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Abstract: 
High-performance computing (HPC) is crucial in executing resource-intensive scientific 
workflows such as genome sequencing, weather predictions, and deep neural network (DNN) 
training. However, achieving optimal resource utilization during job execution requires selecting 
the right execution endpoint based on specific resource requirements. Different clusters, such 
as those at OSC or TACC, have diverse architectures, allocation guidelines, and billing policies, 
making it challenging for users to fine-tune resource allocations for their applications. To 
address this issue, we introduce the HARP (HPC Application Resource [runtime] Predictor) 
solution as part of the ICICLE project (AI4CI). ICICLE aims to democratize AI by creating a 
national infrastructure that fosters interdisciplinary collaboration, advances foundational AI 
research, and promotes diversity and inclusion, ultimately enabling transparent and trustworthy 
AI solutions for addressing societal challenges and national priorities. The AI4CI thrust develops 
research-based solutions that build artificially intelligent models for smartly optimizing 
cyberinfrastructure.  
 
HARP enables application profiling and recommends optimal resource allocation configurations, 
reducing execution costs without compromising workflow execution times. In our previous 
papers [1-3], we demonstrated the architecture of HARP and its principal components. Now, we 
are exploring possible extensions for our preliminary framework in the following dimensions: 

1. Loss Function: Traditional regression models use error functions like mean square error 
(MSE) or mean absolute error (MAE) to fit a model against training data. However, for 
resource allocations, underestimations are more expensive than overestimations since 
they can lead to job termination. We propose a new loss function that biases models 
towards underprediction, aiming to overestimate resource requirements to avoid job 
failures. 

2. Metric System: Current evaluation metrics such as MSE, root mean square error 
(RMSE), or mean absolute percentage error (MAPE) treat under and overestimations 
equally, potentially ranking systems inaccurately. To address this, we propose a new 
metric that prioritizes systems reducing underpredictions while minimizing 
overestimations, offering a more balanced ranking of estimators. 

3. Cost Function: To penalize the regression model for underestimating resources, we 
propose a reward system based on job execution status and re-execution costs. We 
simulate a "black box re-allocation policy" by doubling the execution time every time a 
job fails to execute with the suggested allocations. This policy expands available and 
expandable resources like cores, memory, or walltime until the job successfully 
executes. 

4. Memory Modelling: Memory modeling is a crucial aspect when training deep neural 
network (DNN) models, as it relies on various factors such as model training parameters, 
optimizers, and training data. The ZeRO paper [4] introduces a straightforward formula 
for estimating model parameters and memory optimizations in distributed training. We 
aim to leverage this equation to estimate memory requirements and identify a suitable 
system configuration capable of accommodating and effectively training the model from 
the available options. 
 

To our understanding, we are the innovative developers of an initial framework that begins by 
simulating executions to build regression models. Diverging from numerous prior methods that 
relied on queue history and requested allocations to estimate walltime, our approach centers on 



capturing consumption and allocations based on precise criteria such as memory requirements. 
Importantly, our method, which records consumption post-emulation through the SLURM 
manager, introduces no extra overhead when profiling applications. The HARP code is available 
for download and installation on Linux-based systems. The newest release of HARP is designed 
to enable API-based central storage and integration with TAPIS.  
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