Helios++
Helios software for LiDAR simulations
|
Implementation of univariate Newton-Raphson minimizer. More...
#include <UnivariateNewtonRaphsonMinimizer.h>
Public Member Functions | |
UnivariateNewtonRaphsonMinimizer (function< OT(IT)> f, vector< function< OT(IT)>> df) | |
Default constructor for univariate Newton-Raphson minimizer. More... | |
UnivariateNewtonRaphsonMinimizer (function< OT(IT)> f, function< OT(IT)> df, function< OT(IT)> d2f) | |
Alternative constructor for univariate Newton-Raphson minimizer. More... | |
IT | argmin (IT x) override |
Implementation of the univariate Newton-Raphson minimization. More... | |
IterativeMethodHandler< IT, OT > & | getIterativeMethodHandler () |
Obtain the iterative method handler. More... | |
void | setIterativeMethodHandler (IterativeMethodHandler< IT, OT > const &imh) |
Set the iterative method handler. More... | |
![]() | |
DiffMinimizer (function< OT(IT)> f, vector< function< OT(IT)>> df) | |
Differential minimizer default constructor. More... | |
virtual vector< function< OT(IT)> > | getDerivatives () const |
Obtain the derivatives of the function to be minimized. More... | |
virtual void | setDerivatives (vector< function< OT(IT)>> df) |
Set the derivatives of the function to be minimized. More... | |
virtual size_t | numDerivatives () const |
Obtain the number of available derivatives for the function to be minimized. More... | |
virtual function< OT(IT)> | getDerivative (size_t const i) |
Obtain the i-th derivative for the function being minimized. More... | |
virtual void | setDerivative (size_t const i, function< OT(IT)> df) |
Set the i-th derivative for the function being minimized. More... | |
virtual void | removeDerivative (size_t const i) |
Remove the i-th derivative for the function being minimized. More... | |
virtual void | addDerivative (function< OT(IT)> df) |
Append given derivative. More... | |
![]() | |
Minimizer (function< OT(IT)> f) | |
Minimizer default constructor. More... | |
virtual function< OT(IT)> | getF () const |
Obtain the function to be minimized. More... | |
virtual void | setF (function< OT(IT)> f) |
Set the function to be minimized. More... | |
Protected Attributes | |
IterativeMethodHandler< IT, OT > | imh |
Iterative method handler for the univariate Newton-Raphson minimization. More... | |
![]() | |
vector< function< OT(IT)> > | df |
The derivatives of the function to be minimized such that df[i] corresponds with \(\frac{d^if}{dx^i}\). | |
![]() | |
function< OT(IT)> | f |
The function to be minimized. | |
Private Member Functions | |
template<typename Archive > | |
void | serialize (Archive &ar, unsigned int const version) |
Serialize the univariate Newton-Raphson minimizer to a stream of bytes. More... | |
Friends | |
class | boost::serialization::access |
Implementation of univariate Newton-Raphson minimizer.
IT | Type of input for the function to be minimized and its first and second derivative |
OT | Type of output for the function to be minimized and its first and second derivative |
|
inline |
Default constructor for univariate Newton-Raphson minimizer.
f | Univariate function to be minimized |
df | First and second derivatives of the function to be minimized |
|
inline |
Alternative constructor for univariate Newton-Raphson minimizer.
f | Univariate function to be minimized |
df | First derivative of the function to be minimized |
d2f | Second derivative of the function to be minimized |
|
overridevirtual |
Implementation of the univariate Newton-Raphson minimization.
\[ x_{k+1} = x_k - \frac{f'(x_k)}{f''(x_k)} = x_k - \frac{df}{dx}(x_k) \left[ \frac{d^2f}{dx^2}(x_k) \right]^{-1} \]
Implements fluxionum::Minimizer< IT, OT >.
|
inline |
Obtain the iterative method handler.
|
inlineprivate |
Serialize the univariate Newton-Raphson minimizer to a stream of bytes.
Archive | Type of rendering |
ar | Specific rendering for the stream of bytes |
version | Version number for the univariate Newton-Raphson minimizer |
|
inline |
Set the iterative method handler.
imh | New iterative method handler |
|
protected |
Iterative method handler for the univariate Newton-Raphson minimization.