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• Introduction to Diffusion

• Simple analytical solutions

• Introduction to Finite Differences

• Geospeedometry and time transformation techniques

• Introduction to the Finite Element Method

• Programming specific examples using the Finite Element Method

• Multicomponent Diffusion (optional)

• Nonlinear, concentration-dependent diffusion (optional)
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Diffusion processes are everywhere.
From the diffusion of heat, diffusion of
matter and diffusion of fluid pressure,
diffusion is a fundamental process that
we have to understand in order to model
systems that evolve in time and in space.
In geosciences in particular, many
fundamental problems are related to
diffusion processes and can be solved
using techniques that were initially
developed for different fields.
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Richard P. Feynman
(Nobel Prize in Physics, 1965)
source: Wikipedia

“If, in some cataclysm, all of scientific knowledge were to be destroyed, and 
only one sentence passed on to the next generation of creatures, what 
statement would contain the most information in the fewest words? I believe it 
is the atomic hypothesis that all things are made of atoms — little particles that 
move around in perpetual motion, attracting each other when they are a little 
distance apart, but repelling upon being squeezed into one another. In that one 
sentence, you will see, there is an enormous amount of information about the 
world, if just a little imagination and thinking are applied.”

(from the Feynman lectures of Physics, vol.1 – online available at: 
https://www.feynmanlectures.caltech.edu/)

I have highlighted “perpetual motion” since it is the
main reason for diffusion. In other words, diffusion
would not have been possible without the random
motions of atoms.

https://www.feynmanlectures.caltech.edu/
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Within any given fluid, the random
movements of atoms, particles etc,
can result in situations were mixing is
enhanced.

The probability of the particles to
mix is much larger than the
probability where all the particles are
“ordered” in one side of the crystal.
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Molecular dynamics simulation 
for diffusion in a fluid.

In the animation to the right,
note that the actual atoms go
back and forth.

With time, there is a net
movement of the material.

At the continuum level (below)
we do not follow a specific
particle, but instead, we
describe how the concentration
of a region changes.
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Currently, we know the equations
that govern the movement of
atoms in the fluid (Newton’s
equations – classic MD). However,
given the large numbers of
particles involved, it is much easier
to describe the macroscopic
evolution of matter in a given
element. For this reason we will
use what we know from the
physics of continuous matter.
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In solids, diffusion is assisted through
vacancies and “similar” atoms can
substitute each other in the lattice.

Again, the mixing of atoms is the result of
random movements (or “jumps”) of the
atoms. These jumps become more
efficient at high temperatures.

The net result can also be described by a
macroscopic flux.



Conservation of mass states that mass cannot be created 
or destroyed. This is a more general statement than what 
is usually thought. In reality we can set up a problem 
based on mass balance without assuming that the mass 
of our system is constant. In other words, mass can travel 
around and does not have to remain constant at a given 
place.
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To arrive to a more useful statement of mass conservation we will first consider 
the flow of mass in a 1-d slice of a continuum (e.g. from point a to point b). 

Mass outflux
𝜌𝑣𝑥

Mass influx
𝜌𝑣𝑥 x

y

x=a x=b



The conservation of mass is summarized as follows:

-The rate of mass change in an representative elementary volume is equal to 
the imbalance of the fluxes. Mathematically this is written as:
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Mass outflux
𝜌𝑣𝑥

Mass influx
𝜌𝑣𝑥 x

y

x=a x=b

𝜕

𝜕𝑡
න
𝑎

𝑏

𝜌 𝑑𝑥 = 𝜌 𝑎, 𝑡 𝑣𝑥 𝑎, 𝑡 − 𝜌 𝑏, 𝑡 𝑣𝑥 𝑏, 𝑡 ↔ න
𝑎

𝑏 𝜕𝜌

𝜕𝑡
𝑑𝑥 + 𝜌𝑣𝑥 𝑎

𝑏 ↔

න
𝑎

𝑏 𝜕𝜌

𝜕𝑡
𝑑𝑥 + න

𝑎

𝑏 𝜕 𝜌𝑣𝑥
𝜕𝑥

𝑑𝑥 ↔
𝜕𝜌

𝜕𝑡
+
𝜕 𝜌𝑣𝑥
𝜕𝑥

= 0



The conservation of mass can be generalized for every species, that is:
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𝜕𝜌𝑤𝐴

𝜕𝑡
+
𝜕 𝜌𝑤𝐴𝑣𝑥

𝐴

𝜕𝑥
= 0

where 𝑤 is the weight fraction of species A. 
Note that the sum of weight fractions is 1, that is: 

෍

𝑖=1

𝑐
𝜕𝜌𝑤𝑖

𝜕𝑡
+෍

𝑖=1

𝑐
𝜕 𝜌𝑤𝑖𝑣𝑥

𝑖

𝜕𝑥
= 0

෍

𝑖=1

𝑐

𝑤𝑖 = 1

For multiple species, 
conservation of mass becomes: 



Note that upon summation
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෍

𝑖=1

𝑐

𝜌𝑤𝑖 = 𝜌

where 𝑣𝑥
𝐵𝐶 is the barycentric velocity. This is because for every point in space we 

can solve for velocity and observe that the result is a weighted average that uses 
weight fractions as weighting factors. That is (by definition):

thus ෍

𝑖=1

𝑐
𝜕𝜌𝑤𝑖

𝜕𝑡
=
𝜕𝜌

𝜕𝑡

Similarly, the sum of velocities is: ෍

𝑖=1

𝑐

𝜌𝑤𝑖𝑣𝑥
𝑖 = 𝜌𝑣𝑥

𝐵𝐶

𝑣𝑥
𝐵𝐶 =෍

𝑖=1

𝑐

𝑤𝑖𝑣𝑥
𝑖



Using the previous definitions, we can recover the total mass balance after 
summation of the conservation of the individual species. For a given species A, 
the conservation law becomes:
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𝜕𝜌𝑤𝐴

𝜕𝑡
+
𝜕 𝜌𝑤𝐴𝑣𝑥

𝐴

𝜕𝑥
= 0 ↔

𝜕𝜌𝑤𝐴

𝜕𝑡
+
𝜕 𝜌𝑤𝐴 𝑣𝑥

𝐴 + 𝑣𝑥
𝐵𝐶 − 𝑣𝑥

𝐵𝐶

𝜕𝑥
= 0

which can be written as:

𝜕𝜌𝑤𝐴

𝜕𝑡
+
𝜕 𝜌𝑤𝐴𝑣𝑥

𝐵𝐶

𝜕𝑥
+
𝜕 𝜌𝑤𝐴 𝑣𝑥

𝐴 − 𝑣𝑥
𝐵𝐶

𝜕𝑥
= 0



In the previous equation, the 2nd term represents the bulk velocity (advection) 
and the last term represents the flow with respect to the bulk velocity 
(diffusion). 
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At this point we should see that the diffusive flux is: 𝐽𝐴 = 𝜌𝑤𝐴 𝑣𝑥
𝐴 − 𝑣𝑥

𝐵𝐶

To a first approximation1 the diffusive flux is proportional to the concentration 
gradient:

𝜕𝜌𝑤𝐴

𝜕𝑡
+
𝜕 𝜌𝑤𝐴𝑣𝑥

𝐵𝐶

𝜕𝑥
advection

+
𝜕 𝜌𝑤𝐴 𝑣𝑥

𝐴 − 𝑣𝑥
𝐵𝐶

𝜕𝑥
diffusion

= 0

𝐽𝐴 = −𝜌𝐷
𝜕𝑤𝐴

𝜕𝑥

1 Strictly speaking it is proportional 

to chemical potential gradients, but 
we will not deal with that now
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We thus have: 𝜕𝜌𝑤𝐴

𝜕𝑡
= 𝐷

𝜕2𝜌𝑤𝐴

𝜕𝑥2
−
𝜕 𝜌𝑤𝐴𝑣𝑥

𝐵𝐶

𝜕𝑥
At the limit where the bulk velocity (advection) goes to zero and the density is 
constant, the previous can be written as: 𝜕𝑤𝐴

𝜕𝑡
= 𝐷

𝜕2𝑤𝐴

𝜕𝑥2

The previous (not the general case) is also valid when 𝑤𝐴 are molar fractions2. In 
this course, we will consider the general variable 𝐶 that indicates mass fractions, 
mol fractions, or concentrations.

2for details see Tajcmanova et al. (2021)

𝜕𝐶

𝜕𝑡
= 𝐷

𝜕2𝐶

𝜕𝑥2

This is the main 
equation we are going 
to solve in this course.



There are many analytical solutions for the diffusion equation. All these require 
knowledge for the initial and boundary conditions. The simplest case is the 
“error function” (half-space solution)
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𝐶(𝑥, 𝑡) − 𝐶𝑥=0
𝐶𝑖𝑛𝑓 − 𝐶𝑥=0

= erf(
𝑥

2 𝐷𝑡
)

erf 𝑥 =
1

𝜋
න
−𝑥

𝑥

𝑒−𝑥′
2
𝑑𝑥′

=
2

𝜋
න
0

𝑥

𝑒−𝑥′
2
𝑑𝑥′

where the value of “erf” is given as for any other function in MATLAB/OCTAVE etc. 
The derivation of the previous equation can be found in detail in Turcotte & 
Schubert (2014, p. 186-191) and in many other textbooks (Balluffi et al. 2005). We 
will just use it now.
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𝐶(𝑥, 𝑡) − 𝐶𝑥=0
𝐶𝑖𝑛𝑓 − 𝐶𝑥=0

= erf(
𝑥

2 𝐷𝑡
)

Exercise 1

Lets try to plot the solution!

Cygan & Lasaga (1985)

The red line indicates the initial 
condition (discontinuous at 𝑥 = 0)
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An important feature of this analytical solution is that we can combine several 
“half-space solutions” (Note: This is because D is constant and the problem is 
linear)

𝐶(𝑥, 𝑡) = 𝐶𝑥=0 + 𝐶𝑖𝑛𝑓 − 𝐶𝑥=0 erf(
𝑥

2 𝐷𝑡
)

𝐶(𝑥, 𝑡) = 𝐶𝑥=0 + 𝐶𝑖𝑛𝑓 − 𝐶𝑥=0 erf(
𝑥 − 𝐻

2 𝐷𝑡
)

classic

shifted by 𝐻 to the right
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Let’s consider now two specific solutions 𝐶1 and 𝐶2.

𝐶1 = 𝐶𝑥=0 + 𝐶𝑖𝑛𝑓 − 𝐶𝑥=0 erf(
𝑥 − 6𝐻

2 𝐷𝑡
)

𝐶2 = 0 + 𝐶𝑥=0 − 𝐶𝑖𝑛𝑓 erf(
𝑥 − 4𝐻

2 𝐷𝑡
)



23

Diffusion Fundamentals

Numerical Modeling of Chemical Diffusion in Petrology and 
Geochemistry - Mainz, 2023

We can now add the two specific solutions. The result is still a solution (it 
works when the diffusion coefficient is constant).

𝐶 = 𝐶1 + 𝐶2

Note that this method assumes that the 
boundaries are at infinity (+/-). For practical 
purposes, we will set the step in the center of 
the domain and we will not consider results 
where the concentration changes 
(appreciably) at the boundaries 
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Another important feature is that when 𝑡 approaches 0 the solution is not 
defined. You should then use a very small number to plot it (i.e. 𝑡~10−10)
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𝐶1 = 𝐶𝑥=0 + 𝐶𝑖𝑛𝑓 − 𝐶𝑥=0 erf(
𝑥 − 6𝐻

2 𝐷𝑡
)

𝐶2 = 0 + 𝐶𝑥=0 − 𝐶𝑖𝑛𝑓 erf(
𝑥 − 4𝐻

2 𝐷𝑡
)

Exercise 2

Plot the combined step as a function of time. 𝐶1 and 𝐶2are given below. You 
can chose arbitrary values for 𝑥, 𝐷, 𝑡, 𝐻, 𝐶𝑥=0, 𝐶𝑖𝑛𝑓.
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𝐶(𝑥, 𝑡) =
𝐶𝑟 + 𝐶𝑙

2
+
𝐶𝑟 − 𝐶𝑙

2
erf

𝑥 − 𝑥𝑠

2 𝐷𝑡

A more compact formula for a single step is:

where 𝐶𝑟 is the concentration value at the 
right side (2), 𝐶𝑙 is the concentration value 
at the left side (1) and 𝑥𝑠 is the location of 
the step (5). 



27

Diffusion Fundamentals

Numerical Modeling of Chemical Diffusion in Petrology and 
Geochemistry - Mainz, 2023

A more general form to describe a ‘square-wave’ (combination of 2 steps) is:

where 𝐶𝐵𝐺 is a background value (e.g. 1), 
Δ𝐶 is the difference from this background 
(e.g. 1), and 𝐻 is the thickness of the initial 
slab (e.g. 1).  Note that the step is centered 
at 𝑥 = 0.

𝐶(𝑥, 𝑡) = 𝐶𝐵𝐺 +
Δ𝐶

2
erf

𝑥 +
𝐻
2

2 𝐷𝑡
− erf

𝑥 −
𝐻
2

2 𝐷𝑡
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The advantage of the analytical solution is that it is very fast to calculate. If we 
want to plot the solution while it is being calculated we have to use a ‘for’ or a 
‘while’ loop.

We can start with a given timestep and update time as follows:

𝑡𝑘 = 𝑡𝑘−1 + ∆𝑡

Then, for every time the solution can be evaluated.

𝐶(𝑥, 𝑡) = 𝐶𝑥=0 + 𝐶𝑖𝑛𝑓 − 𝐶𝑥=0 erf(
𝑥

2 𝐷𝒕𝑘
)

Update 𝑡 in 
every iteration



…
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Example 1

Note that we do not 
need to plot during 
every step (we save 
some computation 
time)
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Example 2
…

In case of a fixed 𝑑𝑡, we 
need a correction in case 
the timestep overshoots
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Introduction to Numerical Modelling



In reality, we may need a solution for more general initial and boundary 
conditions. In those cases, we need to proceed with numerical techniques. The 
starting point is the Finite-Difference-Method (FDM) where the derivatives are 
approximated by finite differences. This is in fact the simplest method but it is 
very robust for simple diffusion problems.

As a starting point we will consider the following Ordinary Differential Equation 
(ODE):
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𝑑𝐶

𝑑𝑡
= −𝑘𝐶

where we have one variable that changes with time only. The previous can be 
discretized as: Δ𝐶

Δ𝑡
= −𝑘𝐶 ↔

𝐶𝑛𝑒𝑤 − 𝐶𝑜𝑙𝑑

Δ𝑡
= −𝑘𝐶𝑜𝑙𝑑



The previous can be solved for the “new” value of 𝐶 as follows (forward Euler 
Method):
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𝐶𝑛𝑒𝑤 = 𝐶𝑜𝑙𝑑 − Δ𝑡𝑘𝐶𝑜𝑙𝑑

Exercise 3

Lets try to calculate the solution for 
𝑘 = 1, Δ𝑡 = 0.1 and 𝐶 = 1 at 𝑡 = 0

Exercise 4

Try to change Δ𝑡 in the previous 
example, what do you observe?

In the forward Euler method, the 
unknown is solved by using the 
previous value and by adding a 
correction. This method is also 
called “explicit”
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We can start again with the original discretized equation. However, we will now 
assume that the value of the Right-Hand-Side (RHS) is the (yet unknown) “new” 
value (backward Euler Method): 
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𝐶𝑛𝑒𝑤−𝐶𝑜𝑙𝑑

Δ𝑡
= −𝑘𝐶𝑛𝑒𝑤 ↔ 𝐶𝑛𝑒𝑤 − 𝐶𝑜𝑙𝑑 = −𝑘Δ𝑡𝐶𝑛𝑒𝑤 ↔

𝐶𝑛𝑒𝑤 + 𝑘Δ𝑡𝐶𝑛𝑒𝑤 = 𝐶𝑜𝑙𝑑 ↔

1 + 𝑘Δ𝑡
A

𝐶𝑛𝑒𝑤

x

= ถ𝐶𝑜𝑙𝑑

b

↔ x = A−1b

we can solve for 𝐶𝑛𝑒𝑤 if we have as many independent equations as unknowns.
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Exercise 5

Program the backward Euler method (implicit method) and compare the result 
with the forward Euler method. The solution can be calculated by the following 
form:

𝐶𝑛𝑒𝑤

x

= 1 + 𝑘Δ𝑡 −1

𝐴−1

ถ𝐶𝑜𝑙𝑑

b
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𝑑𝑡 = 0.1 𝑑𝑡 = 0.01
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Most important rule in numerical modelling!

A numerical solution must converge when the numerical resolution is increasing 
(this indicates that our solution converges to the true solution, provided the 
solution exists)

To test for convergence, we can plot a given 
calculated value (e.g. value of 𝐶 after time 𝑡 = 2)
as a function of the numerical resolution. The 
figure on the right shows that the solution 
converges to a single value when 𝑑𝑡 becomes 
smaller (or 1/𝑑𝑡 becomes larger)
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In the previous examples there is a pattern with respect to time integration.

Explicit Method1 Implicit Method

xn = xo + dt ∙ R xn = A−1b

1The explicit formulation can also be 
rewritten in the form of xn = A−1b A = 1 + 𝑘∆𝑡

b = xo
where
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C[1] C[2] C[3] C[4] C[5] C[6] C[7] C[8]

Lets go back to our main problem, the diffusion equation:
𝜕𝐶

𝜕𝑡
= 𝐷

𝜕2𝐶

𝜕𝑥2

Apart from the time derivatives, that we saw earlier, we need to discretize also 
the spatial derivatives. However, the concentration (C), is not a continuous 
function and it is known only in a few discrete places (here 8; see figure below):

Thus, the problem we have to solve first is: 
How to calculate derivatives in space using the Finite-Difference Method?
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The derivatives in space are good approximations for the midpoint (red points) 
of the numerical grid.

𝜕𝐶

𝜕𝑥
≈
𝐶𝑖+1 − 𝐶𝑖

∆𝑥

C[1] C[2] C[3] C[4] C[5] C[6] C[7] C[8]

Having a way to deal with derivatives in space and in time allows us to combine 
the two and approximate a Partial Differential Equation (PDE).
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Therefore, for the case of diffusion equation we have:

𝜕𝐶

𝜕𝑡
= 𝐷

𝜕2𝐶

𝜕𝑥2

The previous can be discretized using the explicit method as:

𝐶𝑖
𝑛𝑒𝑤 − 𝐶𝑖

𝑜𝑙𝑑

Δ𝑡
= 𝐷

1

Δ𝑥

𝐶𝑖+1
𝑜𝑙𝑑 − 𝐶𝑖

𝑜𝑙𝑑

Δ𝑥
−

𝐶𝑖
𝑜𝑙𝑑 − 𝐶𝑖−1

𝑜𝑙𝑑

Δ𝑥

or if we assume uniform grid and solve for 𝐶𝑖
𝑛𝑒𝑤 :

𝐶𝑖
𝑛𝑒𝑤 = 𝐶𝑖

𝑜𝑙𝑑 +
Δ𝑡𝐷

Δ𝑥2
𝐶𝑖+1
𝑜𝑙𝑑 − 2𝐶𝑖

𝑜𝑙𝑑 + 𝐶𝑖−1
𝑜𝑙𝑑

C[i − 1] C[i] C[i + 1]
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We can sketch a grid that describes 
where our values are located in time 
and in space.

Note that for each value of 𝐶𝑘, we 
need three values of 𝐶𝑘−1 (from the 
previous step). Thus, we need two 
more equations to complete our 
system.

The extra equations come from the 
boundary conditions.
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For the 1st point (Dirichlet BC)

𝐶𝑖
𝑘 = 𝐶𝑖

𝑘−1 +
Δ𝑡𝐷

Δ𝑥2
𝐶𝑖+1
𝑘−1 − 2𝐶𝑖

𝑘−1 + 𝐶𝑖−1
𝑘−1

For the intermediate points

𝐶1
𝑘 = C1

For the last point (Dirichlet BC)

𝐶𝑛𝑥
𝑘 = C2

where 𝑛𝑥 is the total number of points.
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For the 1st point (Dirichlet BC)

𝐶𝑖
𝑘 = 𝐶𝑖

𝑘−1 +
Δ𝑡𝐷

Δ𝑥2
𝐶𝑖+1
𝑘−1 − 2𝐶𝑖

𝑘−1 + 𝐶𝑖−1
𝑘−1

For the intermediate points

𝐶1
𝑘 = C1

For the last point (Dirichlet BC)

𝐶𝑛𝑥
𝑘 = C2

where 𝑛𝑥 is the total number of points.

Exercise 6

Program the explicit diffusion method 
and try to reproduce the results from 
the half-space solution method 

(use 𝑑𝑡 =
𝑑𝑥2

𝐷
· 0.2)

(since the half-space solution assumes 
that the right boundary condition lies 
at infinity, we will move the boundary 
far away from the action area for now)
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The most crucial part of the previous 
code is shown below. Note that we first 
store the old value before we calculate 
the derivatives. This is done to avoid 
mixing ‘new’ and ‘old’ values.
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In the implicit method (allows larger timesteps), the PDE is discretized as follows

𝐶𝑖
𝑛𝑒𝑤 − 𝐶𝑖

𝑜𝑙𝑑

Δ𝑡
= 𝐷

1

Δ𝑥

𝐶𝑖+1
𝑛𝑒𝑤 − 𝐶𝑖

𝑛𝑒𝑤

Δ𝑥
−

𝐶𝑖
𝑛𝑒𝑤 − 𝐶𝑖−1

𝑛𝑒𝑤

Δ𝑥

The previous can be re-arranged as:

𝐶𝑖
𝑛𝑒𝑤 − 𝐷

Δ𝑡

Δ𝑥2
𝐶𝑖+1
𝑛𝑒𝑤 − 2𝐶𝑖

𝑛𝑒𝑤 + 𝐶𝑖−1
𝑛𝑒𝑤 = 𝐶𝑖

𝑜𝑙𝑑

with a bit of simplification

1 + 2𝑆 𝐶𝑖
𝑛𝑒𝑤 − 𝑆𝐶𝑖+1

𝑛𝑒𝑤 − 𝑆𝐶𝑖−1
𝑛𝑒𝑤 = 𝐶𝑖

𝑜𝑙𝑑 𝑆 = 𝐷Δ𝑡Δ𝑥−2
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The previous can be written in a (sparse) matrix form as follows:

1 + 2𝑆 𝐶𝑖
𝑛𝑒𝑤 − 𝑆𝐶𝑖+1

𝑛𝑒𝑤 − 𝑆𝐶𝑖−1
𝑛𝑒𝑤 = 𝐶𝑖

𝑜𝑙𝑑 𝑆 = 𝐷Δ𝑡Δ𝑥−2

…
−𝑆 1 + 2𝑆 −𝑆

−𝑆 1 + 2𝑆 −𝑆
−𝑆 1 + 2𝑆 −𝑆

−𝑆 1 + 2𝑆 −𝑆
…

𝐶1
𝑛𝑒𝑤

𝐶2
𝑛𝑒𝑤

𝐶3
𝑛𝑒𝑤

𝐶4
𝑛𝑒𝑤

𝐶5
𝑛𝑒𝑤

𝐶6
𝑛𝑒𝑤

=

𝐶1
𝑜𝑙𝑑

𝐶2
𝑜𝑙𝑑

𝐶3
𝑜𝑙𝑑

𝐶4
𝑜𝑙𝑑

𝐶5
𝑜𝑙𝑑

𝐶6
𝑜𝑙𝑑
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1 0
−𝑆 1 + 2𝑆 −𝑆

−𝑆 1 + 2𝑆 −𝑆
−𝑆 1 + 2𝑆 −𝑆

−𝑆 1 + 2𝑆 −𝑆
0 1

A

𝐶1
𝑛𝑒𝑤

𝐶2
𝑛𝑒𝑤

𝐶3
𝑛𝑒𝑤

𝐶4
𝑛𝑒𝑤

𝐶5
𝑛𝑒𝑤

𝐶6
𝑛𝑒𝑤

x

=

𝐶1
𝑜𝑙𝑑

𝐶2
𝑜𝑙𝑑

𝐶3
𝑜𝑙𝑑

𝐶4
𝑜𝑙𝑑

𝐶5
𝑜𝑙𝑑

𝐶6
𝑜𝑙𝑑

b

BC

BC

Do not forget that we need to fill the equations for the boundary conditions 
(BC) as well. For the case where the concentration does not change in time we 
need 1 in the diagonals and 0 everywhere else in the same line.
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There are many ways to solve a system like 𝐀𝐱 = 𝐛

1. x = A−1b or in MATLAB language x=inv(A)*b

2. Actually, there is no need to compute the inverse first, i.e. x=A\b

3. … other iterative methods

Exercise 7

Program the implicit diffusion method to solve the half-space problem. You do 
not need to change the whole code, just the part where the numerical solution 
is calculated.
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You just need to 
replace this part 
in the previous 
code
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𝐶(𝑥, 𝑡) = 𝐶𝑥=0 + 𝐶𝑖𝑛𝑓 − 𝐶𝑥=0 erf(
𝑥

2 𝐷𝑡
)

In the classic half-space solution we need to know the diffusivity of the material. 
If we do, we can solve the diffusion problem in order to estimate the diffusion 
timescale (also known as Diffusion Chronometry)

However, even in the simplest cases, 𝐷 is a strong function of temperature.

𝐷 = 𝐷0exp(−
𝐸

𝑅𝑇
)

where 𝐷0 is a pre-exponential factor, 𝐸 is the activation energy, 𝑅 is the 
universal gas constant and 𝑇 is the absolute temperature. 

Temperature dependence of 
diffusion
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Cygan & Lasaga (1985)

Note: ln x = 2.303 log x

𝐷 = 𝐷0exp(−
𝐸

𝑅𝑇
)

ln 𝐷 = ln 𝐷0 −
𝐸

𝑅𝑇

Arrhenius relationship

log 𝐷 = log 𝐷0 −
𝐸

2.303𝑅𝑇
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This strong temperature dependence 
can be seen for all minerals and 
elements (see also data compilation 
from Brady and Cherniak, 2010).

The figure on the right shows the 
temperature sensitivity of diffusion 
for major-elements in garnet (after 
Chakraborty and Ganguly, 1992).

The strong decrease of diffusivity at 
low temperatures is the reason why 
the profiles are preserved.
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So, how could we use the solutions that we learned?

Paths with constant cooling rate

The first step is to do it numerically. I.e. we can assume a general function for 
cooling.

𝑑𝑇

𝑑𝑡
= −𝑠

where 𝑠 is the cooling rate (in K or °C per sec). The previous can be solved 
explicitly as:

𝑇 = 𝑇0 − 𝑠𝑡
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Exercise 8

Program a numerical model that solves the half-space problem for the case of a 
cooling history. Use the implicit method (backward Euler) to update the 
temperature as a function of time.

𝑇 = 𝑇0 − 𝑠𝑡

𝑡 = 𝑡 + 𝑑𝑡

𝐷 = 𝐷0exp(−
𝐸

𝑅𝑇
)

𝑑𝑡 = 0.05Myr

At each step, time, temperature, diffusivity 
and timestep should be updated following 
the formulas given.

use 

𝐿 = 1mm, 𝐷0 = 9.8 ∙ 10−9m2/s

𝐸 = 239kJ/mol, 𝑠 = 100 °C/Myr

Paths with constant cooling rate



60

Paths with constant cooling rate
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What we actually did, is that we solved the diffusion problem in small steps of 
isothermal diffusion. This is actually an integration.

Assume that the 
Temperature drops at a 
constant rate. Then, 
diffusivity (෩𝐷) drops very 
fast. If we normalize the 
diffusion coefficient using 
the maximum diffusion 
coefficient (𝐷𝑀) we see 
the extent of diffusion as 
a function of 𝑡.

Paths with constant cooling rate

figure from Moulas et al. (in prep.)
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෩𝐷 𝑡 = 𝐷0 ∙ 𝑒𝑥𝑝 −
𝐸

𝑅𝑇 𝑡
= 𝐷MAX ∙ 𝑒𝑥𝑝 −

𝐸

𝑅

1

𝑇 𝑡
−

1

𝑇MAX

Lets assume a cooling history with 𝑇(𝑡). Then the diffusion coefficient can be 
rewritten as:

where 𝐷MAX is the maximum 
diffusion coefficient at the 
starting temperature 𝑇MAX

figure from Moulas et al. (in prep.)

Paths with constant cooling rate
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Time-transformation techniques

𝜏 𝑡 = න
0

𝑡 ෩𝐷 𝑡′

𝐷𝑀𝐴𝑋
𝑑𝑡′

෩𝐷 = ෩𝐷 𝑇 𝑡

ሚ𝐶 = ሚ𝐶 𝜏 𝑡 , 𝑥

𝜕 ሚ𝐶

𝜕𝑡
= ෩𝐷

𝜕2 ሚ𝐶

𝜕𝑥2
↔

𝜕 ሚ𝐶

𝜕𝜏

𝜕𝜏

𝜕𝑡
=
𝜕 ሚ𝐶

𝜕𝜏

෩𝐷

𝐷MAX
= ෩𝐷

𝜕2 ሚ𝐶

𝜕𝑥2
↔

𝜕 ሚ𝐶

𝜕𝜏
= 𝐷MAX

𝜕2 ሚ𝐶

𝜕𝑥2

In the case where diffusivity becomes a 
function of time, we can define the following 
‘time’ variable 𝜏 (after Lasaga, 1983)

This results to

This treatment converts 
the problem into an 
isothermal problem. 
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ζ 𝑡 = න
0

𝑡

෩𝐷 𝑡′ 𝑑𝑡′

෩𝐷 = ෩𝐷 𝑇 𝑡

ሚ𝐶 = ሚ𝐶 ζ 𝑡 , 𝑥

𝜕 ሚ𝐶

𝜕𝑡
= ෩𝐷

𝜕2 ሚ𝐶

𝜕𝑥2
↔

𝜕 ሚ𝐶

𝜕ζ

𝜕ζ

𝜕𝑡
=
𝜕 ሚ𝐶

𝜕ζ
෩𝐷 = ෩𝐷

𝜕2 ሚ𝐶

𝜕𝑥2
↔

𝜕 ሚ𝐶

𝜕ζ
=
𝜕2 ሚ𝐶

𝜕𝑥2

This approach can be further simplified according 
to Crank (1956) where

This treatment converts 
the problem into a 
diffusion problem with 
an effective 𝐷 = 1. 

Time-transformation techniques
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𝐶(𝑥, 𝜁) = 𝐶𝑥=0 + 𝐶𝑖𝑛𝑓 − 𝐶𝑥=0 erf(
𝑥

2 𝜁
)

Then, we could use the following analytical form directly.

ζ = න
0

𝑡𝑀𝐴𝑋

෩𝐷 𝑡 𝑑𝑡

The value of 𝑡𝑀𝐴𝑋 does not matter, provided that 𝑇(𝑡𝑀𝐴𝑋) is relatively low 
(and diffusion at 𝑇(𝑡𝑀𝐴𝑋) is negligible). This is a very reasonable assumption 
if one considers the metamorphic/magmatic rocks that are analyzed.

Time-transformation techniques
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The results show the 
equivalence of the 
methods.

In this case, the 
integration of ζ was 
performed numerically.

In MATLAB, that is:

zeta = trapz(t,D)

Time-transformation techniques
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Instead of doing the integration numerically, we can choose a temperature 
history in such a way that will help us with the calculations. 

𝑇 𝑡 =
𝑇MAX

1 +
𝑠𝑡

𝑇MAX

This path allows the analytical calculation of 𝜏 and 𝜁

𝜏 = න
0

𝑡M𝐴𝑋

𝑒𝑥𝑝 −𝛾𝑡 𝑑𝑡 =
1

𝛾
1 − 𝑒𝑥𝑝 −𝛾𝑡MAX

𝜁 = 𝐷𝑀𝐴𝑋𝜏

𝛾 =
𝑠𝐸

𝑅𝑇𝑀𝐴𝑋
2

This is actually a quasi-linear path 
with an initial cooling rate equal to 𝑠

Time-transformation techniques
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Geospeedometry

Using the previous cooling path, the formula for 𝜏 can get a finite value 
(compressed time; after Lasaga, 1983)

lim
𝑡M𝐴𝑋→∞

𝜏 =
1

𝛾
=
𝑅𝑇𝑀𝐴𝑋

2

𝑠𝐸

This means that Diffusion Geochronometry with 𝑡 = 𝜏, can be used to obtain 
cooling rates (𝑠) as in Geospeedometry2. THESE APPROACHES ARE EQUIVALENT. 

That is:

𝑠 =
𝑅𝑇𝑀𝐴𝑋

2

𝐸𝜏
=
𝑅𝑇𝑀𝐴𝑋

2 𝐷𝑀𝐴𝑋
𝐸𝜁 2 The term “ Geospeedometry ” 

refers to the estimation of the 
“speed of cooling”
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Geospeedometry

The equivalence of approaches shows that the dilemma of Diffusion 
Chronometry versus Geospeedometry is false. You can always have diffusion 
profiles that satisfy any random cooling path for a given value of 𝜁𝑀𝐴𝑋

The figure on the right 
shows temperature 
histories that would have 
identical diffusion 
solutions. Thus, the 
inversion to estimate time 
is non-unique.

Figure from Moulas et al. (in prep.)
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Geospeedometry

Note that even in simple cooling paths (e.g. with constant cooling rate) the 
results are non unique since the initial temperature may be different.

Cooling paths with 
different initial 
temperatures and 
cooling rates (left) result 
to the same diffusion 
profile (right).

figure after Burg & Moulas (2022)
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Geospeedometry (Xtra)

The concept of Geospeedometry is not limited to diffusion coefficients that are 
constant. In fact, we can consider a diffusion coefficient which is also a function 
of concentration. That is:

𝐷 = 𝐹 𝑇 𝐺(𝐶)

where 𝐹 𝑇 is a general function of 𝑇 (as the normal diffusion coefficient) and 
𝐺(𝐶) a function that depends on 𝐶. Then, the diffusion equation can be written 
as (assuming 𝑇 is constant in space):

𝜕𝐶

𝜕𝑡
=

𝜕

𝜕𝑥
𝐷
𝜕𝐶

𝜕𝑥
↔

𝜕𝐶

𝜕𝑡
= 𝐹 𝑇

𝜕

𝜕𝑥
𝐺(𝐶)

𝜕𝐶

𝜕𝑥
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Geospeedometry (Xtra)

ζ 𝑡 = න
0

𝑡

෨𝐹 𝑡′ 𝑑𝑡′

෨𝐹 = ෨𝐹 𝑇 𝑡

෨𝐺 = ෨𝐺 ሚ𝐶

ሚ𝐶 = ሚ𝐶 ζ 𝑡 , 𝑥

𝜕 ሚ𝐶

𝜕𝑡
= ෨𝐹

𝜕

𝜕𝑥
෨𝐺( ሚ𝐶)

𝜕 ሚ𝐶

𝜕𝑥
↔

𝜕 ሚ𝐶

𝜕ζ

𝜕ζ

𝜕𝑡
=
𝜕 ሚ𝐶

𝜕ζ
෨𝐹 = ෨𝐹

𝜕

𝜕𝑥
෨𝐺( ሚ𝐶)

𝜕 ሚ𝐶

𝜕𝑥
↔

𝜕 ሚ𝐶

𝜕ζ
=

𝜕

𝜕𝑥
෨𝐺( ሚ𝐶)

𝜕 ሚ𝐶

𝜕𝑥

We can follow the same steps as before and assume that temperature changes 
with time 𝑇 𝑡 . This leads to:  

where

see also Schwinger et al., (2016)
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Finite Element Method

The finite element method (FEM) is another 
numerical method that can be used to solve the 
diffusion problem. It initially appears more 
complex compared to finite difference, 
however, it can be extended in higher 
dimensions in a straightforward manner.

The finite element method relies on the fact 
that we can ‘break’ and approximate our 
solution by many, low-degree, polynomials. The 
solution is thus ‘broken’ in many little elements 
(i.e. lines/areas/volumes in space).

FE Model of a bridge 
(image courtesy of A. Stroh)
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With increasing number of 
elements, our numerical 
approximation becomes more 
and more accurate.

In the example shown on the 
right, we assume a linear 
approximation within each 
element. This means that each 
element will have two nodes 
(bold points). 

Element i Element i+1
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We will start with a problem where its solution does not change with time. 
That is, an equation of the following form: 

𝐷
𝑑2𝑢

𝑑𝑥2
+ 𝐹 = 0

We can now assume that the solution in each element is a polynomial of 
the following form:

𝑢 ≈ ത𝑢 =෍

𝑖=1

2

𝑁𝑖(𝑥)𝑐𝑖 = 𝑁1(𝑥)𝑐1 +𝑁2(𝑥)𝑐2

where 𝑁𝑖(𝑥) are polynomials of order 1 (also called shape functions) and 𝑐𝑖
are the respective coefficients.
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We will now consider the following polynomials

where 𝑥 is the spatial coordinate and 𝑥𝑖+1 − 𝑥𝑖 is 
the length of the particular element. It becomes 
clear that 𝑁1 becomes 1 and 𝑁2 becomes 0 when 
𝑥 = 𝑥𝑖. In contrast, 𝑁2 becomes 1 and 𝑁1
becomes 0 when 𝑥 = 𝑥𝑖+1. 𝑥𝑖 and 𝑥𝑖+1 are the 
edges of the element (also called nodes).

𝑁1 𝑥 = 1 −
𝑥 − 𝑥𝑖

𝑥𝑖+1 − 𝑥𝑖

𝑁2 𝑥 =
𝑥 − 𝑥𝑖

𝑥𝑖+1 − 𝑥𝑖

𝑥1 𝑥2

𝑁1 𝑁2
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𝑁1 𝑥 = 1 −
𝑥 − 𝑥𝑖

𝑥𝑖+1 − 𝑥𝑖

𝑁2 𝑥 =
𝑥 − 𝑥𝑖

𝑥𝑖+1 − 𝑥𝑖

𝑥1 𝑥2

𝑁1 𝑁2

Note that σ𝑖=1
2 𝑁𝑖 𝑥 = 1

Also, note that if we take the points 𝑥 = 𝑥1
and 𝑥 = 𝑥2, the fact that the respective 
polynomials are 1 and zero, makes 𝑐1 and 𝑐2
equal to the solution of our function at these 
points. Therefore, it is common to write the 
numerical approximation as:

𝑢 ≈ ത𝑢 =෍

𝑖=1

2

𝑁𝑖 𝑥 𝑢𝑖 = 𝑁1 𝑁2
𝑢1
𝑢2
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To finally solve our differential equation, we will first need to consider the 
problem in 1 element. Lets consider the problem at 𝑥 ∈ 𝑥1, 𝑥2 . The 
discretized equation has a residual R, that is given by:

The residual must be as close to zero as possible when solving (1). To do that, 
we will use the concept of Galerkin projection. In brief, Boris Galerkin showed 
that to minimize the residual 𝑅, (1) must be ‘orthogonal’ to any ‘test’ function 
that lies in the same space as ത𝑢. Note that ത𝑢 lies in the space defined by 𝑁1 and 
𝑁2 since ത𝑢 = σ𝑖=1

2 𝑁𝑖(𝑥)𝑐𝑖 . In the Galerkin formalism, the test functions are 
the same as the functions used to discretize the solution (shape functions).

𝑅 = 𝐷
𝑑2 ത𝑢

𝑑𝑥2
+ 𝐹 (1)
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The concepts of ‘orthogonality’ and ‘space’ mentioned earlier are a bit more 
abstract than the equivalent terms in Euclidean geometry. Without going into 
details, we can already highlight some analogies from linear algebra and 
functional analysis that can be used. First, we have to define what is ‘linear’. In 
the more general sense, a function or an operator 𝑓 is linear when the two 
following relations hold.

𝑓 𝑥1 + 𝑥2 = 𝑓 𝑥1 + 𝑓(𝑥2) 𝑓 𝑘𝑥1 = 𝑘𝑓 𝑥1 (𝑘: scalar)

This is not to be confused with polynomials of degree 1 or equations of a line. 
For example, by setting ത𝑢 = σ𝑖=1

𝑛 𝑁𝑖(𝑥)𝑐𝑖 allows the ‘decomposition’ of ത𝑢 by 
using simpler polynomials (not necessarily of order 1). This is the same 
principle as decomposing a vector into simpler basis vectors. Thus, by ‘space’ 
we refer to all the things that the combinations of polynomials can describe.

and
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In a similar manner, the concept of ‘orthogonality’ is just a generalization from 
Euclidian geometry. In linear algebra, two vectors (of 𝑛 dimensions) are 
‘orthogonal’ (inner product = zero) if:

𝒂, 𝒃 =෍

𝑖=1

𝑛

𝑎𝑖𝑏𝑖 = 0

Following the same logic, two functions 𝑎, 𝑏 are ‘orthogonal’ over a domain 𝑥 ∈
𝑥1, 𝑥2 if:

𝑎(𝑥), 𝑏(𝑥) = න

𝑥1

𝑥2

𝑎 𝑥 𝑏 𝑥 𝑑𝑥 = 0



82
Numerical Modeling of Chemical Diffusion in Petrology and 

Geochemistry - Mainz, 2023

Finite Element Method

Coming back to our original problem, we realize that multiplying our discretized 
residuals by a shape function and integrating over a finite domain is like taking 
the inner product of a basis vector with our numerical error. The result should 
be zero because our approximate solution should be as close to the actual 
solution.

An analogy with vectors would be that our actual 
solution (blue vector) would be different from 
our numerical approximation (black vector). Our 
approximation lies in the space defined by our 
basis vectors (plane). To minimize the error (red 
vector) we must find a numerical approximation 
that is orthogonal to the error.
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In practice, this means that if we multiply (1) by 𝑁1 or 𝑁2, and integrate the 
result, our residual should be zero. This is because our residual should be 
orthogonal to the space defined by 𝑁1 and 𝑁2. This means that: 

න
𝑥1

𝑥2

𝑁1 𝑥 𝐷
𝑑2 ത𝑢

𝑑𝑥2
𝑑𝑥 + න

𝑥1

𝑥2

𝑁1(𝑥)𝐹𝑑𝑥 = 0 (2)

𝑅 = 𝐷
𝑑2 ത𝑢

𝑑𝑥2
+ 𝐹 (1)

and thus
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We can now expand the spatial derivative in (2) as follows:

𝑑2 ത𝑢

𝑑𝑥2
=෍

𝑖=1

2
𝑑2𝑁𝑖 𝑥

𝑑𝑥2
𝑢𝑖 =

𝑑2𝑁1(𝑥)

𝑑𝑥2
𝑢1 +

𝑑2𝑁2(𝑥)

𝑑𝑥2
𝑢2

(3)

Thus, the first integral in (2), can be written as the sum of 2 integrals:

න
𝑥1

𝑥2

𝑁1 𝑥 𝐷
𝑑2𝑁1(𝑥)

𝑑𝑥2
𝑢1 +

𝑑2𝑁2(𝑥)

𝑑𝑥2
𝑢2 𝑑𝑥 =

න
𝑥1

𝑥2

𝑁1 𝑥 𝐷
𝑑2𝑁1 𝑥

𝑑𝑥2
𝑢1𝑑𝑥 +න

𝑥1

𝑥2

𝑁1 𝑥 𝐷
𝑑2𝑁2 𝑥

𝑑𝑥2
𝑢2𝑑𝑥
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We can now use integration by parts in each term to obtain:

න
𝑥1

𝑥2

𝑁1 𝑥 𝐷
𝑑2𝑁1 𝑥

𝑑𝑥2
𝑢1𝑑𝑥 + න

𝑥1

𝑥2

𝑁1 𝑥 𝐷
𝑑2𝑁2(𝑥)

𝑑𝑥2
𝑢2𝑑𝑥 =

−න
𝑥1

𝑥2 𝑑𝑁1 𝑥

𝑑𝑥
𝐷
𝑑𝑁1 𝑥

𝑑𝑥
𝑢1𝑑𝑥 − න

𝑥1

𝑥2 𝑑𝑁1 𝑥

𝑑𝑥
𝐷
𝑑𝑁2 𝑥

𝑑𝑥
𝑢2𝑑𝑥 + 𝑁1 𝑥 D

𝑑𝑁1 𝑥

𝑑𝑥
𝑢1

𝑥1

𝑥2

+ 𝑁1 𝑥 D
𝑑𝑁2 𝑥

𝑑𝑥
𝑢2

𝑥1

𝑥2

=

−𝐷න
𝑥1

𝑥2 𝑑𝑁1 𝑥

𝑑𝑥

𝑑𝑁1 𝑥

𝑑𝑥
𝑢1𝑑𝑥 − 𝐷න

𝑥1

𝑥2 𝑑𝑁1 𝑥

𝑑𝑥

𝑑𝑁2 𝑥

𝑑𝑥
𝑢2𝑑𝑥 + 𝐷 𝑁1 𝑥

𝑑𝑁1 𝑥

𝑑𝑥
𝑢1 +

𝑑𝑁2 𝑥

𝑑𝑥
𝑢2

𝑥1

𝑥2

=

−𝐷න
𝑥1

𝑥2 𝑑𝑁1 𝑥

𝑑𝑥

𝑑𝑁1 𝑥

𝑑𝑥
𝑢1𝑑𝑥 − 𝐷න

𝑥1

𝑥2 𝑑𝑁1 𝑥

𝑑𝑥

𝑑𝑁2 𝑥

𝑑𝑥
𝑢2𝑑𝑥 + 𝐷 𝑁1 𝑥

𝑑ത𝑢

𝑑𝑥
𝑥1

𝑥2

Note that we have assumed that 𝐷 is constant within the element. We repeat 
the same procedure for 𝑁2 𝑥 . I.e. multiply our residual equation by 𝑁2 𝑥 and 
integrate…
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By collecting both equations (the one that was multiplied by 𝑁1 and the one 
that was multiplied by 𝑁2) we obtain:

−𝐷න
𝑥1

𝑥2
𝑑𝑁1 𝑥

𝑑𝑥

𝑑𝑁1 𝑥

𝑑𝑥

𝑑𝑁1 𝑥

𝑑𝑥

𝑑𝑁2 𝑥

𝑑𝑥
𝑑𝑁2 𝑥

𝑑𝑥

𝑑𝑁1 𝑥

𝑑𝑥

𝑑𝑁2 𝑥

𝑑𝑥

𝑑𝑁2 𝑥

𝑑𝑥

𝑑𝑥
𝑢1
𝑢2

+න
𝑥1

𝑥2 𝑁1 𝑥

𝑁2 𝑥
𝐹 𝑑𝑥 + 𝐷

𝑁1 𝑥

𝑁2 𝑥

𝑑ത𝑢

𝑑𝑥
𝑥1

𝑥2

=
0
0

These are two equations for 2 unknowns.
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We can now repeat the same procedure for the second element. We then get 

−𝐷 න
𝑥2

𝑥3
𝑑𝑁1 𝑥

𝑑𝑥

𝑑𝑁1 𝑥

𝑑𝑥

𝑑𝑁1 𝑥

𝑑𝑥

𝑑𝑁2 𝑥

𝑑𝑥
𝑑𝑁2 𝑥

𝑑𝑥

𝑑𝑁1 𝑥

𝑑𝑥

𝑑𝑁2 𝑥

𝑑𝑥

𝑑𝑁2 𝑥

𝑑𝑥

𝑑𝑥
𝑢2
𝑢3

+න
𝑥2

𝑥3 𝑁1 𝑥

𝑁2 𝑥
𝐹 𝑑𝑥 + 𝐷

𝑁1 𝑥

𝑁2 𝑥

𝑑ത𝑢

𝑑𝑥 𝑥2

𝑥3

=
0
0

These are also two equations for 2 unknowns. The same procedure is repeated 
for all the elements.
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If we ignore the boundary terms (last term in previous equation), we can see 
that for every element we have a (local) system of equations of the form:  

𝐊 𝑢𝑖 = 𝐅
where 𝐊 and 𝐅 are given by:

𝐊 = −Dන
𝑥𝑖

𝑥𝑖+1
𝑑𝑁1 𝑥

𝑑𝑥

𝑑𝑁1 𝑥

𝑑𝑥

𝑑𝑁1 𝑥

𝑑𝑥

𝑑𝑁2 𝑥

𝑑𝑥
𝑑𝑁2 𝑥

𝑑𝑥

𝑑𝑁1 𝑥

𝑑𝑥

𝑑𝑁2 𝑥

𝑑𝑥

𝑑𝑁2 𝑥

𝑑𝑥

𝑑𝑥

𝐅 = −න
𝑥𝑖

𝑥𝑖+1 𝑁1 𝑥

𝑁2 𝑥
𝐹 𝑑𝑥
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To calculate the previous matrices, we need to calculate the derivatives and the 
integrals of the shape functions first. These are:

𝑑𝑁1 𝑥

𝑑𝑥
= −

1

Δ𝑥

𝑑𝑁2 𝑥

𝑑𝑥
=

1

Δ𝑥

න
𝑥1

𝑥2

𝑁1(𝑥) 𝑑𝑥 =
Δ𝑥

2

න
𝑥1

𝑥2

𝑁2(𝑥) 𝑑𝑥 =
Δ𝑥

2
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Using the previous solutions (assuming constant 𝐷 and 𝐹 within each element), 
the local element matrices become

𝐊 = −𝐷

1

∆𝑥
−

1

∆𝑥

−
1

∆𝑥

1

∆𝑥

𝐅 = −𝐹

∆𝑥

2
∆𝑥

2
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The principle in FEM is to combine all 
elements by putting all the local systems 
(L1, L2, etc) together. Thus, the local 
systems of equations can be added 
together to form a global system of 
equations. Due to the summation, the 
boundary terms vanish everywhere apart 
from the first and the last element. 
However, for cases with Dirichlet boundary 
conditions, the boundary terms can be 
neglected.
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The combination of the local systems can be done by a simple summation of 
the terms in the global matrix. To see how this is done, we will consider two 
simple (2x2) systems that represent the local system of equations in two 
consecutive elements.

𝛼11 𝛼12
𝛼21 𝛼22

𝐶1
𝐶2

=
𝑔1
𝑔2

In this case, our unknowns are 

𝐶1 and 𝐶2 (Equations 1, 2)

𝑏11 𝑏12
𝑏21 𝑏22

𝐶2
𝐶3

=
ℎ1
ℎ2

In this case, our unknowns are 

𝐶2 and 𝐶3 (Equations 3, 4)

Note that 𝐶 is continuous, i.e. it should have a single value (𝐶2) in both 
systems. 



93

Finite Element Method

We can now add the second equation of the first system to the first equation 
of the second system, and obtain (after expansion):

𝛼21 𝐶1 + 𝛼22𝐶2 + 𝑏11𝐶2 + 𝑏12𝐶3 = 𝑔2 + ℎ1

Thus, equations (1), (2+3) and (4) of the two previous systems can be written as:

Grouping terms leads to:

𝛼21𝐶1 + 𝛼22 + 𝑏11 𝐶2 + 𝑏12𝐶3 = 𝑔2 + ℎ1

𝛼11 𝛼12 0
𝛼21 𝛼22 + 𝑏11 𝑏12
0 𝑏21 𝑏22

𝐶1
𝐶2
𝐶3

=

𝑔1
𝑔2 + ℎ1
ℎ2
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Following the previous 
approach, we can construct a 
global linear system of 
equations.

𝐊𝐆 𝑢𝑖 = 𝐅𝐆

This system can be solved as 
shown previously for the FDM 
case (i.e. using backslash).
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To proceed with the FEM code we need 
to create a relation (mapping) between 
the number of an element and its nodes. 
To do so, we will make a table El2N 
(Element to Node), where the columns 
represent the number of the elements 
and the lines contain the number of 
nodes. That is:

Element 1 Element 2 Element 3 …N

1 2 3 N

2 3 4 N+1
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Element 1 Element 2 Element 3 …N

1 2 3 N

2 3 4 N+1

In table form:

In MATLAB:

The matrix El2N contains the mapping 
between Elements and Nodes.

𝒏𝒆𝒍 = 𝒏𝒙 − 𝟏
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Solving the steady-state problem

𝐷
𝑑2𝑢

𝑑𝑥
+ 𝐹 = 0 with BC ቊ

𝑢 0 = 1
𝑢 𝐿 = 2
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Solving the steady-state problem

we can also test with the 
analytical solution. The analytical 
solution is given by:

𝑢 𝑥 = −
𝐹

2𝐷
𝑥2 + 𝑐1𝑥 + 𝑐2

with

𝑐1 =
𝑢 𝐿 − 𝑢 0

𝐿
+
𝐹𝐿

2𝐷

𝑐2 = 𝑢(0)

𝐷
𝑑2𝑢

𝑑𝑥
+ 𝐹 = 0 with BC ቊ

𝑢 0 = 1
𝑢 𝐿 = 2



99
Numerical Modeling of Chemical Diffusion in Petrology and 

Geochemistry - Mainz, 2023

Finite Element Method

Now we will consider a time-dependent problem like diffusion. We will start 
from the following form:

𝜕𝐶

𝜕𝑡
= 𝐷

𝜕2𝐶

𝜕𝑥2

In a discretized form, this can be written as (implicit form):

ҧ𝐶𝑛𝑒𝑤 − ҧ𝐶𝑜

∆𝑡
= 𝐷

𝜕2 ҧ𝐶𝑛𝑒𝑤

𝜕𝑥2
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Lets consider a single element, bringing everything in the left side and 
multiplying with 𝑁1: 𝑥 → 𝑁1(𝑥)

We can now split the first term and rearrange to get:

න
𝑥1

𝑥2

𝑁1
ҧ𝐶𝑛𝑒𝑤

∆𝑡
𝑑𝑥

new term

−න
𝑥1

𝑥2

𝑁1𝐷
𝜕2 ҧ𝐶𝑛𝑒𝑤

𝜕𝑥2
𝑑𝑥

same as before

= න
𝑥1

𝑥2

𝑁1
ҧ𝐶𝑜

∆𝑡
𝑑𝑥

RHS based on ഥCo

(4)

න
𝑥1

𝑥2

𝑁1
ҧ𝐶𝑛𝑒𝑤 − ҧ𝐶𝑜

∆𝑡
𝑑𝑥 − න

𝑥1

𝑥2

𝑁1𝐷
𝜕2 ҧ𝐶𝑛𝑒𝑤

𝜕𝑥2
𝑑𝑥 = 0
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By focusing on the diffusion (middle) term of Eq. (4), performing integration 
by parts and ignoring the boundary terms leads to:

Thus, Eq. (4) becomes 

න
𝑥1

𝑥2

𝑁1
ҧ𝐶𝑛𝑒𝑤

∆𝑡
𝑑𝑥

new term

+න
𝑥1

𝑥2 𝜕𝑁1
𝜕𝑥

𝐷
𝜕 ҧ𝐶𝑛𝑒𝑤

𝜕𝑥
𝑑𝑥

same as before

= න
𝑥1

𝑥2

𝑁1
ҧ𝐶𝑜

∆𝑡
𝑑𝑥

RHS based on ഥCo

−න
𝑥1

𝑥2

𝑁1𝐷
𝜕2 ҧ𝐶𝑛𝑒𝑤

𝜕𝑥2
𝑑𝑥 = න

𝑥1

𝑥2 𝜕𝑁1
𝜕𝑥

𝐷
𝜕 ҧ𝐶𝑛𝑒𝑤

𝜕𝑥
𝑑𝑥 note the sign 

change!
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Similarly we can expand ҧ𝐶 = σ𝑖=1
2 𝑁𝑖 ҧ𝐶𝑖 then we have: ҧ𝐶 = 𝑁1 𝑁2

ҧ𝐶1
ҧ𝐶2

𝜕 ҧ𝐶

𝜕𝑡
≈

1

Δ𝑡
𝑁1 𝑁2

ҧ𝐶1
𝑛𝑒𝑤

ҧ𝐶2
𝑛𝑒𝑤 − 𝑁1 𝑁2

ҧ𝐶1
𝑜𝑙𝑑

ҧ𝐶2
𝑜𝑙𝑑

Therefore, the time derivative can be approximated as:

which, after multiplying with the column of the shape functions we have: 

𝑁1
𝑁2

𝜕 ҧ𝐶

𝜕𝑡
≈

1

Δ𝑡

𝑁1
𝑁2

𝑁1 𝑁2
ҧ𝐶1
𝑛𝑒𝑤

ҧ𝐶2
𝑛𝑒𝑤 − 𝑁1 𝑁2

ҧ𝐶1
𝑜𝑙𝑑

ҧ𝐶2
𝑜𝑙𝑑
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Finally, by grouping all the terms, we obtain the following form: 

𝐌+𝐊
𝐶1

𝑛𝑒𝑤

𝐶2
𝑛𝑒𝑤 = 𝐌

𝐶1
𝑜𝑙𝑑

𝐶2
𝑜𝑙𝑑

𝐊 = Dන
𝑥1

𝑥2
𝑑𝑁1 𝑥

𝑑𝑥

𝑑𝑁1 𝑥

𝑑𝑥

𝑑𝑁1 𝑥

𝑑𝑥

𝑑𝑁2 𝑥

𝑑𝑥
𝑑𝑁2 𝑥

𝑑𝑥

𝑑𝑁1 𝑥

𝑑𝑥

𝑑𝑁2 𝑥

𝑑𝑥

𝑑𝑁2 𝑥

𝑑𝑥

𝑑𝑥

𝐌 =
1

∆𝑡
න
𝑥1

𝑥2 𝑁1𝑁1 𝑁1𝑁2
𝑁2𝑁1 𝑁2𝑁2

𝑑𝑥
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Note that the matrix 𝐊 is similar (only different sign) to what it was before 
(slide 90):

𝐌+𝐊
𝐶1

𝑛𝑒𝑤

𝐶2
𝑛𝑒𝑤 = 𝐌

𝐶1
𝑜𝑙𝑑

𝐶2
𝑜𝑙𝑑

𝐊 = 𝐷

1

∆𝑥
−

1

∆𝑥

−
1

∆𝑥

1

∆𝑥

𝐌 =

∆𝑥

3∆𝑡

∆𝑥

6∆𝑡
∆𝑥

6∆𝑡

∆𝑥

3∆𝑡
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Alternatively, we can combine 
the matrices as: 𝐋

𝐶1
𝑛𝑒𝑤

𝐶2
𝑛𝑒𝑤 = 𝐑

𝐶1
𝑜𝑙𝑑

𝐶2
𝑜𝑙𝑑

𝐋 =

∆𝑥

3∆𝑡
+
𝐷

∆𝑥

∆𝑥

6∆𝑡
−
𝐷

∆𝑥
∆𝑥

6∆𝑡
−
𝐷

∆𝑥

∆𝑥

3∆𝑡
+
𝐷

∆𝑥

𝐑 =

∆𝑥

3∆𝑡

∆𝑥

6∆𝑡
∆𝑥

6∆𝑡

∆𝑥

3∆𝑡

We can thus assemble the global matrix as before and solve for the 
concentration using 𝑪 = 𝑳𝑮\ 𝐑𝐆 𝑪𝒐𝒍𝒅
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In other words, in the previous problem (without time derivatives) we had

𝐋𝐆 ഥ𝐶𝑖
𝑛𝑒𝑤

= 𝐑𝐆
ഥ𝐶𝑖
𝑜𝑙𝑑

𝐊𝐆 𝑢𝑖 = 𝐅𝐆

Compared to the previous problem, there are two main differences:
1) The local 𝐿 matrix is the sum of 𝐾 and 𝑀 matrices
2) The local 𝑅 matrix needs to be updated in time using the old values of 𝐶.

and now (with time derivatives) we have:
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Exercise 9

Make a finite element code to model chemical diffusion for a given time 𝑡. Use 
the parameters given below and compare the result with the analytical solution 
𝐶𝑎𝑛. Note that 𝑥 ∈ 0, 𝐿

𝛥𝑡 = 10−2

𝐷 = 1
𝐿 = 10

𝐶 0, 𝑡 = ቊ
𝐶𝑖𝑛𝑓 = 1 , 𝑥 > 0

𝐶0 = 2, 𝑥 = 0

𝐶𝑎𝑛 = 𝐶0 + 𝐶𝑖𝑛𝑓 − 𝐶0 erf
𝑥

2 𝐷𝑡
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Finite Element Method
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Note that the analytical solution 
assumes far-field boundary conditions 
(at infinity). 

This means that our numerical 
boundary conditions will not be a good 
approximation at large timescales 
(when diffusion affects the boundary)
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Exercise 10

Make a finite element code for diffusion in minerals. You can assume an initial 
concentration profile with a ‘step’ (chose any value) and a grain of 1mm in 
length. If the boundaries are far away from the step we can ignore the boundary 
conditions. Use the parameters for Sr in apatite 𝐸 = 65,000 cal/mol and 𝐷0 =
2.7 ∙ 10−3 cm2/s (Cherniak & Ryerson, 1993). Use 𝑅 = 1.987 cal/mol/K. You can 
use different temperatures and check the difference in the results.
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Exercise 11

Extend the previous code to solve the diffusion problem assuming an 
asymptotic cooling history of the form

𝑇 𝑡 =
𝑇MAX

1 +
𝑠𝑡

𝑇MAX

where 𝑇MAX is 1000K and 𝑠 is 50K/Myr.

Exercise 12

Use the time-transformation technique to verify your results.
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Multicomponent Diffusion

So far we have considered diffusion problems where for each point in space we 
had one concentration value. That is: 

𝜕𝐶

𝜕𝑡
= 𝐷

𝜕2𝐶

𝜕𝑥2

In the case of multicomponent diffusion, we can have many compositional 
variables in space (not all independent). For example, if we use 4 oxides to 
describe our composition, we would need 3 independent variables. That is 
because:

෍
𝑖=1

𝜅

𝐶𝑖 = 1
which means that only 𝜅 − 1 components are independent. 
To obtain the concentrations one needs to multiply by 
density. 
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This allows us to write the multicomponent diffusion equation as: 

𝜕

𝜕𝑡
𝑪 =

𝜕

𝜕𝑥
𝑫
𝜕

𝜕𝑥
𝑪 (5)

where now 𝑪 represents a ‘vector’ of 𝜅 − 1 compositions for each point in 
space. In this case, D is an 𝜅 − 1 ∗ 𝜅 − 1 matrix. By assuming that 𝑫 is 
independent of composition, Eq. (5) can be written as:

𝜕

𝜕𝑡
𝑪 = 𝑫

𝜕2

𝜕𝑥2
𝑪 (6)
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For 𝜅 = 4 (3 independent), Eq. (6) can be written as:

which can be expanded as:
𝜕𝐶1
𝜕𝑡
𝜕𝐶2
𝜕𝑡
𝜕𝐶3
𝜕𝑡

=

𝐷11
𝜕2𝐶1
𝜕𝑥2

+ 𝐷12
𝜕2𝐶2
𝜕𝑥2

+ 𝐷13
𝜕2𝐶3
𝜕𝑥2

𝐷21
𝜕2𝐶1
𝜕𝑥2

+ 𝐷22
𝜕2𝐶2
𝜕𝑥2

+ 𝐷23
𝜕2𝐶3
𝜕𝑥2

𝐷31
𝜕2𝐶1
𝜕𝑥2

+ 𝐷32
𝜕2𝐶2
𝜕𝑥2

+ 𝐷33
𝜕2𝐶3
𝜕𝑥2

𝜕

𝜕𝑡

𝐶1
𝐶2
𝐶3

=

𝐷11 𝐷12 𝐷13
𝐷21 𝐷22 𝐷23
𝐷31 𝐷32 𝐷33

𝜕2

𝜕𝑥2

𝐶1
𝐶2
𝐶3
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The previous form shows that each component may change as a function of the 
concentration gradients of the other components. This behavior is a 
consequence of the fact that diffusion fluxes are proportional to chemical 
potential gradients (see Balluffi et al., 2005, for theory, and, Chakraborty, 1994, 
for applications relevant to geosciences). 

In this example we will focus on the case where the diffusion matrix is constant. 
The solution procedure closely follows the method of Toor (1964). Starting by 
Eq. (6) we can recognize that the derivative operators are ‘linear’ operators. 
Thus, Eq. (6) can be viewed as an equation of matrix-vector products. 

𝐿𝑡 𝑪 = 𝑫𝐿𝑥2 𝑪

where 𝐿𝑡 and 𝐿𝑥2 are the linear operators that represent the differentials.  
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The advantage of the previous form is not yet obvious. However, we should 
mention that the linearity of the previous operators allows a great simplification 
in our problem. This is because the matrix 𝑫 can be diagonalized. More 
specifically, if an 𝒎 by 𝒎 (square) matrix 𝑫 has 𝒎 independent eigenvectors, 
then this matrix is diagonalizable. That is:

where 𝑽 is the matrix that contains the eigenvectors of 𝑫, 𝜦 is a diagonal matrix 
that contains the eigenvalues of 𝑫, and 𝑽−𝟏 is the inverse of 𝑽. For a 2 by 2 case 
the previous can be written in full as:

𝑫 = 𝑽𝜦𝑽−𝟏

𝐷11 𝐷12
𝐷21 𝐷22

=
𝑉1
1 𝑉1

2

𝑉2
1 𝑉2

2

𝜆1 0
0 𝜆2

𝑉1
1 𝑉1

2

𝑉2
1 𝑉2

2

−1
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Thus, our multicomponent diffusion equations become:

At this point we can pre-multiply the previous equation by 𝑽−𝟏. This results to: 

𝐿𝑡 𝑽
−𝟏𝑪 = 𝜦𝐿𝑥2 𝑽

−𝟏𝑪

by setting 𝑾 = 𝑽−𝟏𝑪 in the last equation we get: 

𝐿𝑡 𝑪 = 𝑽𝜦𝑽−𝟏

𝑫

𝐿𝑥2 𝑪

𝑽−𝟏𝐿𝑡 𝑪 = 𝜦𝑽−𝟏𝐿𝑥2 𝑪

However, since the derivative operators are linear, we can place 𝑽−𝟏 inside the 
derivatives to obtain:

𝐿𝑡 𝑾 = 𝜦𝐿𝑥2 𝑾
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The equation 𝐿𝑡 𝑾 = 𝜦𝐿𝑥2 𝑾 represents a diagonal system of diffusion 
equations. That is:  

𝜕

𝜕𝑡
𝑾 = 𝜦

𝜕2

𝜕𝑥2
𝑾 (7)

or, in the case of 3 independent components, in full form: 

𝜕𝑊1

𝜕𝑡
𝜕𝑊2

𝜕𝑡
𝜕𝑊3

𝜕𝑡

=

𝛬1
𝛬2

𝛬3

𝜕2𝑊1

𝜕𝑥2

𝜕2𝑊2

𝜕𝑥2

𝜕2𝑊3

𝜕𝑥2

=

𝛬1
𝜕2𝑊1

𝜕𝑥2

𝛬2
𝜕2𝑊2

𝜕𝑥2

𝛬3
𝜕2𝑊3

𝜕𝑥2
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The advantage of the previous form is that all diffusion equations are 
independent from each other (decoupled). Thus, we could use all the tools we 
have already (numerical or analytical) to solve the equations. To do so, we first 
need to transform the compositional profiles (𝐶) into the new independent 
variables (𝑊). Then we can proceed by solving the diffusion problem, and then 
we can transform the problem back.  

get W from C by
W=V-1C

Get new C (after 
diffusion) by C=VW

Solve problem by treating 
W as the unknown variable

Remember that this was only possible because the matrix of diffusion coefficients 
was independent of composition.
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Multicomponent Diffusion

In MATLAB/OCTAVE, the matrix containing the eigenvectors and the diagonal 
matrix containing the eigenvalues are given by the function ‘eig’.

using the previous command, we will obtain the matrix of eigenvectors V and 
the matrix of eigenvalues LAM of the square matrix D. The inverse of matrix V 
can be obtained by:

[V,LAM]=eig(D)

invV=inv(V)

where invV is the variable that contains the inverse of matrix V.
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Multicomponent Diffusion

The diffusion coefficient matrix 𝑫 is given by:

Exercise 13 (Advanced)

Lets consider a domain 𝑥 ∈ −1,1 and a system with three independent 
components that have the following initial values.

𝐶1 = ቊ
0.2, 𝑥 < 0
0.3, 𝑥 ≥ 0

𝐶2 = ቊ
0.5, 𝑥 < 0
0.1, 𝑥 ≥ 0

𝐶3 = ቊ
0.1, 𝑥 < 0
0.2, 𝑥 ≥ 0

𝑫 =
1 −0.1 1

−0.2 5 −4
3 −3 10

Calculate the compositions after the time 𝑡 = 0.05.
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Multicomponent Diffusion

The number 10-10 is 
introduced to create a 
step-like initial profile
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Multicomponent Diffusion

The existence of 
analytical solutions 
allows the testing of 
numerical codes.

The solution should look 
like the plot on the right 
(dashed lines are initial 
profiles).
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Multicomponent Diffusion

Multicomponent Diffusion with the Finite-Element-Method
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Multicomponent Diffusion

𝜕

𝜕𝑡

𝐶1
𝐶2

=
𝜕

𝜕𝑥

𝐷11 𝐷12
𝐷21 𝐷22

𝜕

𝜕𝑥

𝐶1
𝐶2

The main change in multicomponent-FEM is to consider multiple degrees of 
freedom in every point in space. For two independent components, the 
multicomponent diffusion equations read:

this can be written as:

𝜕

𝜕𝑡

𝐶1
𝐶2

= −

𝜕

𝜕𝑥
−𝐷11

𝜕𝐶1
𝜕𝑥

𝐽11

+
𝜕

𝜕𝑥
−𝐷12

𝜕𝐶2
𝜕𝑥

𝐽12

𝜕

𝜕𝑥
−𝐷21

𝜕𝐶1
𝜕𝑥

𝐽21

+
𝜕

𝜕𝑥
−𝐷22

𝜕𝐶2
𝜕𝑥

𝐽22
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Multicomponent Diffusion

𝜕

𝜕𝑡

𝐶1
𝐶2

= −

𝜕

𝜕𝑥
−𝐷11

𝜕𝐶1
𝜕𝑥

𝐽11

+
𝜕

𝜕𝑥
−𝐷12

𝜕𝐶2
𝜕𝑥

𝐽12

𝜕

𝜕𝑥
−𝐷21

𝜕𝐶1
𝜕𝑥

𝐽21

+
𝜕

𝜕𝑥
−𝐷22

𝜕𝐶2
𝜕𝑥

𝐽22

=
𝜕

𝜕𝑥

𝜕

𝜕𝑥 𝜕

𝜕𝑥

𝜕

𝜕𝑥
𝐵𝑀
𝐿

𝐽11
𝐽12
𝐽21
𝐽22

with the fluxes being:

𝐽11
𝐽12
𝐽21
𝐽22

= −

𝐷11
𝐷12

𝐷21
𝐷22

𝐷𝑀

𝜕

𝜕𝑥
𝜕

𝜕𝑥
𝜕

𝜕𝑥
𝜕

𝜕𝑥
𝐵𝑀
𝑅

𝐶1
𝐶2
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Multicomponent Diffusion

In operator notation, the previous form is written as:

𝜕

𝜕𝑡
𝑪𝒏 −𝑩𝑴

𝑳 𝑫𝑴𝑩𝑴
𝑹 𝑪𝒏 = 𝟎

which after time discretization becomes:

𝑪𝒏 − 𝑪𝒐

∆𝑡
−𝑩𝑴

𝑳 𝑫𝑴𝑩𝑴
𝑹 𝑪𝒏 = 𝟎
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Multicomponent Diffusion

Finally, the solution is given by
(for 1 shape function, please extend):

1

∆𝑡
𝑴𝑳 +𝑲𝑳

𝑪𝟏𝒊
𝒏

𝑪𝟐𝒊
𝒏 =

1

∆𝑡
𝑴𝑳

𝑪𝟏𝒊
𝒐

𝑪𝟐𝒊
𝒐

where:
𝑴𝑳 = න

𝑥1

𝑥2

𝑴𝑇𝑴𝑑𝑥 = න
𝑥1

𝑥2 𝑁𝑖
𝑁𝑖

𝑁𝑖
𝑁𝑖

𝑑𝑥

𝑲𝑳 = න
𝑥1

𝑥2 𝜕𝑁𝑖
𝜕𝑥

𝜕𝑁𝑖
𝜕𝑥 𝜕𝑁𝑖

𝜕𝑥

𝜕𝑁𝑖
𝜕𝑥

𝐷11
𝐷12

𝐷21
𝐷22

𝜕𝑁𝑖
𝜕𝑥

𝜕𝑁𝑖
𝜕𝑥

𝜕𝑁𝑖
𝜕𝑥

𝜕𝑁𝑖
𝜕𝑥

𝑑𝑥

𝑩𝑴
𝑳 𝑫𝑴

𝑩𝑴
𝑹
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Multicomponent Diffusion

To construct the previous matrices we had to multiply by the shape functions 
and integrate the result. After integration by parts on the diffusion term, using 2 
linear shape functions and 2 degrees of freedom yields:

𝑴𝑳

Δ𝑡
=

1

Δ𝑡

𝑑𝑥/3

𝑑𝑥/3

𝑑𝑥/6

𝑑𝑥/6

𝑑𝑥/6

𝑑𝑥/6

𝑑𝑥/3

𝑑𝑥/3

𝑲𝑳 =
1

Δ𝑥

𝑫𝑖𝑗 −𝑫𝑖𝑗

−𝑫𝑖𝑗 𝑫𝑖𝑗

where 𝑫𝑖𝑗 represents the whole diffusivity matrix.
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Multicomponent Diffusion

A more compact form is the following (without using fluxes)

𝜕

𝜕𝑡

𝐶1𝑖
𝐶2𝑖
𝐶1𝑖+1
𝐶2𝑖+1

=

𝜕

𝜕𝑥
𝜕

𝜕𝑥
𝜕

𝜕𝑥
𝜕

𝜕𝑥
𝑩𝑻

𝐷11 𝐷12
𝐷21 𝐷22

𝑫𝒊𝒋

𝜕

𝜕𝑥
𝜕

𝜕𝑥

𝜕

𝜕𝑥
𝜕

𝜕𝑥
𝑩

𝐶1𝑖
𝐶2𝑖
𝐶1𝑖+1
𝐶2𝑖+1
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1

∆𝑡
𝑴𝑳 +𝑲𝑳

𝑪𝟏𝒊
𝒏

𝑪𝟐𝒊
𝒏 =

1

∆𝑡
𝑴𝑳

𝑪𝟏𝒊
𝒐

𝑪𝟐𝒊
𝒐

𝑴𝑳 = න
𝑥1

𝑥2

𝑴𝑇𝑴𝑑𝑥 = න
𝑥1

𝑥2 𝑁𝑖
𝑁𝑖

𝑁𝑖
𝑁𝑖

𝑑𝑥

𝑲𝑳 = න
𝑥1

𝑥2
𝜕𝑁𝑖
𝜕𝑥

𝜕𝑁𝑖
𝜕𝑥

𝐷11 𝐷12
𝐷21 𝐷22

𝜕𝑁𝑖
𝜕𝑥

𝜕𝑁𝑖
𝜕𝑥

𝑑𝑥

Following this form, you can extend this for two shape functions as in 
previous slide.

Note that the previous form gives:
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Exercise 14 (Advanced)

Solve the multicomponent problem by using the FEM method.
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Nonlinear Diffusion
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So far we have seen cases where the diffusion coefficient (𝐷) was independent of 
concentration. In many cases (e.g. Fe-Mg diffusion olivine), the diffusion 
coefficient depends on concentration (also in orientation). For example, Dohmen
& Chakraborty (2007) provide the following form:

For constant 𝑃 − 𝑇, diffusivity is a function of concentration (𝑋𝐹𝑒). In this case, 
we cannot solve the classic diffusion equation, but we must solve the following: 

log 𝐷 m2/s = −8.27 −
226,000 + 𝑃 − 105 ∙ 7 ∙ 10−6

2.303 ∙ 𝑅 ∙ 𝑇
+ 3 ∙ (𝑋𝐹𝑒 − 0.14)

𝜕𝐶

𝜕𝑡
=

𝜕

𝜕𝑥
𝐷(𝐶)

𝜕𝐶

𝜕𝑥

Nonlinear Diffusion
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The pressure and temperature dependence can be solved as in the case for 
Geospeedometry, and will not be repeated here. However, for the concentration-
dependent part, we have to consider that concentration changes in space. Using 
the FDM, we will assume that the chemical flux is calculated at the midpoints of 
the grid (red points):

C[i − 1] C[i] C[i + 1]

J[i + 0.5]J[i − 0.5]

Then, the diffusion equation can be discretized as (explicit method):

𝐶𝑖
𝑛𝑒𝑤 − 𝐶𝑖

𝑜𝑙𝑑

∆𝑡
= −

1

∆𝑥
𝐽𝑖+0.5 − 𝐽𝑖−0.5 , with 𝐽𝑖+0.5 = −𝐷(𝐶𝑖+0.5

𝑜𝑙𝑑 )
𝐶𝑖+1
𝑜𝑙𝑑 − 𝐶𝑖

𝑜𝑙𝑑

∆𝑥

Nonlinear Diffusion
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The procedure for extracting the coefficients is as before (e.g. slides 42 to 49). 
The main difference however is that in the implicit method one needs to iterate 
to find the accurate solutions. This is because the concentration is needed to 
calculate the diffusion coefficient.

Similarly, in the FEM method one needs to rederive the weak-form of the original 
problem by taking into account 𝐷(𝐶) in the integration procedure.

Nonlinear Diffusion
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Concluding remarks

In this course we have seen some basic aspects of diffusion modelling with 
particular emphasis in petrologic/geochemical applications. I have tried to 
incorporate as many examples as possible while keeping the respective codes 
simple and short. Of course, many of such codes can be optimized further but 
numerical optimization was not the target in this course. For more advanced 
implementations using FEM and FDM examples, the interested reader is 
welcome to download and use KADMOS and GDIFF software packages that 
were created by the author.

• Moulas E., Brandon M.T. (2022) KADMOS: a Finite Element code for the calculation of 
apparent K-Ar ages in minerals. Zenodo. doi: 10.5281/zenodo.7358136

• Moulas, E., (2023) GDIFF: a Finite Difference code for the calculation of multicomponent 
diffusion in garnet. Zenodo. doi:10.5281/zenodo.7805989
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