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Goal

Establish isomorphism:

space of THETA FUNCTIONS
associated with surRFACE
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Y8 Motivation & goal @I

Goal

Establish isomorphism:

space of THETA FUNCTIONS | space of SKEINS in
associated with surRFACE " | enclosed HANDLEBODY | °

Motivation

m These spaces are central to Chern-Simons theory

m My PhD is about improving this isomorphism
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Notation (Manifolds)

m Y, — genus-g RIEMANN SURFACE
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Notation (Manifolds)
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Notation (Manifolds)

mY;, — genus-gRIEMANN SURFACE with n BOUNDARY ELEMENTS
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Notation @I

Notation (Manifolds)

mY;, — genus-gRIEMANN SURFACE with n BOUNDARY ELEMENTS

m H, — genus-g HANDLEBODY

Notation (Symplectic mfds)

For symp MFD (M,w), and f, g € C*°(M,R), we have
m X —  HamiLtonian vec field:  w(X¢, <) = —df(-)
m {f,g} —— POISSON BRACKET: {f, 8} = w(Xr, Xg)

W Tour of Knots & Theta Functions
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Definition (Quantization)

Quantization means replacing
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S Quantization

Definition (Quantization)
Quantization means replacing

{ classical PHASE SPACE |~ { QUANTUM STATE space }

Il Il
symp mfd (M,w) Hilbert space ‘H

{ classical oBsErvABLES | ~» | quantum OBSERVABLES

Il I
funcs f€C*°(M,R) Hermitian ops op(f)

while respecting DIRAC’S CONDITIONS:

op(1) = idy
op( - ) is LINEAR

observable rep is IRREDUCIBLE on H

1
J
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Quantization

Definition (Quantization)

Quantization means replacing

{ classical PHASE sPACE } o
Il

symp mfd (M,w)

{ classical 0BSERVABLES }

Il
funcs f€C*°(M,R)

S

while respecting DIRAC’S CONDITIONS:
op(1) = idy
op( - ) is LINEAR
observable rep is IRREDUCIBLE on H

op({f,g}) = zlop(f). op(g)] + O(h)

{ QuANTUM STATE space }

Hilbert space H

{ quantum OBSERVABLES |

J
I

Hermitian ops op(f)

—

“correspondence principle”
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on a symplectic manifold
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Definition (Polarizations)
Given 2n-pim symp mfd (M, w),
a “complex distribution” F is a subbundle of TM ® C
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Definition (Polarizations)
Given 2n-pim symp mfd (M, w),
a “complex distribution” F is a subbundle of TM ® C
&% WwlpxFr =0 —  “involutive” dist

& dimcF = %dimRM —  “Lagrangian” dist
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W8 Polarizations

on a symplectic manifold

Definition (Polarizations)

Given 2n-pim symp mfd (M, w),
a “complex distribution” F is a subbundle of TM ® C
&% WwlpxFr =0 —  “involutive” dist
&* dimgF = Jdimg M —  “Lagrangian” dist
&' p+dim(F,NF,) constanton M — “PoLARIZATION”

&
m F=F —  “real” polarization

s FNF=0 —  “KAHLER” polarization
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M8 Polarizations
; on a symplectic manifold

Example (Kéhler polarization)

Take M = R" x R", as for a n particles in 1D.
Writing z; = x; + iy;, consider

0 _1(o 0
0z, 2\ 0x 'ay,

The polarization

Feeanld 9 0
TP Bz, 0z, oz,

is Kahler.

W Tour of Knots & Theta Functions

) € T(R"xR") @ C.
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S Geometric quantization
. The Hilbert space

Fix 2n-dim symp mFD (M, w) & poLARIZATION F of M.
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S Geometric quantization
— The Hilbert space

Fix 2n-dim symp mFD (M, w) & poLARIZATION F of M.

The Hilbert space
Define H = {M>L> L ‘ YveF:V,s= 0} , where

m L = HERMITIAN LINE BUNDLE  <— fibrewise inner product (-, -)
m with COMPATIBLE CONNECTION* V  «—  d(s,t) = (Vs, t) + (s, V1)

m with CURVATURE w/h.  <+— dO = w/h where locally V = d — i0

Define INNER PRODUCT (s, t) = / (s(p), t(p)) dvolu(krry -
M/ (FNF)
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S Geometric quantization
; The observables

Theorem (Weil’s integrality condition)
L exists iff w/(2wh) € H* (M, Z).

N



S Geometric quantization
; The observables

Theorem (Weil’s integrality condition)
L exists iff w/(2wh) € H* (M, Z).

The observables
Fors € H, f € C®°(M,R), define

op(f)s = —ihVys+f -s,

which satisfies DIRAC’S cONDITIONS.

Wl Tour of Knots & Theta Functions
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First integral homology group

...of a surface

Definition (Intersection form)

Define the “intersection form” «: Hy(¥X4, Z) x H\(X4, Z) — Z as follows
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First integral homology group @I
...of a surface
Definition (Intersection form)

Define the “intersection form” «: Hy(¥X4, Z) x H\(X4, Z) — Z as follows

represent homology classes by ORIENTED MULTICURVES 77, Y, with
finite set .# of TRANSVERSE INTERSECTIONS

Y1+ Y2 =Y, 0, with 0 = £1 depending whether frame (1, 73)
AGREES WITH ORIENTATION on X4

Definition (Canonical basis)

A “canonical basis” comprises ORIENTED SMOOTH SIMPLE CLOSED CUrVes
a,...,ag, by, ... byof Hi(Xg,Z) with a; - ax = b; - by =0, a; - by = djx-



610 Fi}'st )icntegral homology group @I

Definition (Intersection form)

Define the “intersection form” «: Hy(¥X4, Z) x H\(X4, Z) — Z as follows

represent homology classes by ORIENTED MULTICURVES 77, Y, with
finite set .# of TRANSVERSE INTERSECTIONS

Y1+ Y2 =Y, 0, with 0 = £1 depending whether frame (1, 73)
AGREES WITH ORIENTATION on X4

Definition (Canonical basis)

A “canonical basis” comprises ORIENTED SMOOTH SIMPLE CLOSED CUrVes
a,...,ag, by, ... byof Hi(Xg,Z) with a; - ax = b; - by =0, a; - by = djx-

eg.
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The construction has 2 sTeps:
>
8

@ associate
symp mfd
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710 Overview

Recall our goal:

space of THETA FUNCTIONS | space of SKEINS in
associated with SURFACE | enclosed HANDLEBODY | °

we now focus here

The construction has 2 sTeps:
>
8

associate
@ symp mfd
T (%)

quantize in
Kahler pol

{ theta funcs }

QUG Tour of Knots & Theta Functions
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S Jacobian variety
_ Definition of the variety

Fix a CANONICAL BASIS, @y, . .., dg, by, ..., by of Hi(Xg,7Z).

Theorem (Holomorphic basis)
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/a,-Ck_ ik
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W Jacobian variety @1

Definition of the variety
Fix a CANONICAL BASIS, @y, . .., dg, by, ..., by of Hi(Xg,7Z).

Theorem (Holomorphic basis)
I basis ;. . . ., (s of the space 7 (Xg) of HOLOMORPHIC 1-FORMS st

/a,-Ck_ ik

Definition (Jacobian variety)
“period matrix” — (1 ‘ ﬂ) ,for M = (), mjx = / Ck
“period lattice” —  A(1,11), spanned by matrix cols !
“JACOBIAN VARIETY”  —  J(Xg) == C8/A(1,1).



S Jacobian variety

.. as a classical phase space

Coordinates on Jacobian variety

J(Xg) inherits REAL ¢ COMPLEX COORDINATES from J#(X4)* as follows:
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Jacobian variety w

.. as a classical phase space

Coordinates on Jacobian variety

J(Xg) inherits REAL ¢ COMPLEX COORDINATES from J#(X4)* as follows:
H(Lg)* =C8 <«  dualbasis (F
B (LX) =R%® <«— basisB: CH/CCb—)/C

Factor each by A(B) to view J(X4) as a complex (resp real) mfd.
The coords are related by z = x + [y.

DEGCRINIEGCI Tour of Knots & Theta Functions
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Jacobian variety

... as a classical phase space

Coordinates on Jacobian variety

J(Xg) inherits REAL ¢ COMPLEX COORDINATES from J#(X4)* as follows:
H(Lg)* =C8 <«  dualbasis (F
B (LX) =R%® <«— basisB: CH/CCb—)/C

Factor each by A(B) to view J(X4) as a complex (resp real) mfd.
The coords are related by z = x + [y.

Classical mechanics on Jacobian variety

SYMPLECTIC FORM  —  w = (dx)T A dy

classical oBservABLES —  generated by exp(2mi(p"x + q'y)),

for (p, q) € 2% = Hi(Xy, Z)

DEGCRITICGCIN Tour of Knots & Theta Functions
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Unpacking the definition

Hilbert space of quantization of Jacobian variety w

. 1
Fix an EvEn N € N; set h = ﬁ <—  (to meet Weil’s integrality condition)
s



WM Hilbert space of quantization of Jacobian variety
. Unpacking the definition

1
FixaneveiN N€N; seth=——.
27N

Quantizing J(X,)
Recall H = {M%E‘VVEF:V‘,SZO};
L is a HoLoMorpHIC line bundle with curvature

w/h = TiN(dz)" A Y™ 'dz, where Tl =X+iY.
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. Unpacking the definition

1
FixaneveiN N€N; seth=——.
27N

Quantizing J(X,)
Recall H := {M%E‘VVEF:V‘,SZO};
L is a HoLomorprHIC line bundle with curvature
w/h = TiN(dz)" A Y™ 'dz, where Tl =X+iY.

PuLL £ Back to C& x C along quotient C8 x C — L.
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Hilbert space of quantization of Jacobian variety

Unpacking the definition

1
FixaneveiN N€N; seth=——.
27N

Quantizing J(X,)
Recall H = {M%E‘VVEF:V‘,SZO};
L is a HoLoMorpHIC line bundle with curvature
w/h = TiN(dz)" A Y™ 'dz, where Tl =X+iY.
PuLL £ Back to C& x C along quotient C8 x C — L.
A cocvcLe A: €8 x A(1,M) — C encodes C& x C by

. z':z—i—A, C/:/\(L)‘)C
(z.0)~ (. () = for some A € A(1,1).

DEGCRITIGCI Tour of Knots & Theta Functions
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WM Hilbert space of quantization of Jacobian variety &%I

Unpacking the definition

A is HoLomorpHIC in z (for L to be), & satisfies cocYCLE CONDITION:

ANz, ANz + X pn) =Nz, p+ ) forallze CE A, pe A(1,1).
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. Unpacking the definition
A is HoLomorpHIC in z (for L to be), & satisfies cocYCLE CONDITION:
ANz, ANz + X pn) =Nz, p+ ) forallze CE A, pe A(1,1).
SIMPLEST SOLUTION:  <— other solutions just tensor £ with a flat line bundle

Nz, A) =1, Az, Agyj) = VmCz=m)



Hilbert space of quantization of Jacobian variety @I

Unpacking the definition

A is HoLomorpHIC in z (for L to be), & satisfies cocYCLE CONDITION:
ANz, ANz + X pn) =Nz, p+ ) forallze CE A, pe A(1,1).
SIMPLEST SOLUTION:
Nz N) =1, Az, Agyj) = Mz

With F = span{(%7 ooy 2 H s just HoLOMORPHIC sxNs. Pulled

’ 0Z,

back to C8, they satisfy:

flz+ X)) =f(2)
f(z+ Agyj) = mETTf ().

This is the set ©}(X,) of “THETA FUNCTIONS™.

W Tour of Knots & Theta Functions



Hilbert space of quantization of Jacobian variety w

Explicit basis

Lemma (Basis for ©O}(X,))

A Basis for O (%) is given by the “theta series™

00 = Y oo (2min |5 (B ) (% m) (B m) ) ).

neZ8

forpefo,....N—1}8 =178,

DEGCRINIIGCI Tour of Knots & Theta Functions



Action of quantized observables

Schrodinger representation

Theorem (Weyl quantization)

QUANTIZED EXPONENTIALS act on ®(E,) as
27| Tx+ T il iy T 72[.LT Mn
op(e (p'x+q y)) O(z) = v(p'a q) 9u+p(z)'

—  “SCHRODINGER REP” of FINITE HEISENBERG GROUP 0on @D(Zg)

N



sl Schrodinger representation J
_ Action of quantized observables

Theorem (Weyl quantization)

QUANTIZED EXPONENTIALS act on ®(E,) as
27| Tx+ T il iy T 72[.LT Mn
op(e (p'x+q y)) O(z) = v(p'a q) 9u+p(z)'

—  “SCHRODINGER REP” of FINITE HEISENBERG GROUP 0on @D(Zg)

Theorem (Space of linear operators)

The space L(OV(%,)) of LinEAR 0PERATORS on ©(X,) has basis

op(ez’”(” xtq y)) , where p, q € Z5,.
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We turn to the other space from our goal:

space of THETA FUNCTIONS | space of SKEINS in
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we now focus here
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UEZM Overview

We turn to the other space from our goal:

space of THETA FUNCTIONS | space of SKEINS in
associated with sURFACE " | enclosed HANDLEBODY

v

we now focus here

This construction is more direct:
H
8

@ construct
skein module

Ln(Hg)

QLTI Tour of Knots & Theta Functions
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Links & parallel powers

Fix smooth compact oriented 3-mrp M.
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Links & parallel powers

Fix smooth compact oriented 3-mrp M.
Definition (Framed links)

“framed link” —— smooTH EMBEDDING of finite disjoint
union of (ORIENTED) ANNULI ST X [0, 1]

AMBIENT 1SOTOPY classes }

Link(M) — { of framed links in M

Definition (Parallel power)
The nth “parallel power” KN of FrameDp knOT K < M is obtained by

icti 1 LA Y A I A
restricting v to S' x | |,_, [n+ e T T ZH} .
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Links & parallel powers

Fix smooth compact oriented 3-mrp M.
Definition (Framed links)

“framed link” —— smooTH EMBEDDING of finite disjoint
union of (ORIENTED) ANNULI ST X [0, 1]

. AMBIENT 1SOTOPY classes
Link(M) ~ — { of framed links in M }
Definition (Parallel power)
The nth “parallel power” K”N of FRAMED KNOT K «— M is obtained by

1 [V i
restricting v to S x |||_, ,H_] o T

- Pe- (D



sl Linking number skein module
: & the reduced version

Definition (Linking number skein module)

C[t, t7 "] Link(M) — free C[t,t '|-mopuLE over Link(M)
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sl Linking number skein module
: & the reduced version

Definition (Linking number skein module)
C[t, t7 "] Link(M) — free C[t,t '|-mopuLE over Link(M)

B L(M) = C[t,t" "] Link(M)/ ~ for “SKEIN RELATIONS”

/ —1 links identical except
in embedded ball

m L~LuC}

DEGCRITICEGCI Tour of Knots & Theta Functions
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Linking number skein module

& the reduced version

Definition (Linking number skein module)
C[t, t7 "] Link(M) — free C[t,t '|-mopuLE over Link(M)

B L(M) = C[t,t" "] Link(M)/ ~ for “SKEIN RELATIONS”

/ —1 links identical except
in embedded ball

m L~LuC}

L(M) is the “linking number skein MODULE”; its elements are “skeins”.
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Linking number skein module

& the reduced version

Definition (Linking number skein module)
C[t, t7 "] Link(M) — free C[t,t '|-mopuLE over Link(M)

B L(M) = C[t,t" "] Link(M)/ ~ for “SKEIN RELATIONS”

/ —1 links identical except
in embedded ball

m L~LuC}

L(M) is the “linking number skein MODULE”; its elements are “skeins”.

Ln(M) = L(M)/ ~ for further skein relations
M to~ e%a
L~ LUK

Ln(M) is the “rRepucep linking number skein module”.

D



ol Skein algebra of a surface
= skein algebra of a cylinder over that surface

Definition (Skein algebra of surface)
We can define an aALcerA L(X) for smooth compact oriented surFace X:

ORIENTATION of X X [0,1] <— orientation of X
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ol Skein algebra of a surface
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ol Skein algebra of a surface

= skein algebra of a cylinder over that surface

Definition (Skein algebra of surface)

We can define an aALcerA L(X) for smooth compact oriented surFace X:
ORIENTATION of X X [0,1] <— orientation of X
probuCT on L£(X X [0,1]) «— cLuiNG X X [0, 1] to itself

skein (y) of MuLTICURVE ¥y +—  EMBEDDING X as X x {1/2}in
Y x [0,1]

Write £(X) := L(X x [0, 1]). A similar def applies to Ly(X).
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.. of a surface on the skein module of the enclosed handlebody

Left action of skein algebra

Fix a CANONICAL BASIS, @y, . .., dg, by, ..., by of Hi(Xg,7Z).
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Left action of skein algebra @I

.. of a surface on the skein module of the enclosed handlebody
Fix a CANONICAL BASIS, @y, . .., dg, by, ..., by of Hi(Xg,7Z).

Lemma (Hg as cylinder)

J orientation preserving pirreo f: ¥ ¢ — OHg, depending only on by, ..., by,
such that

m each f(by) bounds an EMBEDDED DIsk;

m Hy is realized as Yo g1 % [0, 1] sof(a1),...,f(ag) is a cANONICAL BASIS

for Hi(Hyg, Z2).

Action of Ln(X4) on Ly(Hy)
By GLUING X g X [0, 1] to Hy under f, we get an axn of Ly(Xz) on Ly(H,).



6 NN
b THE ISOMORPHISM

O OO 3\/3
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Z3 Overview

We finally remark on the isomorphism:

space of THETA FUNCTIONS | space of SKEINS in
associated with surrace [ . | enclosed HANDLEBODY

e Loty

now focus here

e, Lu(H) = O(%)
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28 Operator algebras

Fix a CANONICAL BASIS, ay, . . ., ag, by, ..

., bg of Hy(Zg, Z).
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28 Operator algebras

Fix a CANONICAL BASIS, @y, . .., dg, by, ..., by of Hi(Xg,Z).

Lemma (Basis for £x(X,))

Ln(Xg) has sasis ((p. q) ), for (p, q) € 78 = H\(X4,Z).

DEGCRITIEGCI Tour of Knots & Theta Functions
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Operator algebras

Fix a CANONICAL BASIS, @y, . .., dg, by, ..., by of Hi(Xg,Z).

Lemma (Basis for £x(X,))
Ln(Zg) has sasis ((p, q) ), for (p, q) € Z* = Hy(Xy, Z).

Theorem (Operator algebras)
Ln(Z,) = L(OY(Zy)). as algebras.
“Proof™.

By above lemma & prior basis for L(®}(X,)), isomorphism is

((p.q)) > op &'t}

DEGCRINICEGIN Tour of Knots & Theta Functions
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Hilbert spaces

Lemma (Basis for Ly(H,))

Ln(Hg) = Ln(Xo,g+1 % [0, 1]) has BAsis (y), where «y ranges over
multicurves representing homology classes of Hy(Xo,g41, Zn)
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Ln(Hg) = Ln(Xo,g+1 % [0, 1]) has BAsis (y), where «y ranges over

multicurves representing homology classes of Hy(Xo,g41, Zn)
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Hilbert spaces

Lemma (Basis for Ly(Hg))
Ln(Hg) = Ln(Xo,g+1 % [0, 1]) has BAsis (y), where «y ranges over

multicurves representing homology classes of Hy(Xo,g41, Zn)

Theorem (Main result)

Ly(Eg) --- = --o LON(Z))

o 0

Ly(Hg) ————— OF(Z,)

DEGCRINICGCI Tour of Knots & Theta Functions
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Hilbert spaces @I

Lemma (Basis for Ly(H,))

Ln(Hg) = Ln(Xo,g+1 % [0, 1]) has BAsis (y), where «y ranges over
multicurves representing homology classes of Hy(Xo,g41, Zn)

Theorem (Main result)
Ly(Zg) ---2-- ’—(@(/U/_%g))
Ly(Hg) —————— ON(Z,)
O E—"

where y ranges over MULTICURVES in Eo g1 = Hy, [Y] € Hi(Hg, Zn) = Z§,.
This iso INTERTWINES the resp actions.

DEGCRITIEGCI Tour of Knots & Theta Functions
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Proof outline.
Showing this iso is an INTERTWINER:

consider MULTICURVE (p, q) C Xg;

consider MULTICURVE ¥ = a

[T [Tk
1 4

[Th
- ay £ C Togt
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LZ Overview of the proof

Proof outline.
Showing this iso is an INTERTWINER:

consider MULTICURVE (p, q) C Xg;

consider MULTICURVE v = al1gl#2 ... allgmg C Yo,g41

compute
I —plq—2pT +
((P, 1)> . <al\m ”.agﬂg> FPa—2 q<all\u1+p1 .“aélz\ﬂg Pg>

n [[1+p1 [|kg+pg n
~y correponds to 0,,(z), and a; e a to 0,01 p(2)
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LZ Overview of the proof &I

Proof outline.

Showing this iso is an INTERTWINER:

consider MULTICURVE (p, q) C Xg;

consider MULTICURVE v = al1gl#2 ... allgmg C Yo,g41

compute
[l llrgy _ —p'a—2pTq, |lni+pi [l pg+pg
((p,q)) (@ crrdg )=t (@ Tt dg )
+
7 correponds to 6}}(z), and allmre. agug " to O p(2)
. im . N
setting t = e N, we recognize the SCHRODINGER REP

op (627Ti(pTX+qTY)) . GE(Z) — e*%(PT"*Z“T") Hﬂﬂ,(z).



BN Overview of the proof

Observation / lamentation

Of course, we have relied on BAsEes for each of

@D(Zg)a ‘CN(Hg)’ L(@/I:I/(zg)),

Ln(Xg).

M)
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Concluding remarks

Why the result is interesting

It gives a much simpler ToroLocicAL VERSION of the SCHRODINGER REP
on theta functions:

Op(eZWi(prx+qu)) ) 92(1) — e—%(PTq—ZuTq) Q}HHFP(Z)'
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Concluding remarks

Why the result is interesting

It gives a much simpler ToroLocicAL VERSION of the SCHRODINGER REP
on theta functions:

Op(eZWi(prx+qu)) ) 92(1) — e—%(}”q—hﬂq) elnHrP(Z)'

It leads to a UNIFIED THEORY of theta functions on a Riemann surface
& skeins in the enclosed handlebody in the form of a TFQT.

Connection to my work

The TQFT in question is essentially U(1) CHERN-SIMONS THEORY. In the
more common SU(2) case,

J(Xg) — wmobuLispack of flat SU(2) connections on Xg;
SKEIN RELATIONS are more complicated,;

...otherwise, same result. My work involves making this iso BAsIs-FREE.
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