|
| FixedIterativeEulerMethod (Function< A, B > &dydt, A const &t0, B const &y0, arma::Col< A > const &ta, arma::Col< B > const &ya, size_t const i=0) |
| FixedIterativeEulerMethod default constructor. More...
|
|
B | eval (A const &h) override |
| Compute the iterative Euler method but considering given fixed frontiers. More...
|
|
void | restart () override |
|
arma::Col< A > const & | getTa () const |
|
arma::Col< B > const & | getYa () const |
|
size_t | getCurrentPieceIndex () const |
|
void | setCurrentPieceIndex (size_t const i) |
|
| IterativeEulerMethod (Function< A, B > &dydt, A const &t0, B const &y0) |
| IterativeEulerMethod default constructor. More...
|
|
B | eval (A const &h) override |
| Iteratively compute the next value using Euler method. More...
|
|
Function< A, B > const & | getDydt () const |
|
A | getT () const |
|
void | setT (A const t) |
|
A | getT0 () const |
|
B | getY () const |
|
void | setY (B const y) |
|
B | getY0 () const |
|
| Function ()=default |
|
B | operator() (A const &x) |
| Evaluate the function \(f(x)=y\). More...
|
|
|
arma::Col< A > const & | ta |
| The \(m\) frontiers such that \(\forall t,\, \exists i \ni t \in [a_i, a_{i+1})\). For the last frontier, the interval is \([a_{m}, \infty)\).
|
|
arma::Col< B > const & | ya |
| The value of \(y(t_i)\) at each of the \(m\) frontiers such that \(\forall i,\, y_i = y(t_i)\).
|
|
size_t | i |
| The index of the current piece. More...
|
|
Function< A, B > & | dydt |
| Reference to the derivative function. More...
|
|
A | t0 |
| The initial value of \(t\), \(t_0\). More...
|
|
A | t |
| The current value of \(t\). More...
|
|
B | y0 |
| The initial value of \(y\), \(y(t_0)\). More...
|
|
B | y |
| The current value of \(y(t)\). More...
|
|
template<typename A, typename B>
class fluxionum::FixedIterativeEulerMethod< A, B >
Fixed iterative Euler method.
- Author
- Alberto M. Esmoris Pena
- Version
- 1.0
It is like the IterativeEulerMethod, but the values at the frontiers are given and thus can be used to fix/correct the function value at those points. This helps preserving the stability of the approximation, specially for those cases which have a significant number of frontiers
- See also
- fluxionum::IterativeEulerMethod
-
fluxionum::FixedParametricIterativeEulerMethod
-
fluxionum::Function