foundations and the practical implementation of the
libCEED library.

3.1 Theoretical Framework

In finite element formulations, the weak form of a Partial Differential Equation (PDE) is evaluated on a
subdomain𝛺𝑒 (element) and the local results are composed into a larger systemof equations thatmodels the
entire problem on the global domain 𝛺. In particular, when high-order finite elements or spectral elements
are used, the resulting sparse matrix representation of the global operator is computationally expensive,
with respect to both the memory transfer and floating point operations needed for its evaluation. libCEED
provides an interface for matrix-free operator description that enables efficient evaluation on a variety of
computational device types (selectable at run time). We present here the notation and the mathematical
formulation adopted in libCEED.

We start by considering the discrete residual 𝐹(𝑢) = 0 formulation in weak form. We first define the 𝐿2 inner
product between real-valued functions

⟨𝑣, 𝑢⟩ = ∫
𝛺

𝑣𝑢𝑑𝒙,

where 𝒙 ∈ ℝ𝑑 ⊃ 𝛺.

We want to find 𝑢 in a suitable space 𝑉𝐷, such that

⟨𝒗, 𝒇 (𝑢)⟩ = ∫
𝛺

𝒗 ⋅ 𝒇0(𝑢, ∇𝑢) + ∇𝒗 ∶ 𝒇1(𝑢, ∇𝑢) = 0 (3.1)

for all 𝒗 in the corresponding homogeneous space 𝑉0, where 𝒇0 and 𝒇1 contain all possible sources in the
problem. We notice here that 𝒇0 represents all terms in (3.1)whichmultiply the (possibly vector-valued) test
function 𝒗 and 𝒇1 all terms which multiply its gradient ∇𝒗. For an n-component problems in 𝑑 dimensions,
𝒇0 ∈ ℝ𝑛 and 𝒇1 ∈ ℝ𝑛𝑑.

Note: The notation ∇𝒗∶𝒇1 represents contraction over both fields and spatial dimensions while a single dot
represents contraction in just one, which should be clear from context, e.g., 𝒗 ⋅ 𝒇0 contracts only over fields.

15

Note: In the code, the function that represents the weak form at quadrature points is called the CeedQFunc-
tion. In the Examples provided with the library (in the examples/ directory), we store the term 𝒇0 directly
into v, and the term 𝒇1 directly into dv (which stands for ∇𝒗). If equation (3.1) only presents a term of the
type 𝒇0, the CeedQFunction will only have one output argument, namely v. If equation (3.1) also presents a
term of the type 𝒇1, then the CeedQFunction will have two output arguments, namely, v and dv.

3.2 Finite Element Operator Decomposition

Finite element operators are typically defined through weak formulations of partial differential equations
that involve integration over a computational mesh. The required integrals are computed by splitting them
as a sum over the mesh elements, mapping each element to a simple reference element (e.g. the unit square)
and applying a quadrature rule in reference space.

This sequence of operations highlights an inherent hierarchical structure present in all finite element oper-
ators where the evaluation starts on global (trial) degrees of freedom (DoFs) or nodes on the whole mesh, restricts
to DoFs on subdomains (groups of elements), then moves to independent DoFs on each element, transitions
to independent quadrature points in reference space, performs the integration, and then goes back in reverse
order to global (test) degrees of freedom on the whole mesh.

This is illustrated below for the simple case of symmetric linear operator on third order (𝑄3) scalar contin-
uous (𝐻1) elements, where we use the notions T-vector, L-vector, E-vector and Q-vector to represent the
sets corresponding to the (true) degrees of freedom on the global mesh, the split local degrees of freedom
on the subdomains, the split degrees of freedom on the mesh elements, and the values at quadrature points,
respectively.

We refer to the operators that connect the different types of vectors as:

• Subdomain restriction 𝑷

• Element restriction ℰ

• Basis (Dofs-to-Qpts) evaluator 𝑩

• Operator at quadrature points 𝑫

More generally, when the test and trial space differ, they get their own versions of 𝑷, ℰ and 𝑩.

Note that in the case of adaptive mesh refinement (AMR), the restrictions 𝑷 and ℰ will involve not just
extracting sub-vectors, but evaluating values at constrained degrees of freedom through the AMR interpo-
lation. There can also be several levels of subdomains (𝑷1, 𝑷2, etc.), and it may be convenient to split 𝑫 as
the product of several operators (𝑫1, 𝑫2, etc.).

3.2.1 Terminology and Notation

Vector representation/storage categories:

• True degrees of freedom/unknowns, T-vector:

– each unknown 𝑖 has exactly one copy, on exactly one processor, 𝑟𝑎𝑛𝑘(𝑖)

– this is a non-overlapping vector decomposition

– usually includes any essential (fixed) DoFs.

16

Fig. 3.1: Operator Decomposition

P
ro

ce
ss

o
rs

E
le

m
e
n
ts

D
e
g
re

e
s o

f fre
e
d
o
m

• Local (w.r.t. processors) degrees of freedom/unknowns, L-vector:

– each unknown 𝑖 has exactly one copy on each processor that owns an element containing
𝑖

– this is an overlapping vector decomposition with overlaps only across different proces-
sors—there is no duplication of unknowns on a single processor

– the shared DoFs/unknowns are the overlapping DoFs, i.e. the ones that have more than
one copy, on different processors.

17

P
ro

ce
ss

o
rs

E
le

m
e
n
ts

D
e
g
re

e
s o

f fre
e
d
o
m

• Per element decomposition, E-vector:

– each unknown 𝑖 has as many copies as the number of elements that contain 𝑖

– usually, the copies of the unknowns are grouped by the element they belong to.

P
ro

ce
ss

o
rs

E
le

m
e
n
ts

D
e
g
re

e
s o

f fre
e
d
o
m

• In the case of AMR with hanging nodes (giving rise to hanging DoFs):

– the L-vector is enhanced with the hanging/dependent DoFs

– the additional hanging/dependent DoFs are duplicated when they are shared by mul-
tiple processors

– this way, an E-vector can be derived from an L-vectorwithout any communications and
without additional computations to derive the dependent DoFs

– in other words, an entry in an E-vector is obtained by copying an entry from the

18

corresponding L-vector, optionally switching the sign of the entry (for 𝐻(div)—and
𝐻(curl)-conforming spaces).

P
ro

ce
ss

o
rs

E
le

m
e
n
ts

D
e
g
re

e
s o

f fre
e
d
o
m

• In the case of variable order spaces:

– the dependent DoFs (usually on the higher-order side of a face/edge) can be treated just like the
hanging/dependent DoFs case.

• Quadrature point vector, Q-vector:

– this is similar toE-vectorwhere instead ofDoFs, the vector represents values at quadrature points,
grouped by element.

• In many cases it is useful to distinguish two types of vectors:

– X-vector, or primal X-vector, and X’-vector, or dual X-vector

– here X can be any of the T, L, E, or Q categories

– for example, the mass matrix operator maps a T-vector to a T’-vector

– the solutions vector is a T-vector, and the RHS vector is a T’-vector

– using the parallel prolongation operator, one canmap the solutionT-vector to a solution L-vector,
etc.

Operator representation/storage/action categories:

• Full true-DoF parallel assembly, TA, or A:

– ParCSR or similar format

– the T in TA indicates that the data format represents an operator from a T-vector to a T’-vector.

• Full local assembly, LA:

– CSR matrix on each rank

– the parallel prolongation operator, 𝑷, (and its transpose) should use optimizedmatrix-free action

– note that 𝑷 is the operator mapping T-vectors to L-vectors.

• Element matrix assembly, EA:

19

– each element matrix is stored as a dense matrix

– optimized element and parallel prolongation operators

– note that the element prolongation operator is the mapping from an L-vector to an E-vector.

• Quadrature-point/partial assembly, QA or PA:

– precompute and store 𝑤det(𝐽) at all quadrature points in all mesh elements

– the stored data can be viewed as a Q-vector.

• Unassembled option, UA or U:

– no assembly step

– the action uses directly the mesh node coordinates, and assumes specific form of the coefficient,
e.g. constant, piecewise-constant, or given as a Q-vector (Q-coefficient).

3.2.2 Partial Assembly

Since the global operator 𝑨 is just a series of variational restrictions with 𝑩, ℰ and 𝑷, starting from its
point-wise kernel 𝑫, a “matvec” with 𝑨 can be performed by evaluating and storing some of the inner-
most variational restriction matrices, and applying the rest of the operators “on-the-fly”. For example, one
can compute and store a global matrix on T-vector level. Alternatively, one can compute and store only the
subdomain (L-vector) or element (E-vector) matrices and perform the action of 𝑨 using matvecs with 𝑷 or
𝑷 and ℰ. While these options are natural for low-order discretizations, they are not a good fit for high-order
methods due to the amount of FLOPs needed for their evaluation, as well as the memory transfer needed
for a matvec.

Our focus in libCEED, instead, is on partial assembly, where we compute and store only 𝑫 (or portions
of it) and evaluate the actions of 𝑷, ℰ and 𝑩 on-the-fly. Critically for performance, we take advantage of
the tensor-product structure of the degrees of freedom and quadrature points on quad and hex elements to
perform the action of 𝑩 without storing it as a matrix.

Implemented properly, the partial assembly algorithm requires optimal amount of memory transfers (with
respect to the polynomial order) and near-optimal FLOPs for operator evaluation. It consists of an operator
setup phase, that evaluates and stores 𝑫 and an operator apply (evaluation) phase that computes the action
of 𝑨 on an input vector. When desired, the setup phase may be done as a side-effect of evaluating a dif-
ferent operator, such as a nonlinear residual. The relative costs of the setup and apply phases are different
depending on the physics being expressed and the representation of 𝑫.

3.2.3 Parallel Decomposition

After the application of each of the first three transition operators, 𝑷, ℰ and 𝑩, the operator evaluation is
decoupled on their ranges, so 𝑷, ℰ and 𝑩 allow us to “zoom-in” to subdomain, element and quadrature
point level, ignoring the coupling at higher levels.

Thus, a natural mapping of 𝑨 on a parallel computer is to split the T-vector over MPI ranks (a
non-overlapping decomposition, as is typically used for sparse matrices), and then split the rest of the vec-
tor types over computational devices (CPUs, GPUs, etc.) as indicated by the shaded regions in the diagram
above.

One of the advantages of the decomposition perspective in these settings is that the operators 𝑷, ℰ, 𝑩 and
𝑫 clearly separate the MPI parallelism in the operator (𝑷) from the unstructured mesh topology (ℰ), the
choice of the finite element space/basis (𝑩) and the geometry and point-wise physics 𝑫. These components
also naturally fall in different classes of numerical algorithms – parallel (multi-device) linear algebra for

20

𝑷, sparse (on-device) linear algebra for ℰ, dense/structured linear algebra (tensor contractions) for 𝑩 and
parallel point-wise evaluations for 𝑫.

Currently in libCEED, it is assumed that the host application manages the global T-vectors and the required
communications among devices (which are generally on different compute nodes) with P. Our API is thus
focused on the L-vector level, where the logical devices, which in the library are represented by the Ceed
object, are independent. EachMPI rank can use one or more Ceeds, and each Ceed, in turn, can represent one
or more physical devices, as long as libCEED backends support such configurations. The idea is that every
MPI rank can use any logical device it is assigned at runtime. For example, on a node with 2 CPU sockets
and 4 GPUs, one may decide to use 6 MPI ranks (each using a single Ceed object): 2 ranks using 1 CPU
socket each, and 4 using 1 GPU each. Another choice could be to run 1MPI rank on the whole node and use
5 Ceed objects: 1 managing all CPU cores on the 2 sockets and 4managing 1 GPU each. The communications
among the devices, e.g. required for applying the action of 𝑷, are currently out of scope of libCEED. The
interface is non-blocking for all operations involving more than O(1) data, allowing operations performed
on a coprocessor or worker threads to overlap with operations on the host.

3.3 API Description

The libCEED API takes an algebraic approach, where the user essentially describes in the frontend the op-
erators ℰ, 𝑩, and 𝑫 and the library provides backend implementations and coordinates their action to the
original operator on L-vector level (i.e. independently on each device / MPI task). This is visualized in the
schematic below; “active” and “passive” inputs/outputs will be discussed in more detail later.

L-vectors E-vectors

active inputs:

passive inputs:

passive outputs:

user code
libCEED
Operator

Local to a process Arranged per Element
shared nodes appear multiple times

Q-vectors

Values at Quadrature points

active outputs:

Fig. 3.2: Flow of data through vector types inside libCEED Operators, through backend implementations of
ℰ, 𝑩, and 𝑫

One of the advantages of this purely algebraic description is that it already includes all the finite element
information, so the backends can operate on linear algebra level without explicit finite element code. The
frontend description is general enough to support a wide variety of finite element algorithms, as well as
some other types algorithms such as spectral finite differences. The separation of the front- and backends
enables applications to easily switch/try different backends. It also enables backend developers to impact
many applications from a single implementation.

21

Our long-term vision is to include a variety of backend implementations in libCEED, ranging from reference
kernels to highly optimized kernels targeting specific devices (e.g. GPUs) or specific polynomial orders. A
simple reference backend implementation is provided in the file ceed-ref.c.

On the frontend, the mapping between the decomposition concepts and the code implementation is as fol-
lows:

• L-, E- andQ-vector are represented as variables of type CeedVector. (A backendmay choose to operate
incrementally without forming explicit E- or Q-vectors.)

• ℰ is represented as variable of type CeedElemRestriction.

• 𝑩 is represented as variable of type CeedBasis.

• the action of 𝑫 is represented as variable of type CeedQFunction.

• the overall operator ℰ𝑇𝑩𝑇𝑫𝑩ℰ is represented as variable of typeCeedOperator and its action is accessible
through CeedOperatorApply().

To clarify these concepts and illustrate how they are combined in the API, consider the implementation of
the action of a simple 1D mass matrix (cf. tests/t500-operator.c).

1 /// @file

2 /// Test creation, action, and destruction for mass matrix operator

3 /// \test Test creation, action, and destruction for mass matrix operator

4 #include "t500-operator.h"

5

6 #include <ceed.h>

7 #include <math.h>

8 #include <stdio.h>

9 #include <stdlib.h>

10

11 int main(int argc, char **argv) {

12 Ceed ceed;

13 CeedElemRestriction elem_restriction_x, elem_restriction_u, elem_restriction_q_data;

14 CeedBasis basis_x, basis_u;

15 CeedQFunction qf_setup, qf_mass;

16 CeedOperator op_setup, op_mass;

17 CeedVector q_data, x, u, v;

18 CeedInt num_elem = 15, p = 5, q = 8;

19 CeedInt num_nodes_x = num_elem + 1, num_nodes_u = num_elem * (p - 1) +␣

↪1;

20 CeedInt ind_x[num_elem * 2], ind_u[num_elem * p];

21 CeedScalar x_array[num_nodes_x];

22

23 //! [Ceed Init]

24 CeedInit(argv[1], &ceed);

25 //! [Ceed Init]

26 for (CeedInt i = 0; i < num_nodes_x; i++) x_array[i] = (CeedScalar)i / (num_nodes_x␣

↪- 1);

27 for (CeedInt i = 0; i < num_elem; i++) {

28 ind_x[2 * i + 0] = i;

29 ind_x[2 * i + 1] = i + 1;

30 }

31 //! [ElemRestr Create]

32 CeedElemRestrictionCreate(ceed, num_elem, 2, 1, 1, num_nodes_x, CEED_MEM_HOST, CEED_

↪USE_POINTER, ind_x, &elem_restriction_x);

33 //! [ElemRestr Create]

34

35 for (CeedInt i = 0; i < num_elem; i++) {

(continues on next page)

22

https://github.com/CEED/libCEED/blob/main/backends/ref/ceed-ref.c
https://github.com/CEED/libCEED/blob/main/tests/t500-operator.c

(continued from previous page)

36 for (CeedInt j = 0; j < p; j++) {

37 ind_u[p * i + j] = i * (p - 1) + j;

38 }

39 }

40 //! [ElemRestrU Create]

41 CeedElemRestrictionCreate(ceed, num_elem, p, 1, 1, num_nodes_u, CEED_MEM_HOST, CEED_

↪USE_POINTER, ind_u, &elem_restriction_u);

42 CeedInt strides_q_data[3] = {1, q, q};

43 CeedElemRestrictionCreateStrided(ceed, num_elem, q, 1, q * num_elem, strides_q_data,

↪ &elem_restriction_q_data);

44 //! [ElemRestrU Create]

45

46 //! [Basis Create]

47 CeedBasisCreateTensorH1Lagrange(ceed, 1, 1, 2, q, CEED_GAUSS, &basis_x);

48 CeedBasisCreateTensorH1Lagrange(ceed, 1, 1, p, q, CEED_GAUSS, &basis_u);

49 //! [Basis Create]

50

51 //! [QFunction Create]

52 CeedQFunctionCreateInterior(ceed, 1, setup, setup_loc, &qf_setup);

53 CeedQFunctionAddInput(qf_setup, "weight", 1, CEED_EVAL_WEIGHT);

54 CeedQFunctionAddInput(qf_setup, "dx", 1, CEED_EVAL_GRAD);

55 CeedQFunctionAddOutput(qf_setup, "rho", 1, CEED_EVAL_NONE);

56

57 CeedQFunctionCreateInterior(ceed, 1, mass, mass_loc, &qf_mass);

58 CeedQFunctionAddInput(qf_mass, "rho", 1, CEED_EVAL_NONE);

59 CeedQFunctionAddInput(qf_mass, "u", 1, CEED_EVAL_INTERP);

60 CeedQFunctionAddOutput(qf_mass, "v", 1, CEED_EVAL_INTERP);

61 //! [QFunction Create]

62

63 //! [Setup Create]

64 CeedOperatorCreate(ceed, qf_setup, CEED_QFUNCTION_NONE, CEED_QFUNCTION_NONE, &op_

↪setup);

65 //! [Setup Create]

66

67 //! [Operator Create]

68 CeedOperatorCreate(ceed, qf_mass, CEED_QFUNCTION_NONE, CEED_QFUNCTION_NONE, &op_

↪mass);

69 //! [Operator Create]

70

71 CeedVectorCreate(ceed, num_nodes_x, &x);

72 CeedVectorSetArray(x, CEED_MEM_HOST, CEED_USE_POINTER, x_array);

73 CeedVectorCreate(ceed, num_elem * q, &q_data);

74

75 //! [Setup Set]

76 CeedOperatorSetField(op_setup, "weight", CEED_ELEMRESTRICTION_NONE, basis_x, CEED_

↪VECTOR_NONE);

77 CeedOperatorSetField(op_setup, "dx", elem_restriction_x, basis_x, CEED_VECTOR_

↪ACTIVE);

78 CeedOperatorSetField(op_setup, "rho", elem_restriction_q_data, CEED_BASIS_NONE,␣

↪CEED_VECTOR_ACTIVE);

79 //! [Setup Set]

80

81 //! [Operator Set]

82 CeedOperatorSetField(op_mass, "rho", elem_restriction_q_data, CEED_BASIS_NONE, q_

↪data);

83 CeedOperatorSetField(op_mass, "u", elem_restriction_u, basis_u, CEED_VECTOR_ACTIVE);

(continues on next page)

23

(continued from previous page)

84 CeedOperatorSetField(op_mass, "v", elem_restriction_u, basis_u, CEED_VECTOR_ACTIVE);

85 //! [Operator Set]

86

87 //! [Setup Apply]

88 CeedOperatorApply(op_setup, x, q_data, CEED_REQUEST_IMMEDIATE);

89 //! [Setup Apply]

90

91 CeedVectorCreate(ceed, num_nodes_u, &u);

92 CeedVectorSetValue(u, 0.0);

93 CeedVectorCreate(ceed, num_nodes_u, &v);

94 //! [Operator Apply]

95 CeedOperatorApply(op_mass, u, v, CEED_REQUEST_IMMEDIATE);

96 //! [Operator Apply]

97

98 {

99 const CeedScalar *v_array;

100

101 CeedVectorGetArrayRead(v, CEED_MEM_HOST, &v_array);

102 for (CeedInt i = 0; i < num_nodes_u; i++) {

103 if (fabs(v_array[i]) > 1e-14) printf("[%" CeedInt_FMT "] v %g != 0.0\n", i, v_

↪array[i]);

104 }

105 CeedVectorRestoreArrayRead(v, &v_array);

106 }

107

108 CeedVectorDestroy(&x);

109 CeedVectorDestroy(&u);

110 CeedVectorDestroy(&v);

111 CeedVectorDestroy(&q_data);

112 CeedElemRestrictionDestroy(&elem_restriction_x);

113 CeedElemRestrictionDestroy(&elem_restriction_u);

114 CeedElemRestrictionDestroy(&elem_restriction_q_data);

115 CeedBasisDestroy(&basis_x);

116 CeedBasisDestroy(&basis_u);

117 CeedQFunctionDestroy(&qf_setup);

118 CeedQFunctionDestroy(&qf_mass);

119 CeedOperatorDestroy(&op_setup);

120 CeedOperatorDestroy(&op_mass);

121 CeedDestroy(&ceed);

122 return 0;

123 }

In the following figure, we specialize the schematic used above for general operators so that it corresponds
to the specific setup and mass operators as implemented in the sample code. We show that the active out-
put of the setup operator, combining the quadrature weights with the Jacobian information for the mesh
transformation, becomes a passive input to the mass operator. Notations denote the libCEED function used
to set the properties of the input and output fields.

The constructor

CeedInit(argv[1], &ceed);

creates a logical deviceceed on the specified resource, which could also be a coprocessor such as "/nvidia/
0". There can be any number of such devices, including multiple logical devices driving the same resource
(though performance may suffer in case of oversubscription). The resource is used to locate a suitable
backend which will have discretion over the implementations of all objects created with this logical device.

24

L-vectors E-vectors

active input

Q-vectors

active output

qf_setup

elem_restr_x
NO_TRANSPOSE

elem_restr_qd_i
TRANSPOSE

ELEMRESTRICTION_NONE
basis_x

EVAL_WEIGHT

CeedOperatorCreate

op_setup
Operator

CeedQFunctionAddInput

CeedQFunctionAddInput

CeedQFunctionAddOutput

active input

passive input

active output

qf_mass

elem_restr_u
NO_TRANSPOSE

elem_restr_u
TRANSPOSE

elem_restr_qd_i
NO_TRANSPOSE

CeedOperatorCreate

op_mass
Operator

CeedQFunctionAddInput

CeedQFunctionAddInput

CeedQFunctionAddOutput

"internal" input:
quadrature weights

CeedOperatorSetField

CeedOperatorSetField

CeedOperatorSetField

CeedOperatorSetField

CeedOperatorSetField CeedOperatorSetField

CeedOperatorSetField

CeedOperatorSetField

CeedOperatorSetField

BASIS_COLLOCATED

EVAL_NONE

BASIS_COLLOCATED

EVAL_NONE

CeedOperatorSetField
basis_x

NO_TRANSPOSE
EVAL_GRAD

basis_u
NO_TRANSPOSE
EVAL_INTERP

basis_u
TRANSPOSE

EVAL_INTERP

CeedOperatorSetField

CeedOperatorSetField

Fig. 3.3: Specific combination of ℰ, 𝑩, 𝑫, and input/output vectors corresponding to the libCEED operators
in the t500-operator test

25

The setup routine above computes and stores 𝑫, in this case a scalar value in each quadrature point, while
mass uses these saved values to perform the action of 𝑫. These functions are turned into the CeedQFunction
variables qf_setup and qf_mass in the CeedQFunctionCreateInterior() calls:

CeedQFunctionCreateInterior(ceed, 1, setup, setup_loc, &qf_setup);

CeedQFunctionAddInput(qf_setup, "weight", 1, CEED_EVAL_WEIGHT);

CeedQFunctionAddInput(qf_setup, "dx", 1, CEED_EVAL_GRAD);

CeedQFunctionAddOutput(qf_setup, "rho", 1, CEED_EVAL_NONE);

CeedQFunctionCreateInterior(ceed, 1, mass, mass_loc, &qf_mass);

CeedQFunctionAddInput(qf_mass, "rho", 1, CEED_EVAL_NONE);

CeedQFunctionAddInput(qf_mass, "u", 1, CEED_EVAL_INTERP);

CeedQFunctionAddOutput(qf_mass, "v", 1, CEED_EVAL_INTERP);

A CeedQFunction performs independent operations at each quadrature point and the interface is intended
to facilitate vectorization. The second argument is an expected vector length. If greater than 1, the caller
must ensure that the number of quadrature points Q is divisible by the vector length. This is often satisfied
automatically due to the element size or by batching elements together to facilitate vectorization in other
stages, and can always be ensured by padding.

In addition to the function pointers (setup and mass), CeedQFunction constructors take a string represen-
tation specifying where the source for the implementation is found. This is used by backends that support
Just-In-Time (JIT) compilation (i.e., CUDA and OCCA) to compile for coprocessors. For full support across
all backends, these CeedQFunction source files must only contain constructs mutually supported by C99,
C++11, and CUDA. For example, explicit type casting of void pointers and explicit use of compatible argu-
ments for math library functions is required, and variable-length array (VLA) syntax for array reshaping is
only available via libCEED’s CEED_Q_VLAmacro.

Different input and output fields are added individually, specifying the field name, size of the field, and
evaluation mode.

The size of the field is provided by a combination of the number of components the effect of any basis
evaluations.

The evaluation mode (see Typedefs and Enumerations) CEED_EVAL_INTERP for both input and output fields
indicates that the mass operator only contains terms of the form

∫
𝛺

𝑣 ⋅ 𝑓0(𝑢, ∇𝑢)

where 𝑣 are test functions (see the Theoretical Framework). More general operators, such as those of the form

∫
𝛺

𝑣 ⋅ 𝑓0(𝑢, ∇𝑢) + ∇𝑣 ∶ 𝑓1(𝑢, ∇𝑢)

can be expressed.

For fields with derivatives, such as with the basis evaluation mode (see Typedefs and Enumerations)
CEED_EVAL_GRAD, the size of the field needs to reflect both the number of components and the geometric
dimension. A 3-dimensional gradient on four components would therefore mean the field has a size of 12.

The 𝑩 operators for the mesh nodes, basis_x, and the unknown field, basis_u, are defined in the calls to
the functionCeedBasisCreateTensorH1Lagrange(). In this example, both themesh and the unknown
field use 𝐻1 Lagrange finite elements of order 1 and 4 respectively (the P argument represents the number
of 1D degrees of freedom on each element). Both basis operators use the same integration rule, which is
Gauss-Legendre with 8 points (the Q argument).

CeedBasisCreateTensorH1Lagrange(ceed, 1, 1, 2, q, CEED_GAUSS, &basis_x);

CeedBasisCreateTensorH1Lagrange(ceed, 1, 1, p, q, CEED_GAUSS, &basis_u);

26

Other elements with this structure can be specified in terms of the Q×P matrices that evaluate values and
gradients at quadrature points in one dimension using CeedBasisCreateTensorH1(). Elements that do
not have tensor product structure, such as symmetric elements on simplices, will be created using different
constructors.

The ℰ operators for themesh nodes, elem_restr_x, and the unknown field, elem_restr_u, are specified
in the CeedElemRestrictionCreate(). Both of these specify directly the DoF indices for each element
in the ind_x and ind_u arrays:

CeedElemRestrictionCreate(ceed, num_elem, 2, 1, 1, num_nodes_x, CEED_MEM_HOST, CEED_

↪USE_POINTER, ind_x, &elem_restriction_x);

CeedElemRestrictionCreate(ceed, num_elem, p, 1, 1, num_nodes_u, CEED_MEM_HOST, CEED_

↪USE_POINTER, ind_u, &elem_restriction_u);

CeedInt strides_q_data[3] = {1, q, q};

CeedElemRestrictionCreateStrided(ceed, num_elem, q, 1, q * num_elem, strides_q_data,

↪ &elem_restriction_q_data);

If the user has arrays available on a device, they can be provided using CEED_MEM_DEVICE. This technique
is used to provide no-copy interfaces in all contexts that involve problem-sized data.

For discontinuous Galerkin and for applications such as Nek5000 that only explicitly store E-vectors
(inter-element continuity has been subsumed by the parallel restriction 𝑷), the element restriction ℰ is the
identity and CeedElemRestrictionCreateStrided() is used instead. We plan to support other struc-
tured representations of ℰ which will be added according to demand. There are two common approaches
for supporting non-conforming elements: applying the node constraints via 𝑷 so that the L-vector can be
processed uniformly and applying the constraints via ℰ so that the E-vector is uniform. The former can
be done with the existing interface while the latter will require a generalization to element restriction that
would define field values at constrained nodes as linear combinations of the values at primary nodes.

These operations, ℰ, 𝑩, and 𝑫, are combined with a CeedOperator. As with CeedQFunctions, operator fields
are added separately with a matching field name, basis (𝑩), element restriction (ℰ), and L-vector. The
flag CEED_VECTOR_ACTIVE indicates that the vector corresponding to that field will be provided to the
operator when CeedOperatorApply() is called. Otherwise the input/output will be read from/written
to the specified L-vector.

With partial assembly, we first perform a setup stage where 𝑫 is evaluated and stored. This is accomplished
by the operator op_setup and its application to X, the nodes of themesh (these are needed to compute Jaco-
bians at quadrature points). Note that the corresponding CeedOperatorApply() has no basis evaluation
on the output, as the quadrature data is not needed at the DoFs:

CeedOperatorCreate(ceed, qf_setup, CEED_QFUNCTION_NONE, CEED_QFUNCTION_NONE, &op_

↪setup);

CeedOperatorSetField(op_setup, "weight", CEED_ELEMRESTRICTION_NONE, basis_x, CEED_

↪VECTOR_NONE);

CeedOperatorSetField(op_setup, "dx", elem_restriction_x, basis_x, CEED_VECTOR_

↪ACTIVE);

CeedOperatorSetField(op_setup, "rho", elem_restriction_q_data, CEED_BASIS_NONE,␣

↪CEED_VECTOR_ACTIVE);

CeedOperatorApply(op_setup, x, q_data, CEED_REQUEST_IMMEDIATE);

The action of the operator is then represented by operator op_mass and its CeedOperatorApply() to the
input L-vector Uwith output in V:

27

CeedOperatorCreate(ceed, qf_mass, CEED_QFUNCTION_NONE, CEED_QFUNCTION_NONE, &op_

↪mass);

CeedOperatorSetField(op_mass, "rho", elem_restriction_q_data, CEED_BASIS_NONE, q_

↪data);

CeedOperatorSetField(op_mass, "u", elem_restriction_u, basis_u, CEED_VECTOR_ACTIVE);

CeedOperatorSetField(op_mass, "v", elem_restriction_u, basis_u, CEED_VECTOR_ACTIVE);

CeedOperatorApply(op_mass, u, v, CEED_REQUEST_IMMEDIATE);

Anumber of function calls in the interface, such as CeedOperatorApply(), are intended to support asyn-
chronous execution via their last argument, CeedRequest*. The specific (pointer) value used in the above
example, CEED_REQUEST_IMMEDIATE, is used to express the request (from the user) for the operation to
complete before returning from the function call, i.e. tomake sure that the result of the operation is available
in the output parameters immediately after the call. For a true asynchronous call, one needs to provide the
address of a user defined variable. Such a variable can be used later to explicitly wait for the completion of
the operation.

3.4 Gallery of QFunctions

LibCEED provides a gallery of built-in CeedQFunctions in the gallery/ directory. The available QFunc-
tions are the ones associated with the mass, the Laplacian, and the identity operators. To illustrate how
the user can declare a CeedQFunction via the gallery of available QFunctions, consider the selection of the
CeedQFunction associated with a simple 1D mass matrix (cf. tests/t410-qfunction.c).

1 /// @file

2 /// Test creation, evaluation, and destruction for QFunction by name

3 /// \test Test creation, evaluation, and destruction for QFunction by name

4 #include <ceed.h>

5 #include <stdio.h>

6

7 int main(int argc, char **argv) {

8 Ceed ceed;

9 CeedVector in[16], out[16];

10 CeedVector q_data, dx, w, u, v;

11 CeedQFunction qf_setup, qf_mass;

12 CeedInt q = 8;

13 CeedScalar v_true[q];

14

15 CeedInit(argv[1], &ceed);

16

17 CeedVectorCreate(ceed, q, &dx);

18 CeedVectorCreate(ceed, q, &w);

19 CeedVectorCreate(ceed, q, &u);

20 {

21 CeedScalar dx_array[q], w_array[q], u_array[q];

22

23 for (CeedInt i = 0; i < q; i++) {

24 CeedScalar x = 2. * i / (q - 1) - 1;

25 dx_array[i] = 1;

26 w_array[i] = 1 - x * x;

27 u_array[i] = 2 + 3 * x + 5 * x * x;

28 v_true[i] = w_array[i] * u_array[i];

29 }

(continues on next page)

28

https://github.com/CEED/libCEED/blob/main/tests/t410-qfunction.c

(continued from previous page)

30 CeedVectorSetArray(dx, CEED_MEM_HOST, CEED_COPY_VALUES, dx_array);

31 CeedVectorSetArray(w, CEED_MEM_HOST, CEED_COPY_VALUES, w_array);

32 CeedVectorSetArray(u, CEED_MEM_HOST, CEED_COPY_VALUES, u_array);

33 }

34 CeedVectorCreate(ceed, q, &v);

35 CeedVectorSetValue(v, 0);

36 CeedVectorCreate(ceed, q, &q_data);

37 CeedVectorSetValue(q_data, 0);

38

39 CeedQFunctionCreateInteriorByName(ceed, "Mass1DBuild", &qf_setup);

40 {

41 in[0] = dx;

42 in[1] = w;

43 out[0] = q_data;

44 CeedQFunctionApply(qf_setup, q, in, out);

45 }

46

47 CeedQFunctionCreateInteriorByName(ceed, "MassApply", &qf_mass);

48 {

49 in[0] = w;

50 in[1] = u;

51 out[0] = v;

52 CeedQFunctionApply(qf_mass, q, in, out);

53 }

54

55 // Verify results

56 {

57 const CeedScalar *v_array;

58

59 CeedVectorGetArrayRead(v, CEED_MEM_HOST, &v_array);

60 for (CeedInt i = 0; i < q; i++) {

61 if (v_true[i] != v_array[i]) printf("[%" CeedInt_FMT "] v_true %f != v %f\n", i,

↪ v_true[i], v_array[i]);

62 }

63 CeedVectorRestoreArrayRead(v, &v_array);

64 }

65

66 CeedVectorDestroy(&dx);

67 CeedVectorDestroy(&w);

68 CeedVectorDestroy(&u);

69 CeedVectorDestroy(&v);

70 CeedVectorDestroy(&q_data);

71 CeedQFunctionDestroy(&qf_setup);

72 CeedQFunctionDestroy(&qf_mass);

73 CeedDestroy(&ceed);

74 return 0;

75 }

29

3.5 Interface Principles and Evolution

LibCEED is intended to be extensible via backends that are packaged with the library and packaged sepa-
rately (possibly as a binary containing proprietary code). Backends are registered by calling

CeedRegister("/cpu/self/ref/serial", CeedInit_Ref, 50);

typically in a library initializer or “constructor” that runs automatically. CeedInit uses this prefix to find
an appropriate backend for the resource.

Source (API) and binary (ABI) stability are important to libCEED. Prior to reaching version 1.0, libCEED
does not implement strict semantic versioning across the entire interface. However, user code, including
libraries of CeedQFunctions, should be source and binary compatible moving from 0.x.y to any later release
0.x.z. We have less experience with external packaging of backends and do not presently guarantee source
or binary stability, but we intend to define stability guarantees for libCEED 1.0. We’d love to talk with you
if you’re interested in packaging backends externally, and will work with you on a practical stability policy.

4 Examples

This section contains a mathematical description of all examples provided with libCEED in the examples/
directory. These examples are meant to demonstrate use of libCEED from standalone definition of opera-
tors to integration with external libraries such as PETSc, MFEM, and Nek5000, as well as more substantial
mini-apps.

4.1 Common notation

For most of our examples, the spatial discretization uses high-order finite elements/spectral ele-
ments, namely, the high-order Lagrange polynomials defined over 𝑃 non-uniformly spaced nodes, the
Gauss-Legendre-Lobatto (GLL) points, and quadrature points {𝑞𝑖}

𝑄
𝑖=1, with corresponding weights {𝑤𝑖}

𝑄
𝑖=1

(typically the ones given by Gauss or Gauss-Lobatto quadratures, that are built in the library).

We discretize the domain, 𝛺 ⊂ ℝ𝑑 (with 𝑑 = 1, 2, 3, typically) by letting 𝛺 = ⋃𝑁𝑒
𝑒=1 𝛺𝑒, with 𝑁𝑒 disjoint

elements. For most examples we use unstructured meshes for which the elements are hexahedra (although
this is not a requirement in libCEED).

The physical coordinates are denoted by 𝒙 = (𝑥, 𝑦, 𝑧) ≡ (𝑥0, 𝑥1, 𝑥2) ∈ 𝛺𝑒, while the reference coordinates are
represented as 𝑿 = (𝑋, 𝑌, 𝑍) ≡ (𝑋0, 𝑋1, 𝑋2) ∈ I = [−1, 1]3 (for 𝑑 = 3).

4.2 Standalone libCEED

The following two examples have no dependencies, and are designed to be self-contained. For additional
examples that use external discretization libraries (MFEM, PETSc, Nek5000 etc.) see the subdirectories in
examples/.

30

https://semver.org
https://www.mcs.anl.gov/petsc
https://mfem.org
https://nek5000.mcs.anl.gov/

4.2.1 Ex1-Volume

This example is located in the subdirectory examples/ceed. It illustrates a simple usage of libCEED to
compute the volume of a given body using a matrix-free application of the mass operator. Arbitrary mesh
and solution orders in 1D, 2D, and 3D are supported from the same code.

This example showshow to compute line/surface/volume integrals of a 1D, 2D, or 3Ddomain𝛺 respectively,
by applying the mass operator to a vector of 1s. It computes:

𝐼 = ∫
𝛺

1 𝑑𝑉. (4.1)

Using the same notation as in Theoretical Framework, we write here the vector 𝑢(𝑥) ≡ 1 in the Galerkin
approximation, and find the volume of 𝛺 as

∑
𝑒

∫
𝛺𝑒

𝑣(𝑥)1 𝑑𝑉 (4.2)

with 𝑣(𝑥) ∈ 𝒱𝑝 = {𝑣 ∈ 𝐻1(𝛺𝑒) | 𝑣 ∈ 𝑃𝑝(𝑰), 𝑒 = 1, … , 𝑁𝑒}, the test functions.

4.2.2 Ex2-Surface

This example is located in the subdirectory examples/ceed. It computes the surface area of a given body
using matrix-free application of a diffusion operator. Similar to Ex1-Volume, arbitrary mesh and solution
orders in 1D, 2D, and 3D are supported from the same code. It computes:

𝐼 = ∫
𝜕𝛺

1 𝑑𝑆, (4.3)

by applying the divergence theorem. In particular, we select 𝑢(𝒙) = 𝑥0 + 𝑥1 + 𝑥2, for which ∇𝑢 = [1, 1, 1]𝑇,
and thus ∇𝑢 ⋅ ̂𝒏 = 1.

Given Laplace’s equation,

∇ ⋅ ∇𝑢 = 0, for 𝒙 ∈ 𝛺,

let us multiply by a test function 𝑣 and integrate by parts to obtain

∫
𝛺

∇𝑣 ⋅ ∇𝑢 𝑑𝑉 − ∫
𝜕𝛺

𝑣∇𝑢 ⋅ ̂𝒏 𝑑𝑆 = 0.

Since we have chosen 𝑢 such that ∇𝑢 ⋅ ̂𝒏 = 1, the boundary integrand is 𝑣1 ≡ 𝑣. Hence, similar to (4.2), we
can evaluate the surface integral by applying the volumetric Laplacian as follows

∫
𝛺

∇𝑣 ⋅ ∇𝑢 𝑑𝑉 ≈ ∑
𝑒

∫
𝜕𝛺𝑒

𝑣(𝑥)1 𝑑𝑆.

4.3 CEED Bakeoff Problems

The Center for Efficient Exascale Discretizations (CEED) uses Bakeoff Problems (BPs) to test and compare
the performance of high-order finite element implementations. The definitions of the problems are given on
the ceed website. Each of the following bakeoff problems that use external discretization libraries (such as
MFEM,PETSc, andNek5000) are located in the subdirectoriesmfem/, petsc/, andnek5000/, respectively.

Here we provide a short summary:

31

https://ceed.exascaleproject.org/bps/

User code Supported BPs

mfem
• BP1 (scalar mass operator) with 𝑄 = 𝑃 + 1
• BP3 (scalar Laplace operator) with 𝑄 = 𝑃 +1

petsc
• BP1 (scalar mass operator) with 𝑄 = 𝑃 + 1
• BP2 (vector mass operator) with 𝑄 = 𝑃 + 1
• BP3 (scalar Laplace operator) with 𝑄 = 𝑃 +1
• BP4 (vector Laplace operator) with 𝑄 = 𝑃+1
• BP5 (collocated scalar Laplace operator)with

𝑄 = 𝑃
• BP6 (collocated vector Laplace operator)

with 𝑄 = 𝑃

nek5000
• BP1 (scalar mass operator) with 𝑄 = 𝑃 + 1
• BP3 (scalar Laplace operator) with 𝑄 = 𝑃 +1

These are all T-vector-to-T-vector and include parallel scatter, element scatter, element evaluation kernel,
element gather, and parallel gather (with the parallel gathers/scatters done externally to libCEED).

BP1 andBP2 are 𝐿2 projections, and thus have no boundary condition. The rest of the BPs have homogeneous
Dirichlet boundary conditions.

The BPs are parametrized by the number 𝑃 of Gauss-Legendre-Lobatto nodal points (with 𝑃 = 𝑝 + 1, and
𝑝 the degree of the basis polynomial) for the Lagrange polynomials, as well as the number of quadrature
points, 𝑄. A 𝑄-point Gauss-Legendre quadrature is used for all BPs except BP5 and BP6, which choose
𝑄 = 𝑃 and Gauss-Legendre-Lobatto quadrature to collocate with the interpolation nodes. This latter choice
is popular in applications that use spectral element methods because it produces a diagonal mass matrix
(enabling easy explicit time integration) and significantly reduces the number of floating point operations
to apply the operator.

4.3.1 Mass Operator

The Mass Operator used in BP1 and BP2 is defined via the 𝐿2 projection problem, posed as a weak form on
a Hilbert space 𝑉𝑝 ⊂ 𝐻1, i.e., find 𝑢 ∈ 𝑉𝑝 such that for all 𝑣 ∈ 𝑉𝑝

⟨𝑣, 𝑢⟩ = ⟨𝑣, 𝑓 ⟩, (4.4)

where ⟨𝑣, 𝑢⟩ and ⟨𝑣, 𝑓 ⟩ express the continuous bilinear and linear forms, respectively, defined on 𝑉𝑝, and, for
sufficiently regular 𝑢, 𝑣, and 𝑓, we have:

⟨𝑣, 𝑢⟩ ∶= ∫
𝛺

𝑣 𝑢 𝑑𝑉,

⟨𝑣, 𝑓 ⟩ ∶= ∫
𝛺

𝑣 𝑓 𝑑𝑉.

Following the standard finite/spectral element approach, we formally expand all functions in terms of basis
functions, such as

𝑢(𝒙) =
𝑛

∑
𝑗=1

𝑢𝑗 𝜙𝑗(𝒙),

𝑣(𝒙) =
𝑛

∑
𝑖=1

𝑣𝑖 𝜙𝑖(𝒙).
(4.5)

32

The coefficients {𝑢𝑗} and {𝑣𝑖} are the nodal values of 𝑢 and 𝑣, respectively. Inserting the expressions (4.5)
into (4.4), we obtain the inner-products

⟨𝑣, 𝑢⟩ = 𝒗𝑇𝑀𝒖, ⟨𝑣, 𝑓 ⟩ = 𝒗𝑇𝒃 . (4.6)

Here, we have introduced the mass matrix, 𝑀, and the right-hand side, 𝒃,

𝑀𝑖𝑗 ∶= (𝜙𝑖, 𝜙𝑗), 𝑏𝑖 ∶= ⟨𝜙𝑖, 𝑓 ⟩,

each defined for index sets 𝑖, 𝑗 ∈ {1, … , 𝑛}.

4.3.2 Laplace’s Operator

The Laplace’s operator used in BP3-BP6 is defined via the following variational formulation, i.e., find 𝑢 ∈ 𝑉𝑝

such that for all 𝑣 ∈ 𝑉𝑝

𝑎(𝑣, 𝑢) = ⟨𝑣, 𝑓 ⟩,

where now 𝑎(𝑣, 𝑢) expresses the continuous bilinear form defined on 𝑉𝑝 for sufficiently regular 𝑢, 𝑣, and 𝑓,
that is:

𝑎(𝑣, 𝑢) ∶= ∫
𝛺

∇𝑣 ⋅ ∇𝑢 𝑑𝑉,

⟨𝑣, 𝑓 ⟩ ∶= ∫
𝛺

𝑣 𝑓 𝑑𝑉.

After substituting the same formulations provided in (4.5), we obtain

𝑎(𝑣, 𝑢) = 𝒗𝑇𝐾𝒖,

in which we have introduced the stiffness (diffusion) matrix, 𝐾, defined as

𝐾𝑖𝑗 = 𝑎(𝜙𝑖, 𝜙𝑗),

for index sets 𝑖, 𝑗 ∈ {1, … , 𝑛}.

4.4 PETSc demos and BPs

4.4.1 Area

This example is located in the subdirectory examples/petsc. It demonstrates a simple usage of libCEED
with PETSc to calculate the surface area of a closed surface. The code uses higher level communication
protocols for mesh handling in PETSc’s DMPlex. This example has the same mathematical formulation as
Ex1-Volume, with the exception that the physical coordinates for this problem are 𝒙 = (𝑥, 𝑦, 𝑧) ∈ ℝ3, while
the coordinates of the reference element are 𝑿 = (𝑋, 𝑌) ≡ (𝑋0, 𝑋1) ∈ I = [−1, 1]2.

4.4.1.1 Cube

This is one of the test cases of the computation of the Area of a 2D manifold embedded in 3D. This problem
can be run with:

./area -problem cube

33

This example uses the following coordinate transformations for the computation of the geometric factors:
from the physical coordinates on the cube, denoted by ̄𝒙 = (̄𝑥, ̄𝑦, ̄𝑧), and physical coordinates on the discrete
surface, denoted by 𝒙 = (𝑥, 𝑦), to 𝑿 = (𝑋, 𝑌) ∈ I on the reference element, via the chain rule

𝜕𝒙
𝜕𝑿 (2×2)

=
𝜕𝒙
𝜕 ̄𝒙 (2×3)

𝜕 ̄𝒙
𝜕𝑿 (3×2)

, (4.7)

with Jacobian determinant given by

∣𝐽∣ = ∥𝑐𝑜𝑙1 (
𝜕 ̄𝒙
𝜕𝑿)∥ ∥𝑐𝑜𝑙2 (

𝜕 ̄𝒙
𝜕𝑿)∥ (4.8)

We note that in equation (4.7), the right-most Jacobian matrix 𝜕 ̄𝒙/𝜕𝑿(3×2) is provided by the library, while
𝜕𝒙/𝜕 ̄𝒙(2×3) is provided by the user as

[𝑐𝑜𝑙1 (
𝜕 ̄𝒙
𝜕𝑿) / ∥𝑐𝑜𝑙1 (

𝜕 ̄𝒙
𝜕𝑿)∥ , 𝑐𝑜𝑙2 (

𝜕 ̄𝒙
𝜕𝑿) / ∥𝑐𝑜𝑙2 (

𝜕 ̄𝒙
𝜕𝑿)∥]

𝑇

(2×3)
.

4.4.1.2 Sphere

This problem computes the surface Area of a tensor-product discrete sphere, obtained by projecting a cube
inscribed in a sphere onto the surface of the sphere. This discrete surface is sometimes referred to as a
cubed-sphere (an example of such as a surface is given in figure Fig. 4.1). This problem can be run with:

./area -problem sphere

This example uses the following coordinate transformations for the computation of the geometric factors:
from the physical coordinates on the sphere, denoted by ∘𝒙 = (∘𝑥, ∘𝑦, ∘𝑧), andphysical coordinates on the discrete
surface, denoted by 𝒙 = (𝑥, 𝑦, 𝑧) (depicted, for simplicity, as coordinates on a circle and 1D linear element in
figure Fig. 4.2), to 𝑿 = (𝑋, 𝑌) ∈ I on the reference element, via the chain rule

𝜕∘𝒙
𝜕𝑿 (3×2)

=
𝜕∘𝒙
𝜕𝒙 (3×3)

𝜕𝒙
𝜕𝑿 (3×2)

, (4.9)

with Jacobian determinant given by

∣𝐽∣ = ∣∣∣∣
𝑐𝑜𝑙1 ⎛⎜

⎝
𝜕∘𝒙
𝜕𝑿

⎞⎟
⎠

× 𝑐𝑜𝑙2 ⎛⎜
⎝

𝜕∘𝒙
𝜕𝑿

⎞⎟
⎠

∣∣∣∣
. (4.10)

We note that in equation (4.9), the right-most Jacobian matrix 𝜕𝒙/𝜕𝑿(3×2) is provided by the library, while
𝜕∘𝒙/𝜕𝒙(3×3) is provided by the user with analytical derivatives. In particular, for a sphere of radius 1, we have

∘𝒙(𝒙) =
1

‖𝒙‖𝒙(3×1)

and thus

𝜕∘𝒙
𝜕𝒙 =

1
‖𝒙‖𝑰(3×3) −

1
‖𝒙‖3 (𝒙𝒙𝑇)(3×3).

34

Fig. 4.1: Example of a cubed-sphere, i.e., a tensor-product discrete sphere, obtained by projecting a cube
inscribed in a sphere onto the surface of the sphere.

35

Fig. 4.2: Sketch of coordinates mapping between a 1D linear element and a circle. In the case of a linear
element the two nodes, 𝑝0 and 𝑝1, marked by red crosses, coincide with the endpoints of the element. Two
quadrature points, 𝑞0 and 𝑞1, marked by blue dots, with physical coordinates denoted by 𝒙(𝑿), are mapped
to their corresponding radial projections on the circle, which have coordinates ∘𝒙(𝒙).

4.4.2 Bakeoff problems and generalizations

The PETSc examples in this directory include a full suite of parallel bakeoff problems (BPs) using a “raw”
parallel decomposition (see bpsraw.c) and using PETSc’s DMPlex for unstructured gridmanagement (see
bps.c). A generalization of these BPs to the surface of the cubed-sphere are available in bpssphere.c.

4.4.2.1 Bakeoff problems on the cubed-sphere

For the 𝐿2 projection problems, BP1-BP2, that use the mass operator, the coordinate transformations and
the corresponding Jacobian determinant, equation (4.10), are the same as in the Sphere example. For the
Poisson’s problem, BP3-BP6, on the cubed-sphere, in addition to equation (4.10), the pseudo-inverse of
𝜕∘𝒙/𝜕𝑿 is used to derive the contravariant metric tensor (please see figure Fig. 4.2 for a reference of the
notation used). We begin by expressing the Moore-Penrose (left) pseudo-inverse:

𝜕𝑿
𝜕∘𝒙 (2×3)

≡ ⎛⎜
⎝

𝜕∘𝒙
𝜕𝑿

⎞⎟
⎠

+

(2×3)
= ⎛⎜⎜

⎝

𝜕∘𝒙
𝜕𝑿

𝑇

(2×3)

𝜕∘𝒙
𝜕𝑿 (3×2)

⎞⎟⎟
⎠

−1
𝜕∘𝒙
𝜕𝑿

𝑇

(2×3)
. (4.11)

This enables computation of gradients of an arbitrary function 𝑢(∘𝒙) in the embedding space as

𝜕𝑢
𝜕∘𝒙 (1×3)

=
𝜕𝑢
𝜕𝑿 (1×2)

𝜕𝑿
𝜕∘𝒙 (2×3)

and thus the weak Laplacian may be expressed as

∫
𝛺

𝜕𝑣
𝜕∘𝒙

(
𝜕𝑢
𝜕∘𝒙

)
𝑇

𝑑𝑆 = ∫
𝛺

𝜕𝑣
𝜕𝑿

𝜕𝑿
𝜕∘𝒙

(
𝜕𝑿
𝜕∘𝒙

)
𝑇

⏟⏟⏟⏟⏟
𝒈(2×2)

(
𝜕𝑢
𝜕𝑿)

𝑇
𝑑𝑆 (4.12)

where we have identified the 2 × 2 contravariant metric tensor 𝒈 (sometimes written 𝒈𝑖𝑗), and where
now 𝛺 represents the surface of the sphere, which is a two-dimensional closed surface embedded in

36

the three-dimensional Euclidean space ℝ3. This expression can be simplified to avoid the explicit
Moore-Penrose pseudo-inverse,

𝒈 = ⎛⎜⎜
⎝

𝜕∘𝒙
𝜕𝑿

𝑇 𝜕∘𝒙
𝜕𝑿

⎞⎟⎟
⎠

−1

(2×2)

𝜕∘𝒙
𝜕𝑿

𝑇

(2×3)

𝜕∘𝒙
𝜕𝑿 (3×2)

⎛⎜⎜
⎝

𝜕∘𝒙
𝜕𝑿

𝑇 𝜕∘𝒙
𝜕𝑿

⎞⎟⎟
⎠

−𝑇

(2×2)

= ⎛⎜⎜
⎝

𝜕∘𝒙
𝜕𝑿

𝑇 𝜕∘𝒙
𝜕𝑿

⎞⎟⎟
⎠

−1

(2×2)

where we have dropped the transpose due to symmetry. This allows us to simplify (4.12) as

∫
𝛺

𝜕𝑣
𝜕∘𝒙

(
𝜕𝑢
𝜕∘𝒙

)
𝑇

𝑑𝑆 = ∫
𝛺

𝜕𝑣
𝜕𝑿

⎛⎜⎜
⎝

𝜕∘𝒙
𝜕𝑿

𝑇 𝜕∘𝒙
𝜕𝑿

⎞⎟⎟
⎠

−1

⏟⏟⏟⏟⏟⏟⏟
𝒈(2×2)

(
𝜕𝑢
𝜕𝑿)

𝑇
𝑑𝑆,

which is the form implemented in qfunctions/bps/bp3sphere.h.

4.4.3 Multigrid

This example is located in the subdirectory examples/petsc. It investigates 𝑝-multigrid for the Poisson
problem, equation (4.13), using an unstructured high-order finite element discretization. All of the opera-
tors associated with the geometric multigrid are implemented in libCEED.

−∇ ⋅ (𝜅 (𝑥) ∇𝑥) = 𝑔 (𝑥) (4.13)

The Poisson operator can be specified with the decomposition given by the equation in figure Operator De-
composition, and the restriction and prolongation operators given by interpolation basis operations, 𝑩, and
𝑩𝑇, respectively, act on the different grid levels with corresponding element restrictions, 𝑮. These three op-
erations can be exploited by existing matrix-free multigrid software and smoothers. Preconditioning based
on the libCEED finite element operator decomposition is an ongoing area of research.

4.5 Compressible Navier-Stokes mini-app

This example is located in the subdirectory examples/fluids. It solves the time-dependentNavier-Stokes
equations of compressible gas dynamics in a static Eulerian three-dimensional frame using unstructured
high-order finite/spectral element spatial discretizations and explicit or implicit high-order time-stepping
(available in PETSc). Moreover, the Navier-Stokes example has been developed using PETSc, so that the
pointwise physics (defined at quadrature points) is separated from the parallelization and meshing con-
cerns.

4.5.1 Running the mini-app

The Navier-Stokes mini-app is controlled via command-line options. The following options are common
among all problem types:

Table 4.1: Common Runtime Options
Option Description Default value

-ceed CEED resource specifier /cpu/self/opt/blocked

-test_type Run in test mode and specify whether solution (solver) or turbulent statistics (turb_spanstats) output should be verified none

-compare_final_state_atol Test absolute tolerance 1E-11

-compare_final_state_filename Test filename
continues on next page

37

Table 4.1 – continued from previous page

Option Description Default value

-problem Problem to solve (advection, advection2d, density_current, euler_vortex, shocktube, blasius, channel, gaussian_wave, and taylor_green) density_current

-implicit Use implicit time integrator formulation
-degree Polynomial degree of tensor product basis (must be >= 1) 1

-q_extra Number of extra quadrature points 0

-ts_monitor_solution PETSc output format, such as cgns:output-%d.cgns (requires PETSc --download-cgns)
-ts_monitor_solution_interval Number of time steps between visualization output frames. 1

-viewer_cgns_batch_size Number of frames written per CGNS file if the CGNS file name includes a format specifier (%d). 20

-checkpoint_interval Number of steps between writing binary checkpoints. 0 has no output, -1 outputs final state only 10

-checkpoint_vtk Checkpoints include VTK (*.vtu) files for visualization. Consider -ts_monitor_solutioninstead. false

-viz_refine Use regular refinement for VTK visualization 0

-output_dir Output directory for binary checkpoints and VTK files (if enabled). .

-output_add_stepnum2bin Whether to add step numbers to output binary files false

-continue Continue from previous solution (input is step number of previous solution) 0

-continue_filename Path to solution binary file from which to continue from [output_dir]/ns-solution.bin

-continue_time_filename Path to time stamp binary file (only for legacy checkpoints) [output_dir]/ns-time.bin

-bc_wall Use wall boundary conditions on this list of faces
-wall_comps An array of constrained component numbers for wall BCs
-bc_slip_x Use slip boundary conditions, for the x component, on this list of faces
-bc_slip_y Use slip boundary conditions, for the y component, on this list of faces
-bc_slip_z Use slip boundary conditions, for the z component, on this list of faces
-bc_inflow Use inflow boundary conditions on this list of faces
-bc_outflow Use outflow boundary conditions on this list of faces
-bc_freestream Use freestream boundary conditions on this list of faces
-ts_monitor_turbulence_spanstats_collect_interval Number of timesteps between statistics collection 1

-ts_monitor_turbulence_spanstats_viewer Sets the PetscViewer for the statistics file writing, such as cgns:output-%d.cgns (requires PETSc --download-cgns). Also turns the statistics collection on.
-ts_monitor_turbulence_spanstats_viewer_interval Number of timesteps between statistics file writing (-1means only at end of run) -1

-ts_monitor_turbulence_spanstats_viewer_cgns_batch_size Number of frames written per CGNS file if the CGNS file name includes a format specifier (%d). 20

-ts_monitor_wall_force Viewer for the force on each no-slip wall, e.g., ascii:force.csv:ascii_csv to write a CSV file.
-mesh_transform Transform the mesh, usually for an initial box mesh. none

-snes_view View PETSc SNES nonlinear solver configuration
-log_view View PETSc performance log
-help View comprehensive information about run-time options

For the case of a square/cubic mesh, the list of face indices to be used with -bc_wall, bc_inflow,
bc_outflow, bc_freestream and/or -bc_slip_x, -bc_slip_y, and -bc_slip_z are:

Table 4.2: 2D Face ID Labels
PETSc Face Name Cartesian direction Face ID

faceMarkerBottom -z 1
faceMarkerRight +x 2
faceMarkerTop +z 3
faceMarkerLeft -x 4

38

Table 4.3: 3D Face ID Labels
PETSc Face Name Cartesian direction Face ID

faceMarkerBottom -z 1
faceMarkerTop +z 2
faceMarkerFront -y 3
faceMarkerBack +y 4
faceMarkerRight +x 5
faceMarkerLeft -x 6

4.5.1.1 Boundary conditions

Boundary conditions for compressible viscous flows are notoriously tricky. Here we offer some recommen-
dations

Inflow

If in a regionwhere the flow velocity is known (e.g., away from viscous walls), use bc_freestream, which
solves a Riemann problem and can handle inflow and outflow (simultaneously and dynamically). It is stable
and the least reflective boundary condition for acoustics.

If near a viscous wall, you may want a specified inflow profile. Use bc_inflow and see Blasius boundary
layer and discussion of synthetic turbulence generation for ways to analytically generate developed inflow
profiles. These conditions may be either weak or strong, with the latter specifying velocity and temperature
as essential boundary conditions and evaluating a boundary integral for themass flux. The strong approach
gives sharper resolution of velocity structures. We have described the primitive variable formulation here;
the conservative variants are similar, but not equivalent.

Outflow

If you know the complete exterior state, bc_freestream is the least reflective boundary condition, but is
disruptive to viscous flow structures. If thermal anomalies must exit the domain, the Riemann solver must
resolve the contact wave to avoid reflections. The default Riemann solver, HLLC, is sufficient in this regard
while the simpler HLL converts thermal structures exiting the domain into grid-scale reflecting acoustics.

If acoustic reflections are not a concern and/or the flow is impacted by walls or interior structures that you
wish to resolve to near the boundary, choose bc_outflow. This condition (with default outflow_type:
riemann) is stable for both inflow and outflow, so can be used in areas that have recirculation and lateral
boundaries in which the flow fluctuates.

The simpler bc_outflow variant, outflow_type: pressure, requires that the flow be a strict outflow
(or the problem becomes ill-posed and the solver will diverge). In our experience, riemann is slightly less
reflective but produces similar flows in cases of strict outflow. The pressure variant is retained to facilitate
comparison with other codes, such as PHASTA-C, but we recommend riemann for general use.

39

Periodicity

PETSc provides two ways to specify periodicity:

1. Topological periodicity, in which the donor and receiver dofs are the same, obtained using:

dm_plex:

shape: box

box_faces: 10,12,4

box_bd: none,none,periodic

The coordinates for such cases are stored as a new field with special cell-based indexing to enable wrapping
through the boundary. This choice of coordinates prevents evaluating boundary integrals that cross the
periodicity, such as for the outflow Riemann problem in the presence of spanwise periodicity.

2. Isoperiodicity, in which the donor and receiver dofs are distinct in local vectors. This is obtained using
zbox, as in:

dm_plex:

shape: zbox

box_faces: 10,12,4

box_bd: none,none,periodic

Isoperiodicity enables standard boundary integrals, and is recommended for general use. At the time of this
writing, it only supports one direction of periodicity. The zbox method uses Z-ordering to construct the
mesh in parallel and provide an adequate initial partition, which makes it higher performance and avoids
needing a partitioning package.

4.5.1.2 Advection

For testing purposes, there is a reduced mode for pure advection, which holds density 𝜌 and momentum
density 𝜌𝒖 constant while advecting “total energy density” 𝐸. These are available in 2D and 3D.

2D advection

For the 2D advection problem, the following additional command-line options are available:

Table 4.4: Advection2D Runtime Options
Option Description Default

value
Unit

-rc Characteristic radius of thermal bubble 1000 m

-units_meter 1 meter in scaled length units 1E-2

-units_second 1 second in scaled time units 1E-2

-units_kilogram 1 kilogram in scaled mass units 1E-6

-strong_form Strong (1) or weak/integrated by parts (0) residual 0

-stab Stabilization method (none, su, or supg) none

-CtauS Scale coefficient for stabilization tau (nondimensional) 0

-wind_type Wind type in Advection (rotation or translation) rotation

-wind_transla-
tion

Constant wind vector when -wind_type transla-
tion

1,0,0

-E_wind Total energy of inflowwindwhen -wind_type trans-
lation

1E6 J

40

https://en.wikipedia.org/wiki/Z-order_curve

An example of the rotationmode can be run with:

./navierstokes -problem advection2d -dm_plex_box_faces 20,20 -dm_plex_box_lower 0,0 -

↪dm_plex_box_upper 1000,1000 -bc_wall 1,2,3,4 -wall_comps 4 -wind_type rotation -

↪implicit -stab supg

and the translationmode with:

./navierstokes -problem advection2d -dm_plex_box_faces 20,20 -dm_plex_box_lower 0,0 -

↪dm_plex_box_upper 1000,1000 -units_meter 1e-4 -wind_type translation -wind_

↪translation 1,-.5 -bc_inflow 1,2,3,4

Note the lengths in -dm_plex_box_upper are given in meters, and will be nondimensionalized according
to -units_meter.

3D advection

For the 3D advection problem, the following additional command-line options are available:

Table 4.5: Advection3D Runtime Options
Option Description Default

value
Unit

-rc Characteristic radius of thermal bubble 1000 m

-units_meter 1 meter in scaled length units 1E-2

-units_second 1 second in scaled time units 1E-2

-units_kilogram 1 kilogram in scaled mass units 1E-6

-strong_form Strong (1) or weak/integrated by parts (0) residual 0

-stab Stabilization method (none, su, or supg) none

-CtauS Scale coefficient for stabilization tau (nondimensional) 0

-wind_type Wind type in Advection (rotation or translation) rotation

-wind_transla-
tion

Constant wind vector when -wind_type transla-
tion

1,0,0

-E_wind Total energy of inflow wind when -wind_type
translation

1E6 J

-bubble_type sphere (3D) or cylinder (2D) sphere

-bubble_conti-
nuity

smooth, back_sharp, or thick smooth

An example of the rotationmode can be run with:

./navierstokes -problem advection -dm_plex_box_faces 10,10,10 -dm_plex_dim 3 -dm_plex_

↪box_lower 0,0,0 -dm_plex_box_upper 8000,8000,8000 -bc_wall 1,2,3,4,5,6 -wall_comps␣

↪4 -wind_type rotation -implicit -stab su

and the translationmode with:

./navierstokes -problem advection -dm_plex_box_faces 10,10,10 -dm_plex_dim 3 -dm_plex_

↪box_lower 0,0,0 -dm_plex_box_upper 8000,8000,8000 -wind_type translation -wind_

↪translation .5,-1,0 -bc_inflow 1,2,3,4,5,6

41

4.5.1.3 Inviscid Ideal Gas

Isentropic Euler vortex

For the Isentropic Vortex problem, the following additional command-line options are available:

Table 4.6: Isentropic Vortex Runtime Options
Option Description Default value Unit

-center Location of vortex center (lx,ly,lz)/2 (m,m,m)

-units_meter 1 meter in scaled length units 1E-2

-units_second 1 second in scaled time units 1E-2

-mean_velocity Background velocity vector (1,1,0)

-vortex_strength Strength of vortex < 10 5

-c_tau Stabilization constant 0.5

This problem can be run with:

./navierstokes -problem euler_vortex -dm_plex_box_faces 20,20,1 -dm_plex_box_lower 0,

↪0,0 -dm_plex_box_upper 1000,1000,50 -dm_plex_dim 3 -bc_inflow 4,6 -bc_outflow 3,5 -

↪bc_slip_z 1,2 -mean_velocity .5,-.8,0.

Sod shock tube

For the Shock Tube problem, the following additional command-line options are available:

Table 4.7: Shock Tube Runtime Options
Option Description Default value Unit

-units_meter 1 meter in scaled length units 1E-2

-units_second 1 second in scaled time units 1E-2

-yzb Use YZB discontinuity capturing none

-stab Stabilization method (none, su, or supg) none

This problem can be run with:

./navierstokes -problem shocktube -yzb -stab su -bc_slip_z 3,4 -bc_slip_y 1,2 -bc_

↪wall 5,6 -dm_plex_dim 3 -dm_plex_box_lower 0,0,0 -dm_plex_box_upper 1000,100,100 -

↪dm_plex_box_faces 200,1,1 -units_second 0.1

4.5.1.4 Newtonian viscosity, Ideal Gas

For the Density Current, Channel, and Blasius problems, the following common command-line options are
available:

Table 4.8: Newtonian Ideal Gas problems Runtime Options
Option Description Default value Unit

-units_meter 1 meter in scaled length units 1

-units_second 1 second in scaled time units 1

continues on next page

42

Table 4.8 – continued from previous page

Option Description Default value Unit

-units_kilogram 1 kilogram in scaled mass units 1

-units_Kelvin 1 Kelvin in scaled temperature units 1

-stab Stabilization method (none, su, or supg) none

-c_tau Stabilization constant, 𝑐𝜏 0.5

-Ctau_t Stabilization time constant, 𝐶𝑡 1.0

-Ctau_v Stabilization viscous constant, 𝐶𝑣 36, 60, 128 for degree = 1, 2, 3

-Ctau_C Stabilization continuity constant, 𝐶𝑐 1.0

-Ctau_M Stabilization momentum constant, 𝐶𝑚 1.0

-Ctau_E Stabilization energy constant, 𝐶𝐸 1.0

-cv Heat capacity at constant volume 717 J/(kg K)

-cp Heat capacity at constant pressure 1004 J/(kg K)

-gravity Gravitational acceleration vector 0,0,0 m/s^2

-lambda Stokes hypothesis second viscosity coefficient -2/3

-mu Shear dynamic viscosity coefficient 1.8e-5 Pa s

-k Thermal conductivity 0.02638 W/(m K)

-newtonian_unit_tests Developer option to test properties false boolean
-state_var State variables to solve solution with. conservative (𝜌, 𝜌𝒖, 𝜌𝑒) or primitive (𝑃, 𝒖, 𝑇) conservative string
-idl_decay_time Characteristic timescale of the pressure deviance decay. The timestep is good starting point -1 (disabled) s

-idl_start Start of IDL in the x direction 0 m

-idl_length Length of IDL in the positive x direction 0 m

-sgs_model_type Type of subgrid stress model to use. Currently only data_driven is available none string
-sgs_model_dd_leakyrelu_alpha Slope parameter for Leaky ReLU activation function. 0 corresponds to normal ReLU 0
-sgs_model_dd_parameter_dir Path to directory with data-driven model parameters (weights, biases, etc.) ./dd_sgs_parameters string
-diff_filter_monitor Enable differential filter TSMonitor false boolean
-diff_filter_grid_based_width Use filter width based on the grid size false boolean
-diff_filter_width_scaling Anisotropic scaling for filter width in wall-aligned coordinates (snz) 1,1,1 m

-diff_filter_kernel_scaling Scaling to make differential kernel size equivalent to other filter kernels 0.1 m^2

-diff_filter_wall_damping_function Damping function to use at the wall for anisotropic filtering (none, van_driest) none string
-diff_filter_wall_damping_constant Constant for the wall-damping function. 𝐴+ for van_driest damping function. 25
-diff_filter_friction_length Friction length associated with the flow, 𝛿𝜈. Used in wall-damping functions 0 m

Gaussian Wave

The Gaussian wave problem has the following command-line options in addition to the Newtonian Ideal
Gas options:

Table 4.9: Gaussian Wave Runtime Options
Option Description Default

value
Unit

-freestream_riemann Riemann solver for boundaries (HLL or
HLLC)

hllc

-freestream_velocity Freestream velocity vector 0,0,0 m/s

-freestream_tempera-
ture

Freestream temperature 288 K

-freestream_pressure Freestream pressure 1.01e5 Pa

-epicenter Coordinates of center of perturbation 0,0,0 m

-amplitude Amplitude of the perturbation 0.1

-width Width parameter of the perturbation 0.002 m

43

This problem can be run with the gaussianwave.yaml file via:

./navierstokes -options_file gaussianwave.yaml

problem: gaussian_wave

mu: 0 # Effectively solving Euler momentum equations

dm_plex_box_faces: 40,40,1

dm_plex_box_upper: 1,1,0.025

dm_plex_box_lower: 0,0,0

dm_plex_dim: 3

bc_freestream: 4,6,3,5

bc_slip_z: 1,2

reference:

temperature: 0.25

pressure: 71.75

freestream:

riemann: hll # causes thermal bubble to reflect acoustic waves from boundary

velocity: 2,2,0

epicenter: 0.33,0.75,0

amplitude: 2

width: 0.05

ts:

adapt_type: none

max_steps: 100

dt: 2e-3

type: alpha

alpha_radius: 0.5

#monitor_solution: cgns:nwave.cgns

#monitor_solution_interval: 10

implicit: true

stab: supg

state_var: primitive

snes_rtol: 1e-4

ksp_rtol: 1e-2

snes_lag_jacobian: 20

snes_lag_jacobian_persists:

Demonstrate acoustic wave dissipation using an internal damping layer

idl:

decay_time: 2e-3

start: 0

length: .25

44

Vortex Shedding - Flow past Cylinder

The vortex shedding, flow past cylinder problem has the following command-line options in addition to the
Newtonian Ideal Gas options:

Table 4.10: Vortex Shedding Runtime Options
Option Description Default value Unit

-freestream_velocity Freestream velocity vector 0,0,0 m/s

-freestream_temperature Freestream temperature 288 K

-freestream_pressure Freestream pressure 1.01e5 Pa

The initial condition is taken from -reference_temperature and -reference_pressure. To run this
problem, first generate a mesh:

$ make -C examples/fluids/meshes

Then run by building the executable and running:

$ make build/fluids-navierstokes

$ mpiexec -n 6 build/fluids-navierstokes -options_file examples/fluids/vortexshedding.

↪yaml -{ts,snes}_monitor_

The vortex shedding period is roughly 5.6 and this problem runs until time 100 (2000 time steps). The above
runwrites a file named force.csv (see ts_monitor_wall_force in vortexshedding.yaml), which
can be postprocessed by running to create a figure showing lift and drag coefficients over time.

$ python examples/fluids/postprocess/vortexshedding.py

problem: newtonian

Time Stepping Settings

implicit: true

stab: supg

checkpoint_interval: 10

ts:

adapt_type: 'none'

type: alpha

dt: .05

max_time: 100

alpha_radius: 0.5

monitor_solution: cgns:vortexshedding-q3-g1-n08.cgns

monitor_solution_interval: 5

monitor_wall_force: ascii:force.csv:ascii_csv

Reference state is used for the initial condition, zero velocity by default.

This choice of pressure and temperature have a density of 1 and acoustic speed

of 100. With velocity 1, this flow is Mach 0.01.

reference:

pressure: 7143

temperature: 24.92

If the the outflow is placed close to the cylinder, this will recirculate cold

(continues on next page)

45

(continued from previous page)

fluid, demonstrating how the outflow BC is stable despite recirculation.

outflow:

temperature: 20

Freestream inherits reference state as default

freestream:

velocity: 1,0,0

Small gravity vector to break symmetry so shedding can start

g: 0,-.01,0

viscosity corresponds to Reynolds number 100

mu: 0.01

k: 14.34 # thermal conductivity, Pr = 0.71 typical of air

DM Settings:

degree: 3

dm_plex_filename: examples/fluids/meshes/cylinder-q1-n08.msh

Boundary Settings

bc_slip_z: 6

bc_wall: 5

bc_freestream: 1

bc_outflow: 2

bc_slip_y: 3,4

wall_comps: 1,2,3

Primitive variables are preferred at low Mach number

state_var: primitive

dm_view:

ts_monitor:

snes_lag_jacobian: 20

snes_lag_jacobian_persists:

#pmat_pbdiagonal:

#ksp_type: bcgsl

#pc_type: vpbjacobi

amat_type: shell

Density current

The Density Current problem has the following command-line options in addition to the Newtonian Ideal
Gas options:

46

Table 4.11: Density Current Runtime Options
Option Description Default

value
Unit

-cen-
ter

Location of bubble center (lx,ly,
lz)/2

(m,m,
m)

-dc_axis Axis of density current cylindrical anomaly, or (0,0,0) for spher-
ically symmetric

(0,0,0)

-rc Characteristic radius of thermal bubble 1000 m

-theta0 Reference potential temperature 300 K

-thetaC Perturbation of potential temperature -15 K

-P0 Atmospheric pressure 1E5 Pa

-N Brunt-Vaisala frequency 0.01 1/s

This problem can be run with:

./navierstokes -problem density_current -dm_plex_box_faces 16,1,8 -degree 1 -dm_plex_

↪box_lower 0,0,0 -dm_plex_box_upper 2000,125,1000 -dm_plex_dim 3 -rc 400. -bc_wall 1,

↪2,5,6 -wall_comps 1,2,3 -bc_slip_y 3,4 -mu 75

Channel flow

The Channel problem has the following command-line options in addition to the Newtonian Ideal Gas op-
tions:

Table 4.12: Channel Runtime Options
Option Description Default value Unit

-umax Maximum/centerline velocity of the flow 10 m/s

-theta0 Reference potential temperature 300 K

-P0 Atmospheric pressure 1E5 Pa

-body_force_scale Multiplier for body force (-1 for flow reversal) 1

This problem can be run with the channel.yaml file via:

./navierstokes -options_file channel.yaml

problem: 'channel'

mu: .01

umax: 40

implicit: true

ts:

type: 'beuler'

adapt_type: 'none'

dt: 5e-6

q_extra: 2

dm_plex_box_lower: 0,0,0

dm_plex_box_upper: .01,.01,.001

dm_plex_dim: 3

degree: 1

(continues on next page)

47

(continued from previous page)

dm_plex_box_faces: 10,10,1

bc_slip_z: 1,2

bc_wall: 3,4

wall_comps: 1,2,3

dm_plex_box_bd: 'periodic,none,none'

Blasius boundary layer

The Blasius problem has the following command-line options in addition to the Newtonian Ideal Gas op-
tions:

Table 4.13: Blasius Runtime Options
Option Description Default

value
Unit

-velocity_infinity Freestream velocity 40 m/s

-temperature_in-
finity

Freestream temperature 288 K

-temperature_wall Wall temperature 288 K

-delta0 Boundary layer height at the inflow 4.2e-3 m

-P0 Atmospheric pressure 1.01E5 Pa

-platemesh_mod-
ify_mesh

Whether to modify the mesh using the given options
below.

false

-platemesh_re-
fine_height

Height at which -platemesh_Ndelta number of el-
ements should refined into

5.9E-4 m

-platemesh_Ndelta Number of elements to keep below -platemesh_re-
fine_height

45

-platemesh_growth Growth rate of the elements in the refinement region 1.08

-platemesh_top_an-
gle

Downward angle of the top face of the domain. This
face serves as an outlet.

5 de-
grees

-platemesh_y_node_locs_pathPath to file with y node locations. If empty, will use
mesh warping instead.

""

-stg_use Whether to use STG for the inflow conditions false

-n_chebyshev Number of Chebyshev terms 20

-chebyshev_ Prefix for Chebyshev snes solve

This problem can be run with the blasius.yaml file via:

./navierstokes -options_file blasius.yaml

problem: 'blasius'

implicit: true

ts:

adapt_type: 'none'

type: 'beuler'

dt: 2e-6

max_time: 1.0e-3

#monitor_solution: cgns:blasius-%d.cgns

#monitor_solution_interval: 10

checkpoint_interval: 10

(continues on next page)

48

(continued from previous page)

Linear Settings:

degree: 1

dm_plex_box_faces: 40,60,1

mesh_transform: platemesh

platemesh_nDelta: 45

Quadratic Settings:

degree: 2

dm_plex_box_faces: 20,30,1

platemesh:

modify_mesh: true

nDelta: 22

growth: 1.1664 # 1.08^2

stab: 'supg'

dm_plex_box_lower: 0,0,0

dm_plex_box_upper: 4.2e-3,4.2e-3,5.e-5

dm_plex_dim: 3

Faces labeled 1=z- 2=z+ 3=y- 4=y+ 5=x+ 6=x-

bc_slip_z: 1,2

bc_wall: 3

wall_comps: 1,2,3

bc_inflow: 6

bc_outflow: 5,4

gravity: 0,0,0

stg:

use: false

inflow_path: "./STGInflow_blasius.dat"

mean_only: true

ts_monitor_turbulence_spanstats:

collect_interval: 1

viewer_interval: 5

viewer: cgns:stats-%d.cgns

viewer_cgns_batch_size: 1

STG Inflow for Flat Plate

Using the STG Inflow for the blasius problem adds the following command-line options:

49

Table 4.14: Blasius Runtime Options
Option Description Default value Unit

-stg_in-
flow_path

Path to the STGInflow file ./
STGInflow.
dat

-stg_rand_path Path to the STGRand file ./STGRand.
dat

-stg_alpha Growth rate of the wavemodes 1.01

-stg_u0 Convective velocity, 𝑈0 0.0 m/
s

-stg_mean_only Only impose the mean velocity (no fluctutations) false

-stg_strong Strongly enforce the STG inflow boundary condition false

-stg_fluctuat-
ing_IC

“Extrude” the fluctuations through the domain as an
initial condition

false

This problem can be run with the blasius.yaml file via:

./navierstokes -options_file blasius.yaml -stg_use true

Note the added -stg_use true flag This overrides the stg: use: false setting in the blasius.
yaml file, enabling the use of the STG inflow.

4.5.2 The Navier-Stokes equations

The mathematical formulation (from [SHJ91]) is given in what follows. The compressible Navier-Stokes
equations in conservative form are

𝜕𝜌
𝜕𝑡 + ∇ ⋅ 𝑼 = 0

𝜕𝑼
𝜕𝑡 + ∇ ⋅ (

𝑼 ⊗ 𝑼
𝜌 + 𝑃𝑰3 − 𝝈) − 𝜌𝒃 = 0

𝜕𝐸
𝜕𝑡 + ∇ ⋅ (

(𝐸 + 𝑃)𝑼
𝜌 − 𝒖 ⋅ 𝝈 − 𝑘∇𝑇) − 𝜌𝒃 ⋅ 𝒖 = 0 ,

(4.14)

where 𝝈 = 𝜇(∇𝒖+(∇𝒖)𝑇 +𝜆(∇ ⋅𝒖)𝑰3) is the Cauchy (symmetric) stress tensor, with 𝜇 the dynamic viscosity
coefficient, and 𝜆 = −2/3 the Stokes hypothesis constant. In equations (4.14), 𝜌 represents the volume
mass density, 𝑈 the momentum density (defined as 𝑼 = 𝜌𝒖, where 𝒖 is the vector velocity field), 𝐸 the total
energy density (defined as 𝐸 = 𝜌𝑒, where 𝑒 is the total energy including thermal and kinetic but not potential
energy), 𝑰3 represents the 3 × 3 identity matrix, 𝒃 is a body force vector (e.g., gravity vector 𝒈), 𝑘 the thermal
conductivity constant, 𝑇 represents the temperature, and 𝑃 the pressure, given by the following equation of
state

𝑃 = (𝑐𝑝/𝑐𝑣 − 1) (𝐸 − 𝑼 ⋅ 𝑼/(2𝜌)) , (4.15)

where 𝑐𝑝 is the specific heat at constant pressure and 𝑐𝑣 is the specific heat at constant volume (that define
𝛾 = 𝑐𝑝/𝑐𝑣, the specific heat ratio).

The system (4.14) can be rewritten in vector form

𝜕𝒒
𝜕𝑡 + ∇ ⋅ 𝑭(𝒒) − 𝑆(𝒒) = 0 , (4.16)

50

for the state variables 5-dimensional vector

𝒒 = ⎛⎜⎜⎜
⎝

𝜌
𝑼 ≡ 𝜌𝒖
𝐸 ≡ 𝜌𝑒

⎞⎟⎟⎟
⎠

← volume mass density
← momentum density
← energy density

where the flux and the source terms, respectively, are given by

𝑭(𝒒) = ⎛⎜⎜⎜
⎝

𝑼
(𝑼 ⊗ 𝑼)/𝜌 + 𝑃𝑰3

(𝐸 + 𝑃)𝑼/𝜌

⎞⎟⎟⎟
⎠⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑭adv

+ ⎛⎜⎜⎜
⎝

0
−𝝈

−𝒖 ⋅ 𝝈 − 𝑘∇𝑇

⎞⎟⎟⎟
⎠⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑭diff

,

𝑆(𝒒) = ⎛⎜⎜⎜
⎝

0
𝜌𝒃

𝜌𝒃 ⋅ 𝒖

⎞⎟⎟⎟
⎠

.

(4.17)

4.5.2.1 Finite Element Formulation (Spatial Discretization)

Let the discrete solution be

𝒒𝑁(𝒙, 𝑡)(𝑒) =
𝑃

∑
𝑘=1

𝜓𝑘(𝒙)𝒒(𝑒)
𝑘

with 𝑃 = 𝑝+1 the number of nodes in the element 𝑒. We use tensor-product bases𝜓𝑘𝑗𝑖 = ℎ𝑖(𝑋0)ℎ𝑗(𝑋1)ℎ𝑘(𝑋2).

To obtain a finite element discretization, we firstmultiply the strong form (4.16) by a test function 𝒗 ∈ 𝐻1(𝛺)
and integrate,

∫
𝛺

𝒗 ⋅ (
𝜕𝒒𝑁
𝜕𝑡 + ∇ ⋅ 𝑭(𝒒𝑁) − 𝑺(𝒒𝑁)) 𝑑𝑉 = 0 , ∀𝒗 ∈ 𝒱𝑝 ,

with 𝒱𝑝 = {𝒗(𝒙) ∈ 𝐻1(𝛺𝑒) | 𝒗(𝒙𝑒(𝑿)) ∈ 𝑃𝑝(𝑰), 𝑒 = 1, … , 𝑁𝑒} a mapped space of polynomials containing
at least polynomials of degree 𝑝 (with or without the higher mixed terms that appear in tensor product
spaces).

Integrating by parts on the divergence term, we arrive at the weak form,

∫
𝛺

𝒗 ⋅ (
𝜕𝒒𝑁
𝜕𝑡 − 𝑺(𝒒𝑁)) 𝑑𝑉 − ∫

𝛺
∇𝒗∶𝑭(𝒒𝑁) 𝑑𝑉

+ ∫
𝜕𝛺

𝒗 ⋅ 𝑭(𝒒𝑁) ⋅ ̂𝒏 𝑑𝑆 = 0 , ∀𝒗 ∈ 𝒱𝑝 ,
(4.18)

where 𝑭(𝒒𝑁) ⋅ ̂𝒏 is typically replaced with a boundary condition.

Note: The notation ∇𝒗∶𝑭 represents contraction over both fields and spatial dimensions while a single dot
represents contraction in just one, which should be clear from context, e.g., 𝒗 ⋅ 𝑺 contracts over fields while
𝑭 ⋅ ̂𝒏 contracts over spatial dimensions.

51

4.5.2.2 Time Discretization

For the time discretization, we use two types of time stepping schemes through PETSc.

Explicit time-stepping method

The following explicit formulation is solved with the adaptive Runge-Kutta-Fehlberg (RKF4-5) method by
default (any explicit time-stepping scheme available in PETSc can be chosen at runtime)

𝒒𝑛+1
𝑁 = 𝒒𝑛

𝑁 + 𝛥𝑡
𝑠

∑
𝑖=1

𝑏𝑖𝑘𝑖 ,

where

𝑘1 = 𝑓 (𝑡𝑛, 𝒒𝑛
𝑁)

𝑘2 = 𝑓 (𝑡𝑛 + 𝑐2𝛥𝑡, 𝒒𝑛
𝑁 + 𝛥𝑡(𝑎21𝑘1))

𝑘3 = 𝑓 (𝑡𝑛 + 𝑐3𝛥𝑡, 𝒒𝑛
𝑁 + 𝛥𝑡(𝑎31𝑘1 + 𝑎32𝑘2))

⋮

𝑘𝑖 = 𝑓 ⎛⎜⎜
⎝

𝑡𝑛 + 𝑐𝑖𝛥𝑡, 𝒒𝑛
𝑁 + 𝛥𝑡

𝑠
∑
𝑗=1

𝑎𝑖𝑗𝑘𝑗
⎞⎟⎟
⎠

and with

𝑓 (𝑡𝑛, 𝒒𝑛
𝑁) = −[∇ ⋅ 𝑭(𝒒𝑁)]𝑛 + [𝑆(𝒒𝑁)]𝑛 .

Implicit time-stepping method

This time stepping method which can be selected using the option -implicit is solved with Backward
Differentiation Formula (BDF) method by default (similarly, any implicit time-stepping scheme available in
PETSc can be chosen at runtime). The implicit formulation solves nonlinear systems for 𝒒𝑁:

𝒇 (𝒒𝑁) ≡ 𝒈(𝑡𝑛+1, 𝒒𝑁, ̇𝒒𝑁) = 0 , (4.19)

where the time derivative ̇𝒒𝑁 is defined by

̇𝒒𝑁(𝒒𝑁) = 𝛼𝒒𝑁 + 𝒛𝑁

in terms of 𝒛𝑁 from prior state and 𝛼 > 0, both of which depend on the specific time integration scheme
(backward difference formulas, generalized alpha, implicit Runge-Kutta, etc.). Each nonlinear system (4.19)
will correspond to aweak form, as explained below. In determining howdifficult a given problem is to solve,
we consider the Jacobian of (4.19),

𝜕𝒇
𝜕𝒒𝑁

=
𝜕𝒈

𝜕𝒒𝑁
+ 𝛼

𝜕𝒈
𝜕 ̇𝒒𝑁

.

The scalar “shift” 𝛼 scales inversely with the time step 𝛥𝑡, so small time steps result in the Jacobian being
dominated by the second term,which is a sort of “massmatrix”, and typicallywell-conditioned independent
of grid resolution with a simple preconditioner (such as Jacobi). In contrast, the first term dominates for
large time steps, with a condition number that grows with the diameter of the domain and polynomial
degree of the approximation space. Both terms are significant for time-accurate simulation and the setup
costs of strong preconditioners must be balanced with the convergence rate of Krylov methods using weak
preconditioners.

More details of PETSc’s time stepping solvers can be found in the TS User Guide.

52

https://petsc.org/release/docs/manual/ts/

4.5.2.3 Stabilization

We solve (4.18) using a Galerkin discretization (default) or a stabilized method, as is necessary for most
real-world flows.

Galerkin methods produce oscillations for transport-dominated problems (any time the cell Péclet num-
ber is larger than 1), and those tend to blow up for nonlinear problems such as the Euler equations and
(low-viscosity/poorly resolved) Navier-Stokes, in which case stabilization is necessary. Our formulation
follows [HST10], which offers a comprehensive review of stabilization and shock-capturing methods for
continuous finite element discretization of compressible flows.

• SUPG (streamline-upwind/Petrov-Galerkin)

In this method, the weighted residual of the strong form (4.16) is added to the Galerkin formulation
(4.18). The weak form for this method is given as

∫
𝛺

𝒗 ⋅ (
𝜕𝒒𝑁
𝜕𝑡 − 𝑺(𝒒𝑁)) 𝑑𝑉 − ∫

𝛺
∇𝒗∶𝑭(𝒒𝑁) 𝑑𝑉

+ ∫
𝜕𝛺

𝒗 ⋅ 𝑭(𝒒𝑁) ⋅ ̂𝒏 𝑑𝑆

+ ∫
𝛺

∇𝒗∶(
𝜕𝑭adv

𝜕𝒒) 𝝉 (
𝜕𝒒𝑁
𝜕𝑡 + ∇ ⋅ 𝑭 (𝒒𝑁) − 𝑺(𝒒𝑁)) 𝑑𝑉 = 0 , ∀𝒗 ∈ 𝒱𝑝

(4.20)

This stabilization technique can be selected using the option -stab supg.

• SU (streamline-upwind)

This method is a simplified version of SUPG (4.20) which is developed for debugging/comparison
purposes. The weak form for this method is

∫
𝛺

𝒗 ⋅ (
𝜕𝒒𝑁
𝜕𝑡 − 𝑺(𝒒𝑁)) 𝑑𝑉 − ∫

𝛺
∇𝒗∶𝑭(𝒒𝑁) 𝑑𝑉

+ ∫
𝜕𝛺

𝒗 ⋅ 𝑭(𝒒𝑁) ⋅ ̂𝒏 𝑑𝑆

+ ∫
𝛺

∇𝒗∶(
𝜕𝑭adv

𝜕𝒒) 𝝉∇ ⋅ 𝑭 (𝒒𝑁) 𝑑𝑉 = 0 , ∀𝒗 ∈ 𝒱𝑝

(4.21)

This stabilization technique can be selected using the option -stab su.

In both (4.21) and (4.20), 𝝉 ∈ ℝ5×5 (field indices) is an intrinsic time scalematrix. The SUPG technique and
the operator 𝜕𝑭adv

𝜕𝒒 (rather than its transpose) can be explained via an ansatz for subgrid state fluctuations
̃𝒒 = −𝝉𝒓 where 𝒓 is a strong form residual. The forward variational form can be readily expressed by

differentiating 𝑭adv of (4.17)

d𝑭adv(d𝒒; 𝒒) =
𝜕𝑭adv

𝜕𝒒 d𝒒

= ⎛⎜⎜⎜
⎝

d𝑼
(d𝑼 ⊗ 𝑼 + 𝑼 ⊗ d𝑼)/𝜌 − (𝑼 ⊗ 𝑼)/𝜌2 d𝜌 + d𝑃𝑰3
(𝐸 + 𝑃)d𝑼/𝜌 + (d𝐸 + d𝑃)𝑼/𝜌 − (𝐸 + 𝑃)𝑼/𝜌2 d𝜌

⎞⎟⎟⎟
⎠

,

where d𝑃 is defined by differentiating (4.15).

53

Stabilization scale 𝝉

A velocity vector 𝒖 can be pulled back to the reference element as 𝒖𝑿 = ∇𝒙𝑿 ⋅𝒖, with units of reference length
(non-dimensional) per second. To build intuition, consider a boundary layer element of dimension (1, 𝜖),
forwhich∇𝒙𝑿 = (2

2/𝜖). So a small normal component of velocitywill be amplified (by a factor of the aspect
ratio 1/𝜖) in this transformation. The ratio ‖𝒖‖/‖𝒖𝑿‖ is a covariant measure of (half) the element length in
the direction of the velocity. A contravariant measure of element length in the direction of a unit vector ̂𝒏
is given by ‖(∇𝑿𝒙)𝑇 ̂𝒏‖. While ∇𝑿𝒙 is readily computable, its inverse ∇𝒙𝑿 is needed directly in finite element
methods and thus more convenient for our use. If we consider a parallelogram, the covariant measure is
larger than the contravariant measure for vectors pointing between acute corners and the opposite holds for
vectors between oblique corners.

The cell Péclet number is classically defined by Peℎ = ‖𝒖‖ℎ/(2𝜅) where 𝜅 is the diffusivity (units of 𝑚2/𝑠).
This can be generalized to arbitrary grids by defining the local Péclet number

Pe =
‖𝒖‖2

‖𝒖𝑿‖𝜅 . (4.22)

For scalar advection-diffusion, the stabilization is a scalar

𝜏 =
𝜉(Pe)
‖𝒖𝑿‖ , (4.23)

where 𝜉(Pe) = coth Pe − 1/Pe approaches 1 at large local Péclet number. Note that 𝜏 has units of time and,
in the transport-dominated limit, is proportional to element transit time in the direction of the propagating
wave. For advection-diffusion, 𝑭(𝑞) = 𝒖𝑞, and thus the SU stabilization term is

∇𝑣 ⋅ 𝒖𝜏𝒖 ⋅ ∇𝑞 = ∇𝑿𝑣 ⋅ (𝒖𝑿𝜏𝒖𝑿) ⋅ ∇𝑿𝑞. (4.24)

where the term in parentheses is a rank-1 diffusivity tensor that has been pulled back to the reference ele-
ment. See [HST10] equations 15-17 and 34-36 for further discussion of this formulation.

For the Navier-Stokes and Euler equations, [WJD03] defines a 5 × 5 diagonal stabilization
diag(𝜏𝑐, 𝜏𝑚, 𝜏𝑚, 𝜏𝑚, 𝜏𝐸) consisting of

1. continuity stabilization 𝜏𝑐

2. momentum stabilization 𝜏𝑚

3. energy stabilization 𝜏𝐸

The Navier-Stokes code in this example uses the following formulation for 𝜏𝑐, 𝜏𝑚, 𝜏𝐸:

𝜏𝑐 =
𝐶𝑐ℱ

8𝜌 trace(𝒈)

𝜏𝑚 =
𝐶𝑚
ℱ

𝜏𝐸 =
𝐶𝐸
ℱ𝑐𝑣

ℱ =
√
√√
⎷

𝜌2 ⎡⎢
⎣
(

2𝐶𝑡
𝛥𝑡)

2
+ 𝒖 ⋅ (𝒖 ⋅ 𝒈) + 𝐶𝑣𝜇2‖𝒈‖2

𝐹
⎤⎥
⎦

where 𝒈 = ∇𝒙𝑿 ⋅ ∇𝒙𝑿 is the metric tensor and ‖ ⋅ ‖𝐹 is the Frobenius norm. This formulation is currently not
available in the Euler code.

54

In the Euler code, we follow [HST10] in defining a 3 × 3 diagonal stabilization according to spatial criterion
2 (equation 27) as follows.

𝜏𝑖𝑖 = 𝑐𝜏
2𝜉(Pe)

(𝜆max abs)𝑖‖∇𝑥𝑖
𝑿‖ (4.25)

where 𝑐𝜏 is a multiplicative constant reported to be optimal at 0.5 for linear elements, ̂𝒏𝑖 is a unit vector in
direction 𝑖, and ∇𝑥𝑖

= ̂𝒏𝑖 ⋅ ∇𝒙 is the derivative in direction 𝑖. The flux Jacobian 𝜕𝑭adv
𝜕𝒒 ⋅ ̂𝒏𝑖 in each direction 𝑖 is a

5 × 5 matrix with spectral radius (𝜆max abs)𝑖 equal to the fastest wave speed. The complete set of eigenvalues
of the Euler flux Jacobian in direction 𝑖 are (e.g., [Tor09])

𝛬𝑖 = [𝑢𝑖 − 𝑎, 𝑢𝑖, 𝑢𝑖, 𝑢𝑖, 𝑢𝑖 + 𝑎], (4.26)

where 𝑢𝑖 = 𝒖 ⋅ ̂𝒏𝑖 is the velocity component in direction 𝑖 and 𝑎 = √𝛾𝑃/𝜌 is the sound speed for ideal gasses.
Note that the first and last eigenvalues represent nonlinear acousticwaveswhile themiddle three are linearly
degenerate, carrying a contact wave (temperature) and transverse components of momentum. The fastest
wave speed in direction 𝑖 is thus

𝜆max abs(
𝜕𝑭adv

𝜕𝒒 ⋅ ̂𝒏𝑖) = |𝑢𝑖| + 𝑎 (4.27)

Note that this wave speed is specific to ideal gases as 𝛾 is an ideal gas parameter; other equations of state
will yield a different acoustic wave speed.

Currently, this demo provides three types of problems/physical models that can be selected at run time
via the option -problem. Differential Filtering, the problem of the transport of energy in a uniform vector
velocity field, Isentropic Vortex, the exact solution to the Euler equations, and the so called Gaussian Wave
problem.

4.5.2.4 Subgrid Stress Modeling

When a fluid simulation is under-resolved (the smallest length scale resolved by the grid ismuch larger than
the smallest physical scale, the Kolmogorov length scale), this is mathematically interpreted as filtering
the Navier-Stokes equations. This is known as large-eddy simulation (LES), as only the “large” scales of
turbulence are resolved. This filtering operation results in an extra stress-like term, 𝝉𝑟, representing the
effect of unresolved (or “subgrid” scale) structures in the flow. Denoting the filtering operation by ⋅, the
LES governing equations are:

𝜕𝒒
𝜕𝑡 + ∇ ⋅ 𝑭(𝒒) − 𝑆(𝒒) = 0 , (4.28)

where

𝑭(𝒒) = 𝑭(𝒒) + ⎛⎜⎜⎜
⎝

0
𝝉𝑟

𝒖 ⋅ 𝝉𝑟

⎞⎟⎟⎟
⎠

(4.29)

More details on deriving the above expression, filtering, and large eddy simulation can be found in [Pop00].
To close the problem, the subgrid stress must be defined. For implicit LES, the subgrid stress is set to zero
and the numerical properties of the discretized system are assumed to account for the effect of subgrid scale
structures on the filtered solution field. For explicit LES, it is defined by a subgrid stress model.

55

https://en.wikipedia.org/wiki/Kolmogorov_microscales

Data-driven SGS Model

The data-driven SGS model implemented here uses a small neural network to compute the SGS term. The
SGS tensor is calculated at nodes using an 𝐿2 projection of the velocity gradient and grid anisotropy tensor,
and then interpolated onto quadrature points. More details regarding the theoretical background of the
model can be found in [PJE22a] and [PJE22b].

The neural network itself consists of 1 hidden layer and 20 neurons, using Leaky ReLU as its activation
function. The slope parameter for the Leaky ReLU function is set via -sgs_model_dd_leakyrelu_al-
pha. The outputs of the network are assumed to be normalized on a min-max scale, so they must be
rescaled by the original min-max bounds. Parameters for the neural network are put into files in a directory
found in -sgs_model_dd_parameter_dir. These files store the network weights (w1.dat and w2.
dat), biases (b1.dat and b2.dat), and scaling parameters (OutScaling.dat). The first row of each
files stores the number of columns and rows in each file. Note that the weight coefficients are assumed to
be in column-major order. This is done to keep consistent with legacy file compatibility.

Note: The current data-driven model parameters are not accurate and are for regression testing only.

4.5.2.5 Differential Filtering

There is the option to filter the solution field using differential filtering. This was first proposed in [Ger86],
using an inverse Hemholtz operator. The strong form of the differential equation is

𝜙 − ∇ ⋅ (𝛽(𝑫𝜟)2∇𝜙) = 𝜙

for 𝜙 the scalar solution field we want to filter, 𝜙 the filtered scalar solution field, 𝜟 ∈ ℝ3×3 a symmetric
positive-definite rank 2 tensor defining the width of the filter, 𝑫 is the filter width scaling tensor (also a rank
2 SPD tensor), and 𝛽 is a kernel scaling factor on the filter tensor. This admits the weak form:

∫
𝛺

(𝑣𝜙 + 𝛽∇𝑣 ⋅ (𝑫𝜟)2∇𝜙) 𝑑𝛺 −
(((((((((((
∫

𝜕𝛺
𝛽𝑣∇𝜙 ⋅ (𝑫𝜟)2 ̂𝒏 𝑑𝜕𝛺 = ∫

𝛺
𝑣𝜙 , ∀𝑣 ∈ 𝒱𝑝

The boundary integral resulting from integration-by-parts is crossed out, as we assume that (𝑫𝜟)2 = 𝟎 ⇔
𝜙 = 𝜙 at boundaries (this is reasonable at walls, but for convenience elsewhere).

Filter width tensor, Δ

For homogenous filtering, 𝜟 is defined as the identity matrix.

Note: It is common to denote a filter width dimensioned relative to the radial distance of the filter kernel.
Note hereweuse the filter diameter instead, as that feelsmore natural (albeitmathematically less convenient).
For example, under this definition a box filter would be defined as:

𝐵(𝛥; 𝒓) =
⎧{
⎨{⎩

1 ‖𝒓‖ ≤ 𝛥/2
0 ‖𝒓‖ > 𝛥/2

For inhomogeneous anisotropic filtering, we use the finite element grid itself to define 𝜟. This is set via
-diff_filter_grid_based_width. Specifically, we use the filter width tensor defined in [PJE22b]. For
finite element grids, the filter width tensor is most conveniently defined by 𝜟 = 𝒈−1/2 where 𝒈 = ∇𝒙𝑿 ⋅ ∇𝒙𝑿
is the metric tensor.

56

Filter width scaling tensor, 𝑫

Thefilterwidth tensor𝜟, be it defined fromgrid based sources or just the homogenous filtering, can be scaled
anisotropically. The coefficients for that anisotropic scaling are given by-diff_filter_width_scaling,
denoted here by 𝑐1, 𝑐2, 𝑐3. The definition for 𝑫 then becomes

𝑫 = ⎡⎢⎢
⎣

𝑐1 0 0
0 𝑐2 0
0 0 𝑐3

⎤⎥⎥
⎦

In the case of 𝜟 being defined as homogenous, 𝑫𝜟 means that 𝑫 effectively sets the filter width.

The filtering at the wall may also be damped, to smoothly meet the 𝜙 = 𝜙 boundary condition at the wall.
The selected damping function for this is the van Driest function [VD56]:

𝜁 = 1 − exp(−
𝑦+

𝐴+)

where 𝑦+ is the wall-friction scaled wall-distance (𝑦+ = 𝑦𝑢𝜏/𝜈 = 𝑦/𝛿𝜈), 𝐴+ is some wall-friction scaled
scale factor, and 𝜁 is the damping coefficient. For this implementation, we assume that 𝛿𝜈 is constant across
the wall and is defined by -diff_filter_friction_length. 𝐴+ is defined by -diff_filter_damp-
ing_constant.

To apply this scalar damping coefficient to the filterwidth tensor, we construct thewall-damping tensor from
it. The construction implemented currently limits damping in the wall parallel directions to be no less than
the original filter width defined by 𝜟. The wall-normal filter width is allowed to be damped to a zero filter
width. It is currently assumed that the second component of the filter width tensor is in the wall-normal
direction. Under these assumptions, 𝑫 then becomes:

𝑫 = ⎡⎢⎢
⎣

max(1, 𝜁𝑐1) 0 0
0 𝜁𝑐2 0
0 0 max(1, 𝜁𝑐3)

⎤⎥⎥
⎦

Filter kernel scaling, β

While we define 𝑫𝜟 to be of a certain physical filter width, the actual width of the implied filter kernel is
quite larger than “normal” kernels. To account for this, we use 𝛽 to scale the filter tensor to the appropriate
size, as is done in [BJ16]. To match the “size” of a normal kernel to our differential kernel, we attempt to
have them match second order moments with respect to the prescribed filter width. To match the box and
Gaussian filters “sizes”, we use 𝛽 = 1/10 and 𝛽 = 1/6, respectively. 𝛽 can be set via -diff_filter_ker-
nel_scaling.

4.5.3 Advection

A simplified version of system (4.14), only accounting for the transport of total energy, is given by

𝜕𝐸
𝜕𝑡 + ∇ ⋅ (𝒖𝐸) = 0 , (4.30)

with 𝒖 the vector velocity field. In this particular test case, a blob of total energy (defined by a characteristic
radius 𝑟𝑐) is transported by two different wind types.

• Rotation

In this case, a uniform circular velocity field transports the blob of total energy. We have solved (4.30)
applying zero energy density 𝐸, and no-flux for 𝒖 on the boundaries.

57

• Translation

In this case, a background wind with a constant rectilinear velocity field, enters the domain and trans-
ports the blob of total energy out of the domain.

For the inflow boundary conditions, a prescribed 𝐸𝑤𝑖𝑛𝑑 is applied weakly on the inflow boundaries
such that the weak form boundary integral in (4.18) is defined as

∫
𝜕𝛺𝑖𝑛𝑓 𝑙𝑜𝑤

𝒗 ⋅ 𝑭(𝒒𝑁) ⋅ ̂𝒏 𝑑𝑆 = ∫
𝜕𝛺𝑖𝑛𝑓 𝑙𝑜𝑤

𝒗 𝐸𝑤𝑖𝑛𝑑 𝒖 ⋅ ̂𝒏 𝑑𝑆 ,

For the outflow boundary conditions, we have used the current values of 𝐸, following [PMK92] which
extends the validity of the weak form of the governing equations to the outflow instead of replacing
them with unknown essential or natural boundary conditions. The weak form boundary integral in
(4.18) for outflow boundary conditions is defined as

∫
𝜕𝛺𝑜𝑢𝑡𝑓 𝑙𝑜𝑤

𝒗 ⋅ 𝑭(𝒒𝑁) ⋅ ̂𝒏 𝑑𝑆 = ∫
𝜕𝛺𝑜𝑢𝑡𝑓 𝑙𝑜𝑤

𝒗 𝐸 𝒖 ⋅ ̂𝒏 𝑑𝑆 ,

4.5.4 Isentropic Vortex

Three-dimensional Euler equations, which are simplified and nondimensionalized version of system (4.14)
and account only for the convective fluxes, are given by

𝜕𝜌
𝜕𝑡 + ∇ ⋅ 𝑼 = 0

𝜕𝑼
𝜕𝑡 + ∇ ⋅ (

𝑼 ⊗ 𝑼
𝜌 + 𝑃𝑰3) = 0

𝜕𝐸
𝜕𝑡 + ∇ ⋅ (

(𝐸 + 𝑃)𝑼
𝜌) = 0 ,

(4.31)

Following the setup given in [ZZS11], the mean flow for this problem is 𝜌 = 1, 𝑃 = 1, 𝑇 = 𝑃/𝜌 = 1 (Specific
Gas Constant, 𝑅, is 1), and 𝒖 = (𝑢1, 𝑢2, 0) while the perturbation 𝛿𝒖, and 𝛿𝑇 are defined as

(𝛿𝑢1, 𝛿𝑢2) =
𝜖

2𝜋 𝑒0.5(1−𝑟2) (− ̄𝑦, ̄𝑥) ,

𝛿𝑇 = −
(𝛾 − 1) 𝜖2

8 𝛾 𝜋2 𝑒1−𝑟2 ,

where (̄𝑥, ̄𝑦) = (𝑥 − 𝑥𝑐, 𝑦 − 𝑦𝑐), (𝑥𝑐, 𝑦𝑐) represents the center of the domain, 𝑟2 = ̄𝑥2 + ̄𝑦2, and 𝜖 is the vortex
strength (𝜖 < 10). There is no perturbation in the entropy 𝑆 = 𝑃/𝜌𝛾 (𝛿𝑆 = 0).

4.5.5 Shock Tube

This test problem is based on Sod’s Shock Tube (from[sod]), a canonical test case for discontinuity capturing
in one dimension. For this problem, the three-dimensional Euler equations are formulated exactly as in the
Isentropic Vortex problem. The default initial conditions are 𝑃 = 1, 𝜌 = 1 for the driver section and 𝑃 = 0.1,
𝜌 = 0.125 for the driven section. The initial velocity is zero in both sections. Slip boundary conditions are
applied to the side walls and wall boundary conditions are applied at the end walls.

SU upwinding and discontinuity capturing have been implemented into the explicit timestepping operator
for this problem. Discontinuity capturing is accomplished using a modified version of the 𝑌𝑍𝛽 operator
described in [TS07]. This discontinuity capturing scheme involves the introduction of a dissipation term of
the form

∫
𝛺

𝜈𝑆𝐻𝑂𝐶𝐾∇𝒗∶∇𝒒𝑑𝑉

58

The shock capturing viscosity is implemented following the first formulation described in [TS07]. The char-
acteristic velocity 𝑢𝑐ℎ𝑎 is taken to be the acoustic speedwhile the reference density 𝜌𝑟𝑒𝑓 is just the local density.
Shock capturing viscosity is defined by the following

𝜈𝑆𝐻𝑂𝐶𝐾 = 𝜏𝑆𝐻𝑂𝐶𝐾𝑢2
𝑐ℎ𝑎

where,

𝜏𝑆𝐻𝑂𝐶𝐾 =
ℎ𝑆𝐻𝑂𝐶𝐾

2𝑢𝑐ℎ𝑎
⎛⎜
⎝

| ∇𝜌 | ℎ𝑆𝐻𝑂𝐶𝐾
𝜌𝑟𝑒𝑓

⎞⎟
⎠

𝛽

𝛽 is a tuning parameter set between 1 (smoother shocks) and 2 (sharper shocks. The parameter ℎ𝑆𝐻𝑂𝐶𝐾 is
a length scale that is proportional to the element length in the direction of the density gradient unit vector.
This density gradient unit vector is defined as ̂𝒋 = ∇𝜌

|∇𝜌| . The original formulation of Tezduyar and Senga
relies on the shape function gradient to define the element length scale, but this gradient is not available to
qFunctions in libCEED. To avoid this problem, ℎ𝑆𝐻𝑂𝐶𝐾 is defined in the current implementation as

ℎ𝑆𝐻𝑂𝐶𝐾 = 2 (𝐶𝑌𝑍𝐵 | 𝒑 |)−1

where

𝑝𝑘 = ̂𝑗𝑖
𝜕𝜉𝑖
𝑥𝑘

The constant 𝐶𝑌𝑍𝐵 is set to 0.1 for piecewise linear elements in the current implementation. Larger values
approaching unity are expected with more robust stabilization and implicit timestepping.

4.5.6 Gaussian Wave

This test case is taken/inspired by that presented in [MDGP+14]. It is intended to test
non-reflecting/Riemann boundary conditions. It’s primarily intended for Euler equations, but has
been implemented for the Navier-Stokes equations here for flexibility.

The problem has a perturbed initial condition and lets it evolve in time. The initial condition contains a
Gaussian perturbation in the pressure field:

𝜌 = 𝜌∞ (1 + 𝐴 exp(
−(̄𝑥2 + ̄𝑦2)

2𝜎2))

𝑼 = 𝑼∞

𝐸 =
𝑝∞

𝛾 − 1 (1 + 𝐴 exp(
−(̄𝑥2 + ̄𝑦2)

2𝜎2)) +
𝑼∞ ⋅ 𝑼∞

2𝜌∞
,

where 𝐴 and 𝜎 are the amplitude and width of the perturbation, respectively, and (̄𝑥, ̄𝑦) = (𝑥 − 𝑥𝑒, 𝑦 − 𝑦𝑒)
is the distance to the epicenter of the perturbation, (𝑥𝑒, 𝑦𝑒). The simulation produces a strong acoustic wave
and leaves behind a cold thermal bubble that advects at the fluid velocity.

The boundary conditions are freestream in the x and y directions. When using an HLL (Harten, Lax, van
Leer) Riemann solver [Tor09] (option -freestream_riemann hll), the acoustic waves exit the domain
cleanly, but when the thermal bubble reaches the boundary, it produces strong thermal oscillations that
become acoustic waves reflecting into the domain. This problem can be fixed using a more sophisticated
Riemann solver such as HLLC [Tor09] (option -freestream_riemann hllc, which is default), which is
a linear constant-pressure wave that transports temperature and transverse momentum at the fluid velocity.

59

4.5.7 Vortex Shedding - Flow past Cylinder

This test case, based on [SHJ91], is an example of using an externally providedmesh fromGmsh. A cylinder
with diameter 𝐷 = 1 is centered at (0, 0) in a computational domain −4.5 ≤ 𝑥 ≤ 15.5, −4.5 ≤ 𝑦 ≤ 4.5. We
solve this as a 3D problem with (default) one element in the 𝑧 direction. The domain is filled with an ideal
gas at rest (zero velocity) with temperature 24.92 and pressure 7143. The viscosity is 0.01 and thermal
conductivity is 14.34 to maintain a Prandtl number of 0.71, which is typical for air. At time 𝑡 = 0, this
domain is subjected to freestream boundary conditions at the inflow (left) and Riemann-type outflow on
the right, with exterior reference state at velocity (1, 0, 0) giving Reynolds number 100 and Mach number
0.01. A symmetry (adiabatic free slip) condition is imposed at the top and bottom boundaries (𝑦 = ±4.5)
(zero normal velocity component, zero heat-flux). The cylinder wall is an adiabatic (no heat flux) no-slip
boundary condition. As we evolve in time, eddies appear past the cylinder leading to a vortex shedding
known as the vortex street, with shedding period of about 6.

The Gmsh input file, examples/fluids/meshes/cylinder.geo is parametrized to facilitate experi-
menting with similar configurations. The Strouhal number (nondimensional shedding frequency) is sensi-
tive to the size of the computational domain and boundary conditions.

Forces on the cylinder walls are computed using the “reaction force” method, which is variationally con-
sistent with the volume operator. Given the force components 𝑭 = (𝐹𝑥, 𝐹𝑦, 𝐹𝑧) and surface area 𝑆 = 𝜋𝐷𝐿𝑧
where 𝐿𝑧 is the spanwise extent of the domain, we define the coefficients of lift and drag as

𝐶𝐿 =
2𝐹𝑦

𝜌∞𝑢2
∞𝑆

𝐶𝐷 =
2𝐹𝑥

𝜌∞𝑢2
∞𝑆

where 𝜌∞, 𝑢∞ are the freestream (inflow) density and velocity respectively.

4.5.8 Density Current

For this test problem (from [SWW+93]), we solve the full Navier-Stokes equations (4.14), for which a cold
air bubble (of radius 𝑟𝑐) drops by convection in a neutrally stratified atmosphere. Its initial condition is
defined in terms of the Exner pressure, 𝜋(𝒙, 𝑡), and potential temperature, 𝜃(𝒙, 𝑡), that relate to the state
variables via

𝜌 =
𝑃0

(𝑐𝑝 − 𝑐𝑣)𝜃(𝒙, 𝑡)𝜋(𝒙, 𝑡)
𝑐𝑣

𝑐𝑝−𝑐𝑣 ,

𝑒 = 𝑐𝑣𝜃(𝒙, 𝑡)𝜋(𝒙, 𝑡) + 𝒖 ⋅ 𝒖/2 + 𝑔𝑧 ,

where𝑃0 is the atmospheric pressure. For this problem,wehave used no-slip andnon-penetration boundary
conditions for 𝒖, and no-flux for mass and energy densities.

4.5.9 Channel

A compressible channel flow. Analytical solution given in [Whi99]:

𝑢1 = 𝑢max [1 − (
𝑥2
𝐻)

2
] 𝑢2 = 𝑢3 = 0

𝑇 = 𝑇𝑤 ⎡⎢
⎣
1 +

𝑃𝑟�̂�𝑐
3 {1 − (

𝑥2
𝐻)

4
}⎤⎥

⎦

𝑝 = 𝑝0 −
2𝜌0𝑢2

max𝑥1
𝑅𝑒𝐻𝐻

60

where 𝐻 is the channel half-height, 𝑢max is the center velocity, 𝑇𝑤 is the temperature at the wall, 𝑃𝑟 = 𝜇
𝑐𝑝𝜅 is

the Prandlt number, �̂�𝑐 = 𝑢2
max

𝑐𝑝𝑇𝑤
is the modified Eckert number, and 𝑅𝑒ℎ = 𝑢max𝐻

𝜈 is the Reynolds number.

Boundary conditions are periodic in the streamwise direction, and no-slip and non-penetration boundary
conditions at the walls. The flow is driven by a body force determined analytically from the fluid properties
and setup parameters 𝐻 and 𝑢max.

4.5.10 Flat Plate Boundary Layer

4.5.10.1 Laminar Boundary Layer - Blasius

Simulation of a laminar boundary layer flow, with the inflow being prescribed by a Blasius similarity so-
lution. At the inflow, the velocity is prescribed by the Blasius soution profile, density is set constant, and
temperature is allowed to float. Using weakT: true, density is allowed to float and temperature is set
constant. At the outlet, a user-set pressure is used for pressure in the inviscid flux terms (all other inviscid
flux terms use interior solution values). The wall is a no-slip, no-penetration, no-heat flux condition. The
top of the domain is treated as an outflow and is tilted at a downward angle to ensure that flow is always
exiting it.

4.5.10.2 Turbulent Boundary Layer

Simulating a turbulent boundary layer without modeling the turbulence requires resolving the turbulent
flow structures. These structures may be introduced into the simulations either by allowing a laminar
boundary layer naturally transition to turbulence, or imposing turbulent structures at the inflow. The latter
approach has been taken here, specifically using a synthetic turbulence generation (STG) method.

Synthetic Turbulence Generation (STG) Boundary Condition

We use the STG method described in [SSST14]. Below follows a re-description of the formulation to match
the present notation, and then a description of the implementation and usage.

Equation Formulation

𝒖(𝒙, 𝑡) = 𝒖(𝒙) + 𝑪(𝒙) ⋅ 𝒗′

𝒗′ = 2√3/2
𝑁

∑
𝑛=1

√𝑞𝑛(𝒙)𝝈𝑛 cos(𝜅𝑛𝒅𝑛 ⋅ ̂𝒙𝑛(𝒙, 𝑡) + 𝜙𝑛)

̂𝒙𝑛 = [(𝑥 − 𝑈0𝑡)max(2𝜅min/𝜅𝑛, 0.1), 𝑦, 𝑧]𝑇

Here, we define the number of wavemodes 𝑁, set of random numbers {𝝈𝑛, 𝒅𝑛, 𝜙𝑛}𝑁
𝑛=1, the Cholesky decom-

position of the Reynolds stress tensor 𝑪 (such that 𝑹 = 𝑪𝑪𝑇), bulk velocity 𝑈0, wavemode amplitude 𝑞𝑛,
wavemode frequency 𝜅𝑛, and 𝜅min = 0.5min𝒙(𝜅𝑒).

𝜅𝑒 =
2𝜋

min(2𝑑𝑤, 3.0𝑙𝑡)

where 𝑙𝑡 is the turbulence length scale, and 𝑑𝑤 is the distance to the nearest wall.

61

https://en.wikipedia.org/wiki/Blasius_boundary_layer
https://en.wikipedia.org/wiki/Blasius_boundary_layer

The set of wavemode frequencies is defined by a geometric distribution:

𝜅𝑛 = 𝜅min(1 + 𝛼)𝑛−1 , ∀𝑛 = 1, 2, ..., 𝑁

The wavemode amplitudes 𝑞𝑛 are defined by a model energy spectrum 𝐸(𝜅):

𝑞𝑛 =
𝐸(𝜅𝑛)𝛥𝜅𝑛

∑𝑁
𝑛=1 𝐸(𝜅𝑛)𝛥𝜅𝑛

, 𝛥𝜅𝑛 = 𝜅𝑛 − 𝜅𝑛−1

𝐸(𝜅) =
(𝜅/𝜅𝑒)4

[1 + 2.4(𝜅/𝜅𝑒)2]17/6 𝑓𝜂𝑓cut

𝑓𝜂 = exp [−(12𝜅/𝜅𝜂)2] , 𝑓cut = exp⎛⎜
⎝

− [
4max(𝜅 − 0.9𝜅cut, 0)

𝜅cut
]

3
⎞⎟
⎠

𝜅𝜂 represents turbulent dissipation frequency, and is given as 2𝜋(𝜈3/𝜀)−1/4 with 𝜈 the kinematic viscosity
and 𝜀 the turbulent dissipation. 𝜅cut approximates the effective cutoff frequency of the mesh (viewing the
mesh as a filter on solution over 𝛺) and is given by:

𝜅cut =
2𝜋

2min{[max(ℎ𝑦, ℎ𝑧, 0.3ℎmax) + 0.1𝑑𝑤], ℎmax}

The enforcement of the boundary condition is identical to the blasius inflow; it weakly enforces velocity,
with the option of weakly enforcing either density or temperature using the the -weakT flag.

Initialization Data Flow

Data flow for initializing function (which creates the context data struct) is given below:

62

Context Data

Create Context Function

User Input

STGRand.dat

STGInflow.dat

Calc

CalcCalc

Copy

Copy

Copy

Copy

Copy

Copy

Calc

Calc

y

RN Set

C_ij

U0

k^n

ubar

l_t

eps

k_e

N

U0RN Set

y

l_t

eps

R_ij

ubar

This is done once at runtime. The spatially-varying terms are then evaluated at each quadrature point
on-the-fly, either by interpolation (for 𝑙𝑡, 𝜀, 𝐶𝑖𝑗, and 𝒖) or by calculation (for 𝑞𝑛).

63

The STGInflow.dat file is a table of values at given distances from the wall. These values are then inter-
polated to a physical location (node or quadrature point). It has the following format:

[Total number of locations] 14

[d_w] [u_1] [u_2] [u_3] [R_11] [R_22] [R_33] [R_12] [R_13] [R_23] [sclr_1] [sclr_2]␣

↪[l_t] [eps]

where each [] item is a number in scientific notation (ie. 3.1415E0), and sclr_1 and sclr_2 are
reserved for turbulence modeling variables. They are not used in this example.

The STGRand.dat file is the table of the random number set, {𝝈𝑛, 𝒅𝑛, 𝜙𝑛}𝑁
𝑛=1. It has the format:

[Number of wavemodes] 7

[d_1] [d_2] [d_3] [phi] [sigma_1] [sigma_2] [sigma_3]

The following table is presented to help clarify the dimensionality of the numerous terms in the STG formu-
lation.

Math Label 𝑓 (𝒙)? 𝑓 (𝑛)?
{𝝈𝑛, 𝒅𝑛, 𝜙𝑛}𝑁

𝑛=1 RN Set No Yes
𝒖 ubar Yes No
𝑈0 U0 No No
𝑙𝑡 l_t Yes No
𝜀 eps Yes No
𝑹 R_ij Yes No
𝑪 C_ij Yes No
𝑞𝑛 q^n Yes Yes
{𝜅𝑛}𝑁

𝑛=1 k^n No Yes
ℎ𝑖 h_i Yes No
𝑑𝑤 d_w Yes No

Internal Damping Layer (IDL)

The STG inflow boundary condition creates large amplitude acoustic waves. We use an internal damping
layer (IDL) to damp them out without disrupting the synthetic structures developing into natural turbulent
structures. This implementation was inspired from [SSST14], but is implemented here as a ramped volu-
metric forcing term, similar to a sponge layer (see 8.4.2.4 in [Col23] for example). It takes the following
form:

𝑆(𝒒) = −𝜎(𝒙)
𝜕𝒒
𝜕𝒀 ∣

𝒒
𝒀 ′

where 𝒀 ′ = [𝑃 − 𝑃ref, 𝟎, 0]𝑇, and 𝜎(𝒙) is a linear ramp starting at -idl_start with length -idl_length
and an amplitude of inverse -idl_decay_rate. The damping is defined in terms of a pressure-primitive
anomaly 𝒀 ′ converted to conservative source using 𝜕𝒒/𝜕𝒀|𝒒, which is linearized about the current flow state.
𝑃ref is defined via the -reference_pressure flag.

64

4.5.10.3 Meshing

The flat plate boundary layer example has custom meshing features to better resolve the flow when using a
generated box mesh. These meshing features modify the nodal layout of the default, equispaced box mesh
and are enabled via -mesh_transform platemesh. One of those is tilting the top of the domain, allow-
ing for it to be a outflow boundary condition. The angle of this tilt is controlled by -platemesh_top_an-
gle.

The primary meshing feature is the ability to grade the mesh, providing better resolution near the wall.
There are twomethods to do this; algorithmically, or specifying the node locations via a file. Algorithmically,
a base node distribution is defined at the inlet (assumed to bemin(𝑥)) and then linearly stretched/squeezed
to match the slanted top boundary condition. Nodes are placed such that -platemesh_Ndelta elements
are within -platemesh_refine_height of the wall. They are placed such that the element height
matches a geometric growth ratio defined by -platemesh_growth. The remaining elements are then
distributed from -platemesh_refine_height to the top of the domain linearly in logarithmic space.

Alternatively, a file may be specified containing the locations of each node. The file should be newline
delimited, with the first line specifying the number of points and the rest being the locations of the nodes.
The node locations used exactly at the inlet (assumed to be min(𝑥)) and linearly stretched/squeezed to
match the slanted top boundary condition. The file is specified via -platemesh_y_node_locs_path. If
this flag is given an empty string, then the algorithmic approach will be performed.

4.5.11 Taylor-Green Vortex

This problem is really just an initial condition, the Taylor-Green Vortex:

𝑢 = 𝑉0 sin(̂𝑥) cos(̂𝑦) sin(̂𝑧)
𝑣 = −𝑉0 cos(̂𝑥) sin(̂𝑦) sin(̂𝑧)
𝑤 = 0

𝑝 = 𝑝0 +
𝜌0𝑉2

0
16 (cos(2 ̂𝑥) + cos(2 ̂𝑦)) (cos(2 ̂𝑧) + 2)

𝜌 =
𝑝

𝑅𝑇0

where ̂𝑥 = 2𝜋𝑥/𝐿 for 𝐿 the length of the domain in that specific direction. This coordinate modification is
done to transform a given grid onto a domain of 𝑥, 𝑦, 𝑧 ∈ [0, 2𝜋).

This initial condition is traditionally given for the incompressible Navier-Stokes equations. The reference
state is selected using the -reference_{velocity,pressure,temperature} flags (Euclidean norm
of -reference_velocity is used for 𝑉0).

4.6 Solid mechanics mini-app

This example is located in the subdirectory examples/solids. It solves the steady-state static momentum
balance equations using unstructured high-order finite/spectral element spatial discretizations. As for the
Compressible Navier-Stokes mini-app case, the solid mechanics elasticity example has been developed using
PETSc, so that the pointwise physics (defined at quadrature points) is separated from the parallelization
and meshing concerns.

In this mini-app, we consider three formulations used in solid mechanics applications: linear elasticity,
Neo-Hookean hyperelasticity at small strain, and Neo-Hookean hyperelasticity at finite strain. We provide
the strong andweak forms of static balance of linear momentum in the small strain and finite strain regimes.
The stress-strain relationship (constitutive law) for each of the material models is provided. Due to the

65

https://en.wikipedia.org/wiki/Taylor%E2%80%93Green_vortex

nonlinearity of material models in Neo-Hookean hyperelasticity, the Newton linearization of the material
models is provided.

Note: Linear elasticity and small-strain hyperelasticity can both by obtained from the finite-strain hyperelas-
tic formulation by linearization of geometric and constitutive nonlinearities. The effect of these linearizations
is sketched in the diagram below, where 𝝈 and 𝝐 are stress and strain, respectively, in the small strain regime,
while 𝑺 and 𝑬 are their finite-strain generalizations (second Piola-Kirchoff tensor andGreen-Lagrange strain
tensor, respectively) defined in the initial configuration, and C is a linearized constitutive model.

Finite Strain Hyperelastic
⏞𝑺(𝑬) constitutive−−−−−−−−→

linearization

St. Venant-Kirchoff
⏞𝑺 = C𝑬

geometric↓↓↓↓
𝑬→𝝐
𝑺→𝝈

𝑬→𝝐
𝑺→𝝈

↓↓↓↓geometric

𝝈(𝝐)⏟
Small Strain Hyperelastic

constitutive−−−−−−−−→
linearization

𝝈 = C𝝐⏟
Linear Elastic

(4.32)

4.6.1 Running the mini-app

The elasticity mini-app is controlled via command-line options, the following of which are mandatory.

Table 4.15: Mandatory Runtime Options
Option Description

-mesh [filename] Path to mesh file in any format supported by PETSc.
-degree [int] Polynomial degree of the finite element basis
-E [real] Young’s modulus, 𝐸 > 0
-nu [real] Poisson’s ratio, 𝜈 < 0.5
-bc_clamp [int list] List of face sets on which to displace by -bc_clamp_[facenum-

ber]_translate [x,y,z] and/or bc_clamp_[facenum-
ber]_rotate [rx,ry,rz,c_0,c_1]. Note: The default for a
clamped face is zero displacement. All displacement is with respect to
the initial configuration.

-bc_traction [int
list]

List of face sets on which to set traction boundary conditions with the
traction vector -bc_traction_[facenumber] [tx,ty,tz]

Note: This solver can use any mesh format that PETSc’s DMPlex can read (Exodus, Gmsh, Med, etc.). Our
tests have primarily been using Exodus meshes created using CUBIT; sample meshes used for the example
runs suggested here can be found in this repository. Note that many mesh formats require PETSc to be
configured appropriately; e.g., --download-exodusii for Exodus support.

Consider the specific example of the mesh seen below:

66

https://en.wikipedia.org/wiki/Young%27s_modulus
https://en.wikipedia.org/wiki/Poisson%27s_ratio
https://cubit.sandia.gov/
https://github.com/jeremylt/ceedSampleMeshes

With the sidesets defined in the figure, we provide here an example of a minimal set of command line
options:

./elasticity -mesh [.exo file] -degree 4 -E 1e6 -nu 0.3 -bc_clamp 998,999 -bc_clamp_

↪998_translate 0,-0.5,1

In this example, we set the left boundary, face set 999, to zero displacement and the right boundary, face set
998, to displace 0 in the 𝑥 direction, −0.5 in the 𝑦, and 1 in the 𝑧.

As an alternative to specifying a mesh with -mesh, the user may use a DMPlex box mesh by
specifying -dm_plex_box_faces [int list], -dm_plex_box_upper [real list], and
-dm_plex_box_lower [real list].

As an alternative example exploiting -dm_plex_box_faces, we consider a 4 x 4 x 4 mesh where es-
sential (Drichlet) boundary condition is placed on all sides. Sides 1 through 6 are rotated around 𝑥-axis:

./elasticity -problem FSInitial-NH1 -E 1 -nu 0.3 -num_steps 40 -snes_linesearch_type␣

↪cp -dm_plex_box_faces 4,4,4 -bc_clamp 1,2,3,4,5,6 -bc_clamp_1_rotate 0,0,1,0,.3 -bc_

↪clamp_2_rotate 0,0,1,0,.3 -bc_clamp_3_rotate 0,0,1,0,.3 -bc_clamp_4_rotate 0,0,1,0,.

↪3 -bc_clamp_5_rotate 0,0,1,0,.3 -bc_clamp_6_rotate 0,0,1,0,.3

Note: If the coordinates for a particular side of a mesh are zero along the axis of rotation, it may appear
that particular side is clamped zero.

On each boundary node, the rotation magnitude is computed: theta = (c_0 + c_1 * cx) * load-
Incrementwhere cx = kx * x + ky * y + kz * z, with kx, ky, kz are normalized values.

The command line options just shown are the minimum requirements to run the mini-app, but additional
options may also be set as follows

67

Table 4.16: Additional Runtime Options
Option Description Default value

-ceed CEED resource specifier /cpu/self

-q_extra Number of extra quadrature points 0

-test Run in test mode
-problem Problem to solve (Linear, SS-NH, FSInitial-NH1,

etc.)
Linear

-forcing Forcing term option (none, constant, or mms) none

-forcing_vec Forcing vector 0,-1,0

-multigrid Multigrid coarsening to use (logarithmic, uniform or
none)

logarithmic

-nu_smoother
[real]

Poisson’s ratio for multigrid smoothers, 𝜈 < 0.5

-num_steps Number of load increments for continuation method 1 if Linear else
10

-view_soln Output solution at each load increment for viewing
-view_final_soln Output solution at final load increment for viewing
-snes_view View PETSc SNES nonlinear solver configuration
-log_view View PETSc performance log
-output_dir Output directory .

-help View comprehensive information about run-time options

To verify the convergence of the linear elasticity formulation on a given mesh with the method of manufac-
tured solutions, run:

./elasticity -mesh [mesh] -degree [degree] -nu [nu] -E [E] -forcing mms

This option attempts to recover a known solution from an analytically computed forcing term.

4.6.1.1 On algebraic solvers

This mini-app is configured to use the following Newton-Krylov-Multigrid method by default.

• Newton-type methods for the nonlinear solve, with the hyperelasticity models globalized using load
increments.

• Preconditioned conjugate gradients to solve the symmetric positive definite linear systems arising at
each Newton step.

• Preconditioning via 𝑝-version multigrid coarsening to linear elements, with algebraic multigrid
(PETSc’s GAMG) for the coarse solve. The default smoother uses degree 3 Chebyshev with Jacobi pre-
conditioning. (Lower degree is often faster, albeit less robust; try -outer_mg_levels_ksp_max_it
2, for example.) Application of the linear operators for all levels with degree 𝑝 > 1 is performed
matrix-free using analytic Newton linearization, while the lowest order 𝑝 = 1 operators are assembled
explicitly (using coloring at present).

Many related solvers can be implemented by composing PETSc command-line options.

68

4.6.1.2 Nondimensionalization

Quantities such as the Young’s modulus vary over many orders of magnitude, and thus can lead to poorly
scaled equations. One can nondimensionalize the model by choosing an alternate system of units, such that
displacements and residuals are of reasonable scales.

Table 4.17: (Non)dimensionalization options
Option Description Default value

-units_meter 1 meter in scaled length units 1

-units_second 1 second in scaled time units 1

-units_kilogram 1 kilogram in scaled mass units 1

For example, consider a problem involving metals subject to gravity.

Table 4.18: Characteristic units for metals
Quantity Typical value in SI units

Displacement, 𝒖 1 cm = 10−2 m
Young’s modulus, 𝐸 1011 Pa = 1011 kgm−1 s−2

Body force (gravity) on volume, ∫ 𝜌𝒈 5 ⋅ 104 kgm−2 s−2 ⋅ (volumem3)

One can choose units of displacement independently (e.g., -units_meter 100 to measure displacement
in centimeters), but 𝐸 and ∫ 𝜌𝒈 have the same dependence on mass and time, so cannot both be made of
order 1. This reflects the fact that both quantities are not equally significant for a given displacement size;
the relative significance of gravity increases as the domain size grows.

4.6.1.3 Diagnostic Quantities

Diagnostic quantities for viewing are provided when the command line options for visualization output,
-view_soln or -view_final_soln are used. The diagnostic quantities include displacement in the 𝑥
direction, displacement in the 𝑦 direction, displacement in the 𝑧 direction, pressure, trace𝑬, trace𝑬2, |𝐽|, and
strain energy density. The table below summarizes the formulations of each of these quantities for each
problem type.

Table 4.19: Diagnostic quantities
Quantity Linear Elastic-

ity
Hyperelasticity, Small Strain Hyperelasticity, Finite

Strain

Pressure 𝜆 trace 𝝐 𝜆 log trace 𝝐 𝜆 log 𝐽
Volumetric Strain trace 𝝐 trace 𝝐 trace𝑬
trace𝑬2 trace 𝝐2 trace 𝝐2 trace𝑬2

|𝐽| 1 + trace 𝝐 1 + trace 𝝐 |𝐽|
Strain Energy
Density

𝜆
2 (trace 𝝐)2 +
𝜇𝝐 ∶ 𝝐

𝜆(1+ trace 𝝐)(log(1+ trace 𝝐)−1)+
𝜇𝝐 ∶ 𝝐

𝜆
2 (log 𝐽)2 + 𝜇 trace𝑬 −
𝜇 log 𝐽

69

4.6.2 Linear Elasticity

The strong form of the static balance of linear momentum at small strain for the three-dimensional linear
elasticity problem is given by [Hug12]:

∇ ⋅ 𝝈 + 𝒈 = 𝟎 (4.33)

where 𝝈 and 𝒈 are stress and forcing functions, respectively. We multiply (4.33) by a test function 𝒗 and
integrate the divergence term by parts to arrive at the weak form: find 𝒖 ∈ 𝒱 ⊂ 𝐻1(𝛺) such that

∫
𝛺

∇𝒗∶𝝈 𝑑𝑉 − ∫
𝜕𝛺

𝒗 ⋅ (𝝈 ⋅ ̂𝒏) 𝑑𝑆 − ∫
𝛺

𝒗 ⋅ 𝒈 𝑑𝑉 = 0, ∀𝒗 ∈ 𝒱, (4.34)

where 𝝈 ⋅ ̂𝒏|𝜕𝛺 is replaced by an applied force/traction boundary condition written in terms of the initial
configuration. When inhomogeneous Dirichlet boundary conditions are present, 𝒱 is an affine space that
satisfies those boundary conditions.

4.6.2.1 Constitutive modeling

In their most general form, constitutive models define 𝝈 in terms of state variables. In the model taken into
consideration in the present mini-app, the state variables are constituted by the vector displacement field 𝒖,
and its gradient ∇𝒖. We begin by defining the symmetric (small/infintesimal) strain tensor as

𝝐 =
1
2 (∇𝒖 + ∇𝒖𝑇) . (4.35)

This constitutivemodel 𝝈(𝝐) is a linear tensor-valued function of a tensor-valued input, but wewill consider
the more general nonlinear case in other models below. In these cases, an arbitrary choice of such a function
will generally not be invariant under orthogonal transformations and thus will not admissible as a physical
model must not depend on the coordinate system chosen to express it. In particular, given an orthogonal
transformation 𝑄, we desire

𝑄𝝈(𝝐)𝑄𝑇 = 𝝈(𝑄𝝐𝑄𝑇), (4.36)

which means that we can change our reference frame before or after computing 𝝈, and get the same result
either way. Constitutive relations in which 𝝈 is uniquely determined by 𝝐 while satisfying the invariance
property (4.36) are known as Cauchy elastic materials. Here, we define a strain energy density functional
𝛷(𝝐) ∈ ℝ and obtain the strain energy from its gradient,

𝝈(𝝐) =
𝜕𝛷
𝜕𝝐 . (4.37)

Note: The strain energy density functional cannot be an arbitrary function 𝛷(𝝐); it can only depend on
invariants, scalar-valued functions 𝛾 satisfying

𝛾(𝝐) = 𝛾(𝑄𝝐𝑄𝑇)

for all orthogonal matrices 𝑄.

For the linear elasticity model, the strain energy density is given by

𝜱 =
𝜆
2 (trace 𝝐)2 + 𝜇𝝐 ∶ 𝝐.

70

The constitutive law (stress-strain relationship) is therefore given by its gradient,

𝝈 = 𝜆(trace 𝝐)𝑰3 + 2𝜇𝝐,

where 𝑰3 is the 3 × 3 identity matrix, the colon represents a double contraction (over both indices of 𝝐), and
the Lamé parameters are given by

𝜆 =
𝐸𝜈

(1 + 𝜈)(1 − 2𝜈)

𝜇 =
𝐸

2(1 + 𝜈)

.

The constitutive law (stress-strain relationship) can also be written as

𝝈 = C ∶𝝐. (4.38)

For notational convenience, we express the symmetric second order tensors 𝝈 and 𝝐 as vectors of length 6
using the Voigt notation. Hence, the fourth order elasticity tensor C (also known as elastic moduli tensor or
material stiffness tensor) can be represented as

C =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

𝜆 + 2𝜇 𝜆 𝜆
𝜆 𝜆 + 2𝜇 𝜆
𝜆 𝜆 𝜆 + 2𝜇

𝜇
𝜇

𝜇

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

. (4.39)

Note that the incompressible limit 𝜈 → 1
2 causes 𝜆 → ∞, and thus C becomes singular.

4.6.3 Hyperelasticity at Small Strain

The strong and weak forms given above, in (4.33) and (4.34), are valid for Neo-Hookean hyperelasticity at
small strain. However, the strain energy density differs and is given by

𝜱 = 𝜆(1 + trace 𝝐)(log(1 + trace 𝝐) − 1) + 𝜇𝝐 ∶ 𝝐.

As above, we have the corresponding constitutive law given by

𝝈 = 𝜆 log(1 + trace 𝝐)𝑰3 + 2𝜇𝝐 (4.40)

where 𝝐 is defined as in (4.35).

4.6.3.1 Newton linearization

Due to nonlinearity in the constitutive law,we require aNewton linearization of (4.40). Toderive theNewton
linearization, we begin by expressing the derivative,

d𝝈 =
𝜕𝝈
𝜕𝝐 ∶d𝝐

where

d𝝐 =
1
2 (∇d𝒖 + ∇d𝒖𝑇)

71

https://en.wikipedia.org/wiki/Voigt_notation

and

d∇𝒖 = ∇d𝒖.

Therefore,

d𝝈 = �̄� ⋅ trace d𝝐 ⋅ 𝑰3 + 2𝜇d𝝐 (4.41)

where we have introduced the symbol

�̄� =
𝜆

1 + 𝜖𝑣

where volumetric strain is given by 𝜖𝑣 = ∑𝑖 𝜖𝑖𝑖.

Equation (4.41) can be written in Voigt matrix notation as follows:

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

d𝜎11
d𝜎22
d𝜎33
d𝜎23
d𝜎13
d𝜎12

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

2𝜇 + �̄� �̄� �̄�
�̄� 2𝜇 + �̄� �̄�
�̄� �̄� 2𝜇 + �̄�

𝜇
𝜇

𝜇

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

d𝜖11
d𝜖22
d𝜖33

2d𝜖23
2d𝜖13
2d𝜖12

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

. (4.42)

4.6.4 Hyperelasticity at Finite Strain

In the total Lagrangian approach for the Neo-Hookean hyperelasticity problem, the discrete equations are
formulated with respect to the initial configuration. In this formulation, we solve for displacement 𝒖(𝑿)
in the reference frame 𝑿. The notation for elasticity at finite strain is inspired by [Hol00] to distinguish
between the current and initial configurations. As explained in the Common notation section, we denote by
capital letters the reference frame and by small letters the current one.

The strong form of the static balance of linear-momentum at finite strain (total Lagrangian) is given by:

−∇𝑋 ⋅ 𝑷 − 𝜌0𝒈 = 𝟎 (4.43)

where the 𝑋 in ∇𝑋 indicates that the gradient is calculated with respect to the initial configuration in the
finite strain regime. 𝑷 and 𝒈 are the first Piola-Kirchhoff stress tensor and the prescribed forcing function,
respectively. 𝜌0 is known as the initial mass density. The tensor 𝑷 is not symmetric, living in the current
configuration on the left and the initial configuration on the right.

𝑷 can be decomposed as

𝑷 = 𝑭 𝑺, (4.44)

where 𝑺 is the second Piola-Kirchhoff stress tensor, a symmetric tensor defined entirely in the initial configu-
ration, and 𝑭 = 𝑰3 + ∇𝑋𝒖 is the deformation gradient. Different constitutive models can define 𝑺.

4.6.4.1 Constitutive modeling

For the constitutive modeling of hyperelasticity at finite strain, we begin by defining two symmetric tensors
in the initial configuration, the right Cauchy-Green tensor

𝑪 = 𝑭𝑇𝑭

72

and the Green-Lagrange strain tensor

𝑬 =
1
2(𝑪 − 𝑰3) =

1
2(∇𝑋𝒖 + (∇𝑋𝒖)𝑇 + (∇𝑋𝒖)𝑇∇𝑋𝒖), (4.45)

the latter of which converges to the linear strain tensor 𝝐 in the small-deformation limit. The constitutive
models considered, appropriate for large deformations, express 𝑺 as a function of 𝑬, similar to the linear
case, shown in equation (4.38), which expresses the relationship between 𝝈 and 𝝐.

Recall that the strain energy density functional can only depend upon invariants. We will assume without
loss of generality that 𝑬 is diagonal and take its set of eigenvalues as the invariants. It is clear that there can be
only three invariants, and there aremany alternate choices, such as trace(𝑬), trace(𝑬2), |𝑬|, and combinations
thereof. It is common in the literature for invariants to be taken from 𝑪 = 𝑰3 + 2𝑬 instead of 𝑬.

For example, if we take the compressible Neo-Hookean model,

𝛷(𝑬) =
𝜆
2 (log 𝐽)2 − 𝜇 log 𝐽 +

𝜇
2 (trace𝑪 − 3)

=
𝜆
2 (log 𝐽)2 − 𝜇 log 𝐽 + 𝜇 trace𝑬,

(4.46)

where 𝐽 = |𝑭| = √|𝑪| is the determinant of deformation (i.e., volume change) and 𝜆 and 𝜇 are the Lamé
parameters in the infinitesimal strain limit.

To evaluate (4.37), we make use of

𝜕𝐽
𝜕𝑬 =

𝜕√|𝑪|
𝜕𝑬 = |𝑪|−1/2|𝑪|𝑪−1 = 𝐽𝑪−1,

where the factor of 1
2 has been absorbed due to 𝑪 = 𝑰3 + 2𝑬. Carrying through the differentiation (4.37) for

the model (4.46), we arrive at

𝑺 = 𝜆 log 𝐽𝑪−1 + 𝜇(𝑰3 − 𝑪−1). (4.47)

Tip: An equivalent form of (4.47) is

𝑺 = 𝜆 log 𝐽𝑪−1 + 2𝜇𝑪−1𝑬, (4.48)

which is more numerically stable for small 𝑬, and thus preferred for computation. Note that the product
𝑪−1𝑬 is also symmetric, and that 𝑬 should be computed using (4.45).

Similarly, it is preferable to compute log 𝐽 using log1p, especially in case of nearly incompressible materials.
To sketch this idea, suppose we have the 2 × 2 non-symmetric matrix 𝑭 = (1+𝑢0,0 𝑢0,1

𝑢1,0 1+𝑢1,1
). Then we compute

log 𝐽 = log1p(𝑢0,0 + 𝑢1,1 + 𝑢0,0𝑢1,1 − 𝑢0,1𝑢1,0), (4.49)

which gives accurate results even in the limit when the entries 𝑢𝑖,𝑗 are very small. For example, if 𝑢𝑖,𝑗 ∼ 10−8,
then naive computation of 𝑰3 − 𝑪−1 and log 𝐽 will have a relative accuracy of order 10−8 in double precision
and no correct digits in single precision. When using the stable choices above, these quantities retain full
𝜀machine relative accuracy.

73

Mooney-Rivlin model

While the Neo-Hookean model depends on just two scalar invariants, 𝕀1 = trace𝑪 = 3 + 2 trace𝑬 and 𝐽,
Mooney-Rivlin models depend on the additional invariant, 𝕀2 = 1

2(𝕀2
1 − 𝑪 ∶ 𝑪). A coupled Mooney-Rivlin

strain energy density (cf. Neo-Hookean (4.46)) is [Hol00]

𝛷(𝕀𝟙, 𝕀𝟚, 𝐽) =
𝜆
2 (log 𝐽)2 − (𝜇1 + 2𝜇2) log 𝐽 +

𝜇1
2 (𝕀𝟙 − 3) +

𝜇2
2 (𝕀𝟚 − 3). (4.50)

We differentiate 𝛷 as in the Neo-Hookean case (4.47) to yield the second Piola-Kirchoff tensor,

𝑺 = 𝜆 log 𝐽𝑪−1 − (𝜇1 + 2𝜇2)𝑪−1 + 𝜇1𝑰3 + 𝜇2(𝕀𝟙𝑰3 − 𝑪)
= (𝜆 log 𝐽 − 𝜇1 − 2𝜇2)𝑪−1 + (𝜇1 + 𝜇2𝕀1)𝑰3 − 𝜇2𝑪,

(4.51)

where we have used
𝜕𝕀𝟙
𝜕𝑬 = 2𝑰3,

𝜕𝕀𝟚
𝜕𝑬 = 2𝕀1𝑰3 − 2𝑪,

𝜕 log 𝐽
𝜕𝑬 = 𝑪−1. (4.52)

This is a common model for vulcanized rubber, with a shear modulus (defined for the small-strain limit) of
𝜇1 + 𝜇2 that should be significantly smaller than the first Lamé parameter 𝜆.

Mooney-Rivlin strain energy comparison

We apply traction to a block and plot integrated strain energy 𝛷 as a function of the loading paramater.

import altair as alt

import pandas as pd

def source_path(rel):

import os

return os.path.join(os.path.dirname(os.environ["DOCUTILSCONFIG"]), rel)

nh = pd.read_csv(source_path("examples/solids/tests-output/NH-strain.csv"))

nh["model"] = "Neo-Hookean"

nh["parameters"] = "E=2.8, nu=0.4"

mr = pd.read_csv(source_path("examples/solids/tests-output/MR-strain.csv"))

mr["model"] = "Mooney-Rivlin; Neo-Hookean equivalent"

mr["parameters"] = "mu_1=1, mu_2=0, nu=.4"

mr1 = pd.read_csv(source_path("examples/solids/tests-output/MR-strain1.csv"))

mr1["model"] = "Mooney-Rivlin"

mr1["parameters"] = "mu_1=0.5, mu_2=0.5, nu=.4"

df = pd.concat([nh, mr, mr1])

highlight = alt.selection_point(

on = "mouseover",

nearest = True,

fields=["model", "parameters"],

)

base = alt.Chart(df).encode(

alt.X("increment"),

alt.Y("energy", scale=alt.Scale(type="sqrt")),

alt.Color("model"),

alt.Tooltip(("model", "parameters")),

opacity=alt.condition(highlight, alt.value(1), alt.value(.5)),

size=alt.condition(highlight, alt.value(2), alt.value(1)),

)

base.mark_point().add_params(highlight) + base.mark_line()

74

[graph]

Note: One can linearize (4.47) around 𝑬 = 0, for which 𝑪 = 𝑰3 + 2𝑬 → 𝑰3 and 𝐽 → 1 + trace𝑬, therefore
(4.47) reduces to

𝑺 = 𝜆(trace𝑬)𝑰3 + 2𝜇𝑬, (4.53)

which is the St. Venant-Kirchoff model (constitutive linearization without geometric linearization; see
(4.32)).

This model can be used for geometrically nonlinear mechanics (e.g., snap-through of thin structures), but
is inappropriate for large strain.

Alternatively, one can drop geometric nonlinearities, 𝑬 → 𝝐 and 𝑪 → 𝑰3, while retaining the nonlinear
dependence on 𝐽 → 1 + trace 𝝐, thereby yielding (4.40) (see (4.32)).

4.6.4.2 Weak form

We multiply (4.43) by a test function 𝒗 and integrate by parts to obtain the weak form for finite-strain hy-
perelasticity: find 𝒖 ∈ 𝒱 ⊂ 𝐻1(𝛺0) such that

∫
𝛺0

∇𝑋𝒗∶𝑷 𝑑𝑉 − ∫
𝛺0

𝒗 ⋅ 𝜌0𝒈 𝑑𝑉 − ∫
𝜕𝛺0

𝒗 ⋅ (𝑷 ⋅ �̂�) 𝑑𝑆 = 0, ∀𝒗 ∈ 𝒱, (4.54)

where 𝑷 ⋅ �̂�|𝜕𝛺 is replaced by any prescribed force/traction boundary condition written in terms of the
initial configuration. This equation contains material/constitutive nonlinearities in defining 𝑺(𝑬), as well
as geometric nonlinearities through 𝑷 = 𝑭 𝑺, 𝑬(𝑭), and the body force 𝒈, which must be pulled back from
the current configuration to the initial configuration. Discretization of (4.54) produces a finite-dimensional
system of nonlinear algebraic equations, which we solve using Newton-Raphson methods. One attractive
feature of Galerkin discretization is that we can arrive at the same linear system by discretizing the New-
ton linearization of the continuous form; that is, discretization and differentiation (Newton linearization)
commute.

4.6.4.3 Newton linearization

To derive a Newton linearization of (4.54), we begin by expressing the derivative of (4.44) in incremental
form,

d𝑷 =
𝜕𝑷
𝜕𝑭 ∶d𝑭 = d𝑭 𝑺 + 𝑭

𝜕𝑺
𝜕𝑬 ∶d𝑬⏟

d𝑺

(4.55)

where

d𝑬 =
𝜕𝑬
𝜕𝑭 ∶d𝑭 =

1
2(d𝑭𝑇𝑭 + 𝑭𝑇 d𝑭)

and d𝑭 = ∇𝑋 d𝒖. The quantity 𝜕𝑺/𝜕𝑬 is known as the incremental elasticity tensor, and is analogous to the
linear elasticity tensor C of (4.39). We now evaluate d𝑺 for the Neo-Hookean model (4.47),

d𝑺 =
𝜕𝑺
𝜕𝑬 ∶d𝑬 = 𝜆(𝑪−1 ∶d𝑬)𝑪−1 + 2(𝜇 − 𝜆 log 𝐽)𝑪−1 d𝑬 𝑪−1, (4.56)

where we have used

d𝑪−1 =
𝜕𝑪−1

𝜕𝑬 ∶d𝑬 = −2𝑪−1 d𝑬 𝑪−1.

75

Note: In the small-strain limit, 𝑪 → 𝑰3 and log 𝐽 → 0, thereby reducing (4.56) to the St. Venant-Kirchoff
model (4.53).

Newton linearization of Mooney-Rivlin

Similar to (4.56), we differentiate (4.51) using variational notation,

d𝑺 = 𝜆(𝑪−1 ∶d𝑬)𝑪−1

+ 2(𝜇1 + 2𝜇2 − 𝜆 log 𝐽)𝑪−1 d𝑬𝑪−1

+ 2𝜇2[trace(d𝑬)𝑰3 − d𝑬].
(4.57)

Note that this agrees with (4.56) if 𝜇1 = 𝜇, 𝜇2 = 0. Moving from Neo-Hookean to Mooney-Rivlin modifies
the second term and adds the third.

Cancellation vs symmetry

Some cancellation is possible (at the expense of symmetry) if we substitute (4.56) into (4.55),

d𝑷 = d𝑭 𝑺 + 𝜆(𝑪−1 ∶ d𝑬)𝑭−𝑇 + 2(𝜇 − 𝜆 log 𝐽)𝑭−𝑇 d𝑬 𝑪−1

= d𝑭 𝑺 + 𝜆(𝑭−𝑇 ∶ d𝑭)𝑭−𝑇 + (𝜇 − 𝜆 log 𝐽)𝑭−𝑇(𝑭𝑇 d𝑭 + d𝑭𝑇𝑭)𝑪−1

= d𝑭 𝑺 + 𝜆(𝑭−𝑇 ∶ d𝑭)𝑭−𝑇 + (𝜇 − 𝜆 log 𝐽)(d𝑭 𝑪−1 + 𝑭−𝑇 d𝑭𝑇𝑭−𝑇),
(4.58)

where we have exploited 𝑭𝑪−1 = 𝑭−𝑇 and

𝑪−1 ∶d𝑬 = 𝑪−1
𝐼𝐽 d𝑬𝐼𝐽 =

1
2𝑭−1

𝐼𝑘 𝑭−1
𝐽𝑘 (𝑭ℓ𝐼 d𝑭ℓ𝐽 + d𝑭ℓ𝐼𝑭ℓ𝐽)

=
1
2(𝛿ℓ𝑘𝑭−1

𝐽𝑘 d𝑭ℓ𝐽 + 𝛿ℓ𝑘𝑭−1
𝐼𝑘 d𝑭ℓ𝐼)

= 𝑭−1
𝐼𝑘 d𝑭𝑘𝐼 = 𝑭−𝑇 ∶d𝑭.

We prefer to compute with (4.56) because (4.58) is more expensive, requiring access to (non-symmetric)
𝑭−1 in addition to (symmetric) 𝑪−1 = 𝑭−1𝑭−𝑇, having fewer symmetries to exploit in contractions, and
being less numerically stable.

d𝑺 in index notation

It is sometimes useful to express (4.56) in index notation,

d𝑺𝐼𝐽 =
𝜕𝑺𝐼𝐽
𝜕𝑬𝐾𝐿

d𝑬𝐾𝐿

= 𝜆(𝑪−1
𝐾𝐿 d𝑬𝐾𝐿)𝑪−1

𝐼𝐽 + 2(𝜇 − 𝜆 log 𝐽)𝑪−1
𝐼𝐾 d𝑬𝐾𝐿𝑪−1

𝐿𝐽

= (𝜆𝑪−1
𝐼𝐽 𝑪−1

𝐾𝐿 + 2(𝜇 − 𝜆 log 𝐽)𝑪−1
𝐼𝐾 𝑪−1

𝐽𝐿)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
C𝐼𝐽𝐾𝐿

d𝑬𝐾𝐿 ,
(4.59)

where we have identified the effective elasticity tensor C = C𝐼𝐽𝐾𝐿. It is generally not desirable to store C,
but rather to use the earlier expressions so that only 3 × 3 tensors (most of which are symmetric) must be
manipulated. That is, given the linearization point 𝑭 and solution increment d𝑭 = ∇𝑋(d𝒖) (which we are
solving for in the Newton step), we compute d𝑷 via

76

1. recover 𝑪−1 and log 𝐽 (either stored at quadrature points or recomputed),

2. proceedwith 3×3matrix products as in (4.56) or the second line of (4.59) to computed𝑺while avoiding
computation or storage of higher order tensors, and

3. conclude by (4.55), where 𝑺 is either stored or recomputed from its definition exactly as in the nonlin-
ear residual evaluation.

Note that theNewton linearization of (4.54)may bewritten as aweak form for linear operators: findd𝒖 ∈ 𝒱0
such that

∫
𝛺0

∇𝑋𝒗∶d𝑷𝑑𝑉 = rhs, ∀𝒗 ∈ 𝒱0,

where d𝑷 is defined by (4.55) and (4.56), and 𝒱0 is the homogeneous space corresponding to 𝒱.

Note: The decision of whether to recompute or store functions of the current state 𝑭 depends on a roofline
analysis [WWP09, Brown10] of the computation and the cost of the constitutive model. For low-order
elements where flops tend to be in surplus relative to memory bandwidth, recomputation is likely to be
preferable, where as the opposite may be true for high-order elements. Similarly, analysis with a simple
constitutive model may see better performance while storing little or nothing while an expensive model
such as Arruda-Boyce [AB93], which contains many special functions, may be faster when using more
storage to avoid recomputation. In the case where complete linearization is preferred, note the symme-
try C𝐼𝐽𝐾𝐿 = C𝐾𝐿𝐼𝐽 evident in (4.59), thus C can be stored as a symmetric 6 × 6 matrix, which has 21 unique
entries. Along with 6 entries for 𝑺, this totals 27 entries of overhead compared to computing everything
from 𝑭. This compares with 13 entries of overhead for direct storage of {𝑺, 𝑪−1, log 𝐽}, which is sufficient for
the Neo-Hookean model to avoid all but matrix products.

4.6.5 Hyperelasticity in current configuration

In the preceeding discussion, all equations have been formulated in the initial configuration. This may feel
convenient in that the computational domain is clearly independent of the solution, but there are some
advantages to defining the equations in the current configuration.

1. Body forces (like gravity), traction, and contact are more easily defined in the current configuration.

2. Mesh quality in the initial configuration can be very bad for large deformation.

3. The required storage and numerical representation can be smaller in the current configuration.

Most of the benefit in case 3 can be attained solely by moving the Jacobian representation to the current
configuration [DPA+20], though residual evaluation may also be slightly faster in current configuration.
There are multiple commuting paths from the nonlinear weak form in initial configuration (4.54) to the
Jacobian weak form in current configuration (4.65). One may push forward to the current configuration
and then linearize or linearize in initial configuration and then push forward, as summarized below.

Initial Residual
⏞∇𝑋𝒗∶𝑭𝑺

push forward
−−−−−−−−→

Current Residual
⏞∇𝑥𝒗∶𝝉

linearize↓↓↓↓
d𝑭=∇𝑋 d𝒖
d𝑺(d𝑬)

d∇𝑥𝒗=−∇𝑥𝒗∇𝑥 d𝒖
d𝝉(d𝝐)

↓↓↓↓linearize

∇𝑋𝒗∶(d𝑭𝑺 + 𝑭d𝑺)⏟⏟⏟⏟⏟⏟⏟⏟⏟
Initial Jacobian

push forward
−−−−−−−−→ ∇𝑥𝒗∶(d𝝉 − 𝝉(∇𝑥 d𝒖)𝑇)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

Current Jacobian

(4.60)

We will follow both paths for consistency and because both intermediate representations may be useful for
implementation.

77

4.6.5.1 Push forward, then linearize

The first term of (4.54) can be rewritten in terms of the symmetric Kirchhoff stress tensor 𝝉 = 𝐽𝝈 = 𝑷𝑭𝑇 =
𝑭𝑺𝑭𝑇 as

∇𝑋𝒗∶𝑷 = ∇𝑋𝒗∶𝝉𝑭−𝑇 = ∇𝑋𝒗𝑭−1 ∶𝝉 = ∇𝑥𝒗∶𝝉

therefore, the weak form in terms of 𝝉 and ∇𝑥 with integral over 𝛺0 is

∫
𝛺0

∇𝑥𝒗∶𝝉 𝑑𝑉 − ∫
𝛺0

𝒗 ⋅ 𝜌0𝒈 𝑑𝑉 − ∫
𝜕𝛺0

𝒗 ⋅ (𝑷 ⋅ �̂�) 𝑑𝑆 = 0, ∀𝒗 ∈ 𝒱. (4.61)

Linearize in current configuration

To derive a Newton linearization of (4.61), first we define

∇𝑥 d𝒖 = ∇𝑋 d𝒖 𝑭−1 = d𝑭𝑭−1 (4.62)

and 𝝉 for Neo-Hookean materials as the push forward of (4.47)

𝝉 = 𝑭𝑺𝑭𝑇 = 𝜇(𝒃 − 𝑰3) + 𝜆 log 𝐽𝑰3, (4.63)

where 𝒃 = 𝑭𝑭𝑇, is the left Cauchy-Green tensor. Then by expanding the directional derivative of ∇𝑥𝒗∶𝝉, we
arrive at

d(∇𝑥𝒗∶𝝉) = d(∇𝑥𝒗)∶𝝉 + ∇𝑥𝒗∶d𝝉. (4.64)

The first term of (4.64) can be written as

d(∇𝑥𝒗)∶𝝉 = d(∇𝑋𝒗𝑭−1) ∶𝝉 = (∇𝑋(d𝒗)⏟
0

𝑭−1 + ∇𝑋𝒗d𝑭−1)∶𝝉

= (− ∇𝑋𝒗𝑭−1 d𝑭𝑭−1)∶𝝉 = (− ∇𝑥𝒗d𝑭𝑭−1)∶𝝉

= (− ∇𝑥𝒗∇𝑥 d𝒖)∶𝝉 = −∇𝑥𝒗∶𝝉(∇𝑥 d𝒖)𝑇 ,

where we have used d𝑭−1 = −𝑭−1 d𝑭𝑭−1 and (4.62). Using this and (4.64) in (4.61) yields the weak form
in the current configuration

∫
𝛺0

∇𝑥𝒗∶(d𝝉 − 𝝉(∇𝑥 d𝒖)𝑇) = rhs. (4.65)

In the following, we will sometimes make use of the incremental strain tensor in the current configuration,

d𝝐 ≡
1
2(∇𝑥 d𝒖 + (∇𝑥 d𝒖)𝑇).

Deriving d𝝉 for Neo-Hookean material

To derive a useful expression of d𝝉 for Neo-Hookean materials, we will use the representations

d𝒃 = d𝑭𝑭𝑇 + 𝑭d𝑭𝑇

= ∇𝑥 d𝒖 𝒃 + 𝒃 (∇𝑥 d𝒖)𝑇

= (∇𝑥 d𝒖)(𝒃 − 𝑰3) + (𝒃 − 𝑰3)(∇𝑥 d𝒖)𝑇 + 2d𝝐

78

and

d(log 𝐽) =
𝜕 log 𝐽

𝜕𝒃 ∶d𝒃 =
𝜕𝐽

𝐽𝜕𝒃 ∶d𝒃 =
1
2𝒃−1 ∶d𝒃

=
1
2𝒃−1 ∶(∇𝑥 d𝒖 𝒃 + 𝒃(∇𝑥 d𝒖)𝑇)

= trace(∇𝑥 d𝒖)
= trace d𝝐.

Substituting into (4.63) gives

d𝝉 = 𝜇d𝒃 + 𝜆 trace(d𝝐)𝑰3
= 2𝜇d𝝐 + 𝜆 trace(d𝝐)𝑰3 − 2𝜆 log 𝐽d𝝐⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑭d𝑺𝑭𝑇

+ (∇𝑥 d𝒖) (𝜇(𝒃 − 𝑰3) + 𝜆 log 𝐽𝑰3)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝝉

+ (𝜇(𝒃 − 𝑰3) + 𝜆 log 𝐽𝑰3)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝝉

(∇𝑥 d𝒖)𝑇,

(4.66)

where the final expression has been identified according to

d𝝉 = d(𝑭𝑺𝑭𝑇) = (∇𝑥 d𝒖)𝝉 + 𝑭d𝑺𝑭𝑇 + 𝝉(∇𝑥 d𝒖)𝑇.

Collecting terms, we may thus opt to use either of the two forms

d𝝉 − 𝝉(∇𝑥 d𝒖)𝑇 = (∇𝑥 d𝒖)𝝉 + 𝑭d𝑺𝑭𝑇

= (∇𝑥 d𝒖)𝝉 + 𝜆 trace(d𝝐)𝑰3 + 2(𝜇 − 𝜆 log 𝐽)d𝝐,
(4.67)

with the last line showing the especially compact representation available for Neo-Hookean materials.

4.6.5.2 Linearize, then push forward

We can move the derivatives to the current configuration via

∇𝑋𝒗∶d𝑷 = (∇𝑋𝒗)𝑭−1 ∶d𝑷𝑭𝑇 = ∇𝑥𝒗∶d𝑷𝑭𝑇

and expand

d𝑷𝑭𝑇 = d𝑭𝑺𝑭𝑇 + 𝑭d𝑺𝑭𝑇

= d𝑭𝑭−1⏟
∇𝑥 d𝒖

𝑭𝑺𝑭𝑇⏟
𝝉

+𝑭d𝑺𝑭𝑇.

Representation of 𝑭d𝑺𝑭𝑇 for Neo-Hookean materials

Now we push (4.56) forward via

𝑭d𝑺𝑭𝑇 = 𝜆(𝑪−1 ∶d𝑬)𝑭𝑪−1𝑭𝑇 + 2(𝜇 − 𝜆 log 𝐽)𝑭𝑪−1 d𝑬 𝑪−1𝑭𝑇

= 𝜆(𝑪−1 ∶d𝑬)𝑰3 + 2(𝜇 − 𝜆 log 𝐽)𝑭−𝑇 d𝑬 𝑭−1

= 𝜆 trace(∇𝑥 d𝒖)𝑰3 + 2(𝜇 − 𝜆 log 𝐽)d𝝐

79

where we have used

𝑪−1 ∶d𝑬 = 𝑭−1𝑭−𝑇 ∶𝑭𝑇 d𝑭
= trace(𝑭−1𝑭−𝑇𝑭𝑇 d𝑭)
= trace(𝑭−1 d𝑭)
= trace(d𝑭𝑭−1)
= trace(∇𝑥 d𝒖)

and

𝑭−𝑇 d𝑬 𝑭−1 =
1
2𝑭−𝑇(𝑭𝑇 d𝑭 + d𝑭𝑇𝑭)𝑭−1

=
1
2(d𝑭𝑭−1 + 𝑭−𝑇 d𝑭𝑇)

=
1
2(∇𝑥 d𝒖 + (∇𝑥 d𝒖)𝑇) ≡ d𝝐.

Collecting terms, the weak form of the Newton linearization for Neo-Hookean materials in the current con-
figuration is

∫
𝛺0

∇𝑥𝒗∶((∇𝑥 d𝒖)𝝉 + 𝜆 trace(d𝝐)𝑰3 + 2(𝜇 − 𝜆 log 𝐽)d𝝐)𝑑𝑉 = rhs, (4.68)

which equivalent to Algorithm 2 of [DPA+20] and requires only derivatives with respect to the current
configuration. Note that (4.67) and (4.68) have recovered the same representation using different algebraic
manipulations.

Tip: We define a second order Green-Euler strain tensor (cf. Green-Lagrange strain (4.45)) as

𝒆 =
1
2(𝒃 − 𝑰3) =

1
2(∇𝑋𝒖 + (∇𝑋𝒖)𝑇 + ∇𝑋𝒖 (∇𝑋𝒖)𝑇). (4.69)

Then, the Kirchhoff stress tensor (4.63) can be written as

𝝉 = 𝜆 log 𝐽𝑰3 + 2𝜇𝒆, (4.70)

which is more numerically stable for small strain, and thus preferred for computation. Note that the log 𝐽 is
computed via log1p (4.49), as we discussed in the previous tip.

4.6.5.3 Jacobian representation

We have implemented four storage variants for the Jacobian in our finite strain hyperelasticity. In each case,
some variables are computed during residual evaluation and used during Jacobian application.

Table 4.20: Four algorithms for Jacobian action in finite strain hy-
perelasticity problem

Option -problem Static storage Computed storage # scalars Equations

FSInitial-NH1 ∇𝑋�̂�,det∇�̂�𝑋 ∇𝑋𝒖 19 (4.55) (4.56)
FSInitial-NH2 ∇𝑋�̂�,det∇�̂�𝑋 ∇𝑋𝒖, 𝑪−1, 𝜆 log 𝐽 26 (4.55) (4.56)
FSCurrent-NH1 ∇𝑋�̂�,det∇�̂�𝑋 ∇𝑋𝒖 19 (4.65) (4.62)
FSCurrent-NH2 det∇�̂�𝑋 ∇𝑥�̂�, 𝝉, 𝜆 log 𝐽 17 (4.65) (4.68)

80

5 Julia, Python, and Rust Interfaces

libCEED provides high-level interfaces using the Julia, Python, and Rust programming languages.

More information about the Julia interface can be found at the LibCEED.jl documentation.

Usage of the Python interface is illustrated through a sequence of Jupyter Notebook tutorials. More infor-
mation on the Python interface is available in the SciPy paper.

More information about the Rust interface can be found at the Rust interface documentation.

6 API Documentation

This section contains the code documentation. The subsections represent the different API objects, typedefs,
and enumerations.

6.1 Public API

These objects and functions are intended to be used by general users of libCEED and can generally be found
in ceed.h.

6.1.1 Ceed

A Ceed is a library context representing control of a logical hardware resource.

6.1.1.1 Base library resources

typedef struct Ceed_private *Ceed
Typedefs and macros used in public interfaces and user QFunction source.

This line prevents IWYU from suggesting “ceed.h” Library context created by CeedInit()

typedef struct CeedRequest_private *CeedRequest
Non-blocking Ceed interfaces return a CeedRequest.

To perform an operation immediately, pass CEED_REQUEST_IMMEDIATE instead.

CeedRequest *const CEED_REQUEST_IMMEDIATE = &ceed_request_immediate
Request immediate completion.

This predefined constant is passed as the CeedRequest argument to interfaces when the caller wishes
for the operation to be performed immediately. The code

CeedOperatorApply(op, ..., CEED_REQUEST_IMMEDIATE);

is semantically equivalent to

CeedRequest request;

CeedOperatorApply(op, ..., &request);

CeedRequestWait(&request);

81

http://ceed.exascaleproject.org/libCEED-julia-docs/dev/
https://github.com/CEED/libCEED/tree/main/examples/python
https://doi.org/10.25080/Majora-342d178e-00c
https://docs.rs/libceed

See also:

CEED_REQUEST_ORDERED

CeedRequest *const CEED_REQUEST_ORDERED = &ceed_request_ordered
Request ordered completion.

This predefined constant is passed as the CeedRequest argument to interfaces when the caller wishes
for the operation to be completed in the order that it is submitted to the device. It is typically used in
a construct such as:

CeedRequest request;

CeedOperatorApply(op1, ..., CEED_REQUEST_ORDERED);

CeedOperatorApply(op2, ..., &request);

// other optional work

CeedRequestWait(&request);

which allows the sequence to complete asynchronously but does not startop2untilop1has completed.

Todo:
The current implementation is overly strict, offering equivalent semantics to CEED_RE-
QUEST_IMMEDIATE.

See also:

CEED_REQUEST_IMMEDIATE

int CeedRequestWait(CeedRequest *req)
Wait for a CeedRequest to complete.

Calling CeedRequestWait on a NULL request is a no-op.

User Functions

Parameters

• req – Address of CeedRequest to wait for; zeroed on completion.

Returns
An error code: 0 - success, otherwise - failure

int CeedRegistryGetList(size_t *n, char ***const resources, CeedInt **priorities)
Get the list of available resource names for Ceed contexts.

Note: The caller is responsible for free()ing the resources and priorities arrays, but should not
free() the contents of the resources array.

User Functions

Parameters

• n – [out] Number of available resources

• resources – [out] List of available resource names

• priorities – [out] Resource name prioritization values, lower is better

Returns
An error code: 0 - success, otherwise - failure

82

int CeedInit(const char *resource, Ceed *ceed)
Initialize a Ceed: core components context to use the specified resource.

Note: Prefixing the resource with “help:” (e.g. “help:/cpu/self”) will result in CeedInt printing the
current libCEED version number and a list of current available backend resources to stderr.

User Functions

See also:

CeedRegister() CeedDestroy()

Parameters

• resource – [in] Resource to use, e.g., “/cpu/self”

• ceed – [out] The library context

Returns
An error code: 0 - success, otherwise - failure

int CeedSetStream(Ceed ceed, void *handle)
Set the GPU stream for a Ceed context.

User Functions

Parameters

• ceed – [inout] Ceed context to set the stream

• handle – [in] Handle to GPU stream

Returns
An error code: 0 - success, otherwise - failure

int CeedReferenceCopy(Ceed ceed, Ceed *ceed_copy)
Copy the pointer to a Ceed context.

Both pointers should be destroyed with CeedDestroy().

Note: If the value of ceed_copy passed to this function is non-NULL, then it is assumed that
ceed_copy is a pointer to a Ceed context. This Ceed context will be destroyed if ceed_copy is the
only reference to this Ceed context.

User Functions

Parameters

• ceed – [in] Ceed context to copy reference to

• ceed_copy – [inout] Variable to store copied reference

Returns
An error code: 0 - success, otherwise - failure

int CeedGetResource(Ceed ceed, const char **resource)
Get the full resource name for a Ceed context.

User Functions

Parameters

• ceed – [in] Ceed context to get resource name of

• resource – [out] Variable to store resource name

83

Returns
An error code: 0 - success, otherwise - failure

int CeedGetPreferredMemType(Ceed ceed, CeedMemType *mem_type)
Return Ceed context preferred memory type.

User Functions

Parameters

• ceed – [in] Ceed context to get preferred memory type of

• mem_type – [out] Address to save preferred memory type to

Returns
An error code: 0 - success, otherwise - failure

int CeedIsDeterministic(Ceed ceed, bool *is_deterministic)
Get deterministic status of Ceed.

User Functions

Parameters

• ceed – [in] Ceed

• is_deterministic – [out] Variable to store deterministic status

Returns
An error code: 0 - success, otherwise - failure

int CeedAddJitSourceRoot(Ceed ceed, const char *jit_source_root)
Set additional JiT source root for Ceed.

User Functions

Parameters

• ceed – [inout] Ceed

• jit_source_root – [in] Absolute path to additional JiT source directory

Returns
An error code: 0 - success, otherwise - failure

int CeedView(Ceed ceed, FILE *stream)

View a Ceed.

User Functions

Parameters

• ceed – [in] Ceed to view

• stream – [in] Filestream to write to

Returns
An error code: 0 - success, otherwise - failure

int CeedDestroy(Ceed *ceed)
Destroy a Ceed context.

User Functions

Parameters

• ceed – [inout] Address of Ceed context to destroy

84

Returns
An error code: 0 - success, otherwise - failure

const char *CeedErrorFormat(Ceed ceed, const char *format, va_list *args)

int CeedErrorImpl(Ceed ceed, const char *filename, int lineno, const char *func, int ecode, const char
*format, ...)

Error handling implementation; use CeedError instead.

Library Developer Functions

int CeedErrorReturn(Ceed ceed, const char *filename, int line_no, const char *func, int err_code, const
char *format, va_list *args)

Error handler that returns without printing anything.

Ceed error handlers.

Pass this to CeedSetErrorHandler() to obtain this error handling behavior.

Library Developer Functions

int CeedErrorStore(Ceed ceed, const char *filename, int line_no, const char *func, int err_code, const
char *format, va_list *args)

Error handler that stores the error message for future use and returns the error.

Pass this to CeedSetErrorHandler() to obtain this error handling behavior.

Library Developer Functions

int CeedErrorAbort(Ceed ceed, const char *filename, int line_no, const char *func, int err_code, const
char *format, va_list *args)

Error handler that prints to stderr and aborts.

Pass this to CeedSetErrorHandler() to obtain this error handling behavior.

Library Developer Functions

int CeedErrorExit(Ceed ceed, const char *filename, int line_no, const char *func, int err_code, const char
*format, va_list *args)

Error handler that prints to stderr and exits.

Pass this to CeedSetErrorHandler() to obtain this error handling behavior.

In contrast to CeedErrorAbort(), this exits without a signal, so atexit() handlers (e.g., as used by gcov)
are run.

Library Developer Functions

int CeedSetErrorHandler(Ceed ceed, CeedErrorHandler handler)
Set error handler.

A default error handler is set in CeedInit(). Use this function to change the error handler to CeedError-
Return(), CeedErrorAbort(), or a user-defined error handler.

Library Developer Functions

int CeedGetErrorMessage(Ceed ceed, const char **err_msg)
Get error message.

The error message is only stored when using the error handler CeedErrorStore()

Library Developer Functions

Parameters

85

• ceed – [in] Ceed context to retrieve error message

• err_msg – [out] Char pointer to hold error message

int CeedResetErrorMessage(Ceed ceed, const char **err_msg)
Restore error message.

The error message is only stored when using the error handler CeedErrorStore()

Library Developer Functions

Parameters

• ceed – [in] Ceed context to restore error message

• err_msg – [out] Char pointer that holds error message

int CeedGetVersion(int *major, int *minor, int *patch, bool *release)
Get libCEED library version info.

libCEED version numbers have the form major.minor.patch. Non-release versions may contain unsta-
ble interfaces.

The caller may pass NULL for any arguments that are not needed.

Library Developer Functions

See also:

CEED_VERSION_GE()

Parameters

• major – [out]Major version of the library

• minor – [out]Minor version of the library

• patch – [out] Patch (subminor) version of the library

• release – [out] True for releases; false for development branches

int CeedGetScalarType(CeedScalarType *scalar_type)
Get libCEED scalar type, such as F64 or F32.

Library Developer Functions

Parameters

• scalar_type – [out] Type of libCEED scalars

Macros

CeedError(ceed, ecode, ...)
Raise an error on ceed object.

See also:

CeedSetErrorHandler()

Parameters

• ceed – Ceed library context or NULL

• ecode – Error code (int)

86

• ... – printf-style format string followed by arguments as needed

CeedPragmaSIMD

This macro provides the appropriate SIMD Pragma for the compilation environment.

Code generation backends may redefine this macro, as needed.

CEED_VERSION_GE(major, minor, patch)
Compile-time check that the the current library version is at least as recent as the specified version.

This macro is typically used in

#if CEED_VERSION_GE(0, 8, 0)

code path that needs at least 0.8.0

#else

fallback code for older versions

#endif

A non-release version always compares as positive infinity.

See also:

CeedGetVersion()

Parameters

• major – Major version

• minor – Minor version

• patch – Patch (subminor) version

Typedefs and Enumerations

enum CeedMemType

Specify memory type.

Many Ceed interfaces take or return pointers to memory. This enum is used to specify where the
memory being provided or requested must reside.

Values:

enumerator CEED_MEM_HOST
Memory resides on the host.

enumerator CEED_MEM_DEVICE
Memory resides on a device (corresponding to Ceed: core components resource)

enum CeedErrorType

Base scalar type for the library to use: change which header is included to change the precision.

Ceed error code.

This enum is used to specify the type of error returned by a function. A zero error code is success,
negative error codes indicate terminal errors and positive error codes indicate nonterminal errors.

87

With nonterminal errors the object state has not been modified, but with terminal errors the object
data is likely modified or corrupted.

Values:

enumerator CEED_ERROR_SUCCESS
Success error code.

enumerator CEED_ERROR_MINOR
Minor error, generic.

enumerator CEED_ERROR_DIMENSION
Minor error, dimension mismatch in inputs.

enumerator CEED_ERROR_INCOMPLETE
Minor error, incomplete object setup.

enumerator CEED_ERROR_INCOMPATIBLE
Minor error, incompatible arguments/configuration.

enumerator CEED_ERROR_ACCESS
Minor error, access lock problem.

enumerator CEED_ERROR_MAJOR
Major error, generic.

enumerator CEED_ERROR_BACKEND
Major error, internal backend error.

enumerator CEED_ERROR_UNSUPPORTED
Major error, operation unsupported by current backend.

6.1.2 CeedVector

A CeedVector constitutes the main data structure and serves as input/output for the CeedOperators.

6.1.2.1 Basic vector operations

typedef struct CeedVector_private *CeedVector
Handle for vectors over the field CeedScalar.

const CeedVector CEED_VECTOR_ACTIVE = &ceed_vector_active
Indicate that vector will be provided as an explicit argument to CeedOperatorApply().

const CeedVector CEED_VECTOR_NONE = &ceed_vector_none
Indicate that no vector is applicable (i.e., for CEED_EVAL_WEIGHT).

88

int CeedVectorCreate(Ceed ceed, CeedSize length, CeedVector *vec)
Create a CeedVector of the specified length (does not allocate memory)

User Functions

Parameters

• ceed – [in] Ceed object where the CeedVector will be created

• length – [in] Length of vector

• vec – [out] Address of the variable where the newly created CeedVector will be
stored

Returns
An error code: 0 - success, otherwise - failure

int CeedVectorReferenceCopy(CeedVector vec, CeedVector *vec_copy)
Copy the pointer to a CeedVector.

Both pointers should be destroyed with CeedVectorDestroy().

Note: If the value ofvec_copypassed to this function is non-NULL, then it is assumed thatvec_copy
is a pointer to a CeedVector. This CeedVector will be destroyed if vec_copy is the only reference to
this CeedVector.

User Functions

Parameters

• vec – [in] CeedVector to copy reference to

• vec_copy – [inout] Variable to store copied reference

Returns
An error code: 0 - success, otherwise - failure

int CeedVectorCopy(CeedVector vec, CeedVector vec_copy)
Copy a CeedVector into a different CeedVector.

Both pointers should be destroyed with CeedVectorDestroy().

Note: If *vec_copy is non-NULL, then it is assumed that *vec_copy is a pointer to a CeedVector.
This CeedVector will be destroyed if *vec_copy is the only reference to this CeedVector.

User Functions

Parameters

• vec – [in] CeedVector to copy

• vec_copy – [inout] Variable to store copied CeedVector to

Returns
An error code: 0 - success, otherwise - failure

int CeedVectorSetArray(CeedVector vec, CeedMemType mem_type, CeedCopyMode copy_mode,
CeedScalar *array)

Set the array used by a CeedVector, freeing any previously allocated array if applicable.

The backend may copy values to a different memtype, such as during CeedOperatorApply(). See also
CeedVectorSyncArray() and CeedVectorTakeArray().

User Functions

Parameters

89

• vec – [inout] CeedVector

• mem_type – [in]Memory type of the array being passed

• copy_mode – [in] Copy mode for the array

• array – [in] Array to be used, or NULL with CEED_COPY_VALUES to have the
library allocate

Returns
An error code: 0 - success, otherwise - failure

int CeedVectorSetValue(CeedVector vec, CeedScalar value)
Set the CeedVector to a constant value.

User Functions

Parameters

• vec – [inout] CeedVector

• value – [in] Value to be used

Returns
An error code: 0 - success, otherwise - failure

int CeedVectorSyncArray(CeedVector vec, CeedMemType mem_type)
Sync the CeedVector to a specified memtype.

This function is used to force synchronization of arrays set with CeedVectorSetArray(). If the requested
memtype is already synchronized, this function results in a no-op.

User Functions

Parameters

• vec – [inout] CeedVector

• mem_type – [in]Memtype to be synced

Returns
An error code: 0 - success, otherwise - failure

int CeedVectorTakeArray(CeedVector vec, CeedMemType mem_type, CeedScalar **array)
Take ownership of the CeedVector array set by CeedVectorSetArray() with CEED_USE_POINTER and
remove the array from the CeedVector.

The caller is responsible for managing and freeing the array. This function will error if CeedVectorSe-
tArray()was not previously called with CEED_USE_POINTER for the corresponding mem_type.

User Functions

Parameters

• vec – [inout] CeedVector

• mem_type – [in] Memory type on which to take the array. If the backend uses a
different memory type, this will perform a copy.

• array – [out] Array on memory type mem_type, or NULL if array pointer is not
required

Returns
An error code: 0 - success, otherwise - failure

90

int CeedVectorGetArray(CeedVector vec, CeedMemType mem_type, CeedScalar **array)
Get read/write access to a CeedVector via the specified memory type.

Restore access with CeedVectorRestoreArray().

User Functions

Note: The CeedVectorGetArray* and CeedVectorRestoreArray* functions provide access to array
pointers in the desiredmemory space. Pairing get/restore allows the Vector to track access, thus know-
ing if norms or other operations may need to be recomputed.

Parameters

• vec – [inout] CeedVector to access

• mem_type – [in] Memory type on which to access the array. If the backend uses a
different memory type, this will perform a copy.

• array – [out] Array on memory type mem_type

Returns
An error code: 0 - success, otherwise - failure

int CeedVectorGetArrayRead(CeedVector vec, CeedMemType mem_type, const CeedScalar **array)
Get read-only access to a CeedVector via the specified memory type.

Restore access with CeedVectorRestoreArrayRead().

User Functions

Parameters

• vec – [in] CeedVector to access

• mem_type – [in] Memory type on which to access the array. If the backend uses a
different memory type, this will perform a copy (possibly cached).

• array – [out] Array on memory type mem_type

Returns
An error code: 0 - success, otherwise - failure

int CeedVectorGetArrayWrite(CeedVector vec, CeedMemType mem_type, CeedScalar **array)
Get write access to a CeedVector via the specified memory type.

Restore access with CeedVectorRestoreArray(). All old values should be assumed to be invalid.

User Functions

Parameters

• vec – [inout] CeedVector to access

• mem_type – [in]Memory type on which to access the array.

• array – [out] Array on memory type mem_type

Returns
An error code: 0 - success, otherwise - failure

91

int CeedVectorRestoreArray(CeedVector vec, CeedScalar **array)
Restore an array obtained using CeedVectorGetArray() or CeedVectorGetArrayWrite()

User Functions

Parameters

• vec – [inout] CeedVector to restore

• array – [inout] Array of vector data

Returns
An error code: 0 - success, otherwise - failure

int CeedVectorRestoreArrayRead(CeedVector vec, const CeedScalar **array)
Restore an array obtained using CeedVectorGetArrayRead()

User Functions

Parameters

• vec – [in] CeedVector to restore

• array – [inout] Array of vector data

Returns
An error code: 0 - success, otherwise - failure

int CeedVectorNorm(CeedVector vec, CeedNormType norm_type, CeedScalar *norm)

Get the norm of a CeedVector.

Note: This operation is local to the CeedVector. This functionwill likely not provide the desired results
for the norm of the libCEED portion of a parallel vector or a CeedVector with duplicated or hanging
nodes.

User Functions

Parameters

• vec – [in] CeedVector to retrieve maximum value

• norm_type – [in] Norm type CEED_NORM_1, CEED_NORM_2, or
CEED_NORM_MAX

• norm – [out] Variable to store norm value

Returns
An error code: 0 - success, otherwise - failure

int CeedVectorScale(CeedVector x, CeedScalar alpha)
Compute x = alpha x.

User Functions

Parameters

• x – [inout] vector for scaling

• alpha – [in] scaling factor

Returns
An error code: 0 - success, otherwise - failure

92

int CeedVectorAXPY(CeedVector y, CeedScalar alpha, CeedVector x)
Compute y = alpha x + y.

User Functions

Parameters

• y – [inout] target vector for sum

• alpha – [in] scaling factor

• x – [in] second vector, must be different than y

Returns
An error code: 0 - success, otherwise - failure

int CeedVectorAXPBY(CeedVector y, CeedScalar alpha, CeedScalar beta, CeedVector x)
Compute y = alpha x + beta y.

User Functions

Parameters

• y – [inout] target vector for sum

• alpha – [in] first scaling factor

• beta – [in] second scaling factor

• x – [in] second vector, must be different than y

Returns
An error code: 0 - success, otherwise - failure

int CeedVectorPointwiseMult(CeedVector w, CeedVector x, CeedVector y)
Compute the pointwise multiplication w = x .

• y.

Any subset of x, y, and w may be the same vector.

User Functions

Parameters

• w – [out] target vector for the product

• x – [in] first vector for product

• y – [in] second vector for the product

Returns
An error code: 0 - success, otherwise - failure

int CeedVectorReciprocal(CeedVector vec)
Take the reciprocal of a CeedVector.

User Functions

Parameters

• vec – [inout] CeedVector to take reciprocal

Returns
An error code: 0 - success, otherwise - failure

93

int CeedVectorViewRange(CeedVector vec, CeedSize start, CeedSize stop, CeedInt step, const char
*fp_fmt, FILE *stream)

View a CeedVector.

Note: It is safe to use any unsigned values for start or stop and any nonzero integer for step.
Any portion of the provided range that is outside the range of valid indices for the CeedVector will be
ignored.

User Functions

Parameters

• vec – [in] CeedVector to view

• start – [in] Index of first CeedVector entry to view

• stop – [in] Index of last CeedVector entry to view

• step – [in] Step between CeedVector entries to view

• fp_fmt – [in] Printing format

• stream – [in] Filestream to write to

Returns
An error code: 0 - success, otherwise - failure

int CeedVectorView(CeedVector vec, const char *fp_fmt, FILE *stream)

View a CeedVector.

User Functions

Parameters

• vec – [in] CeedVector to view

• fp_fmt – [in] Printing format

• stream – [in] Filestream to write to

Returns
An error code: 0 - success, otherwise - failure

int CeedVectorGetCeed(CeedVector vec, Ceed *ceed)
Get the Ceed associated with a CeedVector.

Advanced Functions

Parameters

• vec – [in] CeedVector to retrieve state

• ceed – [out] Variable to store ceed

Returns
An error code: 0 - success, otherwise - failure

int CeedVectorGetLength(CeedVector vec, CeedSize *length)
Get the length of a CeedVector.

User Functions

Parameters

• vec – [in] CeedVector to retrieve length

• length – [out] Variable to store length

94

Returns
An error code: 0 - success, otherwise - failure

int CeedVectorDestroy(CeedVector *vec)
Destroy a CeedVector.

User Functions

Parameters

• vec – [inout] CeedVector to destroy

Returns
An error code: 0 - success, otherwise - failure

Typedefs and Enumerations

typedef int32_t CeedInt
Integer type, used for indexing.

typedef float CeedScalar

enum CeedCopyMode

Conveys ownership status of arrays passed to Ceed interfaces.

Values:

enumerator CEED_COPY_VALUES
Implementation will copy the values and not store the passed pointer.

enumerator CEED_USE_POINTER
Implementation can use and modify the data provided by the user, but does not take ownership.

enumerator CEED_OWN_POINTER
Implementation takes ownership of the pointer and will free using CeedFree() when done using
it.

The user should not assume that the pointer remains valid after ownership has been transferred.
Note that arrays allocated using C++ operator new or other allocators cannot generally be freed
using CeedFree(). CeedFree() is capable of freeing any memory that can be freed using free().

enum CeedNormType

Denotes type of vector norm to be computed.

Values:

enumerator CEED_NORM_1
‖𝒙‖1 = ∑𝑖 |𝑥𝑖|

enumerator CEED_NORM_2

‖𝒙‖2 = √∑𝑖 𝑥2
𝑖

95

enumerator CEED_NORM_MAX
‖𝒙‖∞ = max𝑖 |𝑥𝑖|

6.1.3 CeedElemRestriction

A CeedElemRestriction decomposes elements and groups the degrees of freedom (DoFs) according to the
different elements they belong to.

6.1.3.1 Expressing element decomposition and degrees of freedom over a mesh

typedef struct CeedElemRestriction_private *CeedElemRestriction
Handle for object describing restriction to elements.

const CeedInt CEED_STRIDES_BACKEND[3] = {0}
Indicate that the stride is determined by the backend.

const CeedElemRestriction CEED_ELEMRESTRICTION_NONE = &ceed_elemrestriction_none
Argument for CeedOperatorSetField indicating that the field does not requre a CeedElemRestriction.

int CeedElemRestrictionCreate(Ceed ceed, CeedInt num_elem, CeedInt elem_size, CeedInt
num_comp, CeedInt comp_stride, CeedSize l_size, CeedMemType
mem_type, CeedCopyMode copy_mode, const CeedInt *offsets,
CeedElemRestriction *rstr)

Create a CeedElemRestriction.

User Functions

Parameters

• ceed – [in] Ceed object where the CeedElemRestriction will be created

• num_elem – [in] Number of elements described in the offsets array

• elem_size – [in] Size (number of “nodes”) per element

• num_comp – [in] Number of field components per interpolation node (1 for scalar
fields)

• comp_stride – [in] Stride between components for the same L-vector “node”.
Data for node i, component j, element k can be found in the L-vector at index offsets[i
+ k*elem_size] + j*comp_stride.

• l_size – [in] The size of the L-vector. This vector may be larger than the elements
and fields given by this restriction.

• mem_type – [in]Memory type of the offsets array, see CeedMemType

• copy_mode – [in] Copy mode for the offsets array, see CeedCopyMode

• offsets – [in]Array of shape [num_elem, elem_size]. Row i holds the ordered list of
the offsets (into the input CeedVector) for the unknowns corresponding to element
i, where 0 <= i < num_elem. All offsets must be in the range [0, l_size - 1].

• rstr – [out]Address of the variable where the newly created CeedElemRestriction
will be stored

96

Returns
An error code: 0 - success, otherwise - failure

int CeedElemRestrictionCreateOriented(Ceed ceed, CeedInt num_elem, CeedInt elem_size, CeedInt
num_comp, CeedInt comp_stride, CeedSize l_size,
CeedMemType mem_type, CeedCopyMode copy_mode,
const CeedInt *offsets, const bool *orients,
CeedElemRestriction *rstr)

Create a CeedElemRestriction with orientation signs.

User Functions

Parameters

• ceed – [in] Ceed object where the CeedElemRestriction will be created

• num_elem – [in] Number of elements described in the offsets array

• elem_size – [in] Size (number of “nodes”) per element

• num_comp – [in] Number of field components per interpolation node (1 for scalar
fields)

• comp_stride – [in] Stride between components for the same L-vector “node”.
Data for node i, component j, element k can be found in the L-vector at index offsets[i
+ k*elem_size] + j*comp_stride.

• l_size – [in] The size of the L-vector. This vector may be larger than the elements
and fields given by this restriction.

• mem_type – [in]Memory type of the offsets array, see CeedMemType

• copy_mode – [in] Copy mode for the offsets array, see CeedCopyMode

• offsets – [in]Array of shape [num_elem, elem_size]. Row i holds the ordered list of
the offsets (into the input CeedVector) for the unknowns corresponding to element
i, where 0 <= i < num_elem. All offsets must be in the range [0, l_size - 1].

• orients – [in] Array of shape [num_elem, elem_size] with bool false for positively
oriented and true to flip the orientation.

• rstr – [out]Address of the variable where the newly created CeedElemRestriction
will be stored

Returns
An error code: 0 - success, otherwise - failure

int CeedElemRestrictionCreateCurlOriented(Ceed ceed, CeedInt num_elem, CeedInt elem_size,
CeedInt num_comp, CeedInt comp_stride, CeedSize
l_size, CeedMemType mem_type, CeedCopyMode
copy_mode, const CeedInt *offsets, const CeedInt8
*curl_orients, CeedElemRestriction *rstr)

Create a CeedElemRestriction with a general tridiagonal transformation matrix for curl-conforming
elements.

User Functions

Parameters

• ceed – [in] Ceed object where the CeedElemRestriction will be created

• num_elem – [in] Number of elements described in the offsets array

• elem_size – [in] Size (number of “nodes”) per element

97

• num_comp – [in] Number of field components per interpolation node (1 for scalar
fields)

• comp_stride – [in] Stride between components for the same L-vector “node”.
Data for node i, component j, element k can be found in the L-vector at index offsets[i
+ k*elem_size] + j*comp_stride.

• l_size – [in] The size of the L-vector. This vector may be larger than the elements
and fields given by this restriction.

• mem_type – [in]Memory type of the offsets array, see CeedMemType

• copy_mode – [in] Copy mode for the offsets array, see CeedCopyMode

• offsets – [in]Array of shape [num_elem, elem_size]. Row i holds the ordered list of
the offsets (into the input CeedVector) for the unknowns corresponding to element
i, where 0 <= i < num_elem. All offsets must be in the range [0, l_size - 1].

• curl_orients – [in] Array of shape [num_elem, 3 * elem_size] representing a
row-major tridiagonal matrix (curl_orients[i * 3 * elem_size] = curl_orients[(i +
1) * 3 * elem_size - 1] = 0, where 0 <= i < num_elem) which is applied to the el-
ement unknowns upon restriction. This orientation matrix allows for pairs of face
degrees of freedom on elements for H(curl) spaces to be coupled in the element re-
striction operation, which is a way to resolve face orientation issues for 3D meshes
(https://dl.acm.org/doi/pdf/10.1145/3524456).

• rstr – [out]Address of the variable where the newly created CeedElemRestriction
will be stored

Returns
An error code: 0 - success, otherwise - failure

int CeedElemRestrictionCreateStrided(Ceed ceed, CeedInt num_elem, CeedInt elem_size, CeedInt
num_comp, CeedSize l_size, const CeedInt strides[3],
CeedElemRestriction *rstr)

Create a strided CeedElemRestriction.

User Functions

Parameters

• ceed – [in] Ceed object where the CeedElemRestriction will be created

• num_elem – [in] Number of elements described by the restriction

• elem_size – [in] Size (number of “nodes”) per element

• num_comp – [in]Number of field components per interpolation “node” (1 for scalar
fields)

• l_size – [in] The size of the L-vector. This vector may be larger than the elements
and fields given by this restriction.

• strides – [in]Array for strides between [nodes, components, elements]. Data for
node i, component j, element k can be found in the L-vector at index i*strides[0] +
j*strides[1] + k*strides[2]. CEED_STRIDES_BACKEND may be used with vectors
created by a Ceed backend.

• rstr – [out]Address of the variable where the newly created CeedElemRestriction
will be stored

Returns
An error code: 0 - success, otherwise - failure

98

https://dl.acm.org/doi/pdf/10.1145/3524456

int CeedElemRestrictionCreateAtPoints(Ceed ceed, CeedInt num_elem, CeedInt num_points,
CeedInt num_comp, CeedSize l_size, CeedMemType
mem_type, CeedCopyMode copy_mode, const CeedInt
*offsets, CeedElemRestriction *rstr)

Create a points CeedElemRestriction, for restricting for restricting from a all local points to the current
element in which they are located.

The offsets array is arranged as

element_0_start_index element_1_start_index … element_n_start_index element_n_stop_index ele-
ment_0_point_0 element_0_point_1 …

Backend Developer Functions

Parameters

• ceed – [in] Ceed object where the CeedElemRestriction will be created

• num_elem – [in] Number of elements described in the offsets array

• num_points – [in] Number of points described in the offsets array

• num_comp – [in] Number of field components per interpolation node (1 for scalar
fields). Components are assumed to be contiguous by point.

• l_size – [in] The size of the L-vector. This vector may be larger than the elements
and fields given by this restriction.

• mem_type – [in]Memory type of the offsets array, see CeedMemType

• copy_mode – [in] Copy mode for the offsets array, see CeedCopyMode

• offsets – [in]Array of size num_elem + 1 + num_points. The first portion of the
offsets array holds the ranges of indices corresponding to each element. The second
portion holds the indices for each element.

• rstr – [out]Address of the variable where the newly created CeedElemRestriction
will be stored

Returns
An error code: 0 - success, otherwise - failure

int CeedElemRestrictionCreateBlocked(Ceed ceed, CeedInt num_elem, CeedInt elem_size, CeedInt
block_size, CeedInt num_comp, CeedInt comp_stride,
CeedSize l_size, CeedMemType mem_type, CeedCopyMode
copy_mode, const CeedInt *offsets, CeedElemRestriction
*rstr)

Create a blocked CeedElemRestriction, typically only called by backends.

Backend Developer Functions

Parameters

• ceed – [in] Ceed object where the CeedElemRestriction will be created

• num_elem – [in] Number of elements described in the offsets array

• elem_size – [in] Size (number of unknowns) per element

• block_size – [in] Number of elements in a block

• num_comp – [in] Number of field components per interpolation node (1 for scalar
fields)

99

• comp_stride – [in] Stride between components for the same L-vector “node”.
Data for node i, component j, element k can be found in the L-vector at index offsets[i
+ k*elem_size] + j*comp_stride.

• l_size – [in] The size of the L-vector. This vector may be larger than the elements
and fields given by this restriction.

• mem_type – [in]Memory type of the offsets array, see CeedMemType

• copy_mode – [in] Copy mode for the offsets array, see CeedCopyMode

• offsets – [in]Array of shape [num_elem, elem_size]. Row i holds the ordered list of
the offsets (into the inputCeedVector) for the unknowns corresponding to element i,
where 0 <= i< num_elem. All offsetsmust be in the range [0, l_size - 1]. The backend
will permute and pad this array to the desired ordering for the blocksize, which is
typically given by the backend. The default reordering is to interlace elements.

• rstr – [out]Address of the variable where the newly created CeedElemRestriction
will be stored

Returns
An error code: 0 - success, otherwise - failure

int CeedElemRestrictionCreateBlockedOriented(Ceed ceed, CeedInt num_elem, CeedInt
elem_size, CeedInt block_size, CeedInt
num_comp, CeedInt comp_stride, CeedSize
l_size, CeedMemType mem_type, CeedCopyMode
copy_mode, const CeedInt *offsets, const bool
*orients, CeedElemRestriction *rstr)

Create a blocked oriented CeedElemRestriction, typically only called by backends.

Backend Developer Functions

Parameters

• ceed – [in] Ceed object where the CeedElemRestriction will be created.

• num_elem – [in] Number of elements described in the offsets array.

• elem_size – [in] Size (number of unknowns) per element

• block_size – [in] Number of elements in a block

• num_comp – [in] Number of field components per interpolation node (1 for scalar
fields)

• comp_stride – [in] Stride between components for the same L-vector “node”.
Data for node i, component j, element k can be found in the L-vector at index offsets[i
+ k*elem_size] + j*comp_stride.

• l_size – [in] The size of the L-vector. This vector may be larger than the elements
and fields given by this restriction.

• mem_type – [in]Memory type of the offsets array, see CeedMemType

• copy_mode – [in] Copy mode for the offsets array, see CeedCopyMode

• offsets – [in]Array of shape [num_elem, elem_size]. Row i holds the ordered list of
the offsets (into the inputCeedVector) for the unknowns corresponding to element i,
where 0 <= i< num_elem. All offsetsmust be in the range [0, l_size - 1]. The backend
will permute and pad this array to the desired ordering for the blocksize, which is
typically given by the backend. The default reordering is to interlace elements.

100

• orients – [in] Array of shape [num_elem, elem_size] with bool false for positively
oriented and true to flip the orientation. Will also be permuted and padded similarly
to offsets.

• rstr – [out]Address of the variable where the newly created CeedElemRestriction
will be stored

Returns
An error code: 0 - success, otherwise - failure

int CeedElemRestrictionCreateBlockedCurlOriented(Ceed ceed, CeedInt num_elem, CeedInt
elem_size, CeedInt block_size, CeedInt
num_comp, CeedInt comp_stride,
CeedSize l_size, CeedMemTypemem_type,
CeedCopyMode copy_mode, const CeedInt
*offsets, const CeedInt8 *curl_orients,
CeedElemRestriction *rstr)

Create a blocked curl-oriented CeedElemRestriction, typically only called by backends.

Backend Developer Functions

Parameters

• ceed – [in] Ceed object where the CeedElemRestriction will be created.

• num_elem – [in] Number of elements described in the offsets array.

• elem_size – [in] Size (number of unknowns) per element

• block_size – [in] Number of elements in a block

• num_comp – [in] Number of field components per interpolation node (1 for scalar
fields)

• comp_stride – [in] Stride between components for the same L-vector “node”.
Data for node i, component j, element k can be found in the L-vector at index offsets[i
+ k*elem_size] + j*comp_stride.

• l_size – [in] The size of the L-vector. This vector may be larger than the elements
and fields given by this restriction.

• mem_type – [in]Memory type of the offsets array, see CeedMemType

• copy_mode – [in] Copy mode for the offsets array, see CeedCopyMode

• offsets – [in]Array of shape [num_elem, elem_size]. Row i holds the ordered list of
the offsets (into the inputCeedVector) for the unknowns corresponding to element i,
where 0 <= i< num_elem. All offsetsmust be in the range [0, l_size - 1]. The backend
will permute and pad this array to the desired ordering for the blocksize, which is
typically given by the backend. The default reordering is to interlace elements.

• curl_orients – [in] Array of shape [num_elem, 3 * elem_size] representing a
row-major tridiagonal matrix (curl_orients[i * 3 * elem_size] = curl_orients[(i +
1) * 3 * elem_size - 1] = 0, where 0 <= i < num_elem) which is applied to the el-
ement unknowns upon restriction. This orientation matrix allows for pairs of face
degrees of freedom on elements for H(curl) spaces to be coupled in the element re-
striction operation, which is a way to resolve face orientation issues for 3D meshes
(https://dl.acm.org/doi/pdf/10.1145/3524456). Will also be permuted and padded
similarly to offsets.

• rstr – [out]Address of the variable where the newly created CeedElemRestriction
will be stored

101

https://dl.acm.org/doi/pdf/10.1145/3524456

Returns
An error code: 0 - success, otherwise - failure

int CeedElemRestrictionCreateBlockedStrided(Ceed ceed, CeedInt num_elem, CeedInt elem_size,
CeedInt block_size, CeedInt num_comp,
CeedSize l_size, const CeedInt strides[3],
CeedElemRestriction *rstr)

Create a blocked strided CeedElemRestriction, typically only called by backends.

User Functions

Parameters

• ceed – [in] Ceed object where the CeedElemRestriction will be created

• num_elem – [in] Number of elements described by the restriction

• elem_size – [in] Size (number of “nodes”) per element

• block_size – [in] Number of elements in a block

• num_comp – [in] Number of field components per interpolation node (1 for scalar
fields)

• l_size – [in] The size of the L-vector. This vector may be larger than the elements
and fields given by this restriction.

• strides – [in]Array for strides between [nodes, components, elements]. Data for
node i, component j, element k can be found in the L-vector at index i*strides[0] +
j*strides[1] + k*strides[2]. CEED_STRIDES_BACKEND may be used with vectors
created by a Ceed backend.

• rstr – [out]Address of the variable where the newly created CeedElemRestriction
will be stored

Returns
An error code: 0 - success, otherwise - failure

int CeedElemRestrictionCreateUnsignedCopy(CeedElemRestriction rstr, CeedElemRestriction
*rstr_unsigned)

Copy the pointer to a CeedElemRestriction and set CeedElemRestrictionApply() implementa-
tion to use the unsigned version.

Both pointers should be destroyed with CeedElemRestrictionDestroy().

User Functions

Parameters

• rstr – [in] CeedElemRestriction to create unsigned reference to

• rstr_unsigned – [inout] Variable to store unsigned CeedElemRestriction

Returns
An error code: 0 - success, otherwise - failure

int CeedElemRestrictionCreateUnorientedCopy(CeedElemRestriction rstr, CeedElemRestriction
*rstr_unoriented)

Copy the pointer to a CeedElemRestriction and set CeedElemRestrictionApply() implementa-
tion to use the unoriented version.

Both pointers should be destroyed with CeedElemRestrictionDestroy().

User Functions

102

Parameters

• rstr – [in] CeedElemRestriction to create unoriented reference to

• rstr_unoriented – [inout] Variable to store unoriented CeedElemRestriction

Returns
An error code: 0 - success, otherwise - failure

int CeedElemRestrictionReferenceCopy(CeedElemRestriction rstr, CeedElemRestriction *rstr_copy)
Copy the pointer to a CeedElemRestriction.

Both pointers should be destroyed with CeedElemRestrictionDestroy().

Note: If the value of rstr_copy passed into this function is non-NULL, then it is assumed that
rstr_copy is a pointer to a CeedElemRestriction. This CeedElemRestriction will be destroyed if
rstr_copy is the only reference to this CeedElemRestriction.

User Functions

Parameters

• rstr – [in] CeedElemRestriction to copy reference to

• rstr_copy – [inout] Variable to store copied reference

Returns
An error code: 0 - success, otherwise - failure

int CeedElemRestrictionCreateVector(CeedElemRestriction rstr, CeedVector *l_vec, CeedVector
*e_vec)

Create CeedVectors associated with a CeedElemRestriction.

User Functions

Parameters

• rstr – [in] CeedElemRestriction

• l_vec – [out] The address of the L-vector to be created, or NULL

• e_vec – [out] The address of the E-vector to be created, or NULL

Returns
An error code: 0 - success, otherwise - failure

int CeedElemRestrictionApply(CeedElemRestriction rstr, CeedTransposeMode t_mode, CeedVector u,
CeedVector ru, CeedRequest *request)

Restrict an L-vector to an E-vector or apply its transpose.

User Functions

Parameters

• rstr – [in] CeedElemRestriction

• t_mode – [in] Apply restriction or transpose

• u – [in] Input vector (of size l_size when t_mode=CEED_NOTRANSPOSE)

• ru – [out] Output vector (of shape [num_elem * elem_size] when
t_mode=CEED_NOTRANSPOSE). Ordering of the e-vector is decided by the
backend.

• request – [in] Request or CEED_REQUEST_IMMEDIATE

103

Returns
An error code: 0 - success, otherwise - failure

int CeedElemRestrictionApplyAtPointsInElement(CeedElemRestriction rstr, CeedInt elem,
CeedTransposeMode t_mode, CeedVector u,
CeedVector ru, CeedRequest *request)

Restrict an L-vector of points to a single element or apply its transpose.

User Functions

Parameters

• rstr – [in] CeedElemRestriction

• elem – [in] Element number in range 0..num_elem

• t_mode – [in] Apply restriction or transpose

• u – [in] Input vector (of size l_size when t_mode=CEED_NOTRANSPOSE)

• ru – [out] Output vector (of shape [num_elem * elem_size] when
t_mode=CEED_NOTRANSPOSE). Ordering of the e-vector is decided by the
backend.

• request – [in] Request or CEED_REQUEST_IMMEDIATE

Returns
An error code: 0 - success, otherwise - failure

int CeedElemRestrictionApplyBlock(CeedElemRestriction rstr, CeedInt block, CeedTransposeMode
t_mode, CeedVector u, CeedVector ru, CeedRequest *request)

Restrict an L-vector to a block of an E-vector or apply its transpose.

Backend Developer Functions

Parameters

• rstr – [in] CeedElemRestriction

• block – [in] Block number to restrict to/from, i.e. block=0 will handle elements [0
: block_size] and block=3 will handle elements [3*block_size : 4*block_size]

• t_mode – [in] Apply restriction or transpose

• u – [in] Input vector (of size l_size when t_mode=CEED_NOTRANSPOSE)

• ru – [out] Output vector (of shape [block_size * elem_size] when
t_mode=CEED_NOTRANSPOSE). Ordering of the e-vector is decided by the
backend.

• request – [in] Request or CEED_REQUEST_IMMEDIATE

Returns
An error code: 0 - success, otherwise - failure

int CeedElemRestrictionGetCeed(CeedElemRestriction rstr, Ceed *ceed)
Get the Ceed associated with a CeedElemRestriction.

Advanced Functions

Parameters

• rstr – [in] CeedElemRestriction

• ceed – [out] Variable to store Ceed

104

Returns
An error code: 0 - success, otherwise - failure

int CeedElemRestrictionGetCompStride(CeedElemRestriction rstr, CeedInt *comp_stride)
Get the L-vector component stride.

Advanced Functions

Parameters

• rstr – [in] CeedElemRestriction

• comp_stride – [out] Variable to store component stride

Returns
An error code: 0 - success, otherwise - failure

int CeedElemRestrictionGetNumElements(CeedElemRestriction rstr, CeedInt *num_elem)

Get the total number of elements in the range of a CeedElemRestriction.

Advanced Functions

Parameters

• rstr – [in] CeedElemRestriction

• num_elem – [out] Variable to store number of elements

Returns
An error code: 0 - success, otherwise - failure

int CeedElemRestrictionGetElementSize(CeedElemRestriction rstr, CeedInt *elem_size)
Get the size of elements in the CeedElemRestriction.

Advanced Functions

Parameters

• rstr – [in] CeedElemRestriction

• elem_size – [out] Variable to store size of elements

Returns
An error code: 0 - success, otherwise - failure

int CeedElemRestrictionGetNumPoints(CeedElemRestriction rstr, CeedInt *num_points)
Get the number of points in the l-vector for a points CeedElemRestriction.

User Functions

Parameters

• rstr – [in] CeedElemRestriction

• num_points – [out] The number of points in the l-vector

Returns
An error code: 0 - success, otherwise - failure

int CeedElemRestrictionGetNumPointsInElement(CeedElemRestriction rstr, CeedInt elem, CeedInt
*num_points)

Get the number of points in an element of a points CeedElemRestriction.

User Functions

Parameters

105

• rstr – [in] CeedElemRestriction

• elem – [in] Index number of element to retrieve the number of points for

• num_points – [out] The number of points in the element at index elem

Returns
An error code: 0 - success, otherwise - failure

int CeedElemRestrictionGetMaxPointsInElement(CeedElemRestriction rstr, CeedInt *max_points)
Get the maximum number of points in an element for a CeedElemRestriction at points.

Advanced Functions

Parameters

• rstr – [in] CeedElemRestriction

• max_points – [out] Variable to store size of elements

Returns
An error code: 0 - success, otherwise - failure

int CeedElemRestrictionGetLVectorSize(CeedElemRestriction rstr, CeedSize *l_size)
Get the size of the l-vector for a CeedElemRestriction.

Advanced Functions

Parameters

• rstr – [in] CeedElemRestriction

• l_size – [out] Variable to store number of nodes

Returns
An error code: 0 - success, otherwise - failure

int CeedElemRestrictionGetNumComponents(CeedElemRestriction rstr, CeedInt *num_comp)
Get the number of components in the elements of a CeedElemRestriction.

Advanced Functions

Parameters

• rstr – [in] CeedElemRestriction

• num_comp – [out] Variable to store number of components

Returns
An error code: 0 - success, otherwise - failure

int CeedElemRestrictionGetNumBlocks(CeedElemRestriction rstr, CeedInt *num_block)
Get the number of blocks in a CeedElemRestriction.

Advanced Functions

Parameters

• rstr – [in] CeedElemRestriction

• num_block – [out] Variable to store number of blocks

Returns
An error code: 0 - success, otherwise - failure

106

int CeedElemRestrictionGetBlockSize(CeedElemRestriction rstr, CeedInt *block_size)
Get the size of blocks in the CeedElemRestriction.

Advanced Functions

Parameters

• rstr – [in] CeedElemRestriction

• block_size – [out] Variable to store size of blocks

Returns
An error code: 0 - success, otherwise - failure

int CeedElemRestrictionGetMultiplicity(CeedElemRestriction rstr, CeedVector mult)
Get the multiplicity of nodes in a CeedElemRestriction.

User Functions

Parameters

• rstr – [in] CeedElemRestriction

• mult – [out] Vector to store multiplicity (of size l_size)

Returns
An error code: 0 - success, otherwise - failure

int CeedElemRestrictionView(CeedElemRestriction rstr, FILE *stream)

View a CeedElemRestriction.

User Functions

Parameters

• rstr – [in] CeedElemRestriction to view

• stream – [in] Stream to write; typically stdout/stderr or a file

Returns
Error code: 0 - success, otherwise - failure

int CeedElemRestrictionDestroy(CeedElemRestriction *rstr)
Destroy a CeedElemRestriction.

User Functions

Parameters

• rstr – [inout] CeedElemRestriction to destroy

Returns
An error code: 0 - success, otherwise - failure

107

6.1.4 CeedBasis

A CeedBasis defines the discrete finite element basis and associated quadrature rule.

6.1.4.1 Discrete element bases and quadrature

typedef struct CeedBasis_private *CeedBasis
Handle for object describing discrete finite element evaluations.

const CeedBasis CEED_BASIS_NONE = &ceed_basis_none
Argument for CeedOperatorSetField indicating that the field does not require a CeedBasis.

const CeedBasis CEED_BASIS_COLLOCATED = &ceed_basis_none
This feature will be removed. Use CEED_BASIS_NONE.

int CeedBasisCreateTensorH1(Ceed ceed, CeedInt dim, CeedInt num_comp, CeedInt P_1d, CeedInt
Q_1d, const CeedScalar *interp_1d, const CeedScalar *grad_1d, const
CeedScalar *q_ref_1d, const CeedScalar *q_weight_1d, CeedBasis *basis)

Create a tensor-product basis for H^1 discretizations.

User Functions

Parameters

• ceed – [in] Ceed object where the CeedBasis will be created

• dim – [in] Topological dimension

• num_comp – [in] Number of field components (1 for scalar fields)

• P_1d – [in] Number of nodes in one dimension

• Q_1d – [in] Number of quadrature points in one dimension

• interp_1d – [in] Row-major (Q_1d * P_1d) matrix expressing the values of nodal
basis functions at quadrature points

• grad_1d – [in] Row-major (Q_1d * P_1d) matrix expressing derivatives of nodal
basis functions at quadrature points

• q_ref_1d – [in] Array of length Q_1d holding the locations of quadrature points
on the 1D reference element [-1, 1]

• q_weight_1d – [in] Array of length Q_1d holding the quadrature weights on the
reference element

• basis – [out] Address of the variable where the newly created CeedBasis will be
stored.

Returns
An error code: 0 - success, otherwise - failure

int CeedBasisCreateTensorH1Lagrange(Ceed ceed, CeedInt dim, CeedInt num_comp, CeedInt P,
CeedInt Q, CeedQuadMode quad_mode, CeedBasis *basis)

Create a tensor-product Lagrange basis.

User Functions

Parameters

108

• ceed – [in] Ceed object where the CeedBasis will be created

• dim – [in] Topological dimension of element

• num_comp – [in] Number of field components (1 for scalar fields)

• P – [in]Number of Gauss-Lobatto nodes in one dimension. The polynomial degree
of the resulting Q_k element is k=P-1.

• Q – [in] Number of quadrature points in one dimension.

• quad_mode – [in]Distribution of theQ quadrature points (affects order of accuracy
for the quadrature)

• basis – [out] Address of the variable where the newly created CeedBasis will be
stored.

Returns
An error code: 0 - success, otherwise - failure

int CeedBasisCreateH1(Ceed ceed, CeedElemTopology topo, CeedInt num_comp, CeedInt num_nodes,
CeedInt num_qpts, const CeedScalar *interp, const CeedScalar *grad, const
CeedScalar *q_ref, const CeedScalar *q_weight, CeedBasis *basis)

Create a non tensor-product basis for H^1 discretizations.

User Functions

Parameters

• ceed – [in] Ceed object where the CeedBasis will be created

• topo – [in] Topology of element, e.g. hypercube, simplex, ect

• num_comp – [in] Number of field components (1 for scalar fields)

• num_nodes – [in] Total number of nodes

• num_qpts – [in] Total number of quadrature points

• interp – [in] Row-major (num_qpts * num_nodes) matrix expressing the values
of nodal basis functions at quadrature points

• grad – [in] Row-major (dim * num_qpts * num_nodes) matrix expressing deriva-
tives of nodal basis functions at quadrature points

• q_ref – [in] Array of length num_qpts * dim holding the locations of quadrature
points on the reference element

• q_weight – [in] Array of length num_qpts holding the quadrature weights on the
reference element

• basis – [out] Address of the variable where the newly created CeedBasis will be
stored.

Returns
An error code: 0 - success, otherwise - failure

int CeedBasisCreateHdiv(Ceed ceed, CeedElemTopology topo, CeedInt num_comp, CeedInt num_nodes,
CeedInt num_qpts, const CeedScalar *interp, const CeedScalar *div, const
CeedScalar *q_ref, const CeedScalar *q_weight, CeedBasis *basis)

Create a non tensor-product basis for 𝐻(div) discretizations.

User Functions

Parameters

109

• ceed – [in] Ceed object where the CeedBasis will be created

• topo – [in] Topology of element (CEED_TOPOLOGY_QUAD, CEED_TOPOL-
OGY_PRISM, etc.), dimension of which is used in some array sizes below

• num_comp – [in] Number of components (usually 1 for vectors in H(div) bases)

• num_nodes – [in] Total number of nodes (dofs per element)

• num_qpts – [in] Total number of quadrature points

• interp – [in] Row-major (dim * num_qpts * num_nodes) matrix expressing the
values of basis functions at quadrature points

• div – [in] Row-major (num_qpts * num_nodes) matrix expressing divergence of
basis functions at quadrature points

• q_ref – [in] Array of length num_qpts * dim holding the locations of quadrature
points on the reference element

• q_weight – [in] Array of length num_qpts holding the quadrature weights on the
reference element

• basis – [out] Address of the variable where the newly created CeedBasis will be
stored.

Returns
An error code: 0 - success, otherwise - failure

int CeedBasisCreateHcurl(Ceed ceed, CeedElemTopology topo, CeedInt num_comp, CeedInt num_nodes,
CeedInt num_qpts, const CeedScalar *interp, const CeedScalar *curl, const
CeedScalar *q_ref, const CeedScalar *q_weight, CeedBasis *basis)

Create a non tensor-product basis for 𝐻(curl) discretizations.

User Functions

Parameters

• ceed – [in] Ceed object where the CeedBasis will be created

• topo – [in] Topology of element (CEED_TOPOLOGY_QUAD, CEED_TOPOL-
OGY_PRISM, etc.), dimension of which is used in some array sizes below

• num_comp – [in] Number of components (usually 1 for vectors in H(curl) bases)

• num_nodes – [in] Total number of nodes (dofs per element)

• num_qpts – [in] Total number of quadrature points

• interp – [in] Row-major (dim * num_qpts * num_nodes) matrix expressing the
values of basis functions at quadrature points

• curl – [in] Row-major (curl_comp * num_qpts * num_nodes, curl_comp = 1 if dim
< 3 else dim) matrix expressing curl of basis functions at quadrature points

• q_ref – [in] Array of length num_qpts * dim holding the locations of quadrature
points on the reference element

• q_weight – [in] Array of length num_qpts holding the quadrature weights on the
reference element

• basis – [out] Address of the variable where the newly created CeedBasis will be
stored.

Returns
An error code: 0 - success, otherwise - failure

110

int CeedBasisCreateProjection(CeedBasis basis_from, CeedBasis basis_to, CeedBasis *basis_project)
Create a CeedBasis for projection from the nodes of basis_from to the nodes of basis_to.

Only CEED_EVAL_INTERP will be valid for the new basis, basis_project. For H^1 spaces,
CEED_EVAL_GRAD will also be valid. The interpolation is given by interp_project = in-
terp_to^+ * interp_from, where the pseudoinverse interp_to^+ is given byQR factorization.
The gradient (for the H^1 case) is given by grad_project = interp_to^+ * grad_from.

Note: basis_from and basis_tomust have compatible quadrature spaces.

Note: basis_projectwill have the same number of components as basis_from, regardless of the
number of components that basis_to has. If basis_from has 3 components and basis_to has 5
components, then basis_projectwill have 3 components.

User Functions

Parameters

• basis_from – [in] CeedBasis to prolong from

• basis_to – [in] CeedBasis to prolong to

• basis_project – [out]Address of the variable where the newly created CeedBa-
sis will be stored.

Returns
An error code: 0 - success, otherwise - failure

int CeedBasisReferenceCopy(CeedBasis basis, CeedBasis *basis_copy)
Copy the pointer to a CeedBasis.

Note: If the value of basis_copy passed into this function is non-NULL, then it is assumed that
basis_copy is a pointer to a CeedBasis. This CeedBasis will be destroyed if basis_copy is the only
reference to this CeedBasis.

User Functions

Parameters

• basis – [in] CeedBasis to copy reference to

• basis_copy – [inout] Variable to store copied reference

Returns
An error code: 0 - success, otherwise - failure

int CeedBasisView(CeedBasis basis, FILE *stream)

View a CeedBasis.

User Functions

Parameters

• basis – [in] CeedBasis to view

• stream – [in] Stream to view to, e.g., stdout

Returns
An error code: 0 - success, otherwise - failure

int CeedBasisApply(CeedBasis basis, CeedInt num_elem, CeedTransposeMode t_mode, CeedEvalMode
eval_mode, CeedVector u, CeedVector v)

Apply basis evaluation from nodes to quadrature points or vice versa.

User Functions

111

Parameters

• basis – [in] CeedBasis to evaluate

• num_elem – [in] The number of elements to apply the basis evaluation to; the back-
end will specify the ordering in CeedElemRestrictionCreateBlocked()

• t_mode – [in]CEED_NOTRANSPOSE to evaluate fromnodes to quadrature points;
CEED_TRANSPOSE to apply the transpose, mapping from quadrature points to
nodes

• eval_mode – [in] CEED_EVAL_NONE to use values directly, CEED_EVAL_IN-
TERP to use interpolated values, CEED_EVAL_GRAD to use gradients,
CEED_EVAL_DIV to use divergence, CEED_EVAL_CURL to use curl,
CEED_EVAL_WEIGHT to use quadrature weights.

• u – [in] Input CeedVector

• v – [out] Output CeedVector

Returns
An error code: 0 - success, otherwise - failure

int CeedBasisApplyAtPoints(CeedBasis basis, CeedInt num_points, CeedTransposeMode t_mode,
CeedEvalMode eval_mode, CeedVector x_ref, CeedVector u, CeedVector v)

Apply basis evaluation from nodes to arbitrary points.

User Functions

Parameters

• basis – [in] CeedBasis to evaluate

• num_points – [in] The number of points to apply the basis evaluation to

• t_mode – [in] CEED_NOTRANSPOSE to evaluate from nodes to points;
CEED_TRANSPOSE to apply the transpose, mapping from points to nodes

• eval_mode – [in] CEED_EVAL_INTERP to use interpolated values,
CEED_EVAL_GRAD to use gradients

• x_ref – [in] CeedVector holding reference coordinates of each point

• u – [in] Input CeedVector, of length num_nodes * num_comp for CEED_NO-
TRANSPOSE

• v – [out] Output CeedVector, of length num_points * num_q_comp for
CEED_NOTRANSPOSEwith CEED_EVAL_INTERP

Returns
An error code: 0 - success, otherwise - failure

int CeedBasisGetCeed(CeedBasis basis, Ceed *ceed)
Get Ceed associated with a CeedBasis.

Advanced Functions

Parameters

• basis – [in] CeedBasis

• ceed – [out] Variable to store Ceed

Returns
An error code: 0 - success, otherwise - failure

112

int CeedBasisGetDimension(CeedBasis basis, CeedInt *dim)

Get dimension for given CeedBasis.

Advanced Functions

Parameters

• basis – [in] CeedBasis

• dim – [out] Variable to store dimension of basis

Returns
An error code: 0 - success, otherwise - failure

int CeedBasisGetTopology(CeedBasis basis, CeedElemTopology *topo)
Get topology for given CeedBasis.

Advanced Functions

Parameters

• basis – [in] CeedBasis

• topo – [out] Variable to store topology of basis

Returns
An error code: 0 - success, otherwise - failure

int CeedBasisGetNumComponents(CeedBasis basis, CeedInt *num_comp)
Get number of components for given CeedBasis.

Advanced Functions

Parameters

• basis – [in] CeedBasis

• num_comp – [out] Variable to store number of components of basis

Returns
An error code: 0 - success, otherwise - failure

int CeedBasisGetNumNodes(CeedBasis basis, CeedInt *P)
Get total number of nodes (in dim dimensions) of a CeedBasis.

Utility Functions

Parameters

• basis – [in] CeedBasis

• P – [out] Variable to store number of nodes

Returns
An error code: 0 - success, otherwise - failure

int CeedBasisGetNumNodes1D(CeedBasis basis, CeedInt *P_1d)
Get total number of nodes (in 1 dimension) of a CeedBasis.

Advanced Functions

Parameters

• basis – [in] CeedBasis

• P_1d – [out] Variable to store number of nodes

113

Returns
An error code: 0 - success, otherwise - failure

int CeedBasisGetNumQuadraturePoints(CeedBasis basis, CeedInt *Q)
Get total number of quadrature points (in dim dimensions) of a CeedBasis.

Utility Functions

Parameters

• basis – [in] CeedBasis

• Q – [out] Variable to store number of quadrature points

Returns
An error code: 0 - success, otherwise - failure

int CeedBasisGetNumQuadraturePoints1D(CeedBasis basis, CeedInt *Q_1d)
Get total number of quadrature points (in 1 dimension) of a CeedBasis.

Advanced Functions

Parameters

• basis – [in] CeedBasis

• Q_1d – [out] Variable to store number of quadrature points

Returns
An error code: 0 - success, otherwise - failure

int CeedBasisGetQRef(CeedBasis basis, const CeedScalar **q_ref)
Get reference coordinates of quadrature points (in dim dimensions) of a CeedBasis.

Advanced Functions

Parameters

• basis – [in] CeedBasis

• q_ref – [out] Variable to store reference coordinates of quadrature points

Returns
An error code: 0 - success, otherwise - failure

int CeedBasisGetQWeights(CeedBasis basis, const CeedScalar **q_weight)
Get quadrature weights of quadrature points (in dim dimensions) of a CeedBasis.

Advanced Functions

Parameters

• basis – [in] CeedBasis

• q_weight – [out] Variable to store quadrature weights

Returns
An error code: 0 - success, otherwise - failure

int CeedBasisGetInterp(CeedBasis basis, const CeedScalar **interp)
Get interpolation matrix of a CeedBasis.

Advanced Functions

Parameters

• basis – [in] CeedBasis

114

• interp – [out] Variable to store interpolation matrix

Returns
An error code: 0 - success, otherwise - failure

int CeedBasisGetInterp1D(CeedBasis basis, const CeedScalar **interp_1d)
Get 1D interpolation matrix of a tensor product CeedBasis.

Backend Developer Functions

Parameters

• basis – [in] CeedBasis

• interp_1d – [out] Variable to store interpolation matrix

Returns
An error code: 0 - success, otherwise - failure

int CeedBasisGetGrad(CeedBasis basis, const CeedScalar **grad)
Get gradient matrix of a CeedBasis.

Advanced Functions

Parameters

• basis – [in] CeedBasis

• grad – [out] Variable to store gradient matrix

Returns
An error code: 0 - success, otherwise - failure

int CeedBasisGetGrad1D(CeedBasis basis, const CeedScalar **grad_1d)
Get 1D gradient matrix of a tensor product CeedBasis.

Advanced Functions

Parameters

• basis – [in] CeedBasis

• grad_1d – [out] Variable to store gradient matrix

Returns
An error code: 0 - success, otherwise - failure

int CeedBasisGetDiv(CeedBasis basis, const CeedScalar **div)
Get divergence matrix of a CeedBasis.

Advanced Functions

Parameters

• basis – [in] CeedBasis

• div – [out] Variable to store divergence matrix

Returns
An error code: 0 - success, otherwise - failure

int CeedBasisGetCurl(CeedBasis basis, const CeedScalar **curl)
Get curl matrix of a CeedBasis.

Advanced Functions

Parameters

115

• basis – [in] CeedBasis

• curl – [out] Variable to store curl matrix

Returns
An error code: 0 - success, otherwise - failure

int CeedBasisDestroy(CeedBasis *basis)
Destroy a CeedBasis.

User Functions

Parameters

• basis – [inout] CeedBasis to destroy

Returns
An error code: 0 - success, otherwise - failure

int CeedGaussQuadrature(CeedInt Q, CeedScalar *q_ref_1d, CeedScalar *q_weight_1d)
Construct a Gauss-Legendre quadrature.

Utility Functions

Parameters

• Q – [in] Number of quadrature points (integrates polynomials of degree 2*Q-1 ex-
actly)

• q_ref_1d – [out] Array of length Q to hold the abscissa on [-1, 1]

• q_weight_1d – [out] Array of length Q to hold the weights

Returns
An error code: 0 - success, otherwise - failure

int CeedLobattoQuadrature(CeedInt Q, CeedScalar *q_ref_1d, CeedScalar *q_weight_1d)
Construct a Gauss-Legendre-Lobatto quadrature.

Utility Functions

Parameters

• Q – [in] Number of quadrature points (integrates polynomials of degree 2*Q-3 ex-
actly)

• q_ref_1d – [out] Array of length Q to hold the abscissa on [-1, 1]

• q_weight_1d – [out] Array of length Q to hold the weights

Returns
An error code: 0 - success, otherwise - failure

Typedefs and Enumerations

enum CeedTransposeMode

Denotes whether a linear transformation or its transpose should be applied.

Values:

116

enumerator CEED_NOTRANSPOSE
Apply the linear transformation.

enumerator CEED_TRANSPOSE
Apply the transpose.

enum CeedEvalMode

Basis evaluation mode.

Values:

enumerator CEED_EVAL_NONE
Perform no evaluation (either because there is no data or it is already at quadrature points)

enumerator CEED_EVAL_INTERP
Interpolate from nodes to quadrature points.

enumerator CEED_EVAL_GRAD
Evaluate gradients at quadrature points from input in the basis.

enumerator CEED_EVAL_DIV
Evaluate divergence at quadrature points from input in the basis.

enumerator CEED_EVAL_CURL
Evaluate curl at quadrature points from input in the basis.

enumerator CEED_EVAL_WEIGHT
Using no input, evaluate quadrature weights on the reference element.

enum CeedQuadMode

Type of quadrature; also used for location of nodes.

Values:

enumerator CEED_GAUSS
Gauss-Legendre quadrature.

enumerator CEED_GAUSS_LOBATTO
Gauss-Legendre-Lobatto quadrature.

enum CeedElemTopology

Type of basis shape to create non-tensor element basis.

Dimension can be extracted with bitwise AND (CeedElemTopology & 2**(dim + 2)) == TRUE

Values:

117

enumerator CEED_TOPOLOGY_LINE
Line.

enumerator CEED_TOPOLOGY_TRIANGLE
Triangle - 2D shape.

enumerator CEED_TOPOLOGY_QUAD
Quadralateral - 2D shape.

enumerator CEED_TOPOLOGY_TET
Tetrahedron - 3D shape.

enumerator CEED_TOPOLOGY_PYRAMID
Pyramid - 3D shape.

enumerator CEED_TOPOLOGY_PRISM
Prism - 3D shape.

enumerator CEED_TOPOLOGY_HEX
Hexehedron - 3D shape.

6.1.5 CeedQFunction

A CeedQFunction represents the spatial terms of the point-wise functions describing the physics at the
quadrature points.

6.1.5.1 Resolution/space-independent weak forms and quadrature-based opera-
tions

typedef struct CeedQFunction_private *CeedQFunction
Handle for object describing functions evaluated independently at quadrature points.

typedef struct CeedQFunctionContext_private *CeedQFunctionContext
Handle for object describing context data for CeedQFunctions.

typedef struct CeedContextFieldLabel_private *CeedContextFieldLabel
Handle for object describing registered fields for CeedQFunctionContext.

const CeedQFunction CEED_QFUNCTION_NONE = &ceed_qfunction_none

int CeedQFunctionCreateInterior(Ceed ceed, CeedInt vec_length, CeedQFunctionUser f, const char
*source, CeedQFunction *qf)

Create a CeedQFunction for evaluating interior (volumetric) terms.

See Public API for CeedQFunction for details on the call-back function f’s arguments.

User Functions

118

Parameters

• ceed – [in] Ceed object where the CeedQFunction will be created

• vec_length – [in] Vector length. Caller must ensure that number of quadrature
points is a multiple of vec_length.

• f – [in] Function pointer to evaluate action at quadrature points. See Public API for
CeedQFunction.

• source – [in] Absolute path to source of QFunction, “\abs_path\file.h:func-
tion_name”. The entire source file must only contain constructs supported by all
targeted backends (i.e. CUDA for /gpu/cuda, OpenCL/SYCL for /gpu/sycl,
etc.). The entire contents of this file and all locally included files are used during JiT
compilation for GPU backends. All source files must be at the provided filepath at
runtime for JiT to function.

• qf – [out] Address of the variable where the newly created CeedQFunction will be
stored

Returns
An error code: 0 - success, otherwise - failure

int CeedQFunctionCreateInteriorByName(Ceed ceed, const char *name, CeedQFunction *qf)
Create a CeedQFunction for evaluating interior (volumetric) terms by name.

User Functions

Parameters

• ceed – [in] Ceed object where the CeedQFunction will be created

• name – [in] Name of QFunction to use from gallery

• qf – [out] Address of the variable where the newly created CeedQFunction will be
stored

Returns
An error code: 0 - success, otherwise - failure

int CeedQFunctionCreateIdentity(Ceed ceed, CeedInt size, CeedEvalMode in_mode, CeedEvalMode
out_mode, CeedQFunction *qf)

Create an identity CeedQFunction.

Inputs are written into outputs in the order given. This is useful for CeedOperators that can be repre-
sented with only the action of a CeedElemRestriction and CeedBasis, such as restriction and prolon-
gation operators for p-multigrid. Backends may optimize CeedOperators with this CeedQFunction to
avoid the copy of input data to output fields by using the same memory location for both.

User Functions

Parameters

• ceed – [in] Ceed object where the CeedQFunction will be created

• size – [in] Size of the QFunction fields

• in_mode – [in] CeedEvalMode for input to CeedQFunction

• out_mode – [in] CeedEvalMode for output to CeedQFunction

• qf – [out] Address of the variable where the newly created CeedQFunction will be
stored

119

Returns
An error code: 0 - success, otherwise - failure

int CeedQFunctionReferenceCopy(CeedQFunction qf, CeedQFunction *qf_copy)
Copy the pointer to a CeedQFunction.

Both pointers should be destroyed with CeedQFunctionDestroy().

Note: If the value of qf_copy passed to this function is non-NULL, then it is assumed that *qf_copy
is a pointer to a CeedQFunction. This CeedQFunction will be destroyed if *qf_copy is the only ref-
erence to this CeedQFunction.

User Functions

Parameters

• qf – [in] CeedQFunction to copy reference to

• qf_copy – [out] Variable to store copied reference

Returns
An error code: 0 - success, otherwise - failure

int CeedQFunctionAddInput(CeedQFunction qf, const char *field_name, CeedInt size, CeedEvalMode
eval_mode)

Add a CeedQFunction input.

User Functions

Parameters

• qf – [inout] CeedQFunction

• field_name – [in] Name of QFunction field

• size – [in] Size of QFunction field, (num_comp * 1) for CEED_EVAL_NONE,
(num_comp * 1) for CEED_EVAL_INTERP for an H^1 space or (num_comp * dim)
for an H(div) or H(curl) space, (num_comp * dim) for CEED_EVAL_GRAD, or
(num_comp * 1) for CEED_EVAL_DIV, and (num_comp * curl_dim) with curl_dim
= 1 if dim < 3 else dim for CEED_EVAL_CURL.

• eval_mode – [in] CEED_EVAL_NONE to use values directly, CEED_EVAL_IN-
TERP to use interpolated values, CEED_EVAL_GRAD to use gradients,
CEED_EVAL_DIV to use divergence, CEED_EVAL_CURL to use curl.

Returns
An error code: 0 - success, otherwise - failure

int CeedQFunctionAddOutput(CeedQFunction qf, const char *field_name, CeedInt size, CeedEvalMode
eval_mode)

Add a CeedQFunction output.

User Functions

Parameters

• qf – [inout] CeedQFunction

• field_name – [in] Name of QFunction field

• size – [in] Size of QFunction field, (num_comp * 1) for CEED_EVAL_NONE,
(num_comp * 1) for CEED_EVAL_INTERP for an H^1 space or (num_comp * dim)
for an H(div) or H(curl) space, (num_comp * dim) for CEED_EVAL_GRAD, or

120

(num_comp * 1) for CEED_EVAL_DIV, and (num_comp * curl_dim) with curl_dim
= 1 if dim < 3 else dim for CEED_EVAL_CURL.

• eval_mode – [in] CEED_EVAL_NONE to use values directly, CEED_EVAL_IN-
TERP to use interpolated values, CEED_EVAL_GRAD to use gradients,
CEED_EVAL_DIV to use divergence, CEED_EVAL_CURL to use curl.

Returns
An error code: 0 - success, otherwise - failure

int CeedQFunctionGetFields(CeedQFunction qf, CeedInt *num_input_fields, CeedQFunctionField
**input_fields, CeedInt *num_output_fields, CeedQFunctionField
**output_fields)

Get the CeedQFunctionFields of a CeedQFunction.

Note: Calling this function asserts that setup is complete and sets the CeedQFunction as immutable.

Advanced Functions

Parameters

• qf – [in] CeedQFunction

• num_input_fields – [out] Variable to store number of input fields

• input_fields – [out] Variable to store input fields

• num_output_fields – [out] Variable to store number of output fields

• output_fields – [out] Variable to store output fields

Returns
An error code: 0 - success, otherwise - failure

int CeedQFunctionFieldGetName(CeedQFunctionField qf_field, char **field_name)
Get the name of a CeedQFunctionField.

Advanced Functions

Parameters

• qf_field – [in] CeedQFunctionField

• field_name – [out] Variable to store the field name

Returns
An error code: 0 - success, otherwise - failure

int CeedQFunctionFieldGetSize(CeedQFunctionField qf_field, CeedInt *size)
Get the number of components of a CeedQFunctionField.

Advanced Functions

Parameters

• qf_field – [in] CeedQFunctionField

• size – [out] Variable to store the size of the field

Returns
An error code: 0 - success, otherwise - failure

int CeedQFunctionFieldGetEvalMode(CeedQFunctionField qf_field, CeedEvalMode *eval_mode)
Get the CeedEvalMode of a CeedQFunctionField.

Advanced Functions

121

Parameters

• qf_field – [in] CeedQFunctionField

• eval_mode – [out] Variable to store the field evaluation mode

Returns
An error code: 0 - success, otherwise - failure

int CeedQFunctionSetContext(CeedQFunction qf, CeedQFunctionContext ctx)
Set global context for a CeedQFunction.

User Functions

Parameters

• qf – [inout] CeedQFunction

• ctx – [in] Context data to set

Returns
An error code: 0 - success, otherwise - failure

int CeedQFunctionSetContextWritable(CeedQFunction qf, bool is_writable)
Set writability of CeedQFunctionContext when calling the CeedQFunctionUser.

The default value is is_writable == true.

Setting is_writable == true indicates the CeedQFunctionUser writes into the CeedQFunc-
tionContextData and requires memory syncronization after calling CeedQFunctionApply().

Setting ‘is_writable == false’ asserts that CeedQFunctionUser does not modify the CeedQFunc-
tionContextData. Violating this assertion may lead to inconsistent data.

Setting is_writable == falsemay offer a performance improvement on GPU backends.

User Functions

Parameters

• qf – [inout] CeedQFunction

• is_writable – [in]Writability status

Returns
An error code: 0 - success, otherwise - failure

int CeedQFunctionSetUserFlopsEstimate(CeedQFunction qf, CeedSize flops)
Set estimated number of FLOPs per quadrature required to apply QFunction.

Backend Developer Functions

Parameters

• qf – [in] QFunction to estimate FLOPs for

• flops – [out] FLOPs per quadrature point estimate

int CeedQFunctionView(CeedQFunction qf, FILE *stream)

View a CeedQFunction.

User Functions

Parameters

• qf – [in] CeedQFunction to view

122

• stream – [in] Stream to write; typically stdout/stderr or a file

Returns
Error code: 0 - success, otherwise - failure

int CeedQFunctionGetCeed(CeedQFunction qf, Ceed *ceed)
Get the Ceed associated with a CeedQFunction.

Advanced Functions

Parameters

• qf – [in] CeedQFunction

• ceed – [out] Variable to store Ceed

Returns
An error code: 0 - success, otherwise - failure

int CeedQFunctionApply(CeedQFunction qf, CeedInt Q, CeedVector *u, CeedVector *v)
Apply the action of a CeedQFunction.

Note: Calling this function asserts that setup is complete and sets the CeedQFunction as immutable.

User Functions

Parameters

• qf – [in] CeedQFunction

• Q – [in] Number of quadrature points

• u – [in] Array of input CeedVectors

• v – [out] Array of output CeedVectors

Returns
An error code: 0 - success, otherwise - failure

int CeedQFunctionDestroy(CeedQFunction *qf)
Destroy a CeedQFunction.

User Functions

Parameters

• qf – [inout] CeedQFunction to destroy

Returns
An error code: 0 - success, otherwise - failure

int CeedQFunctionContextCreate(Ceed ceed, CeedQFunctionContext *ctx)
Create a CeedQFunctionContext for storing CeedQFunction user context data.

User Functions

Parameters

• ceed – [in] Ceed object where the CeedQFunctionContext will be created

• ctx – [out] Address of the variable where the newly created CeedQFunctionCon-
text will be stored

Returns
An error code: 0 - success, otherwise - failure

123

int CeedQFunctionContextReferenceCopy(CeedQFunctionContext ctx, CeedQFunctionContext
*ctx_copy)

Copy the pointer to a CeedQFunctionContext.

Both pointers should be destroyed with CeedQFunctionContextDestroy().

Note: If the value ofctx_copypassed to this function is non-NULL, then it is assumed thatctx_copy
is a pointer to a CeedQFunctionContext. This CeedQFunctionContext will be destroyed if ctx_copy
is the only reference to this CeedQFunctionContext.

User Functions

Parameters

• ctx – [in] CeedQFunctionContext to copy reference to

• ctx_copy – [inout] Variable to store copied reference

Returns
An error code: 0 - success, otherwise - failure

int CeedQFunctionContextSetData(CeedQFunctionContext ctx, CeedMemType mem_type,
CeedCopyMode copy_mode, size_t size, void *data)

Set the data used by a CeedQFunctionContext, freeing any previously allocated data if applicable.

The backend may copy values to a different memtype, such as during CeedQFunctionApply(). See also
CeedQFunctionContextTakeData().

User Functions

Parameters

• ctx – [inout] CeedQFunctionContext

• mem_type – [in]Memory type of the data being passed

• copy_mode – [in] Copy mode for the data

• size – [in] Size of data, in bytes

• data – [in] Data to be used

Returns
An error code: 0 - success, otherwise - failure

int CeedQFunctionContextTakeData(CeedQFunctionContext ctx, CeedMemTypemem_type, void *data)
Take ownership of the data in a CeedQFunctionContext via the specified memory type.

The caller is responsible for managing and freeing the memory.

User Functions

Parameters

• ctx – [in] CeedQFunctionContext to access

• mem_type – [in] Memory type on which to access the data. If the backend uses a
different memory type, this will perform a copy.

• data – [out] Data on memory type mem_type

Returns
An error code: 0 - success, otherwise - failure

124

int CeedQFunctionContextGetData(CeedQFunctionContext ctx, CeedMemType mem_type, void *data)
Get read/write access to a CeedQFunctionContext via the specified memory type.

Restore access with CeedQFunctionContextRestoreData().

User Functions

Note: The CeedQFunctionContextGetData() and CeedQFunctionContextRestoreData() functions provide
access to array pointers in the desired memory space. Pairing get/restore allows the Context to track
access.

Parameters

• ctx – [in] CeedQFunctionContext to access

• mem_type – [in] Memory type on which to access the data. If the backend uses a
different memory type, this will perform a copy.

• data – [out] Data on memory type mem_type

Returns
An error code: 0 - success, otherwise - failure

int CeedQFunctionContextGetDataRead(CeedQFunctionContext ctx, CeedMemType mem_type, void
*data)

Get read only access to a CeedQFunctionContext via the specified memory type.

Restore access with CeedQFunctionContextRestoreData().

User Functions

Note: The CeedQFunctionContextGetDataRead() and CeedQFunctionContextRestoreDataRead() func-
tions provide access to array pointers in the desired memory space. Pairing get/restore allows the
Context to track access.

Parameters

• ctx – [in] CeedQFunctionContext to access

• mem_type – [in] Memory type on which to access the data. If the backend uses a
different memory type, this will perform a copy.

• data – [out] Data on memory type mem_type

Returns
An error code: 0 - success, otherwise - failure

int CeedQFunctionContextRestoreData(CeedQFunctionContext ctx, void *data)
Restore data obtained using CeedQFunctionContextGetData()

User Functions

Parameters

• ctx – [in] CeedQFunctionContext to restore

• data – [inout] Data to restore

125

Returns
An error code: 0 - success, otherwise - failure

int CeedQFunctionContextRestoreDataRead(CeedQFunctionContext ctx, void *data)
Restore data obtained using CeedQFunctionContextGetDataRead()

User Functions

Parameters

• ctx – [in] CeedQFunctionContext to restore

• data – [inout] Data to restore

Returns
An error code: 0 - success, otherwise - failure

int CeedQFunctionContextRegisterDouble(CeedQFunctionContext ctx, const char *field_name,
size_t field_offset, size_t num_values, const char
*field_description)

Register QFunctionContext a field holding a double precision value.

User Functions

Parameters

• ctx – [inout] CeedQFunctionContext

• field_name – [in] Name of field to register

• field_offset – [in] Offset of field to register

• num_values – [in] Number of values to register, must be contiguous in memory

• field_description – [in] Description of field, or NULL for none

Returns
An error code: 0 - success, otherwise - failure

int CeedQFunctionContextRegisterInt32(CeedQFunctionContext ctx, const char *field_name, size_t
field_offset, size_t num_values, const char
*field_description)

Register QFunctionContext a field holding a int32 value.

User Functions

Parameters

• ctx – [inout] CeedQFunctionContext

• field_name – [in] Name of field to register

• field_offset – [in] Offset of field to register

• num_values – [in] Number of values to register, must be contiguous in memory

• field_description – [in] Description of field, or NULL for none

Returns
An error code: 0 - success, otherwise - failure

int CeedQFunctionContextGetAllFieldLabels(CeedQFunctionContext ctx, const
CeedContextFieldLabel **field_labels, CeedInt
*num_fields)

126

Get labels for all registered QFunctionContext fields.

User Functions

Parameters

• ctx – [in] CeedQFunctionContext

• field_labels – [out] Variable to hold array of field labels

• num_fields – [out] Length of field descriptions array

Returns
An error code: 0 - success, otherwise - failure

int CeedContextFieldLabelGetDescription(CeedContextFieldLabel label, const char **field_name,
size_t *field_offset, size_t *num_values, const char
**field_description, CeedContextFieldType
*field_type)

Get the descriptive information about a CeedContextFieldLabel.

User Functions

Parameters

• label – [in] CeedContextFieldLabel

• field_name – [out] Name of labeled field

• field_offset – [out] Offset of field registered

• num_values – [out] Number of values registered

• field_description – [out] Description of field, or NULL for none

• field_type – [out] CeedContextFieldType

Returns
An error code: 0 - success, otherwise - failure

int CeedQFunctionContextGetContextSize(CeedQFunctionContext ctx, size_t *ctx_size)
Get data size for a Context.

User Functions

Parameters

• ctx – [in] CeedQFunctionContext

• ctx_size – [out] Variable to store size of context data values

Returns
An error code: 0 - success, otherwise - failure

int CeedQFunctionContextView(CeedQFunctionContext ctx, FILE *stream)

View a CeedQFunctionContext.

User Functions

Parameters

• ctx – [in] CeedQFunctionContext to view

• stream – [in] Filestream to write to

127

Returns
An error code: 0 - success, otherwise - failure

int CeedQFunctionContextSetDataDestroy(CeedQFunctionContext ctx, CeedMemType f_mem_type,
CeedQFunctionContextDataDestroyUser f)

Set additional destroy routine for CeedQFunctionContext user data.

User Functions

Parameters

• ctx – [inout] CeedQFunctionContext to set user destroy function

• f_mem_type – [in]Memory type to use when passing data into f

• f – [in] Additional routine to use to destroy user data

Returns
An error code: 0 - success, otherwise - failure

int CeedQFunctionContextDestroy(CeedQFunctionContext *ctx)
Destroy a CeedQFunctionContext.

User Functions

Parameters

• ctx – [inout] CeedQFunctionContext to destroy

Returns
An error code: 0 - success, otherwise - failure

Macros

CEED_QFUNCTION(name)
This macro populates the correct function annotations for User QFunction source for code generation
backends or populates default values for CPU backends.

It also creates a variable name_loc populated with the correct source path for creating the respective
User QFunction.

CEED_QFUNCTION_HELPER

This macro populates the correct function annotations for User QFunction helper function source for
code generation backends or populates default values for CPU backends.

CEED_Q_VLA

Using VLA syntax to reshape User QFunction inputs and outputs can make user code more readable.

VLA is a C99 feature that is not supported by the C++ dialect used by CUDA. This macro allows users
to use the VLA syntax with the CUDA backends.

128

6.1.6 CeedOperator

A CeedOperator defines the finite/spectral element operator associated to a CeedQFunction. A CeedOperator
connects objects of the type CeedElemRestriction, CeedBasis, and CeedQFunction.

6.1.6.1 Discrete operators on user vectors

typedef struct CeedOperator_private *CeedOperator
Handle for object describing FE-type operators acting on vectors.

Given an element restriction 𝐸, basis evaluator 𝐵, and quadrature function 𝑓, a CeedOperator expresses
operations of the form 𝐸𝑇𝐵𝑇𝑓 (𝐵𝐸𝑢) acting on the vector 𝑢.

int CeedOperatorCreate(Ceed ceed, CeedQFunction qf, CeedQFunction dqf, CeedQFunction dqfT,
CeedOperator *op)

Create a CeedOperator and associate a CeedQFunction.

A CeedBasis and CeedElemRestriction can be associated with CeedQFunction fields with CeedOpera-
torSetField.

User Functions

Parameters

• ceed – [in] Ceed object where the CeedOperator will be created

• qf – [in] QFunction defining the action of the operator at quadrature points

• dqf – [in] QFunction defining the action of the Jacobian of qf (or CEED_QFUNC-
TION_NONE)

• dqfT – [in]QFunction defining the action of the transpose of the Jacobian of qf (or
CEED_QFUNCTION_NONE)

• op – [out] Address of the variable where the newly created CeedOperator will be
stored

Returns
An error code: 0 - success, otherwise - failure

int CeedCompositeOperatorCreate(Ceed ceed, CeedOperator *op)
Create an operator that composes the action of several operators.

User Functions

Parameters

• ceed – [in] Ceed object where the CeedOperator will be created

• op – [out] Address of the variable where the newly created Composite CeedOper-
ator will be stored

Returns
An error code: 0 - success, otherwise - failure

int CeedOperatorReferenceCopy(CeedOperator op, CeedOperator *op_copy)
Copy the pointer to a CeedOperator.

Both pointers should be destroyed with CeedOperatorDestroy().

129

Note: If the value of op_copy passed to this function is non-NULL, then it is assumed that op_copy
is a pointer to a CeedOperator. This CeedOperator will be destroyed if op_copy is the only reference
to this CeedOperator.

User Functions

Parameters

• op – [in] CeedOperator to copy reference to

• op_copy – [inout] Variable to store copied reference

Returns
An error code: 0 - success, otherwise - failure

int CeedOperatorSetField(CeedOperator op, const char *field_name, CeedElemRestriction r, CeedBasis b,
CeedVector v)

Provide a field to a CeedOperator for use by its CeedQFunction.

This function is used to specify both active and passive fields to a CeedOperator. For passive fields, a
vector

• v must be provided. Passive fields can inputs or outputs (updated in-place when operator is
applied).

Active fields must be specified using this function, but their data (in a CeedVector) is passed in Cee-
dOperatorApply(). There can be at most one active input CeedVector and at most one active output
CeedVector passed to CeedOperatorApply().

The number of quadrature points must agree across all points. When using CEED_BASIS_NONE, the
number of quadrature points is determined by the element size of r.

User Functions

Parameters

• op – [inout] CeedOperator on which to provide the field

• field_name – [in]Nameof the field (to bematchedwith the nameused byCeedQ-
Function)

• r – [in] CeedElemRestriction

• b – [in] CeedBasis in which the field resides or CEED_BASIS_NONE if collocated
with quadrature points

• v – [in]CeedVector to be used byCeedOperator orCEED_VECTOR_ACTIVE if field
is active or CEED_VECTOR_NONE if using CEED_EVAL_WEIGHT in the QFunc-
tion

Returns
An error code: 0 - success, otherwise - failure

int CeedOperatorGetFields(CeedOperator op, CeedInt *num_input_fields, CeedOperatorField
**input_fields, CeedInt *num_output_fields, CeedOperatorField
**output_fields)

Get the CeedOperatorFields of a CeedOperator.

Note: Calling this function asserts that setup is complete and sets the CeedOperator as immutable.

Advanced Functions

Parameters

• op – [in] CeedOperator

130

• num_input_fields – [out] Variable to store number of input fields

• input_fields – [out] Variable to store input_fields

• num_output_fields – [out] Variable to store number of output fields

• output_fields – [out] Variable to store output_fields

Returns
An error code: 0 - success, otherwise - failure

int CeedOperatorGetFieldByName(CeedOperator op, const char *field_name, CeedOperatorField
*op_field)

Get a CeedOperatorField of an CeedOperator from its name.

Note: Calling this function asserts that setup is complete and sets the CeedOperator as immutable.

Advanced Functions

Parameters

• op – [in] CeedOperator

• field_name – [in] Name of desired CeedOperatorField

• op_field – [out] CeedOperatorField corresponding to the name

Returns
An error code: 0 - success, otherwise - failure

int CeedOperatorFieldGetName(CeedOperatorField op_field, char **field_name)
Get the name of a CeedOperatorField.

Advanced Functions

Parameters

• op_field – [in] CeedOperatorField

• field_name – [out] Variable to store the field name

Returns
An error code: 0 - success, otherwise - failure

int CeedOperatorFieldGetElemRestriction(CeedOperatorField op_field, CeedElemRestriction *rstr)
Get the CeedElemRestriction of a CeedOperatorField.

Advanced Functions

Parameters

• op_field – [in] CeedOperatorField

• rstr – [out] Variable to store CeedElemRestriction

Returns
An error code: 0 - success, otherwise - failure

int CeedOperatorFieldGetBasis(CeedOperatorField op_field, CeedBasis *basis)
Get the CeedBasis of a CeedOperatorField.

Advanced Functions

Parameters

• op_field – [in] CeedOperatorField

131

• basis – [out] Variable to store CeedBasis

Returns
An error code: 0 - success, otherwise - failure

int CeedOperatorFieldGetVector(CeedOperatorField op_field, CeedVector *vec)
Get the CeedVector of a CeedOperatorField.

Advanced Functions

Parameters

• op_field – [in] CeedOperatorField

• vec – [out] Variable to store CeedVector

Returns
An error code: 0 - success, otherwise - failure

int CeedCompositeOperatorAddSub(CeedOperator composite_op, CeedOperator sub_op)
Add a sub-operator to a composite CeedOperator.

User Functions

Parameters

• composite_op – [inout] Composite CeedOperator

• sub_op – [in] Sub-operator CeedOperator

Returns
An error code: 0 - success, otherwise - failure

int CeedCompositeOperatorGetNumSub(CeedOperator op, CeedInt *num_suboperators)
Get the number of sub_operators associated with a CeedOperator.

Backend Developer Functions

Parameters

• op – [in] CeedOperator

• num_suboperators – [out] Variable to store number of sub_operators

Returns
An error code: 0 - success, otherwise - failure

int CeedCompositeOperatorGetSubList(CeedOperator op, CeedOperator **sub_operators)
Get the list of sub_operators associated with a CeedOperator.

Backend Developer Functions

Parameters

• op – CeedOperator

• sub_operators – [out] Variable to store list of sub_operators

Returns
An error code: 0 - success, otherwise - failure

int CeedOperatorCheckReady(CeedOperator op)
Check if a CeedOperator is ready to be used.

User Functions

Parameters

132

• op – [in] CeedOperator to check

Returns
An error code: 0 - success, otherwise - failure

int CeedOperatorGetActiveVectorLengths(CeedOperator op, CeedSize *input_size, CeedSize
*output_size)

Get vector lengths for the active input and/or output vectors of a CeedOperator.

Note: Lengths of -1 indicate that the CeedOperator does not have an active input and/or output.

User Functions

Parameters

• op – [in] CeedOperator

• input_size – [out] Variable to store active input vector length, or NULL

• output_size – [out] Variable to store active output vector length, or NULL

Returns
An error code: 0 - success, otherwise - failure

int CeedOperatorSetQFunctionAssemblyReuse(CeedOperator op, bool reuse_assembly_data)
Set reuse of CeedQFunction data in CeedOperatorLinearAssemble* functions.

When reuse_assembly_data = false (default), the CeedQFunction associated with this Ceed-
Operator is re-assembled every time a CeedOperatorLinearAssemble* function is called. When
reuse_assembly_data = true, the CeedQFunction associated with this CeedOperator is reused
between calls to CeedOperatorSetQFunctionAssemblyDataUpdated.

Advanced Functions

Parameters

• op – [in] CeedOperator

• reuse_assembly_data – [in] Boolean flag setting assembly data reuse

Returns
An error code: 0 - success, otherwise - failure

int CeedOperatorSetQFunctionAssemblyDataUpdateNeeded(CeedOperator op, bool
needs_data_update)

Mark CeedQFunction data as updated and the CeedQFunction as requiring re-assembly.

Advanced Functions

Parameters

• op – [in] CeedOperator

• needs_data_update – [in] Boolean flag setting assembly data reuse

Returns
An error code: 0 - success, otherwise - failure

int CeedOperatorSetName(CeedOperator op, const char *name)
Set name of CeedOperator for CeedOperatorView output.

User Functions

Parameters

• op – [inout] CeedOperator

133

• name – [in] Name to set, or NULL to remove previously set name

Returns
An error code: 0 - success, otherwise - failure

int CeedOperatorView(CeedOperator op, FILE *stream)

View a CeedOperator.

User Functions

Parameters

• op – [in] CeedOperator to view

• stream – [in] Stream to write; typically stdout/stderr or a file

Returns
Error code: 0 - success, otherwise - failure

int CeedOperatorGetCeed(CeedOperator op, Ceed *ceed)
Get the Ceed associated with a CeedOperator.

Advanced Functions

Parameters

• op – [in] CeedOperator

• ceed – [out] Variable to store Ceed

Returns
An error code: 0 - success, otherwise - failure

int CeedOperatorGetNumElements(CeedOperator op, CeedInt *num_elem)

Get the number of elements associated with a CeedOperator.

Advanced Functions

Parameters

• op – [in] CeedOperator

• num_elem – [out] Variable to store number of elements

Returns
An error code: 0 - success, otherwise - failure

int CeedOperatorGetNumQuadraturePoints(CeedOperator op, CeedInt *num_qpts)
Get the number of quadrature points associated with a CeedOperator.

Advanced Functions

Parameters

• op – [in] CeedOperator

• num_qpts – [out] Variable to store vector number of quadrature points

Returns
An error code: 0 - success, otherwise - failure

int CeedOperatorGetFlopsEstimate(CeedOperator op, CeedSize *flops)
Estimate number of FLOPs required to apply CeedOperator on the active vector.

Backend Developer Functions

Parameters

134

• op – [in] CeedOperator to estimate FLOPs for

• flops – [out] Address of variable to hold FLOPs estimate

int CeedOperatorGetContext(CeedOperator op, CeedQFunctionContext *ctx)
Get CeedQFunction global context for a CeedOperator.

The caller is responsible for destroying ctx returned from this function via CeedQFunctionCon-
textDestroy().

Note: If the value of ctx passed into this function is non-NULL, then it is assumed that ctx is a
pointer to a CeedQFunctionContext. This CeedQFunctionContext will be destroyed if ctx is the only
reference to this CeedQFunctionContext.

Advanced Functions

Parameters

• op – [in] CeedOperator

• ctx – [out] Variable to store CeedQFunctionContext

Returns
An error code: 0 - success, otherwise - failure

int CeedOperatorGetContextFieldLabel(CeedOperator op, const char *field_name,
CeedContextFieldLabel *field_label)

Get label for a registered QFunctionContext field, or NULL if no field has been registered with this
field_name.

Fields are registered via CeedQFunctionContextRegister*() functions (eg. CeedQFunction-
ContextRegisterDouble()).

User Functions

Parameters

• op – [in] CeedOperator

• field_name – [in] Name of field to retrieve label

• field_label – [out] Variable to field label

Returns
An error code: 0 - success, otherwise - failure

int CeedOperatorSetContextDouble(CeedOperator op, CeedContextFieldLabel field_label, double
*values)

Set QFunctionContext field holding double precision values.

For composite operators, the values are set in all sub-operatorQFunctionContexts that have amatching
field_name.

User Functions

Parameters

• op – [inout] CeedOperator

• field_label – [in] Label of field to set

• values – [in] Values to set

Returns
An error code: 0 - success, otherwise - failure

135

int CeedOperatorGetContextDoubleRead(CeedOperator op, CeedContextFieldLabel field_label, size_t
*num_values, const double **values)

Get QFunctionContext field holding double precision values, read-only.

For composite operators, the values correspond to the first sub-operator QFunctionContexts that has
a matching field_name.

User Functions

Parameters

• op – [in] CeedOperator

• field_label – [in] Label of field to get

• num_values – [out] Number of values in the field label

• values – [out] Pointer to context values

Returns
An error code: 0 - success, otherwise - failure

int CeedOperatorRestoreContextDoubleRead(CeedOperator op, CeedContextFieldLabel field_label,
const double **values)

Restore QFunctionContext field holding double precision values, read-only.

User Functions

Parameters

• op – [in] CeedOperator

• field_label – [in] Label of field to restore

• values – [out] Pointer to context values

Returns
An error code: 0 - success, otherwise - failure

int CeedOperatorSetContextInt32(CeedOperator op, CeedContextFieldLabel field_label, int *values)
Set QFunctionContext field holding int32 values.

For composite operators, the values are set in all sub-operatorQFunctionContexts that have amatching
field_name.

User Functions

Parameters

• op – [inout] CeedOperator

• field_label – [in] Label of field to set

• values – [in] Values to set

Returns
An error code: 0 - success, otherwise - failure

int CeedOperatorGetContextInt32Read(CeedOperator op, CeedContextFieldLabel field_label, size_t
*num_values, const int **values)

Get QFunctionContext field holding int32 values, read-only.

For composite operators, the values correspond to the first sub-operator QFunctionContexts that has
a matching field_name.

User Functions

136

Parameters

• op – [in] CeedOperator

• field_label – [in] Label of field to get

• num_values – [out] Number of int32 values in values

• values – [out] Pointer to context values

Returns
An error code: 0 - success, otherwise - failure

int CeedOperatorRestoreContextInt32Read(CeedOperator op, CeedContextFieldLabel field_label,
const int **values)

Restore QFunctionContext field holding int32 values, read-only.

User Functions

Parameters

• op – [in] CeedOperator

• field_label – [in] Label of field to get

• values – [out] Pointer to context values

Returns
An error code: 0 - success, otherwise - failure

int CeedOperatorApply(CeedOperator op, CeedVector in, CeedVector out, CeedRequest *request)
Apply CeedOperator to a vector.

This computes the action of the operator on the specified (active) input, yielding its (active) output.
All inputs and outputs must be specified using CeedOperatorSetField().

Note: Calling this function asserts that setup is complete and sets the CeedOperator as immutable.

User Functions

Parameters

• op – [in] CeedOperator to apply

• in – [in] CeedVector containing input state or CEED_VECTOR_NONE if there are
no active inputs

• out – [out] CeedVector to store result of applying operator (must be distinct from
in) or CEED_VECTOR_NONE if there are no active outputs

• request – [in] Address of CeedRequest for non-blocking completion, else
CEED_REQUEST_IMMEDIATE

Returns
An error code: 0 - success, otherwise - failure

int CeedOperatorApplyAdd(CeedOperator op, CeedVector in, CeedVector out, CeedRequest *request)
Apply CeedOperator to a vector and add result to output vector.

This computes the action of the operator on the specified (active) input, yielding its (active) output.
All inputs and outputs must be specified using CeedOperatorSetField().

User Functions

Parameters

• op – [in] CeedOperator to apply

137

• in – [in] CeedVector containing input state or NULL if there are no active inputs

• out – [out]CeedVector to sum in result of applying operator (must be distinct from
in) or NULL if there are no active outputs

• request – [in] Address of CeedRequest for non-blocking completion, else
CEED_REQUEST_IMMEDIATE

Returns
An error code: 0 - success, otherwise - failure

int CeedOperatorDestroy(CeedOperator *op)
Destroy a CeedOperator.

User Functions

Parameters

• op – [inout] CeedOperator to destroy

Returns
An error code: 0 - success, otherwise - failure

int CeedOperatorLinearAssembleQFunction(CeedOperator op, CeedVector *assembled,
CeedElemRestriction *rstr, CeedRequest *request)

Assemble a linear CeedQFunction associated with a CeedOperator.

This returns a CeedVector containing a matrix at each quadrature point providing the action
of the CeedQFunction associated with the CeedOperator. The vector assembled is of shape
[num_elements, num_input_fields, num_output_fields, num_quad_points] and
contains column-major matrices representing the action of the CeedQFunction for a corresponding
quadrature point on an element.

Inputs and outputs are in the order provided by the user when adding CeedOperator fields. For
example, a CeedQFunction with inputs ‘u’ and ‘gradu’ and outputs ‘gradv’ and ‘v’, provided in that
order, would result in an assembled QFunction that consists of (1 + dim) x (dim + 1) matrices at each
quadrature point acting on the input [u, du_0, du_1] and producing the output [dv_0, dv_1, v].

Note: Calling this function asserts that setup is complete and sets the CeedOperator as immutable.

User Functions

Parameters

• op – [in] CeedOperator to assemble CeedQFunction

• assembled – [out] CeedVector to store assembled CeedQFunction at quadrature
points

• rstr – [out] CeedElemRestriction for CeedVector containing assembled CeedQ-
Function

• request – [in] Address of CeedRequest for non-blocking completion, else
CEED_REQUEST_IMMEDIATE

Returns
An error code: 0 - success, otherwise - failure

int CeedOperatorLinearAssembleQFunctionBuildOrUpdate(CeedOperator op, CeedVector
*assembled, CeedElemRestriction
*rstr, CeedRequest *request)

Assemble CeedQFunction and store result internally.

138

Return copied references of stored data to the caller. Caller is responsible for ownership and destruc-
tion of the copied references. See also CeedOperatorLinearAssembleQFunction

Note: If the value of assembled or rstr passed to this function are non-NULL, then it is assumed
that they hold valid pointers. These objects will be destroyed if *assembled or *rstr is the only
reference to the object.

User Functions

Parameters

• op – [in] CeedOperator to assemble CeedQFunction

• assembled – [out] CeedVector to store assembled CeedQFunction at quadrature
points

• rstr – [out] CeedElemRestriction for CeedVector containing assembledCeedQ-
Function

• request – [in] Address of CeedRequest for non-blocking completion, else
CEED_REQUEST_IMMEDIATE

Returns
An error code: 0 - success, otherwise - failure

int CeedOperatorLinearAssembleDiagonal(CeedOperator op, CeedVector assembled, CeedRequest
*request)

Assemble the diagonal of a square linear CeedOperator.

This overwrites a CeedVector with the diagonal of a linear CeedOperator.

Note: Currently only non-composite CeedOperators with a single field and composite CeedOperators
with single field sub-operators are supported.

Note: Calling this function asserts that setup is complete and sets the CeedOperator as immutable.

User Functions

Parameters

• op – [in] CeedOperator to assemble CeedQFunction

• assembled – [out] CeedVector to store assembled CeedOperator diagonal

• request – [in] Address of CeedRequest for non-blocking completion, else
CEED_REQUEST_IMMEDIATE

Returns
An error code: 0 - success, otherwise - failure

int CeedOperatorLinearAssembleAddDiagonal(CeedOperator op, CeedVector assembled, CeedRequest
*request)

Assemble the diagonal of a square linear CeedOperator.

This sums into a CeedVector the diagonal of a linear CeedOperator.

Note: Currently only non-composite CeedOperators with a single field and composite CeedOperators
with single field sub-operators are supported.

Note: Calling this function asserts that setup is complete and sets the CeedOperator as immutable.

User Functions

Parameters

• op – [in] CeedOperator to assemble CeedQFunction

139

• assembled – [out] CeedVector to store assembled CeedOperator diagonal

• request – [in] Address of CeedRequest for non-blocking completion, else
CEED_REQUEST_IMMEDIATE

Returns
An error code: 0 - success, otherwise - failure

int CeedOperatorLinearAssemblePointBlockDiagonalSymbolic(CeedOperator op, CeedSize
*num_entries, CeedInt **rows,
CeedInt **cols)

Fully assemble the point-block diagonal pattern of a linear operator.

Expected to be used in conjunction with CeedOperatorLinearAssemblePointBlockDiagonal().

The assembly routines use coordinate format, with num_entries tuples of the form (i, j, value)which
indicate that value should be added to the matrix in entry (i, j). Note that the (i, j) pairs are unique.
This function returns the number of entries and their (i, j) locations, while CeedOperatorLinearAssem-
blePointBlockDiagonal() provides the values in the same ordering.

This will generally be slow unless your operator is low-order.

Note: Calling this function asserts that setup is complete and sets the CeedOperator as immutable.

User Functions

Parameters

• op – [in] CeedOperator to assemble

• num_entries – [out] Number of entries in coordinate nonzero pattern

• rows – [out] Row number for each entry

• cols – [out] Column number for each entry

int CeedOperatorLinearAssemblePointBlockDiagonal(CeedOperator op, CeedVector assembled,
CeedRequest *request)

Assemble the point block diagonal of a square linear CeedOperator.

This overwrites a CeedVector with the point block diagonal of a linear CeedOperator.

Note: Currently only non-composite CeedOperators with a single field and composite CeedOperators
with single field sub-operators are supported.

Note: Calling this function asserts that setup is complete and sets the CeedOperator as immutable.

User Functions

Parameters

• op – [in] CeedOperator to assemble CeedQFunction

• assembled – [out] CeedVector to store assembled CeedOperator point block di-
agonal, provided in row-major form with an num_comp * num_comp block at each
node. The dimensions of this vector are derived from the active vector for the Cee-
dOperator. The array has shape [nodes, component out, component in].

• request – [in] Address of CeedRequest for non-blocking completion, else
CEED_REQUEST_IMMEDIATE

Returns
An error code: 0 - success, otherwise - failure

140

int CeedOperatorLinearAssembleAddPointBlockDiagonal(CeedOperator op, CeedVector
assembled, CeedRequest *request)

Assemble the point block diagonal of a square linear CeedOperator.

This sums into a CeedVector with the point block diagonal of a linear CeedOperator.

Note: Currently only non-composite CeedOperators with a single field and composite CeedOperators
with single field sub-operators are supported.

Note: Calling this function asserts that setup is complete and sets the CeedOperator as immutable.

User Functions

Parameters

• op – [in] CeedOperator to assemble CeedQFunction

• assembled – [out] CeedVector to store assembled CeedOperator point block di-
agonal, provided in row-major form with an num_comp * num_comp block at each
node. The dimensions of this vector are derived from the active vector for the Cee-
dOperator. The array has shape [nodes, component out, component in].

• request – [in] Address of CeedRequest for non-blocking completion, else
CEED_REQUEST_IMMEDIATE

Returns
An error code: 0 - success, otherwise - failure

int CeedOperatorLinearAssembleSymbolic(CeedOperator op, CeedSize *num_entries, CeedInt
**rows, CeedInt **cols)

Fully assemble the nonzero pattern of a linear operator.

Expected to be used in conjunction with CeedOperatorLinearAssemble().

The assembly routines use coordinate format, with num_entries tuples of the form (i, j, value) which
indicate that value should be added to the matrix in entry (i, j). Note that the (i, j) pairs are not
unique and may repeat. This function returns the number of entries and their (i, j) locations, while
CeedOperatorLinearAssemble() provides the values in the same ordering.

This will generally be slow unless your operator is low-order.

Note: Calling this function asserts that setup is complete and sets the CeedOperator as immutable.

User Functions

Parameters

• op – [in] CeedOperator to assemble

• num_entries – [out] Number of entries in coordinate nonzero pattern

• rows – [out] Row number for each entry

• cols – [out] Column number for each entry

int CeedOperatorLinearAssemble(CeedOperator op, CeedVector values)
Fully assemble the nonzero entries of a linear operator.

Expected to be used in conjunction with CeedOperatorLinearAssembleSymbolic().

The assembly routines use coordinate format, with num_entries tuples of the form (i, j, value) which
indicate that value should be added to the matrix in entry (i, j). Note that the (i, j) pairs are not
unique and may repeat. This function returns the values of the nonzero entries to be added, their (i,
j) locations are provided by CeedOperatorLinearAssembleSymbolic()

141

This will generally be slow unless your operator is low-order.

Note: Calling this function asserts that setup is complete and sets the CeedOperator as immutable.

User Functions

Parameters

• op – [in] CeedOperator to assemble

• values – [out] Values to assemble into matrix

int CeedCompositeOperatorGetMultiplicity(CeedOperator op, CeedInt num_skip_indices, CeedInt
*skip_indices, CeedVector mult)

Get the multiplicity of nodes across suboperators in a composite CeedOperator.

Note: Calling this function asserts that setup is complete and sets the CeedOperator as immutable.

User Functions

Parameters

• op – [in] Composite CeedOperator

• num_skip_indices – [in] Number of suboperators to skip

• skip_indices – [in] Array of indices of suboperators to skip

• mult – [out] Vector to store multiplicity (of size l_size)

Returns
An error code: 0 - success, otherwise - failure

int CeedOperatorMultigridLevelCreate(CeedOperator op_fine, CeedVector p_mult_fine,
CeedElemRestriction rstr_coarse, CeedBasis basis_coarse,
CeedOperator *op_coarse, CeedOperator *op_prolong,
CeedOperator *op_restrict)

Create a multigrid coarse operator and level transfer operators for a CeedOperator, creating the pro-
longation basis from the fine and coarse grid interpolation.

Note: Calling this function asserts that setup is complete and sets all fourCeedOperators as immutable.

User Functions

Parameters

• op_fine – [in] Fine grid operator

• p_mult_fine – [in] L-vector multiplicity in parallel gather/scatter, or NULL if not
creating prolongation/restriction operators

• rstr_coarse – [in] Coarse grid restriction

• basis_coarse – [in] Coarse grid active vector basis

• op_coarse – [out] Coarse grid operator

• op_prolong – [out] Coarse to fine operator, or NULL

• op_restrict – [out] Fine to coarse operator, or NULL

Returns
An error code: 0 - success, otherwise - failure

142

int CeedOperatorMultigridLevelCreateTensorH1(CeedOperator op_fine, CeedVector p_mult_fine,
CeedElemRestriction rstr_coarse, CeedBasis
basis_coarse, const CeedScalar *interp_c_to_f,
CeedOperator *op_coarse, CeedOperator
*op_prolong, CeedOperator *op_restrict)

Create a multigrid coarse operator and level transfer operators for a CeedOperator with a tensor basis
for the active basis.

Note: Calling this function asserts that setup is complete and sets all fourCeedOperators as immutable.

User Functions

Parameters

• op_fine – [in] Fine grid operator

• p_mult_fine – [in] L-vector multiplicity in parallel gather/scatter, or NULL if not
creating prolongation/restriction operators

• rstr_coarse – [in] Coarse grid restriction

• basis_coarse – [in] Coarse grid active vector basis

• interp_c_to_f – [in] Matrix for coarse to fine interpolation, or NULL if not cre-
ating prolongation/restriction operators

• op_coarse – [out] Coarse grid operator

• op_prolong – [out] Coarse to fine operator, or NULL

• op_restrict – [out] Fine to coarse operator, or NULL

Returns
An error code: 0 - success, otherwise - failure

int CeedOperatorMultigridLevelCreateH1(CeedOperator op_fine, CeedVector p_mult_fine,
CeedElemRestriction rstr_coarse, CeedBasis basis_coarse,
const CeedScalar *interp_c_to_f, CeedOperator
*op_coarse, CeedOperator *op_prolong, CeedOperator
*op_restrict)

Create a multigrid coarse operator and level transfer operators for a CeedOperator with a non-tensor
basis for the active vector.

Note: Calling this function asserts that setup is complete and sets all fourCeedOperators as immutable.

User Functions

Parameters

• op_fine – [in] Fine grid operator

• p_mult_fine – [in] L-vector multiplicity in parallel gather/scatter, or NULL if not
creating prolongation/restriction operators

• rstr_coarse – [in] Coarse grid restriction

• basis_coarse – [in] Coarse grid active vector basis

• interp_c_to_f – [in] Matrix for coarse to fine interpolation, or NULL if not cre-
ating prolongation/restriction operators

• op_coarse – [out] Coarse grid operator

• op_prolong – [out] Coarse to fine operator, or NULL

143

• op_restrict – [out] Fine to coarse operator, or NULL

Returns
An error code: 0 - success, otherwise - failure

int CeedOperatorCreateFDMElementInverse(CeedOperator op, CeedOperator *fdm_inv, CeedRequest
*request)

Build a FDM based approximate inverse for each element for a CeedOperator.

This returns a CeedOperator and CeedVector to apply a Fast Diagonalization Method based approxi-
mate inverse. This function obtains the simultaneous diagonalization for the 1D mass and Laplacian
operators, 𝑀 = 𝑉𝑇𝑉, 𝐾 = 𝑉𝑇𝑆𝑉. The assembled QFunction is used to modify the eigenvalues from si-
multaneous diagonalization and obtain an approximate inverse of the form 𝑉𝑇 ̂𝑆𝑉. The CeedOperator
must be linear and non-composite. The associated CeedQFunction must therefore also be linear.

Note: Calling this function asserts that setup is complete and sets the CeedOperator as immutable.

User Functions

Parameters

• op – [in] CeedOperator to create element inverses

• fdm_inv – [out] CeedOperator to apply the action of a FDM based inverse for each
element

• request – [in] Address of CeedRequest for non-blocking completion, else
CEED_REQUEST_IMMEDIATE

Returns
An error code: 0 - success, otherwise - failure

6.2 Backend API

These functions are intended to be used by backend developers of libCEED and can generally be found in
ceed-backend.h.

6.2.1 Ceed

bool CeedDebugFlag(const Ceed ceed)
Return value of CEED_DEBUG environment variable.

Backend Developer Functions

Parameters

• ceed – [in] Ceed context

Returns
boolean value: true - debugging mode enabled false - debugging mode disabled

bool CeedDebugFlagEnv(void)
Return value of CEED_DEBUG environment variable.

Backend Developer Functions

Returns
boolean value: true - debugging mode enabled false - debugging mode disabled

144

void CeedDebugImpl256(const unsigned char color, const char *format, ...)
Print debugging information in color.

Backend Developer Functions

Parameters

• color – Color to print

• format – Printing format

int CeedMallocArray(size_t n, size_t unit, void *p)
Allocate an array on the host; use CeedMalloc()

Memory usage can be tracked by the library. This ensures sufficient alignment for vectorization and
should be used for large allocations.

Backend Developer Functions

See also:

CeedFree()

Parameters

• n – [in] Number of units to allocate

• unit – [in] Size of each unit

• p – [out] Address of pointer to hold the result.

Returns
An error code: 0 - success, otherwise - failure

int CeedCallocArray(size_t n, size_t unit, void *p)
Allocate a cleared (zeroed) array on the host; use CeedCalloc()

Memory usage can be tracked by the library.

Backend Developer Functions

See also:

CeedFree()

Parameters

• n – [in] Number of units to allocate

• unit – [in] Size of each unit

• p – [out] Address of pointer to hold the result.

Returns
An error code: 0 - success, otherwise - failure

int CeedReallocArray(size_t n, size_t unit, void *p)
Reallocate an array on the host; use CeedRealloc()

Memory usage can be tracked by the library.

Backend Developer Functions

See also:

CeedFree()

145

Parameters

• n – [in] Number of units to allocate

• unit – [in] Size of each unit

• p – [out] Address of pointer to hold the result.

Returns
An error code: 0 - success, otherwise - failure

int CeedStringAllocCopy(const char *source, char **copy)
Allocate a cleared string buffer on the host.

Memory usage can be tracked by the library.

Backend Developer Functions

See also:

CeedFree()

Parameters

• source – [in] Pointer to string to be copied

• copy – [out] Pointer to variable to hold newly allocated string copy

Returns
An error code: 0 - success, otherwise - failure

int CeedFree(void *p)
Free memory allocated using CeedMalloc() or CeedCalloc()

Parameters

• p – [inout] address of pointer to memory. This argument is of type void* to avoid
needing a cast, but is the address of the pointer (which is zeroed) rather than the
pointer.

int CeedRegister(const char *prefix, int (*init)(const char*, Ceed), unsigned int priority)
Register a Ceed backend.

Backend Developer Functions

Parameters

• prefix – [in] Prefix of resources for this backend to respond to. For example, the
reference backend responds to “/cpu/self”.

• init – [in] Initialization function called by CeedInit()when the backend is selected
to drive the requested resource.

• priority – [in] Integer priority. Lower values are preferred in case the resource
requested by CeedInit() has non-unique best prefix match.

Returns
An error code: 0 - success, otherwise - failure

int CeedIsDebug(Ceed ceed, bool *is_debug)
Return debugging status flag.

Backend Developer Functions

146

Parameters

• ceed – [in] Ceed context to get debugging flag

• is_debug – [out] Variable to store debugging flag

Returns
An error code: 0 - success, otherwise - failure

int CeedGetResourceRoot(Ceed ceed, const char *resource, const char *delineator, char
**resource_root)

Get the root of the requested resource.

Backend Developer Functions

Parameters

• ceed – [in] Ceed context to get resource name of

• resource – [in] ull user specified resource

• delineator – [in] Delineator to break resource_root and resource_spec

• resource_root – [out] Variable to store resource root

Returns
An error code: 0 - success, otherwise - failure

int CeedGetParent(Ceed ceed, Ceed *parent)
Retrieve a parent Ceed context.

Backend Developer Functions

Parameters

• ceed – [in] Ceed context to retrieve parent of

• parent – [out] Address to save the parent to

Returns
An error code: 0 - success, otherwise - failure

int CeedGetDelegate(Ceed ceed, Ceed *delegate)
Retrieve a delegate Ceed context.

Backend Developer Functions

Parameters

• ceed – [in] Ceed context to retrieve delegate of

• delegate – [out] Address to save the delegate to

Returns
An error code: 0 - success, otherwise - failure

int CeedSetDelegate(Ceed ceed, Ceed delegate)
Set a delegate Ceed context.

This function allows a Ceed context to set a delegate Ceed context. All backend implementations
default to the delegate Ceed context, unless overridden.

Backend Developer Functions

Parameters

• ceed – [in] Ceed context to set delegate of

147

• delegate – [out] Address to set the delegate to

Returns
An error code: 0 - success, otherwise - failure

int CeedGetObjectDelegate(Ceed ceed, Ceed *delegate, const char *obj_name)
Retrieve a delegate Ceed context for a specific object type.

Backend Developer Functions

Parameters

• ceed – [in] Ceed context to retrieve delegate of

• delegate – [out] Address to save the delegate to

• obj_name – [in] Name of the object type to retrieve delegate for

Returns
An error code: 0 - success, otherwise - failure

int CeedSetObjectDelegate(Ceed ceed, Ceed delegate, const char *obj_name)
Set a delegate Ceed context for a specific object type.

This function allows a Ceed context to set a delegate Ceed context for a given type of Ceed object.
All backend implementations default to the delegate Ceed context for this object. For example, Ceed-
SetObjectDelegate(ceed, delegate, “Basis”) uses delegate implementations for all CeedBasis backend
functions.

Backend Developer Functions

Parameters

• ceed – [inout] Ceed context to set delegate of

• delegate – [in] Ceed context to use for delegation

• obj_name – [in] Name of the object type to set delegate for

Returns
An error code: 0 - success, otherwise - failure

int CeedGetOperatorFallbackResource(Ceed ceed, const char **resource)
Get the fallback resource for CeedOperators.

Backend Developer Functions

Parameters

• ceed – [in] Ceed context

• resource – [out] Variable to store fallback resource

Returns
An error code: 0 - success, otherwise - failure

int CeedGetOperatorFallbackCeed(Ceed ceed, Ceed *fallback_ceed)
Get the fallback Ceed for CeedOperators.

Backend Developer Functions

Parameters

• ceed – [in] Ceed context

• fallback_ceed – [out] Variable to store fallback Ceed

148

Returns
An error code: 0 - success, otherwise - failure

int CeedSetOperatorFallbackResource(Ceed ceed, const char *resource)
Set the fallback resource for CeedOperators.

The current resource, if any, is freed by calling this function. This string is freed upon the destruction
of the Ceed context.

Backend Developer Functions

Parameters

• ceed – [inout] Ceed context

• resource – [in] Fallback resource to set

Returns
An error code: 0 - success, otherwise - failure

int CeedSetDeterministic(Ceed ceed, bool is_deterministic)
Flag Ceed context as deterministic.

Backend Developer Functions

Parameters

• ceed – [in] Ceed to flag as deterministic

• is_deterministic – [out] Deterministic status to set

Returns
An error code: 0 - success, otherwise - failure

int CeedSetBackendFunction(Ceed ceed, const char *type, void *object, const char *func_name, int
(*f)())

Set a backend function.

This function is used for a backend to set the function associated with the Ceed objects. For example,
CeedSetBackendFunction(ceed, “Ceed”, ceed, “VectorCreate”, BackendVectorCreate) sets the back-
end implementation of ‘CeedVectorCreate’ and CeedSetBackendFunction(ceed, “Basis”, basis, “Ap-
ply”, BackendBasisApply) sets the backend implementation of ‘CeedBasisApply’. Note, the prefix
‘Ceed’ is not required for the object type (“Basis” vs “CeedBasis”).

Backend Developer Functions

Parameters

• ceed – [in] Ceed context for error handling

• type – [in] Type of Ceed object to set function for

• object – [out] Ceed object to set function for

• func_name – [in] Name of function to set

• f – [in] Function to set

Returns
An error code: 0 - success, otherwise - failure

int CeedGetData(Ceed ceed, void *data)
Retrieve backend data for a Ceed context.

Backend Developer Functions

149

Parameters

• ceed – [in] Ceed context to retrieve data of

• data – [out] Address to save data to

Returns
An error code: 0 - success, otherwise - failure

int CeedSetData(Ceed ceed, void *data)
Set backend data for a Ceed context.

Backend Developer Functions

Parameters

• ceed – [inout] Ceed context to set data of

• data – [in] Address of data to set

Returns
An error code: 0 - success, otherwise - failure

int CeedReference(Ceed ceed)
Increment the reference counter for a Ceed context.

Backend Developer Functions

Parameters

• ceed – [inout] Ceed context to increment the reference counter

Returns
An error code: 0 - success, otherwise - failure

6.2.1.1 Macros

CeedDebug256(ceed, color, ...)
Print debugging information in color.

Backend Developer Functions

Parameters

• ceed – [in] Ceed

• color – [in] Color to print with

CeedDebug(ceed, ...)
Print debugging information to terminal.

Backend Developer Functions

Parameters

• ceed – [in] Ceed

CeedDebugEnv256(color, ...)
Print debugging information in color without Ceed to reference.

Backend Developer Functions

Parameters

• color – [in] Color to print with

150

CeedDebugEnv(...)
Print debugging information to terminal without Ceed to reference.

Backend Developer Functions

6.2.1.2 Typedefs and Enumerations

enum CeedDebugColor

This enum supples common colors for CeedDebug256 debugging output.

Set the environment variable CEED_DEBUG = 1 to activate debugging output.

Backend Developer Functions

Values:

enumerator CEED_DEBUG_COLOR_SUCCESS
Success color.

enumerator CEED_DEBUG_COLOR_WARNING
Warning color.

enumerator CEED_DEBUG_COLOR_ERROR
Error color.

enumerator CEED_DEBUG_COLOR_NONE
Use native terminal coloring.

6.2.2 CeedVector

int CeedVectorHasValidArray(CeedVector vec, bool *has_valid_array)
Check for valid data in a CeedVector.

Backend Developer Functions

Parameters

• vec – [in] CeedVector to check validity

• has_valid_array – [out] Variable to store validity

Returns
An error code: 0 - success, otherwise - failure

int CeedVectorHasBorrowedArrayOfType(CeedVector vec, CeedMemType mem_type, bool
*has_borrowed_array_of_type)

Check for borrowed array of a specific CeedMemType in a CeedVector.

Backend Developer Functions

Parameters

• vec – [in] CeedVector to check

• mem_type – [in]Memory type to check

151

• has_borrowed_array_of_type – [out] Variable to store result

Returns
An error code: 0 - success, otherwise - failure

int CeedVectorGetState(CeedVector vec, uint64_t *state)
Get the state of a CeedVector.

Backend Developer Functions

Parameters

• vec – [in] CeedVector to retrieve state

• state – [out] Variable to store state

Returns
An error code: 0 - success, otherwise - failure

int CeedVectorGetData(CeedVector vec, void *data)
Get the backend data of a CeedVector.

Backend Developer Functions

Parameters

• vec – [in] CeedVector to retrieve state

• data – [out] Variable to store data

Returns
An error code: 0 - success, otherwise - failure

int CeedVectorSetData(CeedVector vec, void *data)
Set the backend data of a CeedVector.

Backend Developer Functions

Parameters

• vec – [inout] CeedVector to retrieve state

• data – [in] Data to set

Returns
An error code: 0 - success, otherwise - failure

int CeedVectorReference(CeedVector vec)
Increment the reference counter for a CeedVector.

Backend Developer Functions

Parameters

• vec – [inout] CeedVector to increment the reference counter

Returns
An error code: 0 - success, otherwise - failure

152

6.2.3 CeedElemRestriction

int CeedElemRestrictionGetType(CeedElemRestriction rstr, CeedRestrictionType *rstr_type)
Get the type of a CeedElemRestriction.

Backend Developer Functions

Parameters

• rstr – [in] CeedElemRestriction

• rstr_type – [out] Variable to store restriction type

Returns
An error code: 0 - success, otherwise - failure

int CeedElemRestrictionIsStrided(CeedElemRestriction rstr, bool *is_strided)
Get the strided status of a CeedElemRestriction.

Parameters

• rstr – [in] CeedElemRestriction

• is_strided – [out] Variable to store strided status, 1 if strided else 0

int CeedElemRestrictionIsPoints(CeedElemRestriction rstr, bool *is_points)
Get the points status of a CeedElemRestriction.

Parameters

• rstr – [in] CeedElemRestriction

• is_points – [out] Variable to store points status, 1 if points else 0

int CeedElemRestrictionGetStrides(CeedElemRestriction rstr, CeedInt (*strides)[3])
Get the strides of a strided CeedElemRestriction.

Backend Developer Functions

Parameters

• rstr – [in] CeedElemRestriction

• strides – [out] Variable to store strides array

Returns
An error code: 0 - success, otherwise - failure

int CeedElemRestrictionHasBackendStrides(CeedElemRestriction rstr, bool *has_backend_strides)
Get the backend stride status of a CeedElemRestriction.

Backend Developer Functions

Parameters

• rstr – [in] CeedElemRestriction

• has_backend_strides – [out] Variable to store stride status

Returns
An error code: 0 - success, otherwise - failure

153

int CeedElemRestrictionGetOffsets(CeedElemRestriction rstr, CeedMemType mem_type, const
CeedInt **offsets)

Get read-only access to a CeedElemRestriction offsets array by memtype.

User Functions

Parameters

• rstr – [in] CeedElemRestriction to retrieve offsets

• mem_type – [in] Memory type on which to access the array. If the backend uses a
different memory type, this will perform a copy (possibly cached).

• offsets – [out] Array on memory type mem_type

Returns
An error code: 0 - success, otherwise - failure

int CeedElemRestrictionRestoreOffsets(CeedElemRestriction rstr, const CeedInt **offsets)
Restore an offsets array obtained using CeedElemRestrictionGetOffsets()

User Functions

Parameters

• rstr – [in] CeedElemRestriction to restore

• offsets – [in] Array of offset data

Returns
An error code: 0 - success, otherwise - failure

int CeedElemRestrictionGetOrientations(CeedElemRestriction rstr, CeedMemType mem_type, const
bool **orients)

Get read-only access to a CeedElemRestriction orientations array by memtype.

User Functions

Parameters

• rstr – [in] CeedElemRestriction to retrieve orientations

• mem_type – [in] Memory type on which to access the array. If the backend uses a
different memory type, this will perform a copy (possibly cached).

• orients – [out] Array on memory type mem_type

Returns
An error code: 0 - success, otherwise - failure

int CeedElemRestrictionRestoreOrientations(CeedElemRestriction rstr, const bool **orients)
Restore an orientations array obtained using CeedElemRestrictionGetOrientations()

User Functions

Parameters

• rstr – [in] CeedElemRestriction to restore

• orients – [in] Array of orientation data

Returns
An error code: 0 - success, otherwise - failure

154

int CeedElemRestrictionGetCurlOrientations(CeedElemRestriction rstr, CeedMemType mem_type,
const CeedInt8 **curl_orients)

Get read-only access to a CeedElemRestriction curl-conforming orientations array by memtype.

User Functions

Parameters

• rstr – [in] CeedElemRestriction to retrieve curl-conforming orientations

• mem_type – [in] Memory type on which to access the array. If the backend uses a
different memory type, this will perform a copy (possibly cached).

• curl_orients – [out] Array on memory type mem_type

Returns
An error code: 0 - success, otherwise - failure

int CeedElemRestrictionRestoreCurlOrientations(CeedElemRestriction rstr, const CeedInt8
**curl_orients)

Restore an orientations array obtained using CeedElemRestrictionGetCurlOrientations()

User Functions

Parameters

• rstr – [in] CeedElemRestriction to restore

• curl_orients – [in] Array of orientation data

Returns
An error code: 0 - success, otherwise - failure

int CeedElemRestrictionGetELayout(CeedElemRestriction rstr, CeedInt (*layout)[3])
Get the E-vector layout of a CeedElemRestriction.

Backend Developer Functions

Parameters

• rstr – [in] CeedElemRestriction

• layout – [out] Variable to store layout array, stored as [nodes, components, el-
ements]. The data for node i, component j, element k in the E-vector is given by
i*layout[0] + j*layout[1] + k*layout[2]

Returns
An error code: 0 - success, otherwise - failure

int CeedElemRestrictionSetELayout(CeedElemRestriction rstr, CeedInt layout[3])
Set the E-vector layout of a CeedElemRestriction.

Backend Developer Functions

Parameters

• rstr – [in] CeedElemRestriction

• layout – [in] Variable to containing layout array, stored as [nodes, components,
elements]. The data for node i, component j, element k in the E-vector is given by
i*layout[0] + j*layout[1] + k*layout[2]

Returns
An error code: 0 - success, otherwise - failure

155

int CeedElemRestrictionGetData(CeedElemRestriction rstr, void *data)
Get the backend data of a CeedElemRestriction.

Backend Developer Functions

Parameters

• rstr – [in] CeedElemRestriction

• data – [out] Variable to store data

Returns
An error code: 0 - success, otherwise - failure

int CeedElemRestrictionSetData(CeedElemRestriction rstr, void *data)
Set the backend data of a CeedElemRestriction.

Backend Developer Functions

Parameters

• rstr – [inout] CeedElemRestriction

• data – [in] Data to set

Returns
An error code: 0 - success, otherwise - failure

int CeedElemRestrictionReference(CeedElemRestriction rstr)
Increment the reference counter for a CeedElemRestriction.

Backend Developer Functions

Parameters

• rstr – [inout] ElemRestriction to increment the reference counter

Returns
An error code: 0 - success, otherwise - failure

int CeedElemRestrictionGetFlopsEstimate(CeedElemRestriction rstr, CeedTransposeMode t_mode,
CeedSize *flops)

Estimate number of FLOPs required to apply CeedElemRestriction in t_mode.

Backend Developer Functions

Parameters

• rstr – [in] ElemRestriction to estimate FLOPs for

• t_mode – [in] Apply restriction or transpose

• flops – [out] Address of variable to hold FLOPs estimate

156

6.2.4 CeedBasis

int CeedBasisGetCollocatedGrad(CeedBasis basis, CeedScalar *collo_grad_1d)
Return collocated grad matrix.

Backend Developer Functions

Parameters

• basis – [in] CeedBasis

• collo_grad_1d – [out] Row-major (Q_1d * Q_1d) matrix expressing derivatives
of basis functions at quadrature points

Returns
An error code: 0 - success, otherwise - failure

int CeedBasisIsTensor(CeedBasis basis, bool *is_tensor)
Get tensor status for given CeedBasis.

Backend Developer Functions

Parameters

• basis – [in] CeedBasis

• is_tensor – [out] Variable to store tensor status

Returns
An error code: 0 - success, otherwise - failure

int CeedBasisGetData(CeedBasis basis, void *data)
Get backend data of a CeedBasis.

Backend Developer Functions

Parameters

• basis – [in] CeedBasis

• data – [out] Variable to store data

Returns
An error code: 0 - success, otherwise - failure

int CeedBasisSetData(CeedBasis basis, void *data)
Set backend data of a CeedBasis.

Backend Developer Functions

Parameters

• basis – [inout] CeedBasis

• data – [in] Data to set

Returns
An error code: 0 - success, otherwise - failure

int CeedBasisReference(CeedBasis basis)
Increment the reference counter for a CeedBasis.

Backend Developer Functions

Parameters

157

• basis – [inout] Basis to increment the reference counter

Returns
An error code: 0 - success, otherwise - failure

int CeedBasisGetNumQuadratureComponents(CeedBasis basis, CeedEvalMode eval_mode, CeedInt
*q_comp)

Get number of Q-vector components for given CeedBasis.

Backend Developer Functions

Parameters

• basis – [in] CeedBasis

• eval_mode – [in] CEED_EVAL_INTERP to use interpolated values,
CEED_EVAL_GRAD to use gradients, CEED_EVAL_DIV to use divergence,
CEED_EVAL_CURL to use curl.

• q_comp – [out] Variable to store number of Q-vector components of basis

Returns
An error code: 0 - success, otherwise - failure

int CeedBasisGetFlopsEstimate(CeedBasis basis, CeedTransposeMode t_mode, CeedEvalMode
eval_mode, CeedSize *flops)

Estimate number of FLOPs required to apply CeedBasis in t_mode and eval_mode.

Backend Developer Functions

Parameters

• basis – [in] Basis to estimate FLOPs for

• t_mode – [in] Apply basis or transpose

• eval_mode – [in] Basis evaluation mode

• flops – [out] Address of variable to hold FLOPs estimate

int CeedBasisGetFESpace(CeedBasis basis, CeedFESpace *fe_space)
Get CeedFESpace for a CeedBasis.

Backend Developer Functions

Parameters

• basis – [in] CeedBasis

• fe_space – [out] Variable to store CeedFESpace

Returns
An error code: 0 - success, otherwise - failure

int CeedBasisGetTopologyDimension(CeedElemTopology topo, CeedInt *dim)

Get dimension for given CeedElemTopology.

Backend Developer Functions

Parameters

• topo – [in] CeedElemTopology

• dim – [out] Variable to store dimension of topology

158

Returns
An error code: 0 - success, otherwise - failure

int CeedBasisGetTensorContract(CeedBasis basis, CeedTensorContract *contract)
Get CeedTensorContract of a CeedBasis.

Backend Developer Functions

Parameters

• basis – [in] CeedBasis

• contract – [out] Variable to store CeedTensorContract

Returns
An error code: 0 - success, otherwise - failure

int CeedBasisSetTensorContract(CeedBasis basis, CeedTensorContract contract)
Set CeedTensorContract of a CeedBasis.

Backend Developer Functions

Parameters

• basis – [inout] CeedBasis

• contract – [in] CeedTensorContract to set

Returns
An error code: 0 - success, otherwise - failure

int CeedMatrixMatrixMultiply(Ceed ceed, const CeedScalar *mat_A, const CeedScalar *mat_B,
CeedScalar *mat_C, CeedInt m, CeedInt n, CeedInt kk)

Return a reference implementation of matrix multiplication C = A B.

Note: This is a reference implementation for CPU CeedScalar pointers that is not intended for high
performance.

Utility Functions

Parameters

• ceed – [in] Ceed context for error handling

• mat_A – [in] Row-major matrix A

• mat_B – [in] Row-major matrix B

• mat_C – [out] Row-major output matrix C

• m – [in] Number of rows of C

• n – [in] Number of columns of C

• kk – [in] Number of columns of A/rows of B

Returns
An error code: 0 - success, otherwise - failure

int CeedQRFactorization(Ceed ceed, CeedScalar *mat, CeedScalar *tau, CeedInt m, CeedInt n)
Return QR Factorization of a matrix.

Utility Functions

Parameters

• ceed – [in] Ceed context for error handling

159

• mat – [inout] Row-major matrix to be factorized in place

• tau – [inout] Vector of length m of scaling factors

• m – [in] Number of rows

• n – [in] Number of columns

Returns
An error code: 0 - success, otherwise - failure

int CeedHouseholderApplyQ(CeedScalar *mat_A, const CeedScalar *mat_Q, const CeedScalar *tau,
CeedTransposeMode t_mode, CeedIntm, CeedInt n, CeedInt k, CeedInt row,
CeedInt col)

Apply Householder Q matrix.

Compute mat_A = mat_Q mat_A, where mat_Q is mxm and mat_A is mxn.

Utility Functions

Parameters

• mat_A – [inout]Matrix to apply Householder Q to, in place

• mat_Q – [in] Householder Q matrix

• tau – [in] Householder scaling factors

• t_mode – [in] Transpose mode for application

• m – [in] Number of rows in A

• n – [in] Number of columns in A

• k – [in] Number of elementary reflectors in Q, k<m

• row – [in] Row stride in A

• col – [in] Col stride in A

Returns
An error code: 0 - success, otherwise - failure

int CeedSymmetricSchurDecomposition(Ceed ceed, CeedScalar *mat, CeedScalar *lambda, CeedInt n)
Return symmetric Schur decomposition of the symmetric matrix mat via symmetric QR factorization.

Utility Functions

Parameters

• ceed – [in] Ceed context for error handling

• mat – [inout] Row-major matrix to be factorized in place

• lambda – [out] Vector of length n of eigenvalues

• n – [in] Number of rows/columns

Returns
An error code: 0 - success, otherwise - failure

int CeedSimultaneousDiagonalization(Ceed ceed, CeedScalar *mat_A, CeedScalar *mat_B, CeedScalar
*mat_X, CeedScalar *lambda, CeedInt n)

Return Simultaneous Diagonalization of two matrices.

160

This solves the generalized eigenvalue problem A x = lambda B x, where A and B are symmetric and
B is positive definite. We generate the matrix X and vector Lambda such that X^T A X = Lambda and
X^T B X = I. This is equivalent to the LAPACK routine ‘sygv’ with TYPE = 1.

Utility Functions

Parameters

• ceed – [in] Ceed context for error handling

• mat_A – [in] Row-major matrix to be factorized with eigenvalues

• mat_B – [in] Row-major matrix to be factorized to identity

• mat_X – [out] Row-major orthogonal matrix

• lambda – [out] Vector of length n of generalized eigenvalues

• n – [in] Number of rows/columns

Returns
An error code: 0 - success, otherwise - failure

int CeedTensorContractCreate(Ceed ceed, CeedTensorContract *contract)
Create a CeedTensorContract object for a CeedBasis.

Backend Developer Functions

Parameters

• ceed – [in] Ceed object where the CeedTensorContract will be created

• contract – [out] Address of the variable where the newly created CeedTensor-
Contract will be stored.

Returns
An error code: 0 - success, otherwise - failure

int CeedTensorContractApply(CeedTensorContract contract, CeedInt A, CeedInt B, CeedInt C, CeedInt J,
const CeedScalar *restrict t, CeedTransposeMode t_mode, const CeedInt
add, const CeedScalar *restrict u, CeedScalar *restrict v)

Apply tensor contraction.

Contracts on the middle index NOTRANSPOSE: v_ajc = t_jb u_abc TRANSPOSE: v_ajc = t_bj u_abc
If add != 0, “=” is replaced by “+=”

Backend Developer Functions

Parameters

• contract – [in] CeedTensorContract to use

• A – [in] First index of u, v

• B – [in]Middle index of u, one index of t

• C – [in] Last index of u, v

• J – [in]Middle index of v, one index of t

• t – [in] Tensor array to contract against

• t_mode – [in] Transpose mode for t, CEED_NOTRANSPOSE for t_jb
CEED_TRANSPOSE for t_bj

• add – [in] Add mode

161

• u – [in] Input array

• v – [out] Output array

Returns
An error code: 0 - success, otherwise - failure

int CeedTensorContractStridedApply(CeedTensorContract contract, CeedInt A, CeedInt B, CeedInt C,
CeedInt D, CeedInt J, const CeedScalar *restrict t,
CeedTransposeMode t_mode, const CeedInt add, const
CeedScalar *restrict u, CeedScalar *restrict v)

Apply tensor contraction.

Contracts on the middle index NOTRANSPOSE: v_dajc = t_djb u_abc TRANSPOSE: v_ajc = t_dbj
u_dabc If add != 0, “=” is replaced by “+=”

Backend Developer Functions

Parameters

• contract – [in] CeedTensorContract to use

• A – [in] First index of u, second index of v

• B – [in]Middle index of u, one of last two indices of t

• C – [in] Last index of u, v

• D – [in] First index of v, first index of t

• J – [in] Third index of v, one of last two indices of t

• t – [in] Tensor array to contract against

• t_mode – [in] Transpose mode for t, CEED_NOTRANSPOSE for t_djb
CEED_TRANSPOSE for t_dbj

• add – [in] Add mode

• u – [in] Input array

• v – [out] Output array

Returns
An error code: 0 - success, otherwise - failure

int CeedTensorContractGetCeed(CeedTensorContract contract, Ceed *ceed)
Get Ceed associated with a CeedTensorContract.

Backend Developer Functions

Parameters

• contract – [in] CeedTensorContract

• ceed – [out] Variable to store Ceed

Returns
An error code: 0 - success, otherwise - failure

int CeedTensorContractGetData(CeedTensorContract contract, void *data)
Get backend data of a CeedTensorContract.

Backend Developer Functions

Parameters

162

• contract – [in] CeedTensorContract

• data – [out] Variable to store data

Returns
An error code: 0 - success, otherwise - failure

int CeedTensorContractSetData(CeedTensorContract contract, void *data)
Set backend data of a CeedTensorContract.

Backend Developer Functions

Parameters

• contract – [inout] CeedTensorContract

• data – [in] Data to set

Returns
An error code: 0 - success, otherwise - failure

int CeedTensorContractReference(CeedTensorContract contract)
Increment the reference counter for a CeedTensorContract.

Backend Developer Functions

Parameters

• contract – [inout] CeedTensorContract to increment the reference counter

Returns
An error code: 0 - success, otherwise - failure

int CeedTensorContractReferenceCopy(CeedTensorContract tensor, CeedTensorContract
*tensor_copy)

Copy the pointer to a CeedTensorContract.

Both pointers should be destroyed with CeedTensorContractDestroy().

Note: If the value of tensor_copy passed to this function is non-NULL, then it is assumed that
tensor_copy is a pointer to a CeedTensorContract. This CeedTensorContract will be destroyed if
tensor_copy is the only reference to this CeedVector.

User Functions

Parameters

• tensor – [in] CeedTensorContract to copy reference to

• tensor_copy – [inout] Variable to store copied reference

Returns
An error code: 0 - success, otherwise - failure

int CeedTensorContractDestroy(CeedTensorContract *contract)
Destroy a CeedTensorContract.

Backend Developer Functions

Parameters

• contract – [inout] CeedTensorContract to destroy

Returns
An error code: 0 - success, otherwise - failure

163

6.2.5 CeedQFunction

typedef struct CeedQFunctionField_private *CeedQFunctionField
Handle for object describing CeedQFunction fields.

int CeedQFunctionGetVectorLength(CeedQFunction qf, CeedInt *vec_length)
Get the vector length of a CeedQFunction.

Backend Developer Functions

Parameters

• qf – [in] CeedQFunction

• vec_length – [out] Variable to store vector length

Returns
An error code: 0 - success, otherwise - failure

int CeedQFunctionGetNumArgs(CeedQFunction qf, CeedInt *num_input, CeedInt *num_output)
Get the number of inputs and outputs to a CeedQFunction.

Backend Developer Functions

Parameters

• qf – [in] CeedQFunction

• num_input – [out] Variable to store number of input fields

• num_output – [out] Variable to store number of output fields

Returns
An error code: 0 - success, otherwise - failure

int CeedQFunctionGetKernelName(CeedQFunction qf, char **kernel_name)
Get the name of the user function for a CeedQFunction.

Backend Developer Functions

Parameters

• qf – [in] CeedQFunction

• kernel_name – [out] Variable to store source path string

Returns
An error code: 0 - success, otherwise - failure

int CeedQFunctionGetSourcePath(CeedQFunction qf, char **source_path)
Get the source path string for a CeedQFunction.

Backend Developer Functions

Parameters

• qf – [in] CeedQFunction

• source_path – [out] Variable to store source path string

Returns
An error code: 0 - success, otherwise - failure

164

int CeedQFunctionLoadSourceToBuffer(CeedQFunction qf, char **source_buffer)
Initialize and load QFunction source file into string buffer, including full text of local files in place of
#include "local.h".

The buffer is set to NULL if there is no QFunction source file.

Note: Caller is responsible for freeing the string buffer with CeedFree().

Backend Developer Functions

Parameters

• qf – [in] CeedQFunction

• source_buffer – [out] String buffer for source file contents

Returns
An error code: 0 - success, otherwise - failure

int CeedQFunctionGetUserFunction(CeedQFunction qf, CeedQFunctionUser *f)
Get the User Function for a CeedQFunction.

Backend Developer Functions

Parameters

• qf – [in] CeedQFunction

• f – [out] Variable to store user function

Returns
An error code: 0 - success, otherwise - failure

int CeedQFunctionGetContext(CeedQFunction qf, CeedQFunctionContext *ctx)
Get global context for a CeedQFunction.

Note: For QFunctions from the Fortran interface, this function will return the Fortran context CeedQ-
FunctionContext.

Backend Developer Functions

Parameters

• qf – [in] CeedQFunction

• ctx – [out] Variable to store CeedQFunctionContext

Returns
An error code: 0 - success, otherwise - failure

int CeedQFunctionGetContextData(CeedQFunction qf, CeedMemType mem_type, void *data)
Get context data of a CeedQFunction.

Backend Developer Functions

Parameters

• qf – [in] CeedQFunction

• mem_type – [in] Memory type on which to access the data. If the backend uses a
different memory type, this will perform a copy.

• data – [out] Data on memory type mem_type

Returns
An error code: 0 - success, otherwise - failure

165

int CeedQFunctionRestoreContextData(CeedQFunction qf, void *data)
Restore context data of a CeedQFunction.

Backend Developer Functions

Parameters

• qf – [in] CeedQFunction

• data – [inout] Data to restore

Returns
An error code: 0 - success, otherwise - failure

int CeedQFunctionGetInnerContext(CeedQFunction qf, CeedQFunctionContext *ctx)
Get true user context for a CeedQFunction.

Note: For all QFunctions this function will return the user CeedQFunctionContext and not interface
context CeedQFunctionContext, if any such object exists.

Parameters

• qf – [in] CeedQFunction

• ctx – [out] Variable to store CeedQFunctionContext

Returns
An error code: 0 - success, otherwise - failure Backend Developer Functions

int CeedQFunctionGetInnerContextData(CeedQFunction qf, CeedMemType mem_type, void *data)
Get inner context data of a CeedQFunction.

Backend Developer Functions

Parameters

• qf – [in] CeedQFunction

• mem_type – [in] Memory type on which to access the data. If the backend uses a
different memory type, this will perform a copy.

• data – [out] Data on memory type mem_type

Returns
An error code: 0 - success, otherwise - failure

int CeedQFunctionRestoreInnerContextData(CeedQFunction qf, void *data)
Restore inner context data of a CeedQFunction.

Backend Developer Functions

Parameters

• qf – [in] CeedQFunction

• data – [inout] Data to restore

Returns
An error code: 0 - success, otherwise - failure

int CeedQFunctionIsIdentity(CeedQFunction qf, bool *is_identity)
Determine if QFunction is identity.

Backend Developer Functions

Parameters

166

• qf – [in] CeedQFunction

• is_identity – [out] Variable to store identity status

Returns
An error code: 0 - success, otherwise - failure

int CeedQFunctionIsContextWritable(CeedQFunction qf, bool *is_writable)
Determine if QFunctionContext is writable.

Backend Developer Functions

Parameters

• qf – [in] CeedQFunction

• is_writable – [out] Variable to store context writeable status

Returns
An error code: 0 - success, otherwise - failure

int CeedQFunctionGetData(CeedQFunction qf, void *data)
Get backend data of a CeedQFunction.

Backend Developer Functions

Parameters

• qf – [in] CeedQFunction

• data – [out] Variable to store data

Returns
An error code: 0 - success, otherwise - failure

int CeedQFunctionSetData(CeedQFunction qf, void *data)
Set backend data of a CeedQFunction.

Backend Developer Functions

Parameters

• qf – [inout] CeedQFunction

• data – [in] Data to set

Returns
An error code: 0 - success, otherwise - failure

int CeedQFunctionReference(CeedQFunction qf)
Increment the reference counter for a CeedQFunction.

Backend Developer Functions

Parameters

• qf – [inout] CeedQFunction to increment the reference counter

Returns
An error code: 0 - success, otherwise - failure

int CeedQFunctionGetFlopsEstimate(CeedQFunction qf, CeedSize *flops)
Estimate number of FLOPs per quadrature required to apply QFunction.

Backend Developer Functions

Parameters

167

• qf – [in] QFunction to estimate FLOPs for

• flops – [out] Address of variable to hold FLOPs estimate

int CeedQFunctionContextGetCeed(CeedQFunctionContext ctx, Ceed *ceed)
Get the Ceed associated with a CeedQFunctionContext.

Backend Developer Functions

Parameters

• ctx – [in] CeedQFunctionContext

• ceed – [out] Variable to store Ceed

Returns
An error code: 0 - success, otherwise - failure

int CeedQFunctionContextHasValidData(CeedQFunctionContext ctx, bool *has_valid_data)
Check for valid data in a CeedQFunctionContext.

Backend Developer Functions

Parameters

• ctx – [in] CeedQFunctionContext to check validity

• has_valid_data – [out] Variable to store validity

Returns
An error code: 0 - success, otherwise - failure

int CeedQFunctionContextHasBorrowedDataOfType(CeedQFunctionContext ctx, CeedMemType
mem_type, bool
*has_borrowed_data_of_type)

Check for borrowed data of a specific CeedMemType in a CeedQFunctionContext.

Backend Developer Functions

Parameters

• ctx – [in] CeedQFunctionContext to check

• mem_type – [in]Memory type to check

• has_borrowed_data_of_type – [out] Variable to store result

Returns
An error code: 0 - success, otherwise - failure

int CeedQFunctionContextGetState(CeedQFunctionContext ctx, uint64_t *state)
Get the state of a CeedQFunctionContext.

Backend Developer Functions

Parameters

• ctx – [in] CeedQFunctionContext to retrieve state

• state – [out] Variable to store state

Returns
An error code: 0 - success, otherwise - failure

168

int CeedQFunctionContextGetBackendData(CeedQFunctionContext ctx, void *data)
Get backend data of a CeedQFunctionContext.

Backend Developer Functions

Parameters

• ctx – [in] CeedQFunctionContext

• data – [out] Variable to store data

Returns
An error code: 0 - success, otherwise - failure

int CeedQFunctionContextSetBackendData(CeedQFunctionContext ctx, void *data)
Set backend data of a CeedQFunctionContext.

Backend Developer Functions

Parameters

• ctx – [inout] CeedQFunctionContext

• data – [in] Data to set

Returns
An error code: 0 - success, otherwise - failure

int CeedQFunctionContextGetFieldLabel(CeedQFunctionContext ctx, const char *field_name,
CeedContextFieldLabel *field_label)

Get label for a registered QFunctionContext field, or NULL if no field has been registered with this
field_name

Backend Developer Functions

Parameters

• ctx – [in] CeedQFunctionContext

• field_name – [in] Name of field to retrieve label

• field_label – [out] Variable to field label

Returns
An error code: 0 - success, otherwise - failure

int CeedQFunctionContextSetGeneric(CeedQFunctionContext ctx, CeedContextFieldLabel field_label,
CeedContextFieldType field_type, void *values)

Set QFunctionContext field.

Backend Developer Functions

Parameters

• ctx – [inout] CeedQFunctionContext

• field_label – [in] Label of field to set

• field_type – [in] Type of field to set

• values – [in] Value to set

Returns
An error code: 0 - success, otherwise - failure

169

int CeedQFunctionContextGetGenericRead(CeedQFunctionContext ctx, CeedContextFieldLabel
field_label, CeedContextFieldType field_type, size_t
*num_values, void *values)

Get QFunctionContext field data, read-only.

Backend Developer Functions

Parameters

• ctx – [in] CeedQFunctionContext

• field_label – [in] Label of field to read

• field_type – [in] Type of field to read

• num_values – [out] Number of values in the field label

• values – [out] Pointer to context values

Returns
An error code: 0 - success, otherwise - failure

int CeedQFunctionContextRestoreGenericRead(CeedQFunctionContext ctx, CeedContextFieldLabel
field_label, CeedContextFieldType field_type,
void *values)

Restore QFunctionContext field data, read-only.

Backend Developer Functions

Parameters

• ctx – [in] CeedQFunctionContext

• field_label – [in] Label of field to restore

• field_type – [in] Type of field to restore

• values – [out] Pointer to context values

Returns
An error code: 0 - success, otherwise - failure

int CeedQFunctionContextSetDouble(CeedQFunctionContext ctx, CeedContextFieldLabel field_label,
double *values)

Set QFunctionContext field holding a double precision value.

Backend Developer Functions

Parameters

• ctx – [inout] CeedQFunctionContext

• field_label – [in] Label for field to set

• values – [in] Values to set

Returns
An error code: 0 - success, otherwise - failure

int CeedQFunctionContextGetDoubleRead(CeedQFunctionContext ctx, CeedContextFieldLabel
field_label, size_t *num_values, const double **values)

Get QFunctionContext field holding a double precision value, read-only.

Backend Developer Functions

Parameters

170

• ctx – [in] CeedQFunctionContext

• field_label – [in] Label for field to get

• num_values – [out] Number of values in the field label

• values – [out] Pointer to context values

Returns
An error code: 0 - success, otherwise - failure

int CeedQFunctionContextRestoreDoubleRead(CeedQFunctionContext ctx, CeedContextFieldLabel
field_label, const double **values)

Restore QFunctionContext field holding a double precision value, read-only.

Backend Developer Functions

Parameters

• ctx – [in] CeedQFunctionContext

• field_label – [in] Label for field to restore

• values – [out] Pointer to context values

Returns
An error code: 0 - success, otherwise - failure

int CeedQFunctionContextSetInt32(CeedQFunctionContext ctx, CeedContextFieldLabel field_label, int
*values)

Set QFunctionContext field holding an int32 value.

Backend Developer Functions

Parameters

• ctx – [inout] CeedQFunctionContext

• field_label – [in] Label for field to set

• values – [in] Values to set

Returns
An error code: 0 - success, otherwise - failure

int CeedQFunctionContextGetInt32Read(CeedQFunctionContext ctx, CeedContextFieldLabel
field_label, size_t *num_values, const int **values)

Get QFunctionContext field holding a int32 value, read-only.

Backend Developer Functions

Parameters

• ctx – [in] CeedQFunctionContext

• field_label – [in] Label for field to get

• num_values – [out] Number of values in the field label

• values – [out] Pointer to context values

Returns
An error code: 0 - success, otherwise - failure

171

int CeedQFunctionContextRestoreInt32Read(CeedQFunctionContext ctx, CeedContextFieldLabel
field_label, const int **values)

Restore QFunctionContext field holding a int32 value, read-only.

Backend Developer Functions

Parameters

• ctx – [in] CeedQFunctionContext

• field_label – [in] Label for field to restore

• values – [out] Pointer to context values

Returns
An error code: 0 - success, otherwise - failure

int CeedQFunctionContextGetDataDestroy(CeedQFunctionContext ctx, CeedMemType *f_mem_type,
CeedQFunctionContextDataDestroyUser *f)

Get additional destroy routine for CeedQFunctionContext user data.

Backend Developer Functions

Parameters

• ctx – [in] CeedQFunctionContext to get user destroy function

• f_mem_type – [out]Memory type to use when passing data into f

• f – [out] Additional routine to use to destroy user data

Returns
An error code: 0 - success, otherwise - failure

int CeedQFunctionContextReference(CeedQFunctionContext ctx)
Increment the reference counter for a CeedQFunctionContext.

Backend Developer Functions

Parameters

• ctx – [inout] CeedQFunctionContext to increment the reference counter

Returns
An error code: 0 - success, otherwise - failure

6.2.5.1 Macros

CEED_QFUNCTION_ATTR

This macro defines compiler attributes to the CEED_QFUNCTION to force inlining for called func-
tions.

The inline declaration does not necessarily enforce a compiler to inline a function. This can be detri-
mental to performance, so here we force inlining to occur unless inlining has been forced off (like
during debugging).

172

6.2.6 CeedOperator

typedef struct CeedOperatorField_private *CeedOperatorField
Handle for object describing CeedOperator fields.

int CeedOperatorGetNumArgs(CeedOperator op, CeedInt *num_args)
Get the number of arguments associated with a CeedOperator.

Backend Developer Functions

Parameters

• op – [in] CeedOperator

• num_args – [out] Variable to store vector number of arguments

Returns
An error code: 0 - success, otherwise - failure

int CeedOperatorIsSetupDone(CeedOperator op, bool *is_setup_done)
Get the setup status of a CeedOperator.

Backend Developer Functions

Parameters

• op – [in] CeedOperator

• is_setup_done – [out] Variable to store setup status

Returns
An error code: 0 - success, otherwise - failure

int CeedOperatorGetQFunction(CeedOperator op, CeedQFunction *qf)
Get the QFunction associated with a CeedOperator.

Backend Developer Functions

Parameters

• op – [in] CeedOperator

• qf – [out] Variable to store QFunction

Returns
An error code: 0 - success, otherwise - failure

int CeedOperatorIsComposite(CeedOperator op, bool *is_composite)
Get a boolean value indicating if the CeedOperator is composite.

Backend Developer Functions

Parameters

• op – [in] CeedOperator

• is_composite – [out] Variable to store composite status

Returns
An error code: 0 - success, otherwise - failure

173

int CeedOperatorGetData(CeedOperator op, void *data)
Get the backend data of a CeedOperator.

Backend Developer Functions

Parameters

• op – [in] CeedOperator

• data – [out] Variable to store data

Returns
An error code: 0 - success, otherwise - failure

int CeedOperatorSetData(CeedOperator op, void *data)
Set the backend data of a CeedOperator.

Backend Developer Functions

Parameters

• op – [inout] CeedOperator

• data – [in] Data to set

Returns
An error code: 0 - success, otherwise - failure

int CeedOperatorReference(CeedOperator op)
Increment the reference counter for a CeedOperator.

Backend Developer Functions

Parameters

• op – [inout] CeedOperator to increment the reference counter

Returns
An error code: 0 - success, otherwise - failure

int CeedOperatorSetSetupDone(CeedOperator op)
Set the setup flag of a CeedOperator to True.

Backend Developer Functions

Parameters

• op – [inout] CeedOperator

Returns
An error code: 0 - success, otherwise - failure

int CeedOperatorCreateActivePointBlockRestriction(CeedElemRestriction rstr,
CeedElemRestriction *point_block_rstr)

Create point block restriction for active operator field.

Backend Developer Functions

Parameters

• rstr – [in] Original CeedElemRestriction for active field

• point_block_rstr – [out] Address of the variable where the newly created
CeedElemRestriction will be stored

174

Returns
An error code: 0 - success, otherwise - failure

int CeedQFunctionAssemblyDataCreate(Ceed ceed, CeedQFunctionAssemblyData *data)
Create object holding CeedQFunction assembly data for CeedOperator.

Backend Developer Functions

Parameters

• ceed – [in]A Ceed object where the CeedQFunctionAssemblyData will be created

• data – [out] Address of the variable where the newly created CeedQFunc-
tionAssemblyData will be stored

Returns
An error code: 0 - success, otherwise - failure

int CeedQFunctionAssemblyDataReference(CeedQFunctionAssemblyData data)
Increment the reference counter for a CeedQFunctionAssemblyData.

Backend Developer Functions

Parameters

• data – [inout] CeedQFunctionAssemblyData to increment the reference counter

Returns
An error code: 0 - success, otherwise - failure

int CeedQFunctionAssemblyDataSetReuse(CeedQFunctionAssemblyData data, bool reuse_data)
Set re-use of CeedQFunctionAssemblyData.

Backend Developer Functions

Parameters

• data – [inout] CeedQFunctionAssemblyData to mark for reuse

• reuse_data – [in] Boolean flag indicating data re-use

Returns
An error code: 0 - success, otherwise - failure

int CeedQFunctionAssemblyDataSetUpdateNeeded(CeedQFunctionAssemblyData data, bool
needs_data_update)

Mark QFunctionAssemblyData as stale.

Backend Developer Functions

Parameters

• data – [inout] CeedQFunctionAssemblyData to mark as stale

• needs_data_update – [in] Boolean flag indicating if update is needed or com-
pleted

Returns
An error code: 0 - success, otherwise - failure

int CeedQFunctionAssemblyDataIsUpdateNeeded(CeedQFunctionAssemblyData data, bool
*is_update_needed)

Determine if QFunctionAssemblyData needs update.

Backend Developer Functions

175

Parameters

• data – [in] CeedQFunctionAssemblyData to mark as stale

• is_update_needed – [out] Boolean flag indicating if re-assembly is required

Returns
An error code: 0 - success, otherwise - failure

int CeedQFunctionAssemblyDataReferenceCopy(CeedQFunctionAssemblyData data,
CeedQFunctionAssemblyData *data_copy)

Copy the pointer to a CeedQFunctionAssemblyData.

Both pointers should be destroyed with CeedCeedQFunctionAssemblyDataDestroy().

Note: If the value of data_copy passed to this function is non-NULL, then it is assumed that
*data_copy is a pointer to a CeedQFunctionAssemblyData. This CeedQFunctionAssemblyData will
be destroyed if data_copy is the only reference to this CeedQFunctionAssemblyData.

Backend Developer Functions

Parameters

• data – [in] CeedQFunctionAssemblyData to copy reference to

• data_copy – [inout] Variable to store copied reference

Returns
An error code: 0 - success, otherwise - failure

int CeedQFunctionAssemblyDataIsSetup(CeedQFunctionAssemblyData data, bool *is_setup)
Get setup status for internal objects for CeedQFunctionAssemblyData.

Backend Developer Functions

Parameters

• data – [in] CeedQFunctionAssemblyData to retrieve status

• is_setup – [out] Boolean flag for setup status

Returns
An error code: 0 - success, otherwise - failure

int CeedQFunctionAssemblyDataSetObjects(CeedQFunctionAssemblyData data, CeedVector vec,
CeedElemRestriction rstr)

Set internal objects for CeedQFunctionAssemblyData.

Backend Developer Functions

Parameters

• data – [inout] CeedQFunctionAssemblyData to set objects

• vec – [in] CeedVector to store assembled CeedQFunction at quadrature points

• rstr – [in] CeedElemRestriction for CeedVector containing assembled CeedQ-
Function

Returns
An error code: 0 - success, otherwise - failure

176

int CeedQFunctionAssemblyDataGetObjects(CeedQFunctionAssemblyData data, CeedVector *vec,
CeedElemRestriction *rstr)

Get internal objects for CeedQFunctionAssemblyData.

Backend Developer Functions

Parameters

• data – [inout] CeedQFunctionAssemblyData to set objects

• vec – [out] CeedVector to store assembled CeedQFunction at quadrature points

• rstr – [out] CeedElemRestriction for CeedVector containing assembled CeedQ-
Function

Returns
An error code: 0 - success, otherwise - failure

int CeedQFunctionAssemblyDataDestroy(CeedQFunctionAssemblyData *data)
Destroy CeedQFunctionAssemblyData.

Backend Developer Functions

Parameters

• data – [inout] CeedQFunctionAssemblyData to destroy

Returns
An error code: 0 - success, otherwise - failure

int CeedOperatorGetOperatorAssemblyData(CeedOperator op, CeedOperatorAssemblyData *data)
Get CeedOperatorAssemblyData.

Backend Developer Functions

Parameters

• op – [in] CeedOperator to assemble

• data – [out] CeedQFunctionAssemblyData

Returns
An error code: 0 - success, otherwise - failure

int CeedOperatorAssemblyDataCreate(Ceed ceed, CeedOperator op, CeedOperatorAssemblyData
*data)

Create object holding CeedOperator assembly data.

The CeedOperatorAssemblyData holds an array with references to every active CeedBasis used in
the CeedOperator. An array with references to the corresponding active CeedElemRestrictions is also
stored. For each active CeedBasis, the CeedOperatorAssemblyData holds an array of all input and
output CeedEvalModes for this CeedBasis. The CeedOperatorAssemblyData holds an array of offsets
for indexing into the assembled CeedQFunction arrays to the row representing each CeedEvalMode.
The number of input columns across all active bases for the assembled CeedQFunction is also stored.
Lastly, the CeedOperatorAssembly data holds assembled matrices representing the full action of the
CeedBasis for all CeedEvalModes.

Backend Developer Functions

Parameters

• ceed – [in] Ceed object where the CeedOperatorAssemblyData will be created

• op – [in] CeedOperator to be assembled

177

• data – [out]Address of the variablewhere the newly createdCeedOperatorAssem-
blyData will be stored

Returns
An error code: 0 - success, otherwise - failure

int CeedOperatorAssemblyDataGetEvalModes(CeedOperatorAssemblyData data, CeedInt
*num_active_bases_in, CeedInt
**num_eval_modes_in, const CeedEvalMode
***eval_modes_in, CeedSize
***eval_mode_offsets_in, CeedInt
*num_active_bases_out, CeedInt
**num_eval_modes_out, const CeedEvalMode
***eval_modes_out, CeedSize
***eval_mode_offsets_out, CeedSize
*num_output_components)

Get CeedOperator CeedEvalModes for assembly.

Note: See CeedOperatorAssemblyDataCreate for a full description of the data stored in this object.

Backend Developer Functions

Parameters

• data – [in] CeedOperatorAssemblyData

• num_active_bases_in – [out] Total number of active bases for input

• num_eval_modes_in – [out] Pointer to hold array of numbers of input CeedE-
valModes, or NULL. eval_modes_in[0] holds an array of eval modes for the first
active basis.

• eval_modes_in – [out] Pointer to hold arrays of input CeedEvalModes, or NULL.

• eval_mode_offsets_in – [out] Pointer to hold arrays of input offsets at each
quadrature point.

• num_active_bases_out – [out] Total number of active bases for output

• num_eval_modes_out – [out] Pointer to hold array of numbers of output CeedE-
valModes, or NULL

• eval_modes_out – [out] Pointer to hold arrays of output CeedEvalModes, or
NULL.

• eval_mode_offsets_out – [out] Pointer to hold arrays of output offsets at each
quadrature point

• num_output_components – [out] The number of columns in the assembled
CeedQFunction matrix for each quadrature point, including contributions of all ac-
tive bases

Returns
An error code: 0 - success, otherwise - failure

int CeedOperatorAssemblyDataGetBases(CeedOperatorAssemblyData data, CeedInt
*num_active_bases_in, CeedBasis **active_bases_in, const
CeedScalar ***assembled_bases_in, CeedInt
*num_active_bases_out, CeedBasis **active_bases_out,
const CeedScalar ***assembled_bases_out)

Get CeedOperator CeedBasis data for assembly.

178

Note: See CeedOperatorAssemblyDataCreate for a full description of the data stored in this object.

Backend Developer Functions

Parameters

• data – [in] CeedOperatorAssemblyData

• num_active_bases_in – [out] Number of active input bases, or NULL

• active_bases_in – [out] Pointer to hold active input CeedBasis, or NULL

• assembled_bases_in – [out] Pointer to hold assembled active input B, or NULL

• num_active_bases_out – [out] Number of active output bases, or NULL

• active_bases_out – [out] Pointer to hold active output CeedBasis, or NULL

• assembled_bases_out – [out] Pointer to hold assembled active output B, or
NULL

Returns
An error code: 0 - success, otherwise - failure

int CeedOperatorAssemblyDataGetElemRestrictions(CeedOperatorAssemblyData data, CeedInt
*num_active_elem_rstrs_in,
CeedElemRestriction **active_elem_rstrs_in,
CeedInt *num_active_elem_rstrs_out,
CeedElemRestriction
**active_elem_rstrs_out)

Get CeedOperator CeedBasis data for assembly.

Note: See CeedOperatorAssemblyDataCreate for a full description of the data stored in this object.

Backend Developer Functions

Parameters

• data – [in] CeedOperatorAssemblyData

• num_active_elem_rstrs_in – [out] Number of active input element restric-
tions, or NULL

• active_elem_rstrs_in – [out] Pointer to hold active input CeedElemRestric-
tions, or NULL

• num_active_elem_rstrs_out – [out]Number of active output element restric-
tions, or NULL

• active_elem_rstrs_out – [out] Pointer to hold active output CeedElemRestric-
tions, or NULL

Returns
An error code: 0 - success, otherwise - failure

int CeedOperatorAssemblyDataDestroy(CeedOperatorAssemblyData *data)
Destroy CeedOperatorAssemblyData.

Backend Developer Functions

Parameters

• data – [inout] CeedOperatorAssemblyData to destroy

Returns
An error code: 0 - success, otherwise - failure

179

int CeedOperatorGetFallback(CeedOperator op, CeedOperator *op_fallback)
Retrieve fallback CeedOperator with a reference Ceed for advanced CeedOperator functionality.

Backend Developer Functions

Parameters

• op – [in] CeedOperator to retrieve fallback for

• op_fallback – [out] Fallback CeedOperator

Returns
An error code: 0 - success, otherwise - failure

int CeedOperatorGetFallbackParent(CeedOperator op, CeedOperator *parent)
Get the parent CeedOperator for a fallback CeedOperator.

Backend Developer Functions

Parameters

• op – [in] CeedOperator context

• parent – [out] Variable to store parent CeedOperator context

Returns
An error code: 0 - success, otherwise - failure

int CeedOperatorGetFallbackParentCeed(CeedOperator op, Ceed *parent)
Get the Ceed context of the parent CeedOperator for a fallback CeedOperator.

Backend Developer Functions

Parameters

• op – [in] CeedOperator context

• parent – [out] Variable to store parent Ceed context

Returns
An error code: 0 - success, otherwise - failure

6.3 Internal Functions

These functions are intended to be used by library developers of libCEED and can generally be found in
ceed-impl.h.

6.3.1 Ceed

int CeedRegisterImpl(const char *prefix, int (*init)(const char*, Ceed), unsigned int priority)
Register a Ceed backend internally.

Note: Backends should call CeedRegister instead.

Library Developer Functions

Parameters

• prefix – [in] Prefix of resources for this backend to respond to. For example, the
reference backend responds to “/cpu/self”.

180

• init – [in] Initialization function called by CeedInit()when the backend is selected
to drive the requested resource.

• priority – [in] Integer priority. Lower values are preferred in case the resource
requested by CeedInit() has non-unique best prefix match.

Returns
An error code: 0 - success, otherwise - failure

6.3.2 CeedVector

6.3.3 CeedElemRestriction

int CeedPermutePadOffsets(const CeedInt *offsets, CeedInt *block_offsets, CeedInt num_block, CeedInt
num_elem, CeedInt block_size, CeedInt elem_size)

Permute and pad offsets for a blocked restriction.

Utility Functions

Parameters

• offsets – [in] Array of shape [num_elem, elem_size].

• block_offsets – [out] Array of permuted and padded array values of shape
[num_block, elem_size, block_size].

• num_block – [in] Number of blocks

• num_elem – [in] Number of elements

• block_size – [in] Number of elements in a block

• elem_size – [in] Size of each element

Returns
An error code: 0 - success, otherwise - failure

int CeedPermutePadOrients(const bool *orients, bool *block_orients, CeedInt num_block, CeedInt
num_elem, CeedInt block_size, CeedInt elem_size)

Permute and pad orientations for a blocked restriction.

Utility Functions

Parameters

• orients – [in] Array of shape [num_elem, elem_size].

• block_orients – [out] Array of permuted and padded array values of shape
[num_block, elem_size, block_size].

• num_block – [in] Number of blocks

• num_elem – [in] Number of elements

• block_size – [in] Number of elements in a block

• elem_size – [in] Size of each element

Returns
An error code: 0 - success, otherwise - failure

181

int CeedPermutePadCurlOrients(const CeedInt8 *curl_orients, CeedInt8 *block_curl_orients, CeedInt
num_block, CeedInt num_elem, CeedInt block_size, CeedInt
elem_size)

Permute and pad curl-conforming orientations for a blocked restriction.

Utility Functions

Parameters

• curl_orients – [in] Array of shape [num_elem, 3 * elem_size].

• block_curl_orients – [out] Array of permuted and padded array values of
shape [num_block, elem_size, block_size].

• num_block – [in] Number of blocks

• num_elem – [in] Number of elements

• block_size – [in] Number of elements in a block

• elem_size – [in] Size of each element

Returns
An error code: 0 - success, otherwise - failure

6.3.4 CeedBasis

static int CeedChebyshevPolynomialsAtPoint(CeedScalar x, CeedInt n, CeedScalar *chebyshev_x)
Compute Chebyshev polynomial values at a point.

Library Developer Functions

Parameters

• x – [in] Coordinate to evaluate Chebyshev polynomials at

• n – [in] Number of Chebyshev polynomials to evaluate, n >= 2

• chebyshev_x – [out] Array of Chebyshev polynomial values

Returns
An error code: 0 - success, otherwise - failure

static int CeedChebyshevDerivativeAtPoint(CeedScalar x, CeedInt n, CeedScalar *chebyshev_dx)
Compute values of the derivative of Chebyshev polynomials at a point.

Library Developer Functions

Parameters

• x – [in] Coordinate to evaluate derivative of Chebyshev polynomials at

• n – [in] Number of Chebyshev polynomials to evaluate, n >= 2

• chebyshev_dx – [out] Array of Chebyshev polynomial derivative values

Returns
An error code: 0 - success, otherwise - failure

static int CeedHouseholderReflect(CeedScalar *A, const CeedScalar *v, CeedScalar b, CeedInt m, CeedInt
n, CeedInt row, CeedInt col)

182

Compute Householder reflection.

Computes A = (I - b v v^T) A, where A is an mxn matrix indexed as A[i*row + j*col]

Library Developer Functions

Parameters

• A – [inout]Matrix to apply Householder reflection to, in place

• v – [in] Householder vector

• b – [in] Scaling factor

• m – [in] Number of rows in A

• n – [in] Number of columns in A

• row – [in] Row stride

• col – [in] Col stride

Returns
An error code: 0 - success, otherwise - failure

static int CeedGivensRotation(CeedScalar *A, CeedScalar c, CeedScalar s, CeedTransposeMode t_mode,
CeedInt i, CeedInt k, CeedIntm, CeedInt n)

Compute Givens rotation.

Computes A =GA (or G^T A in transpose mode), where A is an mxnmatrix indexed as A[i*n + j*m]

Library Developer Functions

Parameters

• A – [inout] Row major matrix to apply Givens rotation to, in place

• c – [in] Cosine factor

• s – [in] Sine factor

• t_mode – [in] CEED_NOTRANSPOSE to rotate the basis counter-clockwise, which
has the effect of rotating columns of A clockwise; CEED_TRANSPOSE for the op-
posite rotation

• i – [in] First row/column to apply rotation

• k – [in] Second row/column to apply rotation

• m – [in] Number of rows in A

• n – [in] Number of columns in A

Returns
An error code: 0 - success, otherwise - failure

static int CeedScalarView(const char *name, const char *fp_fmt, CeedIntm, CeedInt n, const CeedScalar
*a, FILE *stream)

View an array stored in a CeedBasis.

Library Developer Functions

Parameters

• name – [in] Name of array

• fp_fmt – [in] Printing format

183

• m – [in] Number of rows in array

• n – [in] Number of columns in array

• a – [in] Array to be viewed

• stream – [in] Stream to view to, e.g., stdout

Returns
An error code: 0 - success, otherwise - failure

static int CeedBasisCreateProjectionMatrices(CeedBasis basis_from, CeedBasis basis_to, CeedScalar
**interp_project, CeedScalar **grad_project)

Create the interpolation and gradient matrices for projection from the nodes of basis_from to the
nodes of basis_to.

The interpolation is given by interp_project = interp_to^+ * interp_from, where the
pseudoinverse interp_to^+ is given by QR factorization. The gradient is given by grad_project
= interp_to^+ * grad_from, and is only computed for H^1 spaces otherwise it should not be
used.

Note: basis_from and basis_tomust have compatible quadrature spaces.

Library Developer Functions

Parameters

• basis_from – [in] CeedBasis to project from

• basis_to – [in] CeedBasis to project to

• interp_project – [out] Address of the variable where the newly created inter-
polation matrix will be stored.

• grad_project – [out] Address of the variable where the newly created gradient
matrix will be stored.

Returns
An error code: 0 - success, otherwise - failure

6.3.5 CeedQFunction

int CeedQFunctionRegister(const char *name, const char *source, CeedInt vec_length,
CeedQFunctionUser f, int (*init)(Ceed, const char*, CeedQFunction))

Register a gallery QFunction.

Library Developer Functions

Parameters

• name – [in] Name for this backend to respond to

• source – [in] Absolute path to source of QFunction,
“\path\CEED_DIR\gallery\folder\file.h:function_name”

• vec_length – [in] Vector length. Caller must ensure that number of quadrature
points is a multiple of vec_length.

• f – [in] Function pointer to evaluate action at quadrature points. See Public API for
CeedQFunction.

• init – [in] Initialization function called by CeedQFunctionInit() when the QFunc-
tion is selected.

184

Returns
An error code: 0 - success, otherwise - failure

static int CeedQFunctionFieldSet(CeedQFunctionField *f, const char *field_name, CeedInt size,
CeedEvalMode eval_mode)

Set a CeedQFunction field, used by CeedQFunctionAddInput/Output.

Library Developer Functions

Parameters

• f – [out] CeedQFunctionField

• field_name – [in] Name of QFunction field

• size – [in] Size of QFunction field, (num_comp * 1) for CEED_EVAL_NONE and
CEED_EVAL_WEIGHT, (num_comp * 1) forCEED_EVAL_INTERP for anH^1 space
or (num_comp * dim) for an H(div) or H(curl) space, (num_comp * dim) for
CEED_EVAL_GRAD, or (num_comp * 1) for CEED_EVAL_DIV, and (num_comp
* curl_dim) with curl_dim = 1 if dim < 3 else dim for CEED_EVAL_CURL.

• eval_mode – [in] CEED_EVAL_NONE to use values directly,
CEED_EVAL_WEIGHT to use quadrature weights, CEED_EVAL_INTERP to
use interpolated values, CEED_EVAL_GRAD to use gradients, CEED_EVAL_DIV
to use divergence, CEED_EVAL_CURL to use curl.

Returns
An error code: 0 - success, otherwise - failure

static int CeedQFunctionFieldView(CeedQFunctionField field, CeedInt field_number, bool in, FILE
*stream)

View a field of a CeedQFunction.

Utility Functions

Parameters

• field – [in] QFunction field to view

• field_number – [in] Number of field being viewed

• in – [in] true for input field, false for output

• stream – [in] Stream to view to, e.g., stdout

Returns
An error code: 0 - success, otherwise - failure

int CeedQFunctionSetFortranStatus(CeedQFunction qf, bool status)
Set flag to determine if Fortran interface is used.

Backend Developer Functions

Parameters

• qf – [inout] CeedQFunction

• status – [in] Boolean value to set as Fortran status

Returns
An error code: 0 - success, otherwise - failure

185

int CeedQFunctionContextGetFieldIndex(CeedQFunctionContext ctx, const char *field_name,
CeedInt *field_index)

Get index for QFunctionContext field.

Library Developer Functions

Parameters

• ctx – [in] CeedQFunctionContext

• field_name – [in] Name of field

• field_index – [out] Index of field, or -1 if field is not registered

Returns
An error code: 0 - success, otherwise - failure

int CeedQFunctionContextRegisterGeneric(CeedQFunctionContext ctx, const char *field_name,
size_t field_offset, const char *field_description,
CeedContextFieldType field_type, size_t field_size,
size_t num_values)

Common function for registering QFunctionContext fields.

Library Developer Functions

Parameters

• ctx – [inout] CeedQFunctionContext

• field_name – [in] Name of field to register

• field_offset – [in] Offset of field to register

• field_description – [in] Description of field, or NULL for none

• field_type – [in] Field data type, such as double or int32

• field_size – [in] Size of field, in bytes

• num_values – [in] Number of values to register, must be contiguous in memory

Returns
An error code: 0 - success, otherwise - failure

static int CeedQFunctionContextDestroyData(CeedQFunctionContext ctx)
Destroy user data held by CeedQFunctionContext, using function set by CeedQFunctionContextSet-
DataDestroy, if applicable.

Library Developer Functions

Parameters

• ctx – [inout] CeedQFunctionContext to destroy user data

Returns
An error code: 0 - success, otherwise - failure

186

6.3.6 CeedOperator

static int CeedOperatorCheckField(Ceed ceed, CeedQFunctionField qf_field, CeedElemRestriction r,
CeedBasis b)

Check if a CeedOperator Field matches the QFunction Field.

Library Developer Functions

Parameters

• ceed – [in] Ceed object for error handling

• qf_field – [in] QFunction Field matching Operator Field

• r – [in] Operator Field ElemRestriction

• b – [in] Operator Field Basis

Returns
An error code: 0 - success, otherwise - failure

static int CeedOperatorFieldView(CeedOperatorField field, CeedQFunctionField qf_field, CeedInt
field_number, bool sub, bool input, FILE *stream)

View a field of a CeedOperator.

Utility Functions

Parameters

• field – [in] Operator field to view

• qf_field – [in] QFunction field (carries field name)

• field_number – [in] Number of field being viewed

• sub – [in] true indicates sub-operator, which increases indentation; false for
top-level operator

• input – [in] true for an input field; false for output field

• stream – [in] Stream to view to, e.g., stdout

Returns
An error code: 0 - success, otherwise - failure

int CeedOperatorSingleView(CeedOperator op, bool sub, FILE *stream)

View a single CeedOperator.

Utility Functions

Parameters

• op – [in] CeedOperator to view

• sub – [in] Boolean flag for sub-operator

• stream – [in] Stream to write; typically stdout/stderr or a file

Returns
Error code: 0 - success, otherwise - failure

int CeedOperatorGetActiveBasis(CeedOperator op, CeedBasis *active_basis)
Find the active vector basis for a non-composite CeedOperator.

Library Developer Functions

187

Parameters

• op – [in] CeedOperator to find active basis for

• active_basis – [out] Basis for active input vector or NULL for composite opera-
tor

Returns
An error code: 0 - success, otherwise - failure

int CeedOperatorGetActiveBases(CeedOperator op, CeedBasis *active_input_basis, CeedBasis
*active_output_basis)

Find the active input and output vector bases for a non-composite CeedOperator.

Library Developer Functions

Parameters

• op – [in] CeedOperator to find active bases for

• active_input_basis – [out] Basis for active input vector orNULL for composite
operator

• active_output_basis – [out] Basis for active output vector or NULL for com-
posite operator

Returns
An error code: 0 - success, otherwise - failure

int CeedOperatorGetActiveElemRestriction(CeedOperator op, CeedElemRestriction *active_rstr)
Find the active vector ElemRestriction for a non-composite CeedOperator.

Utility Functions

Parameters

• op – [in] CeedOperator to find active ElemRestriction for

• active_rstr – [out] ElemRestriction for active input vector or NULL for compos-
ite operator

Returns
An error code: 0 - success, otherwise - failure

int CeedOperatorGetActiveElemRestrictions(CeedOperator op, CeedElemRestriction
*active_input_rstr, CeedElemRestriction
*active_output_rstr)

Find the active input and output vector ElemRestrictions for a non-composite CeedOperator.

Utility Functions

Parameters

• op – [in] CeedOperator to find active ElemRestrictions for

• active_input_rstr – [out] ElemRestriction for active input vector or NULL for
composite operator

• active_output_rstr – [out] ElemRestriction for active output vector or NULL
for composite operator

Returns
An error code: 0 - success, otherwise - failure

188

static int CeedOperatorContextSetGeneric(CeedOperator op, CeedContextFieldLabel field_label,
CeedContextFieldType field_type, void *values)

Set QFunctionContext field values of the specified type.

For composite operators, the value is set in all sub-operator QFunctionContexts that have a matching
field_name. A non-zero error code is returned for single operators that do not have a matching field
of the same type or composite operators that do not have any field of a matching type.

User Functions

Parameters

• op – [inout] CeedOperator

• field_label – [in] Label of field to set

• field_type – [in] Type of field to set

• values – [in] Values to set

Returns
An error code: 0 - success, otherwise - failure

static int CeedOperatorContextGetGenericRead(CeedOperator op, CeedContextFieldLabel field_label,
CeedContextFieldType field_type, size_t
*num_values, void *values)

Get QFunctionContext field values of the specified type, read-only.

For composite operators, the values retrieved are for the first sub-operator QFunctionContext that have
a matching field_name. A non-zero error code is returned for single operators that do not have a
matching field of the same type or composite operators that do not have any field of a matching type.

User Functions

Parameters

• op – [inout] CeedOperator

• field_label – [in] Label of field to set

• field_type – [in] Type of field to set

• num_values – [out] Number of values of type field_type in array values

• values – [out] Values in the label

Returns
An error code: 0 - success, otherwise - failure

static int CeedOperatorContextRestoreGenericRead(CeedOperator op, CeedContextFieldLabel
field_label, CeedContextFieldType
field_type, void *values)

Restore QFunctionContext field values of the specified type, read-only.

For composite operators, the values restored are for the first sub-operator QFunctionContext that have
a matching field_name. A non-zero error code is returned for single operators that do not have a
matching field of the same type or composite operators that do not have any field of a matching type.

User Functions

Parameters

• op – [inout] CeedOperator

• field_label – [in] Label of field to set

189

• field_type – [in] Type of field to set

• values – [in] Values array to restore

Returns
An error code: 0 - success, otherwise - failure

static int CeedQFunctionCreateFallback(Ceed fallback_ceed, CeedQFunction qf, CeedQFunction
*qf_fallback)

Duplicate a CeedQFunction with a reference Ceed to fallback for advanced CeedOperator functional-
ity.

Library Developer Functions

Parameters

• fallback_ceed – [in] Ceed on which to create fallback CeedQFunction

• qf – [in] CeedQFunction to create fallback for

• qf_fallback – [out] fallback CeedQFunction

Returns
An error code: 0 - success, otherwise - failure

static int CeedOperatorCreateFallback(CeedOperator op)
Duplicate a CeedOperator with a reference Ceed to fallback for advanced CeedOperator functionality.

Library Developer Functions

Parameters

• op – [inout] CeedOperator to create fallback for

Returns
An error code: 0 - success, otherwise - failure

static inline int CeedOperatorGetBasisPointer(CeedBasis basis, CeedEvalMode eval_mode, const
CeedScalar *identity, const CeedScalar **basis_ptr)

Select correct basis matrix pointer based on CeedEvalMode.

Library Developer Functions

Parameters

• basis – [in] CeedBasis from which to get the basis matrix

• eval_mode – [in] Current basis evaluation mode

• identity – [in] Pointer to identity matrix

• basis_ptr – [out] Basis pointer to set

static inline int CeedSingleOperatorAssembleAddDiagonal_Core(CeedOperator op, CeedRequest
*request, const bool
is_point_block, CeedVector
assembled)

Core logic for assembling operator diagonal or point block diagonal.

Library Developer Functions

Parameters

• op – [in] CeedOperator to assemble point block diagonal

190

• request – [in] Address of CeedRequest for non-blocking completion, else
CEED_REQUEST_IMMEDIATE

• is_point_block – [in] Boolean flag to assemble diagonal or point block diagonal

• assembled – [out] CeedVector to store assembled diagonal

Returns
An error code: 0 - success, otherwise - failure

static inline int CeedCompositeOperatorLinearAssembleAddDiagonal(CeedOperator op,
CeedRequest *request, const
bool is_point_block,
CeedVector assembled)

Core logic for assembling composite operator diagonal.

Library Developer Functions

Parameters

• op – [in] CeedOperator to assemble point block diagonal

• request – [in] Address of CeedRequest for non-blocking completion, else
CEED_REQUEST_IMMEDIATE

• is_point_block – [in] Boolean flag to assemble diagonal or point block diagonal

• assembled – [out] CeedVector to store assembled diagonal

Returns
An error code: 0 - success, otherwise - failure

static int CeedSingleOperatorAssembleSymbolic(CeedOperator op, CeedInt offset, CeedInt *rows,
CeedInt *cols)

Build nonzero pattern for non-composite operator.

Users should generally use CeedOperatorLinearAssembleSymbolic()

Library Developer Functions

Parameters

• op – [in] CeedOperator to assemble nonzero pattern

• offset – [in] Offset for number of entries

• rows – [out] Row number for each entry

• cols – [out] Column number for each entry

Returns
An error code: 0 - success, otherwise - failure

static int CeedSingleOperatorAssemble(CeedOperator op, CeedInt offset, CeedVector values)
Assemble nonzero entries for non-composite operator.

Users should generally use CeedOperatorLinearAssemble()

Library Developer Functions

Parameters

• op – [in] CeedOperator to assemble

• offset – [in] Offset for number of entries

• values – [out] Values to assemble into matrix

191

Returns
An error code: 0 - success, otherwise - failure

static int CeedSingleOperatorAssemblyCountEntries(CeedOperator op, CeedSize *num_entries)
Count number of entries for assembled CeedOperator.

Utility Functions

Parameters

• op – [in] CeedOperator to assemble

• num_entries – [out] Number of entries in assembled representation

Returns
An error code: 0 - success, otherwise - failure

static int CeedSingleOperatorMultigridLevel(CeedOperator op_fine, CeedVector p_mult_fine,
CeedElemRestriction rstr_coarse, CeedBasis
basis_coarse, CeedBasis basis_c_to_f, CeedOperator
*op_coarse, CeedOperator *op_prolong, CeedOperator
*op_restrict)

Common code for creating amultigrid coarse operator and level transfer operators for a CeedOperator.

Library Developer Functions

Parameters

• op_fine – [in] Fine grid operator

• p_mult_fine – [in] L-vector multiplicity in parallel gather/scatter, or NULL if not
creating prolongation/restriction operators

• rstr_coarse – [in] Coarse grid restriction

• basis_coarse – [in] Coarse grid active vector basis

• basis_c_to_f – [in] Basis for coarse to fine interpolation, or NULL if not creating
prolongation/restriction operators

• op_coarse – [out] Coarse grid operator

• op_prolong – [out] Coarse to fine operator, or NULL

• op_restrict – [out] Fine to coarse operator, or NULL

Returns
An error code: 0 - success, otherwise - failure

static int CeedBuildMassLaplace(const CeedScalar *interp_1d, const CeedScalar *grad_1d, const
CeedScalar *q_weight_1d, CeedInt P_1d, CeedInt Q_1d, CeedInt dim,
CeedScalar *mass, CeedScalar *laplace)

Build 1D mass matrix and Laplacian with perturbation.

Library Developer Functions

Parameters

• interp_1d – [in] Interpolation matrix in one dimension

• grad_1d – [in] Gradient matrix in one dimension

• q_weight_1d – [in] Quadrature weights in one dimension

• P_1d – [in] Number of basis nodes in one dimension

192

• Q_1d – [in] Number of quadrature points in one dimension

• dim – [in] Dimension of basis

• mass – [out] Assembled mass matrix in one dimension

• laplace – [out] Assembled perturbed Laplacian in one dimension

Returns
An error code: 0 - success, otherwise - failure

7 Floating Point Precision

Currently, libCEED supports two options for CeedScalar : double and single. The default is to use double
precision. Users wishing to set CeedScalar to single precision should edit include/ceed/types.h and
change

#include "ceed-f64.h" // IWYU pragma: export

to include ceed-f32.h instead, then recompile the library. Tests can be run using make test FC= be-
cause the Fortran tests do not support single precision at this time.

7.1 Language-specific notes

• C: CEED_SCALAR_TYPE will be defined to match one of the values of the CeedScalarType enum,
and can be used for compile-time checking of CeedScalar’s type; see, e.g., tests/t314-basis.c.

• Fortran: There is no definition of CeedScalar available in the Fortran header. The user is responsible
for ensuring that data used in Fortran code is of the correct type (real*8 or real*4) for libCEED’s
current configuration.

• Julia: After compiling the single precision version of libCEED, instruct LibCEED.jl to use this library
with the set_libceed_path! function and restart the Julia session. LibCEED.jl will configure itself
to use the appropriate type for CeedScalar.

• Python: Make sure to replace the ceed-f64.h inclusion rather than commenting it out, to guar-
antee that the Python bindings will pick the correct precision. The scalar_type() function has
been added to the Ceed class for convenience. It returns a string corresponding to a numpy datatype
matching that of CeedScalar.

• Rust: The Scalar type corresponds to CeedScalar.

This is work in progress! The ability to use single precision is an initial step in ongoing development of
mixed-precision support in libCEED. A current GitHub issue contains discussions related to this develop-
ment.

193

https://github.com/CEED/libCEED/issues/778

8 Developer Notes

8.1 Style Guide

Please check your code for style issues by running

make format

In addition to those automatically enforced style rules, libCEED tends to follow the following code style
conventions:

• Variable names: snake_case

• Strut members: snake_case

• Function and method names: PascalCase or language specific style

• Type names: PascalCase or language specific style

• Constant names: CAPS_SNAKE_CASE or language specific style

Also, documentation files should have one sentence per line to helpmake git diffs clearer and less disruptive.

8.2 Clang-tidy

Please check your code for common issues by running

make tidy

which uses the clang-tidy utility included in recent releases of Clang. This tool is much slower than
actual compilation (make -j8 parallelism helps). To run on a single file, use

make interface/ceed.c.tidy

for example. All issues reported by make tidy should be fixed.

8.3 Include-What-You-Use

Header inclusion for source files should follow the principal of ‘include what you use’ rather than relying
upon transitive #include to define all symbols.

Every symbol that is used in the source file foo.c should be defined in foo.c, foo.h, or in a
header file #included in one of these two locations. Please check your code by running the tool in-
clude-what-you-use to see recommendations for changes to your source. Most issues reported by in-
clude-what-you-use should be fixed; however this rule is flexible to account for differences in header
file organization in external libraries. If you have include-what-you-use installed in a sibling directory
to libCEED or set the environment variable IWYU_CC, then you can use the makefile target make iwyu.

Header files should be listed in alphabetical order, with installed headers preceding local headers and ceed
headers being listed first. The ceed-f64.h and ceed-f32.h headers should only be included in ceed.h.

#include <ceed.h>

#include <ceed/backend.h>

#include <stdbool.h>

#include <string.h>

#include "ceed-avx.h"

194

https://include-what-you-use.org/
https://include-what-you-use.org/

8.4 Shape

Backends often manipulate tensors of dimension greater than 2. It is awkward to pass fully-specified
multi-dimensional arrays using C99 and certain operations will flatten/reshape the tensors for computa-
tional convenience. We frequently use comments to document shapes using a lexicographic ordering. For
example, the comment

// u has shape [dim, num_comp, Q, num_elem]

means that it can be traversed as

for (d=0; d<dim; d++)

for (c=0; c<num_comp; c++)

for (q=0; q<Q; q++)

for (e=0; e<num_elem; e++)

u[((d*num_comp + c)*Q + q)*num_elem + e] = ...

This ordering is sometimes referred to as row-major or C-style. Note that flattening such as

// u has shape [dim, num_comp, Q*num_elem]

and

// u has shape [dim*num_comp, Q, num_elem]

are purely implicit – one just indexes the same array using the appropriate convention.

8.5 restrict Semantics

QFunction arguments can be assumed to have restrict semantics. That is, each input and output array
must reside in distinct memory without overlap.

8.6 CeedVector Array Access Semantics

Backend implementations are expected to separately track ‘owned’ and ‘borrowed’memory locations. Back-
ends are responsible for freeing ‘owned’ memory; ‘borrowed’ memory is set by the user and backends only
have read/write access to ‘borrowed’ memory. For any given precision andmemory type, a backend should
only have ‘owned’ or ‘borrowed’ memory, not both.

Backends are responsible for tracking which memory locations contain valid data. If the user calls Ceed-
VectorTakeArray() on the only memory location that contains valid data, then the CeedVector is left in
an invalid state. To repair an invalid state, the user must set valid data by calling CeedVectorSetValue(),
CeedVectorSetArray(), or CeedVectorGetArrayWrite().

Some checks for consistency and data validity with CeedVector array access are performed at the interface
level. All backends may assume that array access will conform to these guidelines:

• Borrowed memory

– CeedVector access to borrowed memory is set with CeedVectorSetArray() with copy_mode
= CEED_USE_POINTER and revoked with CeedVectorTakeArray(). The user must first call
CeedVectorSetArray() with copy_mode = CEED_USE_POINTER for the appropriate pre-
cision and memory type before calling CeedVectorTakeArray().

– CeedVectorTakeArray() cannot be called on a vector in a invalid state.

195

• Owned memory

– Owned memory can be allocated by calling CeedVectorSetValue() or by calling CeedVec-
torSetArray()with copy_mode = CEED_COPY_VALUES.

– Owned memory can be set by calling CeedVectorSetArray() with copy_mode =
CEED_OWN_POINTER.

– Owned memory can also be allocated by calling CeedVectorGetArrayWrite(). The user is
responsible for manually setting the contents of the array in this case.

• Data validity

– Internal synchronization and user calls to CeedVectorSync() cannot be made on a vector in
an invalid state.

– Calls to CeedVectorGetArray() and CeedVectorGetArrayRead() cannot be made on a
vector in an invalid state.

– Calls to CeedVectorSetArray() and CeedVectorSetValue() can be made on a vector in
an invalid state.

– Calls to CeedVectorGetArrayWrite() can be made on a vector in an invalid state. Data
synchronization is not required for the memory location returned by CeedVectorGetArray-
Write(). The caller should assume that all data at the memory location returned by CeedVec-
torGetArrayWrite() is invalid.

8.7 Internal Layouts

Ceed backends are free to use any E-vector and Q-vector data layout, to include never fully forming these
vectors, so long as the backend passes the t5** series tests and all examples. There are several common
layouts for L-vectors, E-vectors, and Q-vectors, detailed below:

• L-vector layouts

– L-vectors described by a CeedElemRestriction have a layout described by the offsets array and
comp_stride parameter. Data for node i, component j, element k can be found in the L-vector
at index offsets[i + k*elem_size] + j*comp_stride.

– L-vectors described by a strided CeedElemRestriction have a layout described by the strides
array. Data for node i, component j, element k can be found in the L-vector at index
i*strides[0] + j*strides[1] + k*strides[2].

• E-vector layouts

– If possible, backends should use CeedElemRestrictionSetELayout() to use the t2** tests.
If the backend uses a strided E-vector layout, then the data for node i, component j, element k
in the E-vector is given by i*layout[0] + j*layout[1] + k*layout[2].

– Backends may choose to use a non-strided E-vector layout; however, the t2** tests will not func-
tion correctly in this case and the tests will need to be whitelisted for the backend to pass the test
suite.

• Q-vector layouts

– When the size of a CeedQFunction field is greater than 1, data for quadrature point i component
j can be found in the Q-vector at index i + Q*j. Backends are free to provide the quadrature
points in any order.

– When the CeedQFunction field has emode CEED_EVAL_GRAD, data for quadrature point i, com-
ponent j, derivative k can be found in the Q-vector at index i + Q*j + Q*size*k.

196

– Note that backend developers must take special care to ensure that the data in theQ-vectors for a
fieldwith emode CEED_EVAL_NONE is properly orderedwhen the backend uses different layouts
for E-vectors and Q-vectors.

8.8 Backend Inheritance

There are three mechanisms by which a Ceed backend can inherit implementation from another Ceed back-
end. These options are set in the backend initialization routine.

1. Delegation - Developers may use CeedSetDelegate() to set a backend that will provide the imple-
mentation of any unimplemented Ceed objects.

2. Object delegation - Developers may use CeedSetObjectDelegate() to set a backend that will pro-
vide the implementation of a specific unimplemented Ceed object. Object delegation has higher prece-
dence than delegation.

3. Operator fallback - Developers may use CeedSetOperatorFallbackResource() to set a Ceed re-
source that will provide the implementation of unimplemented CeedOperator methods. A fallback
Ceed with this resource will only be instantiated if a method is called that is not implemented by the
parent Ceed. In order to use the fallback mechanism, the parent Ceed and fallback resource must use
compatible E-vector and Q-vector layouts.

For example, the /cpu/self/xsmm/serial/ backend implements the CeedTensorContract object but
delegates all other functionality to the /cpu/self/opt/serial backend. The /cpu/self/opt/serial
backend implements the CeedTensorContract and CeedOperator objects but delegates all other func-
tionality to the /cpu/self/ref/serial backend.

If the /cpu/self/opt/serial backend had missing CeedOperator functionality, then it could fallback to
/cpu/self/ref/serial for missing methods. In this case, the fallback Ceed would clone the /cpu/
self/opt/serial CeedOperator and use this clone to execute the missing functionality.

9 How to Contribute

Contributions to libCEED are encouraged.

Please make your commits well-organized and atomic, using git rebase --interactive as needed.
Check that tests (including “examples”) pass using make prove-all. If adding a new feature, please add
or extend a test so that your new feature is tested.

In typical development, every commit should compile, be covered by the test suite, and pass all tests. This
improves the efficiency of reviewing and facilitates use of git bisect.

Open an issue or RFC (request for comments) pull request to discuss any significant changes before investing
time. It is useful to create a WIP (work in progress) pull request for any long-running development so that
others can be aware of your work and help to avoid creating merge conflicts.

Write commit messages for a reviewer of your pull request and for a future developer (maybe you) that
bisects and finds that a bug was introduced in your commit. The assumptions that are clear in your mind
while committing are likely not in themind ofwhomever (possibly you) needs to understand it in the future.

Give credit where credit is due using tags such as Reported-by: Helpful User
<helpful@example.com> or Co-authored-by: Snippet Mentor <code.by@comment.com>.
Please use a real name and email for your author information (git config user.name and user.
email). If your author information or email becomes inconsistent (look at git shortlog -se), please
edit .mailmap to obtain your preferred name and email address.

197

https://en.wikipedia.org/wiki/Atomic_commit#Atomic_commit_convention
https://git-scm.com/docs/git-bisect
https://help.github.com/en/github/committing-changes-to-your-project/creating-a-commit-with-multiple-authors#creating-co-authored-commits-on-the-command-line

When contributors make a major contribution and support it, their names are included in the automatically
generated user-manual documentation.

Please avoid “merging from upstream” (like merging ‘main’ into your feature branch) unless there is a
specific reason to do so, in which case you should explain why in the merge commit. Rationale from Junio
and Linus.

You can use make format to help conform to coding conventions of the project, but try to avoid mixing
whitespace or formatting changes with content changes (see atomicity above).

By submitting a pull request, you are affirming the following.

9.1 Developer’s Certificate of Origin 1.1

By making a contribution to this project, I certify that:

(a) The contribution was created in whole or in part by me and I have the right to submit it under the open
source license indicated in the file; or

(b) The contribution is based upon previous work that, to the best of my knowledge, is covered under an
appropriate open source license and I have the right under that license to submit that work with modifica-
tions, whether created in whole or in part byme, under the same open source license (unless I am permitted
to submit under a different license), as indicated in the file; or

(c) The contribution was provided directly to me by some other person who certified (a), (b) or (c) and I
have not modified it.

(d) I understand and agree that this project and the contribution are public and that a record of the contribu-
tion (including all personal information I submit with it, including my sign-off) is maintained indefinitely
and may be redistributed consistent with this project or the open source license(s) involved.

9.2 Authorship

libCEED contains components authored by many individuals. It is important that contributors receive ap-
propriate recognition through informal and academically-recognized credit systems such as publications.
Status as a named author on the users manual and libCEED software publications will be granted for those
who

1. make significant contributions to libCEED (in implementation, documentation, conceptualization, re-
view, etc.) and

2. maintain and support those contributions.

Maintainers will do their best to notice when contributions reach this level and add your name to AUTHORS,
but please email or create an issue if you believe your contributions have met these criteria and haven’t yet
been acknowledged.

Authors of publications about libCEEDas awhole, includingDOI-bearing archives, shall offer co-authorship
to all individuals listed in the AUTHORSfile. Authors of publications claiming specific libCEED contributions
shall evaluate those listed in AUTHORS and offer co-authorship to those who made significant intellectual
contributions to the work.

Note that there is no co-authorship expectation for those publishing about use of libCEED (versus creation
of new features in libCEED), but see the citing section and use your judgment regarding significance of
support/advice you may have received in developing your use case and interpreting results.

198

https://lwn.net/Articles/328436/
https://gitster.livejournal.com/42247.html
http://yarchive.net/comp/linux/git_merges_from_upstream.html
https://libceed.org/en/latest/gettingstarted/#how-to-cite

10 Code of Conduct

10.1 Our Pledge

We asmembers, contributors, and leaders pledge tomake participation in our community a harassment-free
experience for everyone, regardless of age, body size, visible or invisible disability, ethnicity, sex character-
istics, gender identity and expression, level of experience, education, socio-economic status, nationality,
personal appearance, race, religion, or sexual identity and orientation.

We pledge to act and interact in ways that contribute to an open, welcoming, diverse, inclusive, and healthy
community.

10.2 Our Standards

Examples of behavior that contributes to a positive environment for our community include:

• Demonstrating empathy and kindness toward other people

• Being respectful of differing opinions, viewpoints, and experiences

• Giving and gracefully accepting constructive feedback

• Accepting responsibility and apologizing to those affected by our mistakes, and learning from the
experience

• Focusing on what is best not just for us as individuals, but for the overall community

Examples of unacceptable behavior include:

• The use of sexualized language or imagery, and sexual attention or advances of any kind

• Trolling, insulting or derogatory comments, and personal or political attacks

• Public or private harassment

• Publishing others’ private information, such as a physical or email address, without their explicit per-
mission

• Other conduct which could reasonably be considered inappropriate in a professional setting

10.3 Enforcement Responsibilities

Community leaders are responsible for clarifying and enforcing our standards of acceptable behavior and
will take appropriate and fair corrective action in response to any behavior that they deem inappropriate,
threatening, offensive, or harmful.

Community leaders have the right and responsibility to remove, edit, or reject comments, commits, code,
wiki edits, issues, and other contributions that are not aligned to this Code of Conduct, and will communi-
cate reasons for moderation decisions when appropriate.

199

10.4 Scope

This Code of Conduct applies within all community spaces, and also applies when an individual is officially
representing the community in public spaces. Examples of representing our community include using an
official e-mail address, posting via an official social media account, or acting as an appointed representative
at an online or offline event.

10.5 Enforcement

Instances of abusive, harassing, or otherwise unacceptable behavior may be reported to the community
leaders responsible for enforcement at jed@jedbrown.org, valeria@caltech.edu, or tzanio@llnl.gov. All com-
plaints will be reviewed and investigated promptly and fairly.

All community leaders are obligated to respect the privacy and security of the reporter of any incident.

10.6 Enforcement Guidelines

Community leaders will follow these Community Impact Guidelines in determining the consequences for
any action they deem in violation of this Code of Conduct:

10.6.1 1. Correction

Community Impact: Use of inappropriate language or other behavior deemedunprofessional or unwelcome
in the community.

Consequence: A private, written warning from community leaders, providing clarity around the nature of
the violation and an explanation ofwhy the behaviorwas inappropriate. Apublic apologymaybe requested.

10.6.2 2. Warning

Community Impact: A violation through a single incident or series of actions.

Consequence: A warning with consequences for continued behavior. No interaction with the people in-
volved, including unsolicited interaction with those enforcing the Code of Conduct, for a specified period
of time. This includes avoiding interactions in community spaces as well as external channels like social
media. Violating these terms may lead to a temporary or permanent ban.

10.6.3 3. Temporary Ban

Community Impact: A serious violation of community standards, including sustained inappropriate be-
havior.

Consequence: A temporary ban from any sort of interaction or public communication with the community
for a specified period of time. No public or private interaction with the people involved, including unso-
licited interaction with those enforcing the Code of Conduct, is allowed during this period. Violating these
terms may lead to a permanent ban.

200

mailto:jed@jedbrown.org
mailto:valeria@caltech.edu
mailto:tzanio@llnl.gov

10.6.4 4. Permanent Ban

Community Impact: Demonstrating a pattern of violation of community standards, including sustained
inappropriate behavior, harassment of an individual, or aggression toward or disparagement of classes of
individuals.

Consequence: A permanent ban from any sort of public interaction within the community.

10.7 Attribution

This Code of Conduct is adapted from the Contributor Covenant, version 2.0, available at https://www.
contributor-covenant.org/version/2/0/code_of_conduct.html.

Community Impact Guidelines were inspired by Mozilla’s code of conduct enforcement ladder.

For answers to common questions about this code of conduct, see the FAQ at https://www.
contributor-covenant.org/faq. Translations are available at https://www.contributor-covenant.org/
translations.

11 Changes/Release Notes

On this page we provide a summary of the main API changes, new features and examples for each release
of libCEED.

11.1 Current main branch

11.1.1 Interface changes

11.1.2 New features

11.1.3 Examples

11.2 v0.12 (Oct 31, 2023)

11.2.1 Interface changes

• Update CeedOperatorContext* functions to CeedOperator*Context* functions for consis-
tency. For example, CeedOperatorContextGetFieldLabel was renamed to CeedOperator-
GetContextFieldLabel.

• Removed CeedBasisSetNumQuadraturePoints as redundant and bug-prone interface.

201

https://www.contributor-covenant.org
https://www.contributor-covenant.org/version/2/0/code_of_conduct.html
https://www.contributor-covenant.org/version/2/0/code_of_conduct.html
https://github.com/mozilla/diversity
https://www.contributor-covenant.org/faq
https://www.contributor-covenant.org/faq
https://www.contributor-covenant.org/translations
https://www.contributor-covenant.org/translations

11.2.2 New features

• Added CeedOperatorGetFieldByName() to access a specific CeedOperatorField by its name.

• Update /cpu/self/memcheck/* backends to help verify CeedVector array access assumptions
and CeedQFunction user output assumptions.

• Update CeedOperatorLinearAssembleDiagonal() to provide default implementation that sup-
ports CeedOperatorwith multiple active bases.

• Added Sycl backends /gpu/sycl/ref, /gpu/sycl/shared, and /gpu/sycl/gen.

• Added CeedBasisApplyAtPoints() for evaluation of values and derivatives at arbitrary points
inside elements.

• Added support for non-tensor 𝐻(curl) finite element spaces with CeedBasisCreateHcurl().

• Added CeedElemRestrictionCreateCurlOriented(), similar to CeedElemRestriction-
CreateOriented(), for element restrictions requiringmore general element transformations such as
those for high-order 𝐻(curl) spaces on tetrahedra (see https://dl.acm.org/doi/pdf/10.1145/3524456).

• AddedCeedOperatorLinearAssemblePointBlockDiagonalSymbolic() to create COOmap-
ping for mapping out of CeedOperatorLinearAssemblePointBlockDiagonal().

• Added support for application codeswhichmanagemultipleCeed objects, parallelized acrossOpenMP
threads.

11.2.3 Examples

• Add DMSwarm example demonstrating interpolation from background mesh to swarm points and
projection from swarm points to background mesh.

11.2.3.1 Bakeoff problems and generalizations

• Requires PETSc version 3.19 or later.

11.2.3.2 Compressible Navier-Stokes mini-app

• Updated restart and checkpointing interface.

• Add data-driven subgrid-stress model.

• Add differential filtering of solution.

• Add turbulence statistics collection over spanwise-symmetric geometries.

• Add Taylor-Green vortex initial condition.

• Add Riemann-based outflow boundary conditions.

• Added vortex shedding and flow past cylinder example, including calculations for lift, drag, and heat
transfer.

• Add Internal Damping Layer (IDL) for helping turbulent simulation stability.

• Derive CeedBasis from PetscFE, and various other internal maintainability updates.

202

https://dl.acm.org/doi/pdf/10.1145/3524456

11.3 v0.11 (Dec 24, 2022)

11.3.1 Interface changes

• Added CeedOperatorSetName() for more readable CeedOperatorView() output.

• Added CeedBasisCreateProjection() to facilitate interpolation between nodes for separate
CeedBases.

• Rename and move CeedCompositeOperatorGetNumSub() and CeedCompositeOperator-
GetSubList() to public interface.

• Renamed CEED_BASIS_COLLOCATED to CEED_BASIS_NONE for clarity. Some users previously mis-
interpreted a CeedOperator field using CEED_BASIS_COLLOCATED as meaning that the entire
CeedOperator used a quadrature space that is collocated with the nodal space of the active bases.

11.3.2 New features

• Update /cpu/self/memcheck/* backends to help verify CeedQFunctionContext data sizes pro-
vided by user.

• Improved support for 𝐻(div) bases.

• Added CeedInt_FMT to support potential future use of larger integer sizes.

• Added CEED_QFUNCTION_ATTR for setting compiler attributes/pragmas to CEED_QFUNC-
TION_HELPER and CEED_QFUNCTION.

• OCCA backend updated to latest OCCA release; DPC++ and OMP OCCA modes enabled. Due to a
limitation of the OCCA parser, typedefs are required to use pointers to arrays in QFunctions with the
OCCA backend. This issue will be fixed in a future OCCA release.

11.3.3 Bugfix

• Fix bug in setting device id for GPU backends.

• Fix storing of indices for CeedElemRestriction on the host with GPU backends.

• Fix CeedElemRestriction sizing for CeedOperatorAssemblePointBlockDiagonal().

• Fix bugs in CPU implementation of CeedOperatorLinearAssemble() when there are different
number of active input modes and active output modes.

11.3.4 Examples

11.3.4.1 Compressible Navier-Stokes mini-app

• Various performance enhancements, analytic matrix-free and assembled Jacobian, and PETSc solver
configurations for GPUs.

• Refactored to improve code reuse and modularity.

• Support for primitive variables for more accurate boundary layers and all-speed flow.

• Added 𝑌𝑍𝛽 shock capturing scheme and Shock Tube example.

• Added Channel example, with comparison to analytic solutions.

203

• Added Flat Plate with boundary layer mesh and compressible Blasius inflow condition based on
Chebyshev collocation solution of the Blasius equations.

• Added strong and weak synthetic turbulence generation (STG) inflow boundary conditions.

• Added “freestream” boundary conditions based on HLLC Riemann solver.

• Automated stabilization coefficients for different basis degree.

11.3.4.2 Bakeoff problems and generalizations

• Support for convergence studies.

11.3.5 Maintainability

• Refactored /gpu/cuda/shared and /gpu/cuda/gen as well as /gpu/hip/shared and /gpu/
hip/gen backend to improve maintainablity and reduce duplicated code.

• Enabled support for p > 8 for /gpu/*/shared backends.

• Switch to clang-format over astyle for automatic formatting; Makefile command changed to
make format from make style.

• Improved test harness.

11.4 v0.10.1 (Apr 11, 2022)

11.4.1 Interface changes

• Added CeedQFunctionSetUserFlopsEstimate() and CeedOperatorGetFlopsEstimate()
to facilitate estimating FLOPs in operator application.

11.4.2 New features

• SwitchedMAGMA backends to use runtime compilation for tensor basis kernels (and element restric-
tion kernels, in non-deterministic /gpu/*/magma backends). This reduces time to compile the library
and increases the range of parameters for which the MAGMA tensor basis kernels will work.

11.4.3 Bugfix

• Install JiT source files in install directory to fix GPU functionality for installed libCEED.

204

11.5 v0.10 (Mar 21, 2022)

11.5.1 Interface changes

• Update CeedQFunctionGetFields() and CeedOperatorGetFields() to include number of
fields.

• Promote to the public API: QFunction and Operator field objects, CeedQFunctionField and
CeedOperatorField, and associated getters, CeedQFunctionGetFields(); CeedQFunc-
tionFieldGetName(); CeedQFunctionFieldGetSize(); CeedQFunctionFieldGetE-
valMode(); CeedOperatorGetFields(); CeedOperatorFieldGetElemRestriction();
CeedOperatorFieldGetBasis(); and CeedOperatorFieldGetVector().

• Clarify and document conditions where CeedQFunction and CeedOperator become immutable
and no further fields or suboperators can be added.

• Add CeedOperatorLinearAssembleQFunctionBuildOrUpdate() to reduce object creation
overhead in assembly of CeedOperator preconditioning ingredients.

• Promote CeedOperatorCheckReady()to the public API to facilitate interactive interfaces.

• Warning added when compiling OCCA backend to alert users that this backend is experimental.

• ceed-backend.h, ceed-hash.h, and ceed-khash.h removed. Users should use ceed/
backend.h, ceed/hash.h, and ceed/khash.h.

• Added CeedQFunctionGetKernelName(); refactored CeedQFunctionGetSourcePath() to
exclude function kernel name.

• Clarify documentation for CeedVectorTakeArray(); this function will error if CeedVectorSe-
tArray()with copy_mode == CEED_USE_POINTERwas not previously called for the correspond-
ing CeedMemType.

• Added CeedVectorGetArrayWrite() that allows access to uninitialized arrays; require initialized
data for CeedVectorGetArray().

• Added CeedQFunctionContextRegisterDouble() and CeedQFunctionContextReg-
isterInt32() with CeedQFunctionContextSetDouble() and CeedQFunctionCon-
textSetInt32() to facilitate easy updating of CeedQFunctionContext data by user defined
field names.

• Added CeedQFunctionContextGetFieldDescriptions() to retrieve user defined descriptions
of fields that are registered with CeedQFunctionContextRegister*.

• Renamed CeedElemTopology entries for clearer namespacing between libCEED enums.

• Added type CeedSize equivalent to ptrdiff_t for array sizes in CeedVectorCreate(), Ceed-
VectorGetLength(), CeedElemRestrictionCreate*, CeedElemRestrictionGetLVec-
torSize(), and CeedOperatorLinearAssembleSymbolic(). This is a breaking change.

• Added CeedOperatorSetQFunctionUpdated() to facilitate QFunction data re-use between op-
erators sharing the same quadrature space, such as in a multigrid hierarchy.

• Added CeedOperatorGetActiveVectorLengths() to get shape of CeedOperator.

205

11.5.2 New features

• CeedScalar can now be set as float or double at compile time.

• Added JiT utilities in ceed/jit-tools.h to reduce duplicated code in GPU backends.

• Added support for JiT of QFunctions with #include "relative/path/local-file.h" state-
ments for additional local files. Note that files included with "" are searched relative to the current
file first, then by compiler paths (as with <> includes). To use this feature, one should adhere to
relative paths only, not compiler flags like -I, which the JiT will not be aware of.

• Remove need to guard library headers in QFunction source for code generation backends.

• CeedDebugEnv()macro created to provide debugging outputs when Ceed context is not present.

• Added CeedStringAllocCopy() to reduce repeated code for copying strings internally.

• Added CeedPathConcatenate() to facilitate loading kernel source files with a path relative to the
current file.

• Added support for non-tensor 𝐻(div) elements, to include CPU backend implementations and Ceed-
BasisCreateHdiv() convenience constructor.

• Added CeedQFunctionSetContextWritable() and read-only access to CeedQFunctionCon-
text data as an optional feature to improve GPU performance. By default, calling the CeedQFunc-
tionUserduringCeedQFunctionApply() is assumed towrite into theCeedQFunctionContext
data, consistentwith the previous behavior. Note that if a user asserts that theirCeedQFunctionUser
does not write into the CeedQFunctionContext data, they are responsible for the validity of this
assertion.

• Added support for element matrix assembly in GPU backends.

11.5.3 Maintainability

• Refactored preconditioner support internally to facilitate future development and improve GPU com-
pleteness/test coverage.

• Include-what-you-usemakefile target added as make iwyu.

• Create backend constant CEED_FIELD_MAX to reduce magic numbers in codebase.

• Put GPU JiTed kernel source code into separate files.

• Dropped legacy version support in PETSc based examples to better utilize PETSc DMPlex and Mat
updates to support libCEED; current minimum PETSc version for the examples is v3.17.

11.6 v0.9 (Jul 6, 2021)

11.6.1 Interface changes

• Minormodification in error handlingmacro to silence pedantic warnings when compilingwith Clang,
but no functional impact.

206

11.6.2 New features

• Add CeedVectorAXPY() and CeedVectorPointwiseMult() as a convenience for stand-alone
testing and internal use.

• Add CEED_QFUNCTION_HELPER macro to properly annotate QFunction helper functions for code
generation backends.

• Add CeedPragmaOptimizeOff macro for code that is sensitive to floating point errors from fast
math optimizations.

• Rust support: split libceed-sys crate out of libceed and publish both on crates.io.

11.6.3 Performance improvements

11.6.4 Examples

• Solid mechanics mini-app updated to explore the performance impacts of various formulations in the
initial and current configurations.

• Fluid mechanics example adds GPU support and improves modularity.

11.6.5 Deprecated backends

• The /cpu/self/tmpl and /cpu/self/tmpl/sub backends have been removed. These backends
were intially added to test the backend inheritance mechanism, but this mechanism is now widely
used and tested in multiple backends.

11.7 v0.8 (Mar 31, 2021)

11.7.1 Interface changes

• Error handling improved to include enumerated error codes for C interface return values.

• Installed headers thatwill follow semantic versioningweremoved to include/ceeddirectory. These
headers have been renamed from ceed-*.h to ceed/*.h. Placeholder headers with the old naming
schema are currently provided, but these headers will be removed in the libCEED v0.9 release.

11.7.2 New features

• Julia and Rust interfaces added, providing a nearly 1-1 correspondence with the C interface, plus some
convenience features.

• Static libraries can be built with make STATIC=1 and the pkg-config file is installed accordingly.

• Add CeedOperatorLinearAssembleSymbolic() and CeedOperatorLinearAssemble() to
support full assembly of libCEED operators.

207

https://crates.io/crates/libceed

11.7.3 Performance improvements

• New HIP MAGMA backends for hipMAGMA library users: /gpu/hip/magma and /gpu/hip/
magma/det.

• NewHIP backends for improved tensor basis performance: /gpu/hip/shared and/gpu/hip/gen.

11.7.4 Examples

• Solid mechanics mini-app example updated with traction boundary conditions and improved Dirichlet
boundary conditions.

• Solid mechanics mini-app example updated with Neo-Hookean hyperelasticity in current configuration
as well as improved Neo-Hookean hyperelasticity exploring storage vs computation tradeoffs.

• Compressible Navier-Stokes mini-app example updated with isentropic traveling vortex test case, an an-
alytical solution to the Euler equations that is useful for testing boundary conditions, discretization
stability, and order of accuracy.

• Compressible Navier-Stokes mini-app example updated with support for performing convergence study
and plotting order of convergence by polynomial degree.

11.8 v0.7 (Sep 29, 2020)

11.8.1 Interface changes

• Replace limited CeedInterlaceMode with more flexible component stride compstride in
CeedElemRestriction constructors. As a result, the indices parameter has been replaced with
offsets and the nnodes parameter has been replaced with lsize. These changes improve support
for mixed finite element methods.

• Replace various uses of Ceed*Get*Status with Ceed*Is* in the backend API to match common
nomenclature.

• Replace CeedOperatorAssembleLinearDiagonal with CeedOperatorLinearAssembleDi-
agonal() for clarity.

• Linear Operators can be assembled as point-block diagonal matrices with CeedOperatorLinear-
AssemblePointBlockDiagonal(), provided in row-major form in a ncomp by ncomp block per
node.

• Diagonal assemble interface changed to accept a CeedVector instead of a pointer to a CeedVector to re-
duce memory movement when interfacing with calling code.

• Added CeedOperatorLinearAssembleAddDiagonal() and CeedOperatorLinearAssem-
bleAddPointBlockDiagonal() for improved future integration with codes such as MFEM that
compose the action of CeedOperators external to libCEED.

• Added CeedVectorTakeAray() to sync and remove libCEED read/write access to an allocated ar-
ray and pass ownership of the array to the caller. This function is recommended over CeedVec-
torSyncArray() when the CeedVector has an array owned by the caller that was set by Ceed-
VectorSetArray().

• Added CeedQFunctionContext object to manage user QFunction context data and reduce copies
between device and host memory.

208

• Added CeedOperatorMultigridLevelCreate(), CeedOperatorMultigridLevelCre-
ateTensorH1(), and CeedOperatorMultigridLevelCreateH1() to facilitate creation of
multigrid prolongation, restriction, and coarse grid operators using a common quadrature space.

11.8.2 New features

• New HIP backend: /gpu/hip/ref.

• CeedQFunction support for user CUfunctions in some backends

11.8.3 Performance improvements

• OCCA backend rebuilt to facilitate future performance enhancements.

• Petsc BPs suite improved to reduce noise due to multiple calls to mpiexec.

11.8.4 Examples

• Solid mechanics mini-app example updatedwith strain energy computation andmore flexible boundary
conditions.

11.8.5 Deprecated backends

• The /gpu/cuda/reg backend has been removed, with its core features moved into /gpu/cuda/ref
and /gpu/cuda/shared.

11.9 v0.6 (Mar 29, 2020)

libCEED v0.6 contains numerous new features and examples, as well as expanded documentation in this
new website.

11.9.1 New features

• NewPython interface using CFFI provides a nearly 1-1 correspondencewith the C interface, plus some
convenience features. For instance, data stored in the CeedVector structure are available without
copy as numpy.ndarray. Short tutorials are provided in Binder.

• Linear QFunctions can be assembled as block-diagonal matrices (per quadrature
point, CeedOperatorAssembleLinearQFunction()) or to evaluate the diagonal
(CeedOperatorAssembleLinearDiagonal()). These operations are useful for preconditioning
ingredients and are used in the libCEED’s multigrid examples.

• The inverse of separable operators can be obtained using CeedOperatorCreateFDMElementIn-
verse() and applied with CeedOperatorApply(). This is a useful preconditioning ingredient,
especially for Laplacians and related operators.

• New functions: CeedVectorNorm(), CeedOperatorApplyAdd(), CeedQFunctionView(),
CeedOperatorView().

• Make public accessors for various attributes to facilitate writing composable code.

• New backend: /cpu/self/memcheck/serial.

209

https://libceed.org
https://libceed.org
https://cffi.readthedocs.io/
https://numpy.org/devdocs/reference/generated/numpy.ndarray.html#numpy.ndarray
https://mybinder.org/v2/gh/CEED/libCEED/main?urlpath=lab/tree/examples/tutorials/

• QFunctions using variable-length array (VLA) pointer constructs can be used with CUDA backends.
(Single source is coming soon for OCCA backends.)

• Fix some missing edge cases in CUDA backend.

11.9.2 Performance Improvements

• MAGMA backend performance optimization and non-tensor bases.

• No-copy optimization in CeedOperatorApply().

11.9.3 Interface changes

• Replace CeedElemRestrictionCreateIdentity and CeedElemRestrictionCreate-
Blocked with more flexible CeedElemRestrictionCreateStrided() and CeedElemRe-
strictionCreateBlockedStrided().

• Add arguments to CeedQFunctionCreateIdentity().

• Replace ambiguous uses of CeedTransposeMode for L-vector identificationwith CeedInterlace-
Mode. This is now an attribute of the CeedElemRestriction (see CeedElemRestrictionCre-
ate()) and no longer passed as lmode arguments to CeedOperatorSetField() and CeedElem-
RestrictionApply().

11.9.4 Examples

libCEED-0.6 contains greatly expanded examples with new documentation. Notable additions include:

• Standalone Ex2-Surface (examples/ceed/ex2-surface): compute the area of a domain in 1, 2, and
3 dimensions by applying a Laplacian.

• PETSc Area (examples/petsc/area.c): computes surface area of domains (like the cube and
sphere) by direct integration on a surface mesh; demonstrates geometric dimension different from
topological dimension.

• PETSc Bakeoff problems and generalizations:

– examples/petsc/bpsraw.c (formerly bps.c): transparent CUDA support.

– examples/petsc/bps.c (formerly bpsdmplex.c): performance improvements and trans-
parent CUDA support.

– Bakeoff problems on the cubed-sphere (examples/petsc/bpssphere.c): generalizations of all
CEED BPs to the surface of the sphere; demonstrates geometric dimension different from topo-
logical dimension.

• Multigrid (examples/petsc/multigrid.c): new p-multigrid solver with algebraic multigrid
coarse solve.

• Compressible Navier-Stokes mini-app (examples/fluids/navierstokes.c; formerly examples/
navier-stokes): unstructured grid support (using PETSc’s DMPlex), implicit time integration,
SU/SUPG stabilization, free-slip boundary conditions, and quasi-2D computational domain support.

• Solid mechanics mini-app (examples/solids/elasticity.c): new solver for linear elasticity,
small-strain hyperelasticity, and globalized finite-strain hyperelasticity using p-multigrid with alge-
braic multigrid coarse solve.

210

11.10 v0.5 (Sep 18, 2019)

For this release, several improvements were made. Two new CUDA backends were added to the family of
backends, of which, the new cuda-gen backend achieves state-of-the-art performance using single-source
CeedQFunction. From this release, users can define Q-Functions in a single source code independently of the
targeted backend with the aid of a new macro CEED QFUNCTION to support JIT (Just-In-Time) and CPU
compilation of the user providedCeedQFunction code. To allow a unified declaration, theCeedQFunctionAPI
has undergone a slight change: the QFunctionField parameter ncomp has been changed to size. This
change requires setting the previous value of ncomp to ncomp*dimwhen adding a QFunctionFieldwith
eval mode CEED EVAL GRAD.

Additionally, new CPU backends were included in this release, such as the /cpu/self/opt/* backends
(which are written in pure C and use partial E-vectors to improve performance) and the /cpu/self/ref/
memcheck backend (which relies upon the Valgrind Memcheck tool to help verify that user CeedQFunction
have no undefined values). This release also included various performance improvements, bug fixes, new
examples, and improved tests. Among these improvements, vectorized instructions for CeedQFunction code
compiled for CPUwere enhanced by usingCeedPragmaSIMD instead ofCeedPragmaOMP, implementation
of a CeedQFunction gallery and identity Q-Functions were introduced, and the PETSc benchmark problems
were expanded to include unstructured meshes handling were. For this expansion, the prior version of
the PETSc BPs, which only included data associated with structured geometries, were renamed bpsraw,
and the new version of the BPs, which can handle data associated with any unstructured geometry, were
called bps. Additionally, other benchmark problems, namely BP2 and BP4 (the vector-valued versions of
BP1 and BP3, respectively), and BP5 and BP6 (the collocated versions—for which the quadrature points
are the same as the Gauss Lobatto nodes—of BP3 and BP4 respectively) were added to the PETSc examples.
Furthermoew, another standalone libCEED example, called ex2, which computes the surface area of a given
mesh was added to this release.

Backends available in this release:

CEED resource (-ceed) Backend

/cpu/self/ref/serial Serial reference implementation
/cpu/self/ref/blocked Blocked reference implementation
/cpu/self/ref/memcheck Memcheck backend, undefined value checks
/cpu/self/opt/serial Serial optimized C implementation
/cpu/self/opt/blocked Blocked optimized C implementation
/cpu/self/avx/serial Serial AVX implementation
/cpu/self/avx/blocked Blocked AVX implementation
/cpu/self/xsmm/serial Serial LIBXSMM implementation
/cpu/self/xsmm/blocked Blocked LIBXSMM implementation
/cpu/occa Serial OCCA kernels
/gpu/occa CUDA OCCA kernels
/omp/occa OpenMP OCCA kernels
/ocl/occa OpenCL OCCA kernels
/gpu/cuda/ref Reference pure CUDA kernels
/gpu/cuda/reg Pure CUDA kernels using one thread per element
/gpu/cuda/shared Optimized pure CUDA kernels using shared memory
/gpu/cuda/gen Optimized pure CUDA kernels using code generation
/gpu/magma CUDAMAGMA kernels

Examples available in this release:

211

http://valgrind.org/

User code Example

ceed
• ex1 (volume)
• ex2 (surface)

mfem
• BP1 (scalar mass operator)
• BP3 (scalar Laplace operator)

petsc
• BP1 (scalar mass operator)
• BP2 (vector mass operator)
• BP3 (scalar Laplace operator)
• BP4 (vector Laplace operator)
• BP5 (collocated scalar Laplace operator)
• BP6 (collocated vector Laplace operator)
• Navier-Stokes

nek5000
• BP1 (scalar mass operator)
• BP3 (scalar Laplace operator)

11.11 v0.4 (Apr 1, 2019)

libCEEDv0.4wasmade again publicly available in the second full CEED software distribution, releaseCEED
2.0. This release contained notable features, such as four new CPU backends, two new GPU backends,
CPU backend optimizations, initial support for operator composition, performance benchmarking, and a
Navier-Stokes demo. The new CPU backends in this release came in two families. The /cpu/self/*/
serial backends process one element at a time and are intended for meshes with a smaller number of
high order elements. The /cpu/self/*/blocked backends process blocked batches of eight interlaced
elements and are intended formeshes with higher numbers of elements. The /cpu/self/avx/* backends
rely upon AVX instructions to provide vectorized CPU performance. The /cpu/self/xsmm/* backends
rely upon the LIBXSMM package to provide vectorized CPU performance. The /gpu/cuda/* backends
provide GPU performance strictly using CUDA. The /gpu/cuda/ref backend is a reference CUDA back-
end, providing reasonable performance for most problem configurations. The /gpu/cuda/reg backend
uses a simple parallelization approach, where each thread treats a finite element. Using just in time compi-
lation, provided by nvrtc (NVidia Runtime Compiler), and runtime parameters, this backend unroll loops
and map memory address to registers. The /gpu/cuda/reg backend achieve good peak performance for
1D, 2D, and low order 3D problems, but performance deteriorates very quickly when threads run out of
registers.

A new explicit time-stepping Navier-Stokes solver was added to the family of libCEED exam-
ples in the examples/petsc directory (see Compressible Navier-Stokes mini-app). This example
solves the time-dependent Navier-Stokes equations of compressible gas dynamics in a static Eulerian
three-dimensional frame, using structured high-order finite/spectral element spatial discretizations and ex-
plicit high-order time-stepping (available in PETSc). Moreover, the Navier-Stokes example was developed
using PETSc, so that the pointwise physics (defined at quadrature points) is separated from the paralleliza-
tion and meshing concerns.

Backends available in this release:

212

http://github.com/hfp/libxsmm

CEED resource (-ceed) Backend

/cpu/self/ref/serial Serial reference implementation
/cpu/self/ref/blocked Blocked reference implementation
/cpu/self/tmpl Backend template, defaults to /cpu/self/blocked
/cpu/self/avx/serial Serial AVX implementation
/cpu/self/avx/blocked Blocked AVX implementation
/cpu/self/xsmm/serial Serial LIBXSMM implementation
/cpu/self/xsmm/blocked Blocked LIBXSMM implementation
/cpu/occa Serial OCCA kernels
/gpu/occa CUDA OCCA kernels
/omp/occa OpenMP OCCA kernels
/ocl/occa OpenCL OCCA kernels
/gpu/cuda/ref Reference pure CUDA kernels
/gpu/cuda/reg Pure CUDA kernels using one thread per element
/gpu/magma CUDAMAGMA kernels

Examples available in this release:

User code Example

ceed
• ex1 (volume)

mfem
• BP1 (scalar mass operator)
• BP3 (scalar Laplace operator)

petsc
• BP1 (scalar mass operator)
• BP3 (scalar Laplace operator)
• Navier-Stokes

nek5000
• BP1 (scalar mass operator)
• BP3 (scalar Laplace operator)

11.12 v0.3 (Sep 30, 2018)

Notable features in this release include active/passive field interface, support for non-tensor bases, backend
optimization, and improved Fortran interface. This release also focused on providing improved continu-
ous integration, and many new tests with code coverage reports of about 90%. This release also provided
a significant change to the public interface: a CeedQFunction can take any number of named input and out-
put arguments while CeedOperator connects them to the actual data, which may be supplied explicitly to
CeedOperatorApply() (active) or separately via CeedOperatorSetField() (passive). This interface
change enables reusable libraries of CeedQFunctions and composition of block solvers constructed using
CeedOperator. A concept of blocked restriction was added to this release and used in an optimized CPU
backend. Although this is typically not visible to the user, it enables effective use of arbitrary-length SIMD
while maintaining cache locality. This CPU backend also implements an algebraic factorization of tensor
product gradients to perform fewer operations than standard application of interpolation and differentia-
tion from nodes to quadrature points. This algebraic formulation automatically supports non-polynomial
and non-interpolatory bases, thus is more general than the more common derivation in terms of Lagrange
polynomials on the quadrature points.

213

Backends available in this release:

CEED resource (-ceed) Backend

/cpu/self/blocked Blocked reference implementation
/cpu/self/ref Serial reference implementation
/cpu/self/tmpl Backend template, defaults to /cpu/self/blocked
/cpu/occa Serial OCCA kernels
/gpu/occa CUDA OCCA kernels
/omp/occa OpenMP OCCA kernels
/ocl/occa OpenCL OCCA kernels
/gpu/magma CUDAMAGMA kernels

Examples available in this release:

User code Example

ceed
• ex1 (volume)

mfem
• BP1 (scalar mass operator)
• BP3 (scalar Laplace operator)

petsc
• BP1 (scalar mass operator)
• BP3 (scalar Laplace operator)

nek5000
• BP1 (scalar mass operator)
• BP3 (scalar Laplace operator)

11.13 v0.21 (Sep 30, 2018)

AMAGMA backend (which relies upon the MAGMA package) was integrated in libCEED for this release.
This initial integration set up the framework of using MAGMA and provided the libCEED functionality
throughMAGMAkernels as one of libCEED’s computational backends. As any other backend, theMAGMA
backend provides extended basic data structures for CeedVector, CeedElemRestriction, and CeedOperator, and
implements the fundamental CEED building blocks to work with the new data structures. In general, the
MAGMA-specific data structures keep the libCEED pointers to CPU data but also add corresponding device
(e.g., GPU) pointers to the data. Coherency is handled internally, and thus seamlessly to the user, through
the functions/methods that are provided to support them.

Backends available in this release:

CEED resource (-ceed) Backend

/cpu/self Serial reference implementation
/cpu/occa Serial OCCA kernels
/gpu/occa CUDA OCCA kernels
/omp/occa OpenMP OCCA kernels
/ocl/occa OpenCL OCCA kernels
/gpu/magma CUDAMAGMA kernels

Examples available in this release:

214

https://bitbucket.org/icl/magma

User code Example

ceed
• ex1 (volume)

mfem
• BP1 (scalar mass operator)
• BP3 (scalar Laplace operator)

petsc
• BP1 (scalar mass operator)

nek5000
• BP1 (scalar mass operator)

11.14 v0.2 (Mar 30, 2018)

libCEED was made publicly available the first full CEED software distribution, release CEED 1.0. The dis-
tribution was made available using the Spack package manager to provide a common, easy-to-use build
environment, where the user can build the CEED distribution with all dependencies. This release included
a new Fortran interface for the library. This release also contained major improvements in the OCCA back-
end (including a new /ocl/occa backend) and new examples. The standalone libCEED example was
modified to compute the volume volume of a given mesh (in 1D, 2D, or 3D) and placed in an examples/
ceed subfolder. A new mfem example to perform BP3 (with the application of the Laplace operator) was
also added to this release.

Backends available in this release:

CEED resource (-ceed) Backend

/cpu/self Serial reference implementation
/cpu/occa Serial OCCA kernels
/gpu/occa CUDA OCCA kernels
/omp/occa OpenMP OCCA kernels
/ocl/occa OpenCL OCCA kernels

Examples available in this release:

User code Example

ceed
• ex1 (volume)

mfem
• BP1 (scalar mass operator)
• BP3 (scalar Laplace operator)

petsc
• BP1 (scalar mass operator)

nek5000
• BP1 (scalar mass operator)

215

11.15 v0.1 (Jan 3, 2018)

Initial low-level API of the CEED project. The low-level API provides a set of Finite Elements kernels and
components for writing new low-level kernels. Examples include: vector and sparse linear algebra, element
matrix assembly over a batch of elements, partial assembly and action for efficient high-order operators like
mass, diffusion, advection, etc. The main goal of the low-level API is to establish the basis for the high-level
API. Also, identifying such low-level kernels and providing a reference implementation for them serves as
the basis for specialized backend implementations. This release contained several backends: /cpu/self,
and backends which rely upon the OCCA package, such as /cpu/occa, /gpu/occa, and /omp/occa. It
also included several examples, in theexamples folder: A standalone code that shows the usage of libCEED
(with no external dependencies) to apply the Laplace operator, ex1; an mfem example to perform BP1 (with
the application of the mass operator); and a petsc example to perform BP1 (with the application of the
mass operator).

Backends available in this release:

CEED resource (-ceed) Backend

/cpu/self Serial reference implementation
/cpu/occa Serial OCCA kernels
/gpu/occa CUDA OCCA kernels
/omp/occa OpenMP OCCA kernels

Examples available in this release:

User code Example

ceed ex1 (scalar Laplace operator)
mfem BP1 (scalar mass operator)
petsc BP1 (scalar mass operator)

12 Indices and tables

• genindex

• search

References

[sod] Sod shock tube. https://en.wikipedia.org/wiki/Sod_shock_tube. Accessed: 01-30-2022.

[AB93] Ellen M Arruda and Mary C Boyce. A three-dimensional constitutive model for the large
stretch behavior of rubber elastic materials. Journal of the Mechanics and Physics of Solids,
41(2):389–412, 1993. doi:10.1016/0022-5096(93)90013-6.

[BAB+21] Jed Brown, Ahmad Abdelfattah, Valeria Barra, Natalie Beams, Jean Sylvain Camier,
Veselin Dobrev, Yohann Dudouit, Leila Ghaffari, Tzanio Kolev, David Medina, Will
Pazner, Thilina Ratnayaka, Jeremy Thompson, and Stan Tomov. libCEED: fast algebra for
high-order element-based discretizations. Journal of Open Source Software, 6(63):2945, 2021.
doi:10.21105/joss.02945.

216

http://github.com/libocca/occa
https://en.wikipedia.org/wiki/Sod_shock_tube
https://doi.org/10.1016/0022-5096(93)90013-6
https://doi.org/10.21105/joss.02945

[BJ16] Jonathan R. Bull and Antony Jameson. Explicit filtering and exact reconstruction of the
sub-filter stresses in large eddy simulation. Journal of Computational Physics, 306:117–136, 2016.
doi:10.1016/j.jcp.2015.11.037.

[Col23] TimColonius. Chapter 8 - boundary conditions for turbulence simulation. In Robert D.Moser,
editor, Numerical Methods in Turbulence Simulation, Numerical Methods in Turbulence, pages
319–357. Academic Press, 2023. doi:10.1016/B978-0-32-391144-3.00014-0.

[DPA+20] Denis Davydov, Jean-Paul Pelteret, Daniel Arndt, Martin Kronbichler, and Paul Stein-
mann. A matrix-free approach for finite-strain hyperelastic problems using geometric multi-
grid. International Journal for Numerical Methods in Engineering, 121(13):2874–2895, 2020.
doi:10.1002/nme.6336.

[Ger86] M. Germano. Differential filters for the large eddy numerical simulation of turbulent flows.
The Physics of Fluids, 29(6):1755–1757, 1986. doi:10.1063/1.865649.

[Hol00] Gerhard Holzapfel. Nonlinear solid mechanics: a continuum approach for engineering. Wiley,
Chichester New York, 2000. ISBN 978-0-471-82319-3.

[HST10] Thomas J R Hughes, Guglielmo Scovazzi, and Tayfun E Tezduyar. Stabilized
methods for compressible flows. Journal of Scientific Computing, 43:343–368, 2010.
doi:10.1007/s10915-008-9233-5.

[Hug12] Thomas JR Hughes. The finite element method: linear static and dynamic finite element analysis.
Courier Corporation, 2012.

[MDGP+14] GianmarcoMengaldo, Daniele De Grazia, Joaquim Peiro, Antony Farrington, FreddieWither-
den, Peter Vincent, and Spencer Sherwin. A guide to the implementation of boundary condi-
tions in compact high-order methods for compressible aerodynamics. In AIAA Aviation 2014.
Atlanta, June 2014. AIAA. doi:10.2514/6.2014-2923.

[PMK92] TC Papanastasiou, N Malamataris, and Ellwood K. A new outflow boundary con-
dition. International Journal for Numerical Methods in Fluids, 14:587–608, March 1992.
doi:10.1002/fld.1650140506.

[Pop00] Stephen B Pope. Turbulent Flows. Cambridge University Press, 2000. ISBN 9780521598866.

[PJE22a] Aviral Prakash, Kenneth E. Jansen, and John A. Evans. Invariant data-driven subgrid stress
modeling in the strain-rate eigenframe for large eddy simulation. Computer Methods in Applied
Mechanics and Engineering, September 2022. doi:10.1016/j.cma.2022.115457.

[PJE22b] Aviral Prakash, Kenneth E. Jansen, and John A. Evans. Invariant data-driven subgrid stress
modeling on anisotropic grids for large eddy simulation. 2022. arXiv:arXiv:2212.00332.

[SHJ91] Farzin Shakib, Thomas JR Hughes, and Zdeněk Johan. A new finite element formu-
lation for computational fluid dynamics: X. the compressible Euler and Navier-Stokes
equations. Computer Methods in Applied Mechanics and Engineering, 89(1-3):141–219, 1991.
doi:10.1016/0045-7825(91)90041-4.

[SSST14] Michael L. Shur, Philippe R. Spalart, Michael K. Strelets, and Andrey K. Travin. Syn-
thetic turbulence generators for RANS-LES interfaces in zonal simulations of aerody-
namic and aeroacoustic problems. Flow, Turbulence and Combustion, 93(1):63–92, 2014.
doi:10.1007/s10494-014-9534-8.

[SWW+93] Jerry M Straka, Robert B Wilhelmson, Louis J Wicker, John R Anderson, and Kelvin K
Droegemeier. Numerical solutions of a non-linear density current: a benchmark solution
and comparisons. International Journal for Numerical Methods in Fluids, 17(1):1–22, 1993.
doi:10.1002/fld.1650170103.

217

https://doi.org/10.1016/j.jcp.2015.11.037
https://doi.org/10.1016/B978-0-32-391144-3.00014-0
https://doi.org/10.1002/nme.6336
https://doi.org/10.1063/1.865649
https://doi.org/10.1007/s10915-008-9233-5
https://doi.org/10.2514/6.2014-2923
https://doi.org/10.1002/fld.1650140506
https://doi.org/10.1016/j.cma.2022.115457
https://arxiv.org/abs/arXiv:2212.00332
https://doi.org/10.1016/0045-7825(91)90041-4
https://doi.org/10.1007/s10494-014-9534-8
https://doi.org/10.1002/fld.1650170103

[TS07] Tayfun E Tezduyar and Masayoshi Senga. SUPG finite element computation of inviscid su-
personic flows with $yz\beta $ shock capturing. Computers and Fluids, 36(1):147–159, 2007.
doi:10.1016/j.compfluid.2005.07.009.

[Tor09] Eleuterio F. Toro. Riemann Solvers and Numerical Methods for Fluid Dynamics. Springer, Berlin,
Heidelberg, 2009. ISBN 978-3-540-49834-6.

[VD56] E. R. Van Driest. On turbulent flow near a wall. Journal of the Aeronautical Sciences,
23(11):1007–1011, November 1956. doi:10/ghbxk3.

[Whi99] Christian H Whiting. Stabilized Finite Element Methods for Fluid Dynamics Using a Hierarchical
Basis. PhD thesis, Rennselear Polytechnic Institute, Troy, NY, 1999.

[WJD03] Christian HWhiting, Kenneth E Jansen, and Saikat Dey. Hierarchical basis for stabilized finite
element methods for compressible flows. Computer Methods in Applied Mechanics and Engineer-
ing, 192(47-48):5167–5185, 2003. doi:10.1016/j.cma.2003.07.011.

[WWP09] SamuelWilliams, AndrewWaterman, andDavid Patterson. Roofline: an insightful visual per-
formance model for multicore architectures. Communications of the ACM, 52(4):65–76, 2009.
doi:10.1145/1498765.1498785.

[ZZS11] Rui Zhang, Mengping Zhang, and Chi-Wang Shu. On the order of accuracy and numerical
performance of two classes of finite volume weno schemes. Communications in Computational
Physics, 9(3):807–827, 2011. doi:10.4208/cicp.291109.080410s.

[Brown10] J. Brown. Efficient Nonlinear Solvers for Nodal High-Order Finite Elements in 3D. Journal of
Scientific Computing, October 2010. doi:10.1007/s10915-010-9396-8.

218

https://doi.org/10.1016/j.compfluid.2005.07.009
https://doi.org/10/ghbxk3
https://doi.org/10.1016/j.cma.2003.07.011
https://doi.org/10.1145/1498765.1498785
https://doi.org/10.4208/cicp.291109.080410s
https://doi.org/10.1007/s10915-010-9396-8

Index

C
Ceed (C type), 81
CEED_BASIS_COLLOCATED (C var), 108
CEED_BASIS_NONE (C var), 108
CEED_ELEMRESTRICTION_NONE (C var), 96
CEED_Q_VLA (C macro), 128
CEED_QFUNCTION (C macro), 128
CEED_QFUNCTION_ATTR (C macro), 172
CEED_QFUNCTION_HELPER (C macro), 128
CEED_QFUNCTION_NONE (C var), 118
CEED_REQUEST_IMMEDIATE (C var), 81
CEED_REQUEST_ORDERED (C var), 82
CEED_STRIDES_BACKEND (C var), 96
CEED_VECTOR_ACTIVE (C var), 88
CEED_VECTOR_NONE (C var), 88
CEED_VERSION_GE (C macro), 87
CeedAddJitSourceRoot (C function), 84
CeedBasis (C type), 108
CeedBasisApply (C function), 111
CeedBasisApplyAtPoints (C function), 112
CeedBasisCreateH1 (C function), 109
CeedBasisCreateHcurl (C function), 110
CeedBasisCreateHdiv (C function), 109
CeedBasisCreateProjection (C function), 111
CeedBasisCreateProjectionMatrices (C

function), 184
CeedBasisCreateTensorH1 (C function), 108
CeedBasisCreateTensorH1Lagrange (C func-

tion), 108
CeedBasisDestroy (C function), 116
CeedBasisGetCeed (C function), 112
CeedBasisGetCollocatedGrad (C function), 157
CeedBasisGetCurl (C function), 115
CeedBasisGetData (C function), 157
CeedBasisGetDimension (C function), 112
CeedBasisGetDiv (C function), 115
CeedBasisGetFESpace (C function), 158
CeedBasisGetFlopsEstimate (C function), 158
CeedBasisGetGrad (C function), 115
CeedBasisGetGrad1D (C function), 115
CeedBasisGetInterp (C function), 114
CeedBasisGetInterp1D (C function), 115
CeedBasisGetNumComponents (C function), 113
CeedBasisGetNumNodes (C function), 113
CeedBasisGetNumNodes1D (C function), 113
CeedBasisGetNumQuadratureComponents (C

function), 158
CeedBasisGetNumQuadraturePoints (C func-

tion), 114

CeedBasisGetNumQuadraturePoints1D (C
function), 114

CeedBasisGetQRef (C function), 114
CeedBasisGetQWeights (C function), 114
CeedBasisGetTensorContract (C function), 159
CeedBasisGetTopology (C function), 113
CeedBasisGetTopologyDimension (C func-

tion), 158
CeedBasisIsTensor (C function), 157
CeedBasisReference (C function), 157
CeedBasisReferenceCopy (C function), 111
CeedBasisSetData (C function), 157
CeedBasisSetTensorContract (C function), 159
CeedBasisView (C function), 111
CeedBuildMassLaplace (C function), 192
CeedCallocArray (C function), 145
CeedChebyshevDerivativeAtPoint (C func-

tion), 182
CeedChebyshevPolynomialsAtPoint (C func-

tion), 182
CeedCompositeOperatorAddSub (C function),

132
CeedCompositeOperatorCreate (C function),

129
CeedCompositeOperatorGetMultiplicity (C

function), 142
CeedCompositeOperatorGetNumSub (C func-

tion), 132
CeedCompositeOperatorGetSubList (C func-

tion), 132
CeedCompositeOperatorLinearAssembleAd-

dDiagonal (C function), 191
CeedContextFieldLabel (C type), 118
CeedContextFieldLabelGetDescription (C

function), 127
CeedCopyMode (C enum), 95
CeedCopyMode.CEED_COPY_VALUES (C enumera-

tor), 95
CeedCopyMode.CEED_OWN_POINTER (C enumera-

tor), 95
CeedCopyMode.CEED_USE_POINTER (C enumera-

tor), 95
CeedDebug (C macro), 150
CeedDebug256 (C macro), 150
CeedDebugColor (C enum), 151
CeedDebugColor.CEED_DEBUG_COLOR_ERROR

(C enumerator), 151
CeedDebugColor.CEED_DEBUG_COLOR_NONE (C

enumerator), 151
CeedDebugColor.CEED_DEBUG_COLOR_SUC-

219

CESS (C enumerator), 151
CeedDebugColor.CEED_DEBUG_COLOR_WARN-

ING (C enumerator), 151
CeedDebugEnv (C macro), 151
CeedDebugEnv256 (C macro), 150
CeedDebugFlag (C function), 144
CeedDebugFlagEnv (C function), 144
CeedDebugImpl256 (C function), 144
CeedDestroy (C function), 84
CeedElemRestriction (C type), 96
CeedElemRestrictionApply (C function), 103
CeedElemRestrictionApplyAtPointsInEle-

ment (C function), 104
CeedElemRestrictionApplyBlock (C func-

tion), 104
CeedElemRestrictionCreate (C function), 96
CeedElemRestrictionCreateAtPoints (C

function), 98
CeedElemRestrictionCreateBlocked (C func-

tion), 99
CeedElemRestrictionCreateBlockedCurlO-

riented (C function), 101
CeedElemRestrictionCreateBlockedOri-

ented (C function), 100
CeedElemRestrictionCreateBlocked-

Strided (C function), 102
CeedElemRestrictionCreateCurlOriented

(C function), 97
CeedElemRestrictionCreateOriented (C

function), 97
CeedElemRestrictionCreateStrided (C func-

tion), 98
CeedElemRestrictionCreateUnoriented-

Copy (C function), 102
CeedElemRestrictionCreateUnsignedCopy

(C function), 102
CeedElemRestrictionCreateVector (C func-

tion), 103
CeedElemRestrictionDestroy (C function), 107
CeedElemRestrictionGetBlockSize (C func-

tion), 106
CeedElemRestrictionGetCeed (C function), 104
CeedElemRestrictionGetCompStride (C func-

tion), 105
CeedElemRestrictionGetCurlOrientations

(C function), 154
CeedElemRestrictionGetData (C function), 155
CeedElemRestrictionGetELayout (C func-

tion), 155
CeedElemRestrictionGetElementSize (C

function), 105
CeedElemRestrictionGetFlopsEstimate (C

function), 156
CeedElemRestrictionGetLVectorSize (C

function), 106
CeedElemRestrictionGetMaxPointsInEle-

ment (C function), 106
CeedElemRestrictionGetMultiplicity (C

function), 107
CeedElemRestrictionGetNumBlocks (C func-

tion), 106
CeedElemRestrictionGetNumComponents (C

function), 106
CeedElemRestrictionGetNumElements (C

function), 105
CeedElemRestrictionGetNumPoints (C func-

tion), 105
CeedElemRestrictionGetNumPointsInEle-

ment (C function), 105
CeedElemRestrictionGetOffsets (C func-

tion), 153
CeedElemRestrictionGetOrientations (C

function), 154
CeedElemRestrictionGetStrides (C func-

tion), 153
CeedElemRestrictionGetType (C function), 153
CeedElemRestrictionHasBackendStrides (C

function), 153
CeedElemRestrictionIsPoints (C function),

153
CeedElemRestrictionIsStrided (C function),

153
CeedElemRestrictionReference (C function),

156
CeedElemRestrictionReferenceCopy (C func-

tion), 103
CeedElemRestrictionRestoreCurlOrienta-

tions (C function), 155
CeedElemRestrictionRestoreOffsets (C

function), 154
CeedElemRestrictionRestoreOrientations

(C function), 154
CeedElemRestrictionSetData (C function), 156
CeedElemRestrictionSetELayout (C func-

tion), 155
CeedElemRestrictionView (C function), 107
CeedElemTopology (C enum), 117
CeedElemTopology.CEED_TOPOLOGY_HEX (C

enumerator), 118
CeedElemTopology.CEED_TOPOLOGY_LINE (C

enumerator), 117
CeedElemTopology.CEED_TOPOLOGY_PRISM (C

enumerator), 118
CeedElemTopology.CEED_TOPOLOGY_PYRAMID

(C enumerator), 118
CeedElemTopology.CEED_TOPOLOGY_QUAD (C

enumerator), 118
CeedElemTopology.CEED_TOPOLOGY_TET (C

220

enumerator), 118
CeedElemTopology.CEED_TOPOLOGY_TRIAN-

GLE (C enumerator), 118
CeedError (C macro), 86
CeedErrorAbort (C function), 85
CeedErrorExit (C function), 85
CeedErrorFormat (C function), 85
CeedErrorImpl (C function), 85
CeedErrorReturn (C function), 85
CeedErrorStore (C function), 85
CeedErrorType (C enum), 87
CeedErrorType.CEED_ERROR_ACCESS (C enu-

merator), 88
CeedErrorType.CEED_ERROR_BACKEND (C enu-

merator), 88
CeedErrorType.CEED_ERROR_DIMENSION (C

enumerator), 88
CeedErrorType.CEED_ERROR_INCOMPATIBLE

(C enumerator), 88
CeedErrorType.CEED_ERROR_INCOMPLETE (C

enumerator), 88
CeedErrorType.CEED_ERROR_MAJOR (C enumer-

ator), 88
CeedErrorType.CEED_ERROR_MINOR (C enumer-

ator), 88
CeedErrorType.CEED_ERROR_SUCCESS (C enu-

merator), 88
CeedErrorType.CEED_ERROR_UNSUPPORTED (C

enumerator), 88
CeedEvalMode (C enum), 117
CeedEvalMode.CEED_EVAL_CURL (C enumera-

tor), 117
CeedEvalMode.CEED_EVAL_DIV (C enumerator),

117
CeedEvalMode.CEED_EVAL_GRAD (C enumera-

tor), 117
CeedEvalMode.CEED_EVAL_INTERP (C enumera-

tor), 117
CeedEvalMode.CEED_EVAL_NONE (C enumera-

tor), 117
CeedEvalMode.CEED_EVAL_WEIGHT (C enumera-

tor), 117
CeedFree (C function), 146
CeedGaussQuadrature (C function), 116
CeedGetData (C function), 149
CeedGetDelegate (C function), 147
CeedGetErrorMessage (C function), 85
CeedGetObjectDelegate (C function), 148
CeedGetOperatorFallbackCeed (C function),

148
CeedGetOperatorFallbackResource (C func-

tion), 148
CeedGetParent (C function), 147
CeedGetPreferredMemType (C function), 84

CeedGetResource (C function), 83
CeedGetResourceRoot (C function), 147
CeedGetScalarType (C function), 86
CeedGetVersion (C function), 86
CeedGivensRotation (C function), 183
CeedHouseholderApplyQ (C function), 160
CeedHouseholderReflect (C function), 182
CeedInit (C function), 82
CeedInt (C type), 95
CeedIsDebug (C function), 146
CeedIsDeterministic (C function), 84
CeedLobattoQuadrature (C function), 116
CeedMallocArray (C function), 145
CeedMatrixMatrixMultiply (C function), 159
CeedMemType (C enum), 87
CeedMemType.CEED_MEM_DEVICE (C enumera-

tor), 87
CeedMemType.CEED_MEM_HOST (C enumerator),

87
CeedNormType (C enum), 95
CeedNormType.CEED_NORM_1 (C enumerator), 95
CeedNormType.CEED_NORM_2 (C enumerator), 95
CeedNormType.CEED_NORM_MAX (C enumerator),

95
CeedOperator (C type), 129
CeedOperatorApply (C function), 137
CeedOperatorApplyAdd (C function), 137
CeedOperatorAssemblyDataCreate (C func-

tion), 177
CeedOperatorAssemblyDataDestroy (C func-

tion), 179
CeedOperatorAssemblyDataGetBases (C func-

tion), 178
CeedOperatorAssemblyDataGetElemRe-

strictions (C function), 179
CeedOperatorAssemblyDataGetEvalModes (C

function), 178
CeedOperatorCheckField (C function), 187
CeedOperatorCheckReady (C function), 132
CeedOperatorContextGetGenericRead (C

function), 189
CeedOperatorContextRestoreGenericRead

(C function), 189
CeedOperatorContextSetGeneric (C func-

tion), 188
CeedOperatorCreate (C function), 129
CeedOperatorCreateActivePointBlockRe-

striction (C function), 174
CeedOperatorCreateFallback (C function), 190
CeedOperatorCreateFDMElementInverse (C

function), 144
CeedOperatorDestroy (C function), 138
CeedOperatorField (C type), 173
CeedOperatorFieldGetBasis (C function), 131

221

CeedOperatorFieldGetElemRestriction (C
function), 131

CeedOperatorFieldGetName (C function), 131
CeedOperatorFieldGetVector (C function), 132
CeedOperatorFieldView (C function), 187
CeedOperatorGetActiveBases (C function), 188
CeedOperatorGetActiveBasis (C function), 187
CeedOperatorGetActiveElemRestriction (C

function), 188
CeedOperatorGetActiveElemRestrictions

(C function), 188
CeedOperatorGetActiveVectorLengths (C

function), 133
CeedOperatorGetBasisPointer (C function),

190
CeedOperatorGetCeed (C function), 134
CeedOperatorGetContext (C function), 135
CeedOperatorGetContextDoubleRead (C func-

tion), 135
CeedOperatorGetContextFieldLabel (C func-

tion), 135
CeedOperatorGetContextInt32Read (C func-

tion), 136
CeedOperatorGetData (C function), 173
CeedOperatorGetFallback (C function), 179
CeedOperatorGetFallbackParent (C func-

tion), 180
CeedOperatorGetFallbackParentCeed (C

function), 180
CeedOperatorGetFieldByName (C function), 131
CeedOperatorGetFields (C function), 130
CeedOperatorGetFlopsEstimate (C function),

134
CeedOperatorGetNumArgs (C function), 173
CeedOperatorGetNumElements (C function), 134
CeedOperatorGetNumQuadraturePoints (C

function), 134
CeedOperatorGetOperatorAssemblyData (C

function), 177
CeedOperatorGetQFunction (C function), 173
CeedOperatorIsComposite (C function), 173
CeedOperatorIsSetupDone (C function), 173
CeedOperatorLinearAssemble (C function), 141
CeedOperatorLinearAssembleAddDiagonal

(C function), 139
CeedOperatorLinearAssembleAddPoint-

BlockDiagonal (C function), 140
CeedOperatorLinearAssembleDiagonal (C

function), 139
CeedOperatorLinearAssemblePointBlock-

Diagonal (C function), 140
CeedOperatorLinearAssemblePointBlock-

DiagonalSymbolic (C function), 140
CeedOperatorLinearAssembleQFunction (C

function), 138
CeedOperatorLinearAssembleQFunction-

BuildOrUpdate (C function), 138
CeedOperatorLinearAssembleSymbolic (C

function), 141
CeedOperatorMultigridLevelCreate (C func-

tion), 142
CeedOperatorMultigridLevelCreateH1 (C

function), 143
CeedOperatorMultigridLevelCreateTen-

sorH1 (C function), 142
CeedOperatorReference (C function), 174
CeedOperatorReferenceCopy (C function), 129
CeedOperatorRestoreContextDoubleRead (C

function), 136
CeedOperatorRestoreContextInt32Read (C

function), 137
CeedOperatorSetContextDouble (C function),

135
CeedOperatorSetContextInt32 (C function),

136
CeedOperatorSetData (C function), 174
CeedOperatorSetField (C function), 130
CeedOperatorSetName (C function), 133
CeedOperatorSetQFunctionAssembly-

DataUpdateNeeded (C function), 133
CeedOperatorSetQFunctionAssemblyReuse

(C function), 133
CeedOperatorSetSetupDone (C function), 174
CeedOperatorSingleView (C function), 187
CeedOperatorView (C function), 134
CeedPermutePadCurlOrients (C function), 181
CeedPermutePadOffsets (C function), 181
CeedPermutePadOrients (C function), 181
CeedPragmaSIMD (C macro), 87
CeedQFunction (C type), 118
CeedQFunctionAddInput (C function), 120
CeedQFunctionAddOutput (C function), 120
CeedQFunctionApply (C function), 123
CeedQFunctionAssemblyDataCreate (C func-

tion), 175
CeedQFunctionAssemblyDataDestroy (C func-

tion), 177
CeedQFunctionAssemblyDataGetObjects (C

function), 176
CeedQFunctionAssemblyDataIsSetup (C func-

tion), 176
CeedQFunctionAssemblyDataIsUpdate-

Needed (C function), 175
CeedQFunctionAssemblyDataReference (C

function), 175
CeedQFunctionAssemblyDataReferenceCopy

(C function), 176
CeedQFunctionAssemblyDataSetObjects (C

222

function), 176
CeedQFunctionAssemblyDataSetReuse (C

function), 175
CeedQFunctionAssemblyDataSetUpdate-

Needed (C function), 175
CeedQFunctionContext (C type), 118
CeedQFunctionContextCreate (C function), 123
CeedQFunctionContextDestroy (C function),

128
CeedQFunctionContextDestroyData (C func-

tion), 186
CeedQFunctionContextGetAllFieldLabels

(C function), 126
CeedQFunctionContextGetBackendData (C

function), 168
CeedQFunctionContextGetCeed (C function),

168
CeedQFunctionContextGetContextSize (C

function), 127
CeedQFunctionContextGetData (C function),

124
CeedQFunctionContextGetDataDestroy (C

function), 172
CeedQFunctionContextGetDataRead (C func-

tion), 125
CeedQFunctionContextGetDoubleRead (C

function), 170
CeedQFunctionContextGetFieldIndex (C

function), 185
CeedQFunctionContextGetFieldLabel (C

function), 169
CeedQFunctionContextGetGenericRead (C

function), 169
CeedQFunctionContextGetInt32Read (C func-

tion), 171
CeedQFunctionContextGetState (C function),

168
CeedQFunctionContextHasBorrowed-

DataOfType (C function), 168
CeedQFunctionContextHasValidData (C func-

tion), 168
CeedQFunctionContextReference (C func-

tion), 172
CeedQFunctionContextReferenceCopy (C

function), 123
CeedQFunctionContextRegisterDouble (C

function), 126
CeedQFunctionContextRegisterGeneric (C

function), 186
CeedQFunctionContextRegisterInt32 (C

function), 126
CeedQFunctionContextRestoreData (C func-

tion), 125
CeedQFunctionContextRestoreDataRead (C

function), 126
CeedQFunctionContextRestoreDoubleRead

(C function), 171
CeedQFunctionContextRestoreGenericRead

(C function), 170
CeedQFunctionContextRestoreInt32Read (C

function), 171
CeedQFunctionContextSetBackendData (C

function), 169
CeedQFunctionContextSetData (C function),

124
CeedQFunctionContextSetDataDestroy (C

function), 128
CeedQFunctionContextSetDouble (C func-

tion), 170
CeedQFunctionContextSetGeneric (C func-

tion), 169
CeedQFunctionContextSetInt32 (C function),

171
CeedQFunctionContextTakeData (C function),

124
CeedQFunctionContextView (C function), 127
CeedQFunctionCreateFallback (C function),

190
CeedQFunctionCreateIdentity (C function),

119
CeedQFunctionCreateInterior (C function),

118
CeedQFunctionCreateInteriorByName (C

function), 119
CeedQFunctionDestroy (C function), 123
CeedQFunctionField (C type), 164
CeedQFunctionFieldGetEvalMode (C func-

tion), 121
CeedQFunctionFieldGetName (C function), 121
CeedQFunctionFieldGetSize (C function), 121
CeedQFunctionFieldSet (C function), 185
CeedQFunctionFieldView (C function), 185
CeedQFunctionGetCeed (C function), 123
CeedQFunctionGetContext (C function), 165
CeedQFunctionGetContextData (C function),

165
CeedQFunctionGetData (C function), 167
CeedQFunctionGetFields (C function), 121
CeedQFunctionGetFlopsEstimate (C func-

tion), 167
CeedQFunctionGetInnerContext (C function),

166
CeedQFunctionGetInnerContextData (C func-

tion), 166
CeedQFunctionGetKernelName (C function), 164
CeedQFunctionGetNumArgs (C function), 164
CeedQFunctionGetSourcePath (C function), 164
CeedQFunctionGetUserFunction (C function),

223

165
CeedQFunctionGetVectorLength (C function),

164
CeedQFunctionIsContextWritable (C func-

tion), 167
CeedQFunctionIsIdentity (C function), 166
CeedQFunctionLoadSourceToBuffer (C func-

tion), 164
CeedQFunctionReference (C function), 167
CeedQFunctionReferenceCopy (C function), 120
CeedQFunctionRegister (C function), 184
CeedQFunctionRestoreContextData (C func-

tion), 165
CeedQFunctionRestoreInnerContextData (C

function), 166
CeedQFunctionSetContext (C function), 122
CeedQFunctionSetContextWritable (C func-

tion), 122
CeedQFunctionSetData (C function), 167
CeedQFunctionSetFortranStatus (C func-

tion), 185
CeedQFunctionSetUserFlopsEstimate (C

function), 122
CeedQFunctionView (C function), 122
CeedQRFactorization (C function), 159
CeedQuadMode (C enum), 117
CeedQuadMode.CEED_GAUSS (C enumerator), 117
CeedQuadMode.CEED_GAUSS_LOBATTO (C enu-

merator), 117
CeedReallocArray (C function), 145
CeedReference (C function), 150
CeedReferenceCopy (C function), 83
CeedRegister (C function), 146
CeedRegisterImpl (C function), 180
CeedRegistryGetList (C function), 82
CeedRequest (C type), 81
CeedRequestWait (C function), 82
CeedResetErrorMessage (C function), 86
CeedScalar (C type), 95
CeedScalarView (C function), 183
CeedSetBackendFunction (C function), 149
CeedSetData (C function), 150
CeedSetDelegate (C function), 147
CeedSetDeterministic (C function), 149
CeedSetErrorHandler (C function), 85
CeedSetObjectDelegate (C function), 148
CeedSetOperatorFallbackResource (C func-

tion), 149
CeedSetStream (C function), 83
CeedSimultaneousDiagonalization (C func-

tion), 160
CeedSingleOperatorAssemble (C function), 191
CeedSingleOperatorAssembleAddDiago-

nal_Core (C function), 190

CeedSingleOperatorAssembleSymbolic (C
function), 191

CeedSingleOperatorAssemblyCountEntries
(C function), 192

CeedSingleOperatorMultigridLevel (C func-
tion), 192

CeedStringAllocCopy (C function), 146
CeedSymmetricSchurDecomposition (C func-

tion), 160
CeedTensorContractApply (C function), 161
CeedTensorContractCreate (C function), 161
CeedTensorContractDestroy (C function), 163
CeedTensorContractGetCeed (C function), 162
CeedTensorContractGetData (C function), 162
CeedTensorContractReference (C function),

163
CeedTensorContractReferenceCopy (C func-

tion), 163
CeedTensorContractSetData (C function), 163
CeedTensorContractStridedApply (C func-

tion), 162
CeedTransposeMode (C enum), 116
CeedTransposeMode.CEED_NOTRANSPOSE (C

enumerator), 116
CeedTransposeMode.CEED_TRANSPOSE (C enu-

merator), 117
CeedVector (C type), 88
CeedVectorAXPBY (C function), 93
CeedVectorAXPY (C function), 92
CeedVectorCopy (C function), 89
CeedVectorCreate (C function), 88
CeedVectorDestroy (C function), 95
CeedVectorGetArray (C function), 90
CeedVectorGetArrayRead (C function), 91
CeedVectorGetArrayWrite (C function), 91
CeedVectorGetCeed (C function), 94
CeedVectorGetData (C function), 152
CeedVectorGetLength (C function), 94
CeedVectorGetState (C function), 152
CeedVectorHasBorrowedArrayOfType (C func-

tion), 151
CeedVectorHasValidArray (C function), 151
CeedVectorNorm (C function), 92
CeedVectorPointwiseMult (C function), 93
CeedVectorReciprocal (C function), 93
CeedVectorReference (C function), 152
CeedVectorReferenceCopy (C function), 89
CeedVectorRestoreArray (C function), 91
CeedVectorRestoreArrayRead (C function), 92
CeedVectorScale (C function), 92
CeedVectorSetArray (C function), 89
CeedVectorSetData (C function), 152
CeedVectorSetValue (C function), 90
CeedVectorSyncArray (C function), 90

224

CeedVectorTakeArray (C function), 90
CeedVectorView (C function), 94
CeedVectorViewRange (C function), 93
CeedView (C function), 84

225

	Introduction
	Getting Started
	Building
	WebAssembly

	Additional Language Interfaces
	Testing
	Backends
	Examples
	Benchmarks
	Install
	pkg-config

	Contact
	How to Cite
	Copyright

	Interface Concepts
	Theoretical Framework
	Finite Element Operator Decomposition
	Terminology and Notation
	Partial Assembly
	Parallel Decomposition

	API Description
	Gallery of QFunctions
	Interface Principles and Evolution

	Examples
	Common notation
	Standalone libCEED
	Ex1-Volume
	Ex2-Surface

	CEED Bakeoff Problems
	Mass Operator
	Laplace’s Operator

	PETSc demos and BPs
	Area
	Cube
	Sphere

	Bakeoff problems and generalizations
	Bakeoff problems on the cubed-sphere

	Multigrid

	Compressible Navier-Stokes mini-app
	Running the mini-app
	Boundary conditions
	Inflow
	Outflow
	Periodicity

	Advection
	2D advection
	3D advection

	Inviscid Ideal Gas
	Isentropic Euler vortex
	Sod shock tube

	Newtonian viscosity, Ideal Gas
	Gaussian Wave
	Vortex Shedding - Flow past Cylinder
	Density current
	Channel flow
	Blasius boundary layer
	STG Inflow for Flat Plate

	The Navier-Stokes equations
	Finite Element Formulation (Spatial Discretization)
	Time Discretization
	Explicit time-stepping method
	Implicit time-stepping method

	Stabilization
	Subgrid Stress Modeling
	Data-driven SGS Model

	Differential Filtering
	Filter width tensor, Δ
	Filter width scaling tensor, D
	Filter kernel scaling, β

	Advection
	Isentropic Vortex
	Shock Tube
	Gaussian Wave
	Vortex Shedding - Flow past Cylinder
	Density Current
	Channel
	Flat Plate Boundary Layer
	Laminar Boundary Layer - Blasius
	Turbulent Boundary Layer
	Synthetic Turbulence Generation (STG) Boundary Condition
	Equation Formulation
	Initialization Data Flow
	Internal Damping Layer (IDL)

	Meshing

	Taylor-Green Vortex

	Solid mechanics mini-app
	Running the mini-app
	On algebraic solvers
	Nondimensionalization
	Diagnostic Quantities

	Linear Elasticity
	Constitutive modeling

	Hyperelasticity at Small Strain
	Newton linearization

	Hyperelasticity at Finite Strain
	Constitutive modeling
	Weak form
	Newton linearization

	Hyperelasticity in current configuration
	Push forward, then linearize
	Linearize in current configuration

	Linearize, then push forward
	Jacobian representation

	Julia, Python, and Rust Interfaces
	API Documentation
	Public API
	Ceed
	Base library resources
	Macros
	Typedefs and Enumerations

	CeedVector
	Basic vector operations
	Typedefs and Enumerations

	CeedElemRestriction
	Expressing element decomposition and degrees of freedom over a mesh

	CeedBasis
	Discrete element bases and quadrature
	Typedefs and Enumerations

	CeedQFunction
	Resolution/space-independent weak forms and quadrature-based operations
	Macros

	CeedOperator
	Discrete operators on user vectors

	Backend API
	Ceed
	Macros
	Typedefs and Enumerations

	CeedVector
	CeedElemRestriction
	CeedBasis
	CeedQFunction
	Macros

	CeedOperator

	Internal Functions
	Ceed
	CeedVector
	CeedElemRestriction
	CeedBasis
	CeedQFunction
	CeedOperator

	Floating Point Precision
	Language-specific notes

	Developer Notes
	Style Guide
	Clang-tidy
	Include-What-You-Use
	Shape
	restrict Semantics
	CeedVector Array Access Semantics
	Internal Layouts
	Backend Inheritance

	How to Contribute
	Developer’s Certificate of Origin 1.1
	Authorship

	Code of Conduct
	Our Pledge
	Our Standards
	Enforcement Responsibilities
	Scope
	Enforcement
	Enforcement Guidelines
	1. Correction
	2. Warning
	3. Temporary Ban
	4. Permanent Ban

	Attribution

	Changes/Release Notes
	Current main branch
	Interface changes
	New features
	Examples

	v0.12 (Oct 31, 2023)
	Interface changes
	New features
	Examples
	Bakeoff problems and generalizations
	Compressible Navier-Stokes mini-app

	v0.11 (Dec 24, 2022)
	Interface changes
	New features
	Bugfix
	Examples
	Compressible Navier-Stokes mini-app
	Bakeoff problems and generalizations

	Maintainability

	v0.10.1 (Apr 11, 2022)
	Interface changes
	New features
	Bugfix

	v0.10 (Mar 21, 2022)
	Interface changes
	New features
	Maintainability

	v0.9 (Jul 6, 2021)
	Interface changes
	New features
	Performance improvements
	Examples
	Deprecated backends

	v0.8 (Mar 31, 2021)
	Interface changes
	New features
	Performance improvements
	Examples

	v0.7 (Sep 29, 2020)
	Interface changes
	New features
	Performance improvements
	Examples
	Deprecated backends

	v0.6 (Mar 29, 2020)
	New features
	Performance Improvements
	Interface changes
	Examples

	v0.5 (Sep 18, 2019)
	v0.4 (Apr 1, 2019)
	v0.3 (Sep 30, 2018)
	v0.21 (Sep 30, 2018)
	v0.2 (Mar 30, 2018)
	v0.1 (Jan 3, 2018)

	Indices and tables
	References
	Index

