Helios++
Helios software for LiDAR simulations
|
Implementation of a gaussian function. More...
#include <GaussianFunction.hpp>
Public Member Functions | |
GaussianFunction (T mu, T sigma, T sigmaSquare) | |
Build a gaussian function. | |
GaussianFunction (T mu, T sigma) | |
Build a gaussian function. | |
T | operator() (T const &x) override |
![]() | |
virtual T | operator() (T const &&x) |
RValue reference callable. More... | |
virtual vector< T > | operator() (vector< T > const &u) |
Base implementation for math function computation over a vector. It can be overridden for the sake of convenience by any subclass. More... | |
Public Attributes | |
T | mu |
\(\mu\) | |
T | sigma |
\(\sigma\) | |
T | sigmaSquare |
\(\sigma^{2}\) | |
T | twiceSigmaSquare |
\(2\sigma^{2}\) | |
T | sqrt2PiSigma |
\(\sqrt{2\pi} \sigma\) | |
Static Public Attributes | |
static T const | SQRT2PI = (T) 2.5066282746310002 |
Implementation of a gaussian function.
T | Input/Output type |
\[ f : \mathbb{R^{1}} \rightarrow \mathbb{R^{1}} \\ f(x) = \frac{e^{-\frac{x^2}{2\sigma^{2}}}}{\sqrt{2\pi}\sigma} \]
|
inlineoverridevirtual |
\[ f : \mathbb{R^{1}} \rightarrow \mathbb{R^{1}} \\ f(x) = \frac{e^{-\frac{x^2}{2\sigma^{2}}}}{\sqrt{2\pi}\sigma} \]
Reimplemented from SurfaceInspector::maths::functions::IMathFunction< T, T >.