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ABSTRACT: In computational chemistry and chemoinformatics, the
support vector machine (SVM) algorithm is among the most widely
used machine learning methods for the identification of new active
compounds. In addition, support vector regression (SVR) has become
a preferred approach for modeling nonlinear structure−activity
relationships and predicting compound potency values. For the
closely related SVM and SVR methods, fingerprints (i.e., bit string or
feature set representations of chemical structure and properties) are
generally preferred descriptors. Herein, we have compared SVM and
SVR calculations for the same compound data sets to evaluate which
features are responsible for predictions. On the basis of systematic
feature weight analysis, rather surprising results were obtained.
Fingerprint features were frequently identified that contributed
differently to the corresponding SVM and SVR models. The overlap
between feature sets determining the predictive performance of SVM and SVR was only very small. Furthermore, features were
identified that had opposite effects on SVM and SVR predictions. Feature weight analysis in combination with feature mapping
made it also possible to interpret individual predictions, thus balancing the black box character of SVM/SVR modeling.

1. INTRODUCTION

Supervised machine learning is a preferred approach for the
prediction of compound properties including biological
activity.1,2 Among machine learning approaches, support vector
machines (SVM) have become increasingly popular.3−5 The
SVM methodology was originally conceived for binary class
label prediction of objects6−8 on the basis of training data. In a
given feature space, SVM learning aims to construct a
hyperplane to best separate training data with different class
labels.7,8 The hyperplane is derived on the basis of a limited
number of training instances, so-called support vectors, to
maximize a margin on each side of the plane. If the data are not
separable by a hyperplane, the data can be projected into
feature spaces of higher dimensionality where linear separation
of positive and negative examples might be possible.7,8 For a
given feature space, a successfully derived hyperplane
represents a classification model that can then be used to
predict the class label of test objects in this space, depending on
which side of the hyperplane (i.e., the positive or negative) they
fall. In chemoinformatics, binary class label prediction is used
for compound classification, for example, to distinguish active
from inactive compounds.3,4 In addition to class label
prediction, SVM models can also be used for compound
database ranking by calculating their distance from the “active”
or “inactive side” of the hyperplane.9

Support vector regression (SVR), an extension of the SVM
algorithm, has been introduced for predicting numerical

property values10,11 such as compound potency. In SVR,
instead of generating a hyperplane for class label prediction, a
different function is derived on the basis of training data to
predict numerical values. In analogy to SVM, SVR also projects
training data with nonlinear structure−activity relationships
(SARs) in a given feature space into higher-dimensional space
representations where a linear regression function may be
derived. In this case, compounds with different potency values
are used to fit a regression model that can then be used to
predict the potency of new candidate compounds. SVR
typically produces statistically accurate regression models
when predictions over all potency ranges are analyzed.5,12

However, SVR also displays the tendency to underpredict
highly potent compounds in data sets and hence eliminates
activity cliffs from their activity landscape.12

In SVM and SVR, mapping into higher-dimensional feature
spaces, which is a signature of these algorithms, is accomplished
through the use of kernel functions, the so-called “kernel
trick”.13 When using nonlinear kernel functions, SVM and SVR
can resolve nonlinear SARs in original feature spaces through
dimensionality extension. This makes SVR especially attractive
for potency prediction because it is not confined to the
applicability domain of conventional quantitative SAR analysis
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methods.14 On the other hand, both SVM and SVR modeling
have black box character, meaning that the predictions cannot
be directly interpreted in chemical terms. Hence, it is generally
difficult to rationalize model performance. Only few attempts
have thus far been made to aid in SVM model interpretation in
high-dimensional kernel spaces. For example, support vectors
with largest contributions to SVM models have been
visualized.15 In addition, descriptor features have been
organized in polar coordinate systems according to their
contributions to SVM predictions.16

To increase model interpretability and reduce the black box
character of SVM and SVR, we aimed to identify descriptor
features that determine model performance on individual
compound data sets. Given the close methodological relation-
ship between SVM and SVR, relevant features of classification
and regression models were also compared. Intuitively, one
might expect that SVM and SVR would prioritize similar
features for a given compound data set because most
informative chemical features for predicting whether a
compound is active or not might also be relevant for predicting
the magnitude of activity. For this purpose, feature weighting
and mapping techniques were systematically applied. Feature
mapping helped to rationalize the performance of SVM and
SVR models.

2. RESULTS AND DISCUSSION
2.1. Global Performance of SVM and SVR Models. A

prerequisite for feature weight analysis is the assessment of the
prediction accuracy of SVM and SVR models. This is the case
because the evaluation of features that contribute to predictions
is only meaningful if the underlying models reach a reasonably
high-performance level. Figure 1 summarizes the performance
of our SVM and SVR models on the 15 activity classes using
different figures of merit appropriate for assessing classification
and regression calculations. Results are presented for two
molecular representations, the MACCS fingerprint and
extended connectivity fingerprint with bond diameter 4
(ECFP4). Figure 1a shows that the median F1 scores and
the area under the ROC curve (AUC) values of the SVM
models were clearly above 0.95 for both MACCS and ECFP4
fingerprints, reflecting accurate classification of active and
inactive compounds. Furthermore, recall rates of the active
compounds reached a median value of 0.77 for MACCS and
0.94 for ECFP4 among the top 1% of the ranked compounds.
These results also reflected the usually observed higher
performance of ECFP4 relative to MACCS.
Figure 1b reports the performance of the SVR models across

the different activity classes. The median values of mean
absolute error (MAE) and mean squared error (MSE) median
values were between 0.5 and 0.6, and the median values of the
Pearson correlation coefficient (r) between the predicted and
observed pKi values were above 0.7 for MACCS and above 0.8
for ECFP4. In addition, errors of potency predictions were
consistently limited to less than 1 order of magnitude. Thus,
the SVR model also exhibited an overall reasonable perform-
ance.
2.2. Feature Relevance. A second condition for

informative feature weight analysis is demonstrating the
relevance of individual fingerprint features. Therefore, features
were randomly removed from SVM models or in the order of
decreasing feature weights, and classification calculations were
repeated. Figure 2 shows the results for exemplary activity
classes and the MACCS (Figure 2a) and ECFP4 (Figure 2b)

fingerprints. For MACCS containing 166 features, both random
and weight-based feature removal decreased compound recall
and increased MSE values. The magnitude of errors was greater
for weight-based feature removal than for random feature
removal. For ECFP4 comprising much larger numbers of
possible features, random feature removal affected the
calculations only marginally, if at all, whereas removal of highly
weighted features led to a substantial reduction in compound
recall and a gradual increase in MSE values. Thus, as
anticipated, removal of features obtaining high weights during
model building consistently reduced the model performance.

2.3. Global Feature Weight Analysis. For SVM and SVR
models, weights of fingerprint features were systematically
determined over 10 independent trials and compared. In some
instances, feature weights were consistently high or low over
different trials, as further detailed below; in others, they varied
depending on the training data. In addition, feature weights
generally varied for different activity classes, as expected.
Furthermore, it was observed that some individual features
were equally important for SVM and SVR for a given class,
consistent with their shared methodological framework.
However, a striking finding was that the importance of many

features for classification and regression fundamentally differed.
Figures 3 and 4 show representative examples for different
activity classes and MACCS and ECFP4, respectively. Feature
weights were assigned to three different categories (i.e., high,
medium, and low), as detailed in the Materials and Methods
section. Figures 3a and 4a show examples of MACCS and
ECFP4 features, respectively, which had very different weights
in SVM and SVR models, including features with consis-
tentlyor mostlylow weights in classification and high
weights in regression model and vice versa. Thus, many features

Figure 1. Global performance. Box plots report the prediction
accuracy of (a) SVM and (b) SVR calculations over all activity classes
and 10 independent trials per class. For SVM calculations, the F1
score, AUC, and recall of active compounds among the top 1% of the
ranked test set are reported. For SVR calculations, the MAE and MSE
values and the Pearson correlation coefficient (r) for the observed and
predicted potency values are given.

ACS Omega Article

DOI: 10.1021/acsomega.7b01079
ACS Omega 2017, 2, 6371−6379

6372

http://dx.doi.org/10.1021/acsomega.7b01079


were only relevant for either classification or regression. On
average, 7 MACCS and 18 ECFP4 features were identified per
activity class that had a high weight in at least 5 of the 10 SVM
trials and a low weight in at least 5 SVR trials and vice versa.
Among these, there were no MACCS and on an average one
ECFP4 feature that exclusively had high/low weights in all
SVM/SVR trials and vice versa. One possible explanation for
such differences in feature relevance might be the composition
of support vectors in SVM and SVR. Although SVM and SVR
share a closely related methodological framework, support
vectors for SVM and SVR are determined in different ways. To
derive support vectors for regression, only active compounds
are considered, whereas classification models are trained with
active and inactive compounds, which also contribute to
support vectors. Given these intrinsic differences, SVM and
SVR models may prioritize different chemical descriptors for
support vector compounds during the training stage.
In Figures 3b and 4b, exemplary MACCS and ECFP4

features are mapped onto the structures of compounds that
were correctly predicted. In Figure 3b, MACCS features that
were highly weighted in classification (blue color) or regression
(red color) were mapped onto the same molecule, a thrombin
inhibitor, illustrating that features critical for SVM or SVR are
often mapped to different parts of the same substructure. In
Figure 4b, ECFP4 features critical for classification (blue color)
or regression (red color) are mapped to a serotonin 1A (5-
HT1A) receptor agonist, showing that features important for
classification (feature 638) or regression (201) are mapped to
distant parts of this compound.
In principle, features relevant for SVM and SVR might be

activity class-specific or shared by different classes. To identify
features common to different classes, MACCS and ECFP4
features were determined that had a high weight in at least 5 of
the 10 SVM or SVR trials per class. For SVM, on an average, 9
of such MACCS and 15 ECFP4 features were identified per

activity class and for SVR, 14 MACCS and 35 ECFP4 features
were identified. For SVM, a total of 38 MACCS and 47 ECFP4
highly weighted features were shared by two activity classes. For
SVR, 56 MACCS and 116 ECFP4 features were shared by two
classes. However, for SVM (SVR), only five (seven) MACCS
and nine (three) ECFP4 features with at least five high weights
were common to five or more activity classes. Thus, most
features determining SVM and SVR predictions were weighted
in a compound class-specific manner.
Furthermore, we also determined the number of features that

were consistently highly weighted in all trials per activity class.
For SVM, on an average, only two of such MACCS and five
ECFP4 features were identified and for SVR, two and four
MACCS and ECFP4 features, respectively, were identified.
Thus, weights of most features with strong contributions to
SVM and SVR predictions displayed some variations in
different activity classes depending on the training sets.

2.4. Features with Different Signs. So far, only absolute
feature weights were analyzed, which revealed many features
that contributed differently to SVM and SVR. However, in
SVM and SVR, feature weights may carry a positive or negative
sign depending on how they influence the predictions. Features
with a positive weight contribute to the prediction of active
compounds in SVM and high potency values in SVR, whereas
features with a negative weight contribute to the prediction of
inactive compounds in classification and low potency values in
regression. Thus, taking these signs into account further refines
the view of differential feature contributions to SVM and SVR.
Therefore, we also searched for features with high weights and
different signs. Such features have opposite effects in SVM and
SVR. Only few features were identified that had high weights in
corresponding SVM and SVR trials but consistently different
signs. Exemplary features with opposite effects in SVM and
SVR are shown in Figure 5. For example, three MACCS
features in Figure 5a contributed to the prediction of active

Figure 2. Effects of feature removal. For SVM and SVR, the effects of iterative fingerprint feature removal on recall of active compounds and MSE
are reported for three exemplary activity classes (with TID values according to Table 1) and the (a) MACCS and (b) ECFP4 fingerprints. Features
were randomly removed (dashed lines) or in the order of decreasing feature weights (solid lines).
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compounds but low potency values (dark green/light orange
bars) and two to the prediction of inactive compounds but high
potency values of active compounds (light green/dark orange
bars). In Figure 5b, four ECFP4 features are shown that
contributed to the prediction of active compounds and low
potency values and one that contributed to the prediction of
inactive compounds and high potency values. Among features
with high weights in both SVM and SVR, as discussed above,
sign inversion and opposite effects in SVM and SVR were
exceptions.
2.5. Mapping of Highly Weighted Features. In Figure 6,

highly weighted ECFP4 features are mapped on compounds
from different activity classes that were correctly predicted
using SVM and SVR. Atom environments were chosen for
exemplary mapping because they haveby definitiona
greater tendency to overlap than that involving discrete
MACCS features. For an exemplary trial, features that had a
high weight in the SVM and/or SVR model were mapped to
the compounds shown. Figure 6a illustrates that only partly
overlapping yet distinct atom environments led to the correct
classification and potency value prediction of each compound.
The two thrombin inhibitors in Figure 6b are close structural

analogues that are only distinguished by a heteroatom
replacement in a ring and a fluorine substituent. As anticipated
for highly similar compounds, these inhibitors shared a number

of features that were highly weighted in classification and
regression models. However, two features highly weighted for
regression but not classification were mapped to the ring
substructure distinguishing these compounds. Clearly, in
contrast to the SVM model that assigned the same highly
weighted features to both inhibitors, in accordance with their
common activity, the SVR model accounted for the structural
difference between these compounds. Hence, feature mapping
also indicated that the fluorine substitution might be
responsible for the higher potency of the inhibitor at the
bottom, given its positive weight.
The two mu-opioid receptor ligands in Figure 6c are also

analogous to each other but distinguished from each other by
multiple substitutions at the upper and lower ring. In this case,
few highly weighted features were present, only one of which
was shared by the classification and regression models, covering
the methyl substituent at the upper phenyl ring. Other highly
weighted features in the models were distinct and mapped to
different substructures. In the SVR model, a highly weighted
feature with negative contribution matched a part of the upper
phenyl ring including the methoxy substituent of the
compound at the top, indicating that this substructure (but
not the lower ring) was important for potency variation among
analogues.
Taken together, these examples illustrate that comparative

mapping of features highly weighted in SVM and SVR helps to

Figure 3. Distribution of MACCS feature weights and feature
mapping. For an exemplary activity class (thrombin inhibitors, TID
11), (a) reports the distribution of weights of the selected features for
SVM (classification, blue color) and SVR (regression, red color) over
10 trials. The color gradient represents the magnitude of feature
weights (low, medium, or high). In (b), features that were highly
weighted in SVM (blue color) and SVR (red color) are mapped on the
same correctly predicted compound. In feature labels, “A” stands for
any atom.

Figure 4. Distribution of ECFP4 feature weights and feature mapping.
For an exemplary activity class (serotonin 1A (5-HT1A) receptor
agonists, TID 51), (a) reports the distribution of weights of selected
features for SVM (classification, blue color) and SVR (regression, red
color) calculations over 10 trials. The color gradient represents the
magnitude of feature weights (low, medium, or high). In (b), features
that were highly weighted in SVM (blue color) and SVR (red color)
are mapped on the same correctly predicted compound.
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rationalize predictions made by classification and regression
models and may reveal SAR information.

3. CONCLUSIONS
In this work, we have investigated and compared the relevance
of different fingerprint features for the corresponding SVM and
SVR models. The MACCS and ECFP4 fingerprints used herein
capture the structural features of compounds in different ways.
To these ends, feature weight analysis was carried out for well-
performing classification and regression models over different
compound classes. Because SVM and SVR share a common
methodological framework, one might hypothesize that there
should be considerable overlap between structural features that
determine binary activity and potency value predictions. By
contrast, systematic feature weight analysis revealed that
features with high weights in SVM and SVR predominantly
differed, a rather unexpected finding. In many instances,
individual features contributed very differently to classification
and regression, although features with strongly opposing effects
were rare, as revealed by the analysis of positive and negative

weights. SVM and SVR predictions are usually determined by
feature combinations rather than individual features with high
weights. Thus, features with medium weights also make
contributions to predictions, albeit at a lesser magnitude than
the most important ones. Therefore, as also demonstrated
herein, mapping of highly weighted features is usually sufficient
to identify molecular regions that are important for the activity-
based classification and structural differences between com-
pounds that are responsible for potency variation. Accordingly,
mapping and comparing features that are highly weighted in
SVM and SVR models help to better understand how individual
features influence or determine predictions and thus alleviate
the often-cited black box character of SVM, SVR, and other
machine learning approaches that hinder model interpretation.
Moreover, mapping of features that are highly weighted in SVR
models onto compounds with correctly predicted potency
values also points at SAR-informative regions in active
compounds.

Figure 5. Highly weighted features with different signs. For selected activity classes and (a) MACCS and (b) ECFP4 features (TID/feature), the
number of trials is reported in which the features had high weights but different signs (+, −) in SVM and SVR. Features with positive weights
contribute to the correct prediction of active compounds (dark green color) or high potency values (light green color), whereas features with
negative weights contribute to the prediction of inactive compounds (dark orange bars) or low potency values (light orange bars). Bars are labeled
with MACCS features (A, any atom and Q, heteroatom) or mapped ECFP4 atom environments (pink color).
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4. MATERIALS AND METHODS

4.1. Compound Data Sets. Different sets of compounds
with activity against human targets were extracted from
ChEMBL version 22.17 Only compounds with numerically
specified equilibrium constants (Ki values) for single human
proteins with the highest assay confidence score were selected.
If multiple Ki values for a compound and a target were available,
they were averaged provided all values fell within the same
order of magnitude; otherwise, the compound was discarded.
Furthermore, compounds with a pKi value below 5 were not
selected to exclude borderline active compounds from
modeling. In addition, this pKi threshold also limited the

range of potency values for SVR model building. Table 1
summarizes the 15 large activity classes that were selected. Each
class contained at least 800 active compounds. In addition, for
SVM modeling, 250 000 compounds were randomly selected
from ZINC18 as a pool of negative (inactive) training and test
instances. From this pool, negative training and test sets were
randomly sampled for all classification calculations.

4.2. Molecular Representation. Compounds were
represented as MACCS19 and ECFP4 fingerprints.20 MACCS
is a prototypic binary-keyed fingerprint comprising 166 bits,
each of which accounts for the presence or absence of a
structural fragment or pattern. ECFP4 is a representative

Figure 6. Mapping of highly weighted features. ECFP4 atom environments with high weights in classification and regression are mapped onto
correctly classified compounds and potency prediction within 0.2 pKi units. (a) shows individual compounds from three activity classes; (b,c) show
pairs of analogues from two activity classes. Each compound is shown twice (side-by-side). On the left and right, features from classification (blue
color) and regression (red color) are mapped, respectively. Single carbon atoms are displayed if they are a part of a mapped atom environment. In
(b,c), substructures of analogues with feature differences are highlighted in gray color.
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feature set fingerprint enumerating layered atom environments,
which are encoded by integers using a hashing function. By
design, ECFP4 has variable sizes, but it can be folded to obtain
a fixed-length representation. For our calculations, ECFP4 was
folded into a 1024-bit format using modulo mapping. Feature-
to-bit mapping was recorded to enable mapping of fingerprint
bits to compound structural features. Although modulo
mapping assigns different features (atom environments) to
identical bits, it is possible to trace environments and map
them. Fingerprint representations were generated using in-
house Python scripts based upon the OEChem toolkit.21

4.3. Support Vector Machine. For binary classification,
training instances defined by a feature vector x ∈ X and a class
label y ∈ {−1,1} are projected into the feature space X. For
activity prediction, negative and positive examples represent
inactive and active compounds for a given target, respectively.
The SVM algorithm attempts to construct a hyperplane H such
that the distance between the classes, the so-called margin, is
maximized. This hyperplane is defined by a normal vector w
and a scalar b using the expression H = {x|⟨w,x⟩ + b = 0}. For
data that cannot be separated using a linear function, slack
variables are added that permit training instances to fall within
the margin or on the incorrect side of the hyperplane. To
control the magnitude of allowed training errors, the cost or
regularization hyperparameter C is introduced to balance
margin size and classification errors. This represents a primal
optimization problem that can be expressed in a dual form
using Lagrange multipliers αi (Lagrangian dual problem). Its
solution yields the normal vector of the hyperplane w =
∑iαiyixi. Training examples with nonzero coefficients represent
the support vectors and correspond to data points of one class
that are closest to the other, that is, those that lie on the margin
of the hyperplane. Once the hyperplane is derived, test data are
projected into the feature space and classified according to the
side of the plane on which they fall, that is, f(x) =

sgn(∑iαiyi⟨xi,x⟩ + b), or ranked using the real value, that is,
g(x) = ∑iαiyi⟨xi,x⟩ + b.9

4.4. Support Vector Regression. Training samples for
SVR are defined by a feature vector x ∈ X and a numerical label
y ∈ R.10,11 If SVR is applied to potency prediction, the
numerical label is the pKi value of the compound. SVR maps
the training data as close as possible to the quantitative output y
by deriving a regression function of the type f(x) = ⟨w,x⟩ + b.
Tolerated deviations from the observed and predicted values of
training data are at most ε, and larger errors are penalized. In
SVR, the relaxation of error minimization problem is also
controlled by a hyperparameter C, which penalizes large slack
variables or deviations from the so-called ε tube. By solving the
optimization problem with a Lagrange reformulation, the
normal vector is derived and the prediction function is
expressed as f(x) = ∑iαi⟨xi,x⟩ + b.

4.5. Kernel Function. When accurate data separation is not
feasible in the X space, the standard scalar product ⟨·,·⟩ is
replaced by a kernel function K(·,·). Conceptually, the kernel
function represents the scalar product in a high-dimensional
space W in which the data might become linearly separable,
without the need to compute an explicit mapping to W. This
approach is known as the “kernel trick”13 that is applied in both
SVM and SVR. In chemoinformatics, one of the most popular
kernels for fingerprint representations is the Tanimoto kernel22

that was also used herein

= ⟨ ⟩
⟨ ⟩ + ⟨ ⟩ − ⟨ ⟩

K u v
u v

u u v v u v
( , )

,
, , ,

4.6. Feature Weight Analysis. In the SVM model,
different weights are assigned to molecular descriptors
(features), which correspond to the coefficients of the primal
optimization problem. The linear kernel (scalar product) allows
direct determination of feature weights from the dual problem
coefficients and support vectors. By contrast, direct access to
feature weights is not possible when using nonlinear kernel
functions because an explicit mapping into the high-dimen-
sional feature space is not computed. However, for the
Tanimoto kernel, feature weight analysis can be adapted from
the linear case according to which the importance of a feature
depends on the coefficients of those support vectors that
contains the feature.16 To account for the nonlinearity of the
Tanimoto formalism, a normalization factor is included for each
individual support vector by dividing the feature weight
contribution by the total number of features present in each
support vector

∑ α
=

∑= *= *
d

v

v
FW( )

i

m
i id

d
D
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Here, FW(d) is the feature weight for feature d, D is the
dimensionality, m is the number of support vectors, and vi and
αi are the support vector coefficients of the dual problem
solution.
Feature contributions are not constant across feature space

and depend on the fingerprint that is used.16 However,
adaptation of feature weight analysis from the linear case with
normalization yields an average weight, indicating the
importance of each feature. Highly weighted fingerprint
features can then be mapped to compound structures.16

4.7. Calculations and Data Analysis. Each activity class
was randomly divided into training and test (prediction) sets
comprising 700 and 100 compounds, respectively, following

Table 1. Compound Data Setsa

TID
accession

no. target name CPDs
median
pKi

IQR
pKi

11 P00734 thrombin 839 6.33 1.86
51 P08908 serotonin 1A (5-HT1A)

receptor
1904 7.62 1.50

72 P14416 dopamine D2 receptor 2876 7.00 1.29
100 P23975 norepinephrine

transporter
1099 6.82 1.60

129 P35372 mu-opioid receptor 2026 7.26 1.95
136 P41143 delta-opioid receptor 1547 7.11 1.97
137 P41145 kappa-opioid receptor 1930 7.28 2.07
138 P41146 nociceptin receptor 844 7.85 1.43
165 Q12809 HERG Homo sapiens 956 5.93 1.05
194 P00742 coagulation factor X 1476 8.05 2.80
278 P29275 adenosine A2b receptor 1187 7.23 1.43
10280 Q9Y5N1 histamine H3 receptor 2434 8.00 1.43
11362 P42336 PI3-kinase p110-α

subunit
885 7.68 1.39

12968 O43614 orexin receptor 2 1040 6.70 1.57
20174 Q9Y5Y4 G protein-coupled

receptor 44
833 7.65 1.90

aComposition of 15 compound activity classes is reported that were
selected for SVM and SVR modeling. For each class, the ChEMBL
target ID (TID), accession number, target name, and number of
compounds (CPDs) are given. In addition, median and interquartile
range (IQR) pKi values are reported, which were calculated from the
pKi distribution of each activity class.
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previously derived guidelines for relative training and test set
composition.23 For SVM, 700 and 100 compounds from ZINC
database were randomly selected as negative training and test
instances, respectively. For SVR, the same positive training data
were used in each case (but no negative data). For each activity
class and SVM/SVR calculation protocol, 10 independent trials
were carried out, and the results were averaged.
For SVM and SVR models, the hyperparameter C was

optimized using 10-fold cross-validation on training data using
candidate values of 0.01, 0.1, 1, 5, 10, 20, 50, and 100. For
SVM, hyperparameter optimization was guided by maximizing
the F1 score; for SVR, optimization aimed to minimize the
MAE.

=
· ·

+
F1

2 precision recall
precision recall

∑̂ = | − ̂|
=

y y
n

y yMAE( , )
1

i

n

i i
1

Here, n is the number of samples (see also MSE given below).
Following hyperparameter optimization, feature weight

analysis was carried out for classification and regression models.
Weights were categorized as high, medium, or low, depending
on whether their absolute value was at least 50, 25−50%, or less
than 25% of the maximum weight observed for a given SVM
model, respectively.
Binary activity (active/inactive) and potency values of test

compounds were predicted, and model performance was
estimated using different figures of merit. For SVM, the F1
score, AUC, and the recall of active compounds among the top
1% of the ranked test set were determined. For SVR, MAE,
MSE, and the Pearson correlation coefficient between the
observed and predicted pKi values were calculated.

∑̂ = − ̂
=

y y
n

y yMSE( , )
1

( )
i

n

i i
1

2

Calculation and data analysis protocols were implemented in
Python using Scikit-learn.24
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