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Estimating the error in the merged reflection intensities requires a full

understanding of all the possible sources of error arising from the measure-

ments. Most diffraction-spot integration methods focus mainly on errors arising

from counting statistics for the estimation of uncertainties associated with the

reflection intensities. This treatment may be incomplete and partly inadequate.

In an attempt to fully understand and identify all the contributions to these

errors, three methods are examined for the correction of estimated errors of

reflection intensities in electron diffraction data. For a direct comparison, the

three methods are applied to a set of organic and inorganic test cases. It is

demonstrated that applying the corrections of a specific model that include

terms dependent on the original uncertainty and the largest intensity of the

symmetry-related reflections improves the overall structure quality of the given

data set and improves the final Rall factor. This error model is implemented in

the data reduction software PETS2.

1. Introduction

The use of electron diffraction (ED) for crystal structure

determination has grown rapidly over the past decade, parti-

cularly thanks to the introduction of 3D methods for the

systematic acquisition and analysis of diffracted intensities. 3D

ED techniques have been shown to be powerful for structure

determination of crystals that are too small for single-crystal

X-ray diffraction analysis. These techniques benefit from the

strong Coulomb interaction between electrons and matter.

This allows 3D single-crystal ED to be obtained from nano-

crystals that are about eight orders of magnitude smaller in

volume than those needed for single-crystal X-ray diffraction.

Several 3D ED techniques, which share the common concept

of tilting a crystal around the goniometer axis and acquiring a

series of ED patterns, have been presented and developed

over the years. These include automated diffraction tomo-

graphy (ADT) (Kolb et al., 2007), rotation electron diffraction

(RED) (Zhang et al., 2010) and precession electron diffraction

tomography (PEDT) (Mugnaioli et al., 2009). Since the rise of

sensitive detectors with negligible readout time, continuous-

rotation 3D ED has become the most popular protocol for

data acquisition (Nederlof et al., 2013; Nannenga et al., 2014;

Wang et al., 2017). Several software suites are available

nowadays for 3D ED data reduction, thus allowing a 3D

visualization of the data set, the determination of cell para-

meters, reconstruction of the 3D reciprocal lattice and

extraction of reflection intensities with their estimated stan-

dard uncertainties (e.s.u.’s). Determining the e.s.u.’s of the
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reflection intensities is challenging. Error estimates of reflec-

tion intensities from electron-counting statistics alone may

underestimate the real uncertainty associated with the

measurements. The accurate estimation of e.s.u.’s is important

throughout the process of crystallographic structure analysis.

The result of structure refinement and the accuracy of the

refined parameters depend on the correct estimation of the

e.s.u.’s.

The determination of reflection e.s.u.’s is an important part

of the data reduction process. It has turned out that pure

counting-statistics-based estimates are not optimal, and other

effects must be included in the determination of e.s.u.’s. The

model describing the adjustment of e.s.u.’s is called the error

model. The practice of refining the error model and correcting

for various effects has a long history (Diamond, 1969; Abra-

hams & Keve, 1971; Rossmann et al., 1979; Schwarzenbach et

al., 1989; Howell & Smith, 1992; Leslie, 1999; Evans, 2006,

2011).

This paper aims to analyse methods of treating the error

estimates of the integrated intensities from 3D ED data for the

purpose of kinematical refinement and indicate the best error

model. All the structures studied in this paper are processed

using PETS2 (Palatinus et al., 2019) and refined using

JANA2020 (Petřı́ček et al., 2023), but the general ideas also

apply to other implementations of 3D ED data reduction

software.

2. Experimental, data processing and refinement setup

Throughout the text we use three data sets to assess and

validate the presented methods. The materials are the natural

zeolite natrolite, (S)-(+)-ibuprofen and the amino acid

l-alanine.

2.1. Natrolite

Continuous-rotation 3D ED experiments were performed

at different spots of the selected crystal which showed signs of

mosaicity of about 0.15�. The crystal diffracted up to a reso-

lution d* of about 1.6 Å�1 at a temperature of 293 K (see

Tables 1 and 2).

A centre of symmetry was added in the averaging process in

JANA2020. The default weighting scheme with weights was

w ¼ 1=½�ðIobsÞ
2
þ ð0:01IobsÞ

2
� and an extinction correction was

applied in the refinement. The model was refined against F2

and against all reflections. The geometry of the water molecule

was restrained to distances of 0.9584 Å between H atoms and

their relative O atom and to an angle of 104.45�. All non-H

atoms were refined with anisotropic displacement parameters

(ADPs). A riding model was used for the ADPs of H atoms,

with an extension factor of 1.2. Reference covalent bond

lengths of non-H atoms for the calculation of the root-mean-

square deviation (RMSD) were taken from a single-crystal

X-ray diffraction (XRD) study on natrolite (Capitelli &

Derebe, 2007).

2.2. (S)-(+)-ibuprofen

Continuous-rotation 3D ED experiments were performed

at different spots of two selected crystals which showed signs

of mosaicity of 0.135�. Two data sets were collected and then

merged. The crystals diffracted up to a resolution of about

1 Å�1 at a temperature of T = 95.15 K (see Tables 3 and 4).

A centre of symmetry was added in the averaging process in

JANA2020. The default weighting scheme with weights was

w ¼ 1=½�ðIobsÞ
2
þ ð0:01IobsÞ

2
� and an extinction correction was

applied in the refinement. The model was refined against F2

and against all reflections. H atoms bonded to carbon were

placed in idealized positions. H atoms bonded to oxygen were

restrained at distances of 0.98 Å away from their relative O
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Table 1
Measurement conditions of natrolite.

Microscope FEI Tecnai G2 20
Detector (type) Olympus SIS Veleta (CCD)
3D ED data sets One continuous rotation
� (Å) 0.02508
T (K) 293
�min, �max, �� (�) �50.0, 50.0, 0.6

Table 2
Sample overview of natrolite crystal.

Empirical formula Na2(Al2Si3O10)(H2O)2

Z 8
Crystal system Orthorhombic
Space group Fdd2
a, b, c (Å) 18.2872 (11), 18.6661 (14), 6.6222 (3)
�, �, � (�) 90, 90, 90
V (Å3) 2260.5 (2)
d*max (Å�1) 1.6
Rint(all) 19.80%
Mosaicity (�) 0.15
Completeness 99%

Table 3
Measurement conditions of (S)-(+)-ibuprofen.

Microscope FEI Tecnai G2 20
Detector (type) ASI Cheetah
3D ED data sets Two continuous rotations
� (Å) 0.02508
T (K) 95.15
�min, �max, �� (�) #1 �55.0, 30.0, 0.25
�min, �max, �� (�) #2 �50.0, 40.0, 0.25

Table 4
Sample overview of (S)-(+)-ibuprofen crystal.

Empirical formula C13H18O2

Z 4
Crystal system Monoclinic
Space group P21

a, b, c (Å) 12.368 (4), 8.021 (3), 13.536 (5)
�, �, � (�) 90, 112.24 (3), 90
V (Å3) 1242.9 (8)
d*max (Å�1) 1.0
Rint(all) 16.59%
Mosaicity (�) 0.135
Completeness 85%



atom and the COH angle of molecule A was restrained to be

equal to its corresponding analogue in molecule B.

XRD-based reference atomic distances for the calculation

of RMSD were taken from King et al. (2011).

2.3. L-alanine

Continuous-rotation 3D ED experiments were performed

at different spots of a selected crystal which showed signs of

mosaicity of 0.3�. One data set was collected and used. The

crystal diffracted up to a resolution of about 2.0 Å�1 at a

temperature of T = 100 K (see Tables 5 and 6).

A centre of symmetry was added in JANA2020 in the

averaging process. The default weighting scheme with weights

was w ¼ 1=½�ðIobsÞ
2
þ ð0:01IobsÞ

2
� and an extinction correction

was applied in the refinement. The model was refined against

F2 and against all reflections. All non-H atoms were refined

with ADPs. A riding model was used for the ADPs of H atoms,

with an extension factor of 1.2.

XRD-based reference atomic distances for the calculation

of RMSDs were taken from Parsons et al. (2013).

3. Methods of adjustment of error estimates

In this section, we examine three approaches for the correc-

tion of error estimates. In PETS2, the integral intensity of a

reflection on a single diffraction pattern is calculated as

I ¼
P

S

pi �
P

S

bi; ð1Þ

where pi is the detector count in pixel i in the peak area S and

bi is the estimated background value for the same pixels. The

summation runs over a region S. The background values are

estimated from the detector count in the rim around the peak

region S: hbi ¼ ½1=ðnrimÞ�
Pnrim

j¼1 pj, where nrim is the number of

pixels in the rim. The total estimated background in the region

S is given by nShbi and the background-corrected integrated

intensity can then be expressed as

I ¼
XnS

i¼1

pi �
nS

nrim

Xnrim

j¼1

pj: ð2Þ

PETS2 employs the following formula to calculate the e.s.u.

of each pixel (Waterman & Evans, 2010):

�2 pið Þ ¼ G�pi þ  ; ð3Þ

where G, � and are the noise parameters characterizing each

detector. � is a ‘cascade factor’, accounting for the intensity-

dependent increase of variance above the Poisson-statistics

value, and  is a ‘pixel factor’ which corresponds to the

variance of pixel values of a dark image. G is the gain factor of

the detector used that converts the number of incident elec-

trons to the number of counts in the digitized diffraction

image (detector-readout values).

Then, using the propagation-of-errors method, the variance

of the integrated intensity can be expressed as

�2ðIÞ ¼ G�
XnS

i¼1

pi þ
nS

nrim

� �2 Xnrim

j¼1

pj

( )

þ nS 1þ
nS

nrim

� �
: ð4Þ

This represents the variance in the integrated intensity, taking

into account the Poisson noise and detector-related increase of

the variance. It is crucial to have reasonable values of G, � and

 to obtain accurate error estimates (Waterman & Evans,

2010).

However, these Poisson-based standard deviations under-

estimate the true e.s.u.’s, and additional adjustment needs to

be made to these e.s.u.’s to address any additional uncertainty

introduced by other sources of errors than the Poisson noise

and detector, such as instrumental instability. One way to deal

with these errors is to inflate the error estimates by adding

extra terms that account for the additional uncertainty.

3.1. Methodology

The starting idea is based on the analysis of intensity

distribution of multiply measured and symmetry-equivalent

reflections. In an ideal data set, these reflections should have

identical intensities. In practice, this is not the case due to, for

example, statistical noise and non-kinematical scattering. The

e.s.u.’s of individual reflections should thus properly char-

acterize any deviation from the expected equality of multiply

measured reflections. Based on this concept, various methods

can be devised that produce better standard uncertainty

estimates. Using such a method has become a de facto stan-

dard in modern data-processing software. However, to our

knowledge, its validity for 3D ED data has not yet been

investigated. There are at least two reasons why it cannot be

automatically assumed that the method developed for X-ray

diffraction data is also valid for 3D ED data. First, the nature

of errors in the 3D ED data is different. The most significant

deviations from the ideal kinematical intensities do not arise
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Table 5
Measurement conditions of l-alanine.

Microscope FEI Tecnai G2 20
Detector (type) ASI Cheetah
3D ED data sets One continuous rotation
� (Å) 0.02508
T (K) 100
�min, �max, �� (�) �40.0, 40.0, 0.5

Table 6
Sample overview of l-alanine crystal.

Empirical formula C3H7NO2

Z 4
Crystal system Orthorhombic
Space group P212121

a, b, c (Å) 5.7733 (11), 5.9524 (12), 12.247 (2)
�, �, � (�) 90, 90, 90
V (Å3) 420.85 (14)
d*max (Å�1) 2.0
Rint(all) 11.11%
Mosaicity (�) 0.3
Completeness 56%



from random errors and instrumental effects, but from the

dynamical diffraction effects. These effects are unavoidable in

3D ED data. Strictly speaking, these effects are not sources of

errors in the data, and they should be modelled as part of the

calculation of calculated intensities in the refinement process

(Palatinus, Petřı́ček & Corrêa, 2015; Palatinus, Correa et al.,

2015). However, when kinematical approximation is used in

the refinement, these effects effectively turn into errors in

reflection intensities which, although not random, may be

reflected in the values of e.s.u.’s. The second reason for special

consideration is that, compared with X-ray diffraction data,

the spread of the equivalent intensities around the mean value

is typically much larger than in X-ray data. This is again caused

mainly by the dynamical diffraction, but also often by radia-

tion damage of the crystal, and it is reflected in increased

values of Rint, which frequently reach 20% or more (Bruhn et

al., 2021). This large spread may lead to larger corrections to

e.s.u.’s and may induce effects that are not significant in X-ray

diffraction data. The analysis in this paper shows this is indeed

the case.

In the following, we analyse and compare three models for

adjusting the e.s.u.’s of three different 3D ED experimental

data sets. The efficiency of each method is assessed in a

number of ways. We first evaluate the quality of each error

model by checking the normality of the obtained distribution

of residuals. A kinematical refinement is then performed and

the refinement figures of merit are compared. The assessment

is also based on comparing the RMSD of refined covalent

bond lengths and the RMSD of atomic shifts for all non-H

atoms with reference structures.

3.2. Model 0: no adjustment

For comparison purposes, the model with no adjustment to

e.s.u.’s is also included in the analysis and it is denoted model

0. In this model, the e.s.u.’s are calculated using equation (4)

without further modifications.

3.3. Model 1: using equivalent errors

In the first adjustment model, the reflection e.s.u.’s are

calculated from the variation of symmetry-related intensities

around their mean. The e.s.u. is calculated as a sample stan-

dard deviation from the n measurements of the symmetry-

equivalent reflections. Given a reflection index h with n

measurements of the intensity of h or its symmetry equivalent,

we define the lth measurement of h as Ihl. All Ihl are associated

with a common e.s.u. �ðIhÞ defined as

�ðIhÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
l¼1ðIhl � hIhiÞ

2

n� 1

s
: ð5Þ

The division by ðn� 1Þ instead of n is known as Bessel’s

correction, and it corrects for the bias in the estimation of the

population standard deviation from only the sample of the

population. The mean of all the symmetry-related measure-

ments is used to estimate the reflection intensity hIhi:

hIhi ¼

Pn
l¼1 Ihl

n
: ð6Þ

This model does not use the original Poisson counting error

estimates and assumes that a large enough sample of

equivalent reflections is available to reliably estimate the

uncertainty. This assumption is often not well fulfilled because

3D ED data sets from low-symmetry crystals, in particular,

exhibit a limited completeness and redundancy. In extreme

cases, a number of reflections may be measured only once (n =

1), and their e.s.u.’s cannot be calculated using the above

relation. To include these reflections in the structure refine-

ment, we construct a lookup table which allows estimation of

the e.s.u.’s of those reflections from the e.s.u.’s of other

reflections with similar resolution and intensity. Firstly, we sort

the reflections in order of increasing intensity and then we

divide them into ten intensity bins with N=10 reflections in

each bin (N is the total number of reflections). The second

binning divides the reflections into resolution bins with a bin

width of 0.2 Å�1. Then the average of e.s.u.’s of all reflections

in the same bin is calculated and assigned as the e.s.u. of all

individually measured reflections in the same bin. The resi-

duals ðI � hIiÞ=�ðIÞ in the original data (model 0) clearly

deviate from a normal distribution as shown in Fig. 1(a) for

natrolite, Fig. 2(a) for (S)-(+)-ibuprofen and Fig. 3(a) for l-

alanine. Figs. 1(b), 2(b), 3(b) show the analogous figures

corresponding to the adjusted data according to model 1. The

straight horizontal segments (constant steps) in the normal

probability plot of this model at the sample quantile of �0.707

and 0.707, and the peaks in the histograms of normalized

deviations at �0.707 are due to reflections measured twice

(n = 2), as follows from equations (5), (6) and (8) for the

special case of n = 2. This feature and the general mismatch

between the distribution of the residuals and the expected

normal distribution show that model 1 is not optimal for low-

multiplicity data sets. The analysis of the structure refinements

shows (Section 4.1) that this model leads to a worse (ibuprofen

and l-alanine) or only marginally better (natrolite) structure

model than model 0.

3.4. Model 2: three-parameter model using average inten-
sities of symmetry-related reflections

This model was first introduced by Evans (2006). It uses the

normal probability plot (Abrahams & Keve, 1971) to adjust

the error estimates of the integrated intensities. The model

introduces a small number (two or three) of correction para-

meters that are used to modify the e.s.u.’s. The correction

factors are optimized to make the normal probability plot as

linear as possible. In this paper, we follow the notations of the

three correction parameters from Brewster et al. (2019). The

corrected error estimates are given by

�0ðIhlÞ ¼ sfac

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2ðIhlÞ þ s2

BhIhi þ s2
addðhIhiÞ

2

q
; ð7Þ

with sfac, sB and sadd being the correction parameters. Two

of the three parameters have a physical interpretation.

According to Evans (2011), sfac is understood as a correction
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factor for unknown errors independent of the intensity value

including uncertainty in the detector gain used to estimate

Poissonian errors. It acts like a scaling factor. sadd is a para-

meter that accounts for any errors that are proportional to the

intensity such as instrument instabilities. sB has no direct

physical meaning and it is excluded in some programs [such as

XDS (Kabsch, 2010)], but it is an obvious addition to the

parameter set, and in this work we include it to provide

maximum flexibility of the fitting.

3.4.1. Normalized deviation. Estimates of error such as

�ðIhlÞ represent the statistically expected deviation of the

measurement’s intensity Ihl from the unknown population

mean value. Assuming a Gaussian distribution of the intensity

errors, the normalized deviations of the measurements Ihl

from the mean value of the symmetry-related reflections hIhi

are expected to be distributed according to a standard normal

distribution. The normalized deviations �hl for Ihl are given by

�hl ¼
Ihl � hIhi

�ðIhlÞ
: ð8Þ

According to Evans (2006), hIhi is the mean of the

measurements of h excluding the lth reflection Ihl. In this

work, we consider hIhi as the average intensity over all

observations of reflection h including the lth reflection:

hIhi ¼

Pn
l¼1 Ihl

n
: ð9Þ

This means that for reflections measured only once, where

Ihl ¼ hIhi, the corresponding normalized deviation will be 0.

This choice affects mainly the refinement of the sfac parameter.

In the approach used by Evans (2006), excluding a strong

reflection from the calculation of hIhi, the resulting average

intensity is reduced. The normalized deviation will conse-

quently get larger, leading to larger error estimates, higher sfac
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Figure 1
Distribution of the normalized deviations of each model (blue histogram) versus the normalized Gaussian distribution (in red) for natrolite. The blue
curve is the best-fit Gaussian distribution to the histogram. The normal probability plot (blue dotted line) represents the normalized deviations versus
the theoretical quantiles of natrolite for all the data with N = 5362 reflections (not including eight individual single reflections having zero delta). The
straight line is the best-fit line to the normal probability plot. (a) Original model normalized deviations and normal probability plot of original
uncorrected error estimates data (model 0). (b) Adjusted normalized deviations and normal probability plot of model 1. (c) Adjusted normalized
deviations and normal probability plot of model 2. (d) Adjusted normalized deviations and normal probability plot of model 3.



and consequently fewer observed reflections (see Section 5.1

for discussion of the meaning of observed reflections in 3D ED

data). When all reflections are included in the calculation of

the average, the sfac parameter is reduced, leading to a larger

number of observed reflections. In the work of Evans (2006),

the average intensity hIhi is also a weighted average, where the

weights are given by inverse variance estimates of the indivi-

dual observations. This approach biases the average intensity

towards the weaker reflections, which have, in general, lower

e.s.u.’s and hence higher weights, leading to the same effects as

excluding strong reflections from the average, discussed

above. We also tested this approach and concluded that the

non-weighted average hIhi gives better results.

The aim of the method is adjustment of the parameters sfac,

sadd and sB to make the distribution of the normalized devia-

tions as close as possible to the standard normal distribution,

i.e. a Gaussian distribution centred on zero with a standard

deviation of 1.

3.4.2. Normal probability plot technique. The values of the

correction parameters sfac, sB and sadd can be conveniently

determined by optimizing the normal probability plot

(Abrahams & Keve, 1971). The normal probability plot is a

plot of the sorted normalized deviations �i versus the perfectly

distributed quantiles xi expected for a normal distribution.

The values of xi are known as the theoretical quantiles and

they correspond to a normal distribution of zero mean and

standard deviation of 1. A normal probability plot of a vari-

able with perfect standard normal distribution is a line with

intercept 0 and slope 1. To find the matching normal distri-

bution quantiles, we first calculate the cumulative distribution

function (CDF) of the standard normal distribution. It is

usually denoted by � and has the general form

432 Malak Khouchen et al. � Optimal estimated s.u.’s of reflection intensities Acta Cryst. (2023). A79, 427–439

research papers

Figure 2
Distribution of the normalized deviations of each model (blue histogram) versus the normalized Gaussian distribution (in red) for (S)-(+)-ibuprofen.
The blue curve is the best-fit Gaussian distribution to the histogram. The normal probability plot (blue dotted line) represents the normalized deviations
versus the theoretical quantiles of (S)-(+)-ibuprofen for all the data with N = 3855 reflections (not including 37 single reflections having zero delta). The
straight line is the best-fit line to the normal probability plot. (a) Original model normalized deviations and normal probability plot of original
uncorrected error estimates data (model 0). (b) Adjusted normalized deviations and normal probability plot of model 1. (c) Adjusted normalized
deviations and normal probability plot of model 2. (d) Adjusted normalized deviations and normal probability plot of model 3.



�ðxÞ ¼
1ffiffiffiffiffiffi
2�
p

Zx

�1

expð�t2=2Þ dt: ð10Þ

The ith element of a sorted sample with standard normal

distribution represents the value with �ðxÞ ¼ i=ðN þ 1Þ.

Conversely, the inverse of the CDF xi ¼ ��1½i=ðN þ 1Þ� gives

the expected value of the ith element of a sorted sample, i.e.

the so-called theoretical quantile of the standard normal

distribution.

The normal probability plot thus contains N points with

coordinates f��1½i=ðN þ 1Þ�; �ig; i ¼ 1; 2; . . . ;N, where �i is

the ith normalized deviation in the list sorted from the smallest

to the largest normalized deviation. The individual reflections

having �i ¼ 0 are not included in the list. Figs. 1, 2 and 3 show

normal probability plots for different error models for all

three experimental data sets. The values of sfac, sB and sadd can

be adjusted to make the normal probability plot as close to the

ideal straight line with slope 1 as possible.

3.4.3. Initial parameters. Evans (2006) proposed obtaining

the initial value of sfac by fitting the slope of the central part of

the normal probability plot in the theoretical quantiles range

between �0.5 and 0.5. However, we observed that the least-

squares fitting procedure is so robust that good convergence is

obtained even if the fit starts from the default values sfac ¼ 1,

sB ¼ 0 and sadd ¼ 0.

3.4.4. Corrected error estimates. Using equation (7) for

�0ðIhlÞ, we calculate the adjusted error estimates using the

current set of correction parameters. Then, the new normal-

ized deviations �0hl are computed using

�0hl ¼
Ihl � hIhi

�0ðIhlÞ
: ð11Þ
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Figure 3
Distribution of the normalized deviations of each model (blue histogram) versus the normalized Gaussian distribution (in red) for l-alanine. The blue
curve is the best-fit Gaussian distribution to the histogram. The normal probability plot (blue dotted line) represents the normalized deviations versus
the theoretical quantiles of l-alanine for all the data with N = 3255 reflections (not including 197 single reflections having zero delta). The straight line is
the best-fit line to the normal probability plot. (a) Original model normalized deviations and normal probability plot of original uncorrected error
estimates data (model 0). (b) Adjusted normalized deviations and normal probability plot of model 1. (c) Adjusted normalized deviations and normal
probability plot of model 2. (d) Adjusted normalized deviations and normal probability plot of model 3.



These normalized deviations are then sorted, and a

new normal plot is calculated. To obtain optimal values of

the correction parameters, we minimize the quantityPN
i¼1ð�

0
i � xiÞ

2, which designates the sum of the squared

difference between the adjusted normalized deviations and

the theoretical quantiles. Note that, after one minimization,

the normalized deviations must be resorted, as their order may

change.

After sorting, a new minimization must be performed, and

the supercycle repeated until convergence. As the number of

data points is large and the number of fitted parameters is

small, the convergence is usually rapid and robust. Figs. 1(a),

2(a) and 3(a) show the original and Figs. 1(c), 2(c) and 3(c) the

optimized normal probability plots and the histograms of the

adjusted normalized deviations and their comparison with the

standard normal distribution of natrolite, (S)-(+)-ibuprofen

and l-alanine, respectively.

3.5. Model 3: three-parameter model using the largest
intensities of symmetry-related reflections

Model 2 provides a clear improvement in comparison with

model 1 or with unmodified e.s.u.’s. However, upon closer

inspection, this model suffers from certain inadequacies. As

shown in Figs. 1(c), 2(c) and 3(c), the normal probability plots

representing the adjusted normalized deviations versus the

theoretical quantiles in the case of model 2 do not match the

line of slope 1, especially at the tails. By investigating the

individual cases, we realized that model 2 provides poor

results, especially for reflections that exhibit a considerable

variation among the intensities of the symmetry-related

reflections, i.e. if the variation is large compared with the

intensity value itself. Upon optimization of the three error-

model parameters, this model tries to compensate for this

variation by assigning very large error estimates to very strong

reflections. This leads to, among other effects, a notable

reduction in the number of observed reflections. This problem

is not very severe for typical X-ray diffraction data, where the

symmetry-related reflections tend to have very similar inten-

sities, but it is significant in 3D ED data, where the intensity

variation can be very large. To correct this problem, we

propose a new model (model 3), which is very similar to model

2 except that in this correction method we use the largest

intensity I
largest
h of the symmetry-related reflections for the

calculations of the corrected error estimates rather than the

average intensity hIhi. The corrected error estimates are thus

given by

�0ðIhlÞ ¼ sfac

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2ðIhlÞ þ s2

BI
largest
h þ s2

addðI
largest
h Þ

2

q
: ð12Þ

Here I
largest
h is the largest intensity of all the symmetry-related

reflections of reflection h. The procedure for the optimization

of the model parameters is the same as in model 2. The effect

of this change is the decrease of the fitted values sfac, sB and

sadd. For reflection groups with little variation around hIhi this

means a smaller �0ðIhlÞ, because the error-model parameters

are smaller and hIhi � I
largest
h . However, for reflection groups

with large variation, the smaller values of the error-model

parameters are compensated by replacing the (smaller) hIhi by

the larger I
largest
h . The net result is then a relative increase of

the �0ðIhlÞ of reflection groups with a large variation compared

with the reflection groups with a small variation.

Figs. 1(d), 2(d) and 3(d) show the final normal probability

plots for this model. These can be compared with the other

models. There is a pronounced improvement in the fitting of

the normalized deviations of the error estimates. The

improvement is also visible in the distribution of the

normalized deviations of this model which shows that the

adjusted normalized deviations are more accurately normally

distributed in model 3 than in any other model including

model 2.

3.5.1. Outlier rejection. There is usually a group of errors

that do not match the statistical distribution. They are most

frequently caused by unpredictable experimental effects that

cannot be corrected for. Measurements affected by such errors

are known as outliers (Blessing, 1997). It is advantageous to

exclude such outliers from the final data set, as they most

likely indicate an erroneous measurement that cannot be

properly fitted by the structure model.

We tested a number of outlier rejection algorithms,

including the algorithm used in SCALA (or AIMLESS)

(Evans, 2006). Finally, we converged to the use of Tukey’s

simple but very robust rule of thumb that is based on the

quartiles of the given data set (Tukey, 1977): firstly, calculate

the first quartile Q1 of �0hl (25% of the normalized residuals are

less than or equal to this value) and the third quartile Q3 (25%

of the �0hl values are greater than or equal to this value).

Outliers are then defined as all values that fall outside the

range

Q1 � kðQ3 �Q1Þ;Q3 þ kðQ3 �Q1Þ
� �

: ð13Þ

Tukey proposed using k ¼ 1:5 to identify outliers.

As the exclusion of outliers has an impact on the normal

probability plot and hence on the refined error model, an

iterative procedure needs to be adopted. Firstly, consider the

original data set before applying any corrections to the e.s.u.’s

and apply Tukey’s outlier rejection procedure as described

above. In the case of only two equivalent reflections, if one is

marked as an outlier, the other is marked too. Then, apply the

error-model refinement to calculate the values of the correc-

tion parameters sfac, sB and sadd, excluding the outliers from

the calculation. Use the obtained values to correct the e.s.u.’s

of all the reflections including the outliers. Apply Tukey’s

outlier rejection again to the new data set with adjusted e.s.u.’s.

Iterate the error-model refinement and outlier rejection until

the values of the correction parameters sfac, sB and sadd

converge and the number of identified outliers does not

change. In the tests presented in this paper, the value of

k ¼ 1:5 proved to be an appropriate value. However, in

specific cases, this parameter may be adjusted to increase or

reduce the number of outliers, if needed.

Kinematical refinement was carried out on each of the three

data sets with outliers rejected to demonstrate the potential

impact of the above-described outlier rejection approach,

using model 3. The algorithm rejected 35, 66 and 93 outliers in
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the data of natrolite, ibuprofen and l-alanine, respectively,

representing 0.65%, 1.7% and 2.69% of all measured reflec-

tions. The kinematical refinement results after applying the

above outlier rejection algorithm are shown in Table 10.

4. Results

To assess the efficiency of each of the models presented above,

we apply the above error correction models to data from three

materials, as described in Section 2. Each data set was

processed using the software PETS2. All structures could be

solved from the data by the charge-flipping algorithm as

implemented in Superflip (Palatinus & Chapuis, 2007) and

refinements within the kinematical approximation were

performed in JANA2020. Input data from models 0, 1, 2 and 3

were subject to refinement using the same data processing

procedure, the same starting structure model, the same

refinement parameters etc. The only difference was in the

e.s.u.’s assigned to the intensities based on individual error

models. The residual factors R1obs, R1all and wR2all were

calculated by JANA2020 based on the common definitions:

R1 ¼

P
j
ffiffiffiffiffiffiffi
Iobs

p
�

ffiffiffiffiffiffiffi
Icalc

p
jP ffiffiffiffiffiffiffi

Iobs

p

wR2 ¼

P
wðIobs � IcalcÞ

2P
wIobs

w ¼
1

�ðIobsÞ
2
þ ðuIobsÞ

2 ;

where u is the instability factor and the sum runs over all

reflections in the case of Rall and wRall, and only over observed

reflections with Iobs > 3�ðIobsÞ for the calculation of Robs. Nobs

is the number of reflections with Iobs > 3�ðIobsÞ, Nall is the total

number of reflections used in the refinement, R1obs is the

conventional R factor (R1) based on Nobs observed reflections,

wR2all is the weighted R factor based on all reflections.

The application of the above weighting scheme is equivalent

to changing the value of the coefficient s2
add to s2

add þ u2=s2
fac.

With the default value of u used in JANA2020 (u = 0.01, see

Section 2) the change is negligible. We therefore decided to

keep the default settings used in JANA2020.

The accuracy of the refined model is characterized by the

RMSD of the covalent bond lengths for all non-H atoms from

the respective reference values. Another assessment metric is

based on the RMSD of atomic shifts of all non-H atoms from

atom positions in the reference structures.

4.1. Refinement results

The kinematical refinement results are shown in Table 7 for

natrolite, Table 8 for (S)-(+)-ibuprofen and Table 9 for l-

alanine. These tables also contain the RMSD values of the

refined covalent bond lengths for each model and of the

distances of all non-H atoms from the positions in the refer-

ence structure. An important remark here is that the

conventional Robs is not a particularly good measure of the

refinement quality, as different error models result in a

different number of observed reflections (see Section 5 for

more discussion on observed reflections). Robs tends to

increase with increasing Nobs. A more robust way of assessing

the different models and the quality of data in 3D ED is to

compare the factors Rall instead, which are directly compar-

able, as the complete set of intensities is the same for all

models. Tables 7, 8 and 9 show that model 3 is the best error

correction model for all tested data sets and across all

comparison metrics, with a single exception of the RMSD of

bond lengths for l-alanine, which is better for model 2 than

model 3, but the difference is marginal.

4.1.1. Natrolite. In the case of natrolite, model 1 using the

standard deviation method for the error estimates introduces

an evident improvement in the R factors and the goodness-of-

fit parameter compared with the original model (Table 7). It

further gives the best R1obs factor among all other models.

However, as stated earlier, a good measure of comparison for

the different techniques is R1all rather than R1obs. The RMSDs

of bond lengths and of the atomic shifts are better than those

of the original model. Fig. 1(b) shows the relative improve-

ment in the normal probability plot as well as the distribution

of the adjusted normalized deviations compared with the

model 0 [Fig. 1(a)].

As for model 2, in the case of natrolite, the values of the

three correction parameters are: sfac ¼ 0:4063, sB ¼ 0:14643

and sadd ¼ 1:24655. From Table 7, it is obvious that there is a

drop in Nobs and a dramatic increase in wR2all. This is the main

drawback of this model. The refined structure model of

natrolite is considerably improved upon applying the

corrected errors of model 2 as can be seen from the RMSD

values.

The values of the three correction parameters in the case

of natrolite, model 3, are: sfac ¼ 0:2994, sB ¼ 0:0464 and

sadd ¼ 0:8604. Model 3 introduces an overall improvement of
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Table 7
Kinematical refinement results of natrolite for the different error estimate models (Npar is the number of refinement parameters).

Natrolite Nall Nobs Npar R1obs (%) R1all (%) wR2all (%) GOF(all)
RMSD of
bond lengths (Å)

RMSD of
atomic shifts (Å)

Original 1289 839 93 14.58 17.20 30.52 6.26 0.0211 0.0310
Model 1 1289 876 93 13.37 16.88 26.42 2.93 0.0194 0.0247
Model 2 1289 801 93 14.90 16.48 40.60 1.48 0.0120 0.0174
Model 3 1289 1007 93 14.67 16.09 36.34 1.78 0.0092 0.0151



all the parameters. Firstly, the number of observed reflections

is the highest of all models. As compared with model 2, this

illustrates the benefit of using the largest intensity of the

symmetry-related reflections for adjusting the error estimates,

rather than the average intensity. This is also clear from the

normal plots of natrolite (Fig. 1) where the normal plot of

model 3 [Fig. 1(d)] is the most favourable. The distribution of

the normalized deviations of natrolite in Fig. 1(d) also

provides the best fit to a standard normal distribution. The

data in this case have more positive deviations than negative

deviations and this explains the slight shift of the histogram to

the left [Fig. 1(d)]. The R1all value is the best as well and it is

1.11 percentage points less than that of the original model.

More importantly, the refined structure of natrolite corre-

sponding to this model is the most accurate when compared

with the reference model (Capitelli & Derebe, 2007), showing

the best RMSD values of the bond lengths and the atomic

positions of all non-H atoms. The kinematical refinement of

model 3 of natrolite after the outlier rejection introduces a

slight improvement in the R1all factor. The RMSD values for

atomic shifts and bond lengths as shown in Table 10 are almost

the same.

4.1.2. Ibuprofen. In the case of (S)-(+)-ibuprofen, the

situation is different regarding model 1. The latter does not

present any improvement from the original model. On the

contrary, the structure is slightly deformed. The refinement of

the H atoms of hydroxyl groups was not stable. The aromatic

carbon ring is also significantly distorted, leading to worse

RMSD values as compared with the reference (King et al.,

2011). This is obvious from the distribution of data [Fig. 2(b)].

The two peaks at �0.707 and 0.707 indicate a high number of

symmetry-related reflections (19%) that are measured only

twice (n = 2).

Regarding the results of model 2 in the case of (S)-(+)-

ibuprofen, the three correction parameters are: sfac = 0.712995,

sB ¼ 0:15164 and sadd ¼ 0:42056. Nobs is reasonable for this

data set and it is not reduced as compared with model 0. The

normal plot in Fig. 2(c) shows a noticeable improvement from

the original normal plot [Fig. 2(a)], but it is still not a perfectly

fitting line. A positive and a negative tail are present, in

addition to some other slight deviations from the theoretical

line of slope 1. R1all and the goodness-of-fit factors are

enhanced, while wR2all still records the highest value in this

model. The structure model is better than the original one

based on the RMSD values.

Finally, for model 3 in the case of (S)-(+)-ibuprofen, the

three correction parameters are: sfac ¼ 0:5498, sB ¼ 0:0051

and sadd ¼ 0:3667. Again, this model has the largest number of

observed reflections. The R1all factor is reduced by 0.73 from

that of the original model. The normal plot of the normalized

deviations based on this model as shown in Fig. 2(d) is the

nearest to normally distributed data. Fig. 2(d) also reveals the

significance of this model in adjusting the sample data to

better fit a standard Gaussian distribution. Additionally, the

refined structure from model 3 is the most accurate among the

others as indicated by the RMSD (Table 8). The kinematical

refinement of model 3 after the outlier rejection in this case

improves slightly the R factors (Table 10). The RMSDs for

covalent bond lengths and atomic positions from the respec-

tive reference values improve as well after discarding the

outliers.

4.1.3. L-alanine. In the case of l-alanine, model 1 does not

introduce any improvement of model 0. On the contrary, the

value of the R1all factor is increased, and the refined structure

is deformed rather than enhanced by comparing the RMSD of

bond lengths and atomic shifts of non-H atoms (Table 9).

As for model 2 in the case of l-alanine, the three correction

parameters are: sfac ¼ 1:9409, sB ¼ 0:0668 and sadd ¼ 0:11835.

The structure of this model has indeed the best value of

RMSD of the bond lengths and the goodness-of-fit factor is

enhanced, but the number of observed reflections is the lowest

among the other models and the R1all factor is also larger than

that of model 0. This case again confirms the main drawbacks

of this model. The normal plot in Fig. 3(c) shows a noticeable
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Table 8
Kinematical refinement results of (S)-(+)-ibuprofen for the different error estimate models.

(S)-(+)-ibuprofen Nall Nobs Npar R1obs (%) R1all (%) wR2all (%) GOF(all)
RMSD of
bond lengths (Å)

RMSD of
atomic shifts (Å)

Original 1212 825 127 17.94 21.93 31.91 4.41 0.0711 0.1113
Model 1 1212 856 127 19.11 23.36 40.71 5.46 0.0786 0.1121
Model 2 1212 883 127 18.82 21.45 42.60 2.03 0.0547 0.0702
Model 3 1212 957 127 19.01 21.20 40.97 2.36 0.0498 0.0665

Table 9
Kinematical refinement results of l-alanine for the different error estimate models.

l-alanine Nall Nobs Npar R1obs (%) R1all (%) wR2all (%) GOF(all)
RMSD of
bond lengths (Å)

RMSD of
atomic shifts (Å)

Original 1127 1036 56 14.28 14.82 34.80 8.76 0.0143 0.0244
Model 1 1127 922 56 13.92 15.71 33.76 5.35 0.0194 0.0290
Model 2 1127 845 56 13.95 15.31 34.47 2.03 0.0070 0.0210
Model 3 1127 1072 56 14.44 14.73 35.51 2.57 0.0072 0.0195



improvement from the original normal plot [Fig. 3(a)], but it is

still not a perfectly fitting line. A recognizable positive tail is

present in addition to some other slight deviations from the

theoretical line of slope 1.

For model 3, this last data set again confirms that this is the

best error correction model among the others. The R1all factor

and the number of observed reflections are the best and,

above all, the structure has the lowest RMSD of atomic shifts

as compared with the reference (Parsons et al., 2013). Fig. 3(d)

shows a noticeable improvement in the normal probability

plot and the distribution of the adjusted normalized devia-

tions. The three correction parameters are now: sfac ¼ 0:6094,

sB ¼ 0:0042 and sadd ¼ 0:2940. The kinematical refinement

results in the absence of outliers have indeed been improved

as shown in Table 10. The R1all factor decreases from 14.73 to

14.16. The RMSDs for bond lengths and atomic shifts have

been improved slightly after rejecting the 93 outliers.

5. Discussion

5.1. Observed reflections

It is customary to present refinement characteristics, typi-

cally the unweighted R value R1, calculated only on suffi-

ciently strong reflections. A typical criterion is I > 3�(I). The

rationale behind this tradition is that weak reflections contain

essentially only noise, and they do not provide useful infor-

mation on the quality of the fit. The term used for reflections

stronger than the selected criterion is ‘observed reflections’.

The term ‘observed’ refers to the experiment, and to the fact

that a reflection with I > 3�(I) is usually visible in the

diffraction pattern as a distinct intensity maximum, i.e. can be

observed in the pattern. This is, however, meaningful only if

�(I) is calculated from counting statistics only. As soon as �(I)

is modified to account for other errors, the term ‘observed’

loses its original meaning. Specifically, when �(I) is signifi-

cantly increased due to the error-model correction, a reflec-

tion, which is clearly visible in the diffraction pattern, becomes

formally ‘unobserved’, i.e. has I < 3�(I). This is not a very big

problem for typical X-ray diffraction data, where the correc-

tions to the counting statistic �(I) are generally small and

affect mostly the strong reflections. However, it becomes a

problem for data with dominant systematic errors, like those

caused by the dynamical effects in 3D ED data. As an

example, Fig. 4 shows an image of a reflection, which, after the

error-model correction, has I = 1.85�(I). Although the

reflection is nominally unobserved, it is actually quite strong

and clearly visible in the experimental data. The problem

becomes even more serious when the ‘obs’ values are used for

comparison between refinements. Different error models lead

to different corrections to �(I), hence to a different number of

reflections with I > 3�(I) and, as a consequence, to incom-

parable values of R(obs) and other obs-related statistics. As an

example, error correction according to model 1 for natrolite

yields 876 observed reflections with I > 3�(I) and R1(obs) of

13.37%, while model 3 gives 1007 observed reflections (out of

1279) and R1(obs) of 14.67%. Thus, superficially, model 1 may

appear to give a significantly better result, but it is just an

artefact of the number of observed reflections. R1(all) as well

as other statistics clearly show that the result from model 3 is

superior.

One could thus conclude that the use of the term ‘observed

reflection’ and related quantities is not meaningful for 3D ED

data and should be discontinued. Other methods of estimating

the amount of information present, e.g. the correlation-based

techniques commonly used in macromolecular crystal-

lography, may be more suitable. Until then, the scientists

working with these data should be aware of the caveat just

described, and use the term ‘observed reflections’ with caution

and with awareness of its limitations.

5.2. Features of the error correction models

A thorough comparison of the refinements reveals that in

all cases the set of adjustments propagated in error model 3

gives significantly improved results.

Model 1 did not present any improvement in the cases of

(S)-(+)-ibuprofen and l-alanine. In the case of natrolite, the

structure is slightly enhanced. Model 1 is expected to be more
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Table 10
Kinematical refinement results of the three data sets after the outlier rejection corresponding to model 3.

Nall Nobs Npar R1obs (%) R1all (%) wR2all (%) GOF(all)
RMSD of
bond lengths (Å)

RMSD of
atomic shifts (Å)

Natrolite 1289 1008 93 14.69 16.06 36.60 1.78 0.0093 0.0151
(S)-(+)-ibuprofen 1209 972 127 19.02 21.10 41.39 2.35 0.0489 0.0656
l-alanine 1123 927 56 13.06 14.16 30.49 2.36 0.0067 0.0193

Figure 4
An image of a reflection (�1, �5, �9) from the diffraction pattern of the
l-alanine data set of model 3 that is clearly visible, although it has
I < 3�(I) in the correction model 3.



successful with data with a high multiplicity of symmetry-

related reflections since the only information it is based on is

the observed variation among these reflections. Stated differ-

ently, estimates of the individual errors of this model, derived

only from the standard error of the mean of the reflections,

become less adequate in the case of data with a low redun-

dancy of symmetry-related reflections. This in turn may result

in serious inaccuracy of the refined structure model. (S)-(+)-

ibuprofen for instance has a monoclinic crystal system, and

thus many reflections have a low redundancy of 2. This

explains the significant improvement in the case of natrolite,

which has an orthorhombic crystal system of higher redun-

dancy. In the case of l-alanine, although it has an ortho-

rhombic crystal system, many reflections of this data set (25%)

have a multiplicity of n = 2 due to the low completeness of the

data set. This explains the inefficiency of model 1 in this case.

Model 2 clearly provides an improvement, but it still has

some deficiencies that need to be worked through. In some

cases (natrolite and l-alanine) an obvious drop in Nobs was

evident. By looking at the correction parameters, we notice

that in both cases one of these parameters is larger than 1

(sadd ¼ 1:24655 for natrolite and sfac ¼ 1:9409 for l-alanine).

This signifies a substantial inflation of error estimates. This

inflation makes the model less reliable in many situations. In

the case of ibuprofen, all the correction parameters are less

than 1 and the inflation of the e.s.u.’s is not so dramatic. This is

due to the fact that ibuprofen is monoclinic. The variations

among the intensities of the symmetry-related reflections are

less prominent. This means the values of the correction

parameters are not so large and thus Nobs remains reasonable

for this data set and does not need to be reduced.

In fact, the correction parameters sfac and sadd of a well

processed data set should have their values close to 1 and 0,

respectively. sB is usually negligible with a value close to 0. The

exact values will certainly depend on the Laue class of the

corresponding data set, the redundancy of the symmetry-

related reflections and the variations among their intensities. It

is worth noting that the three refined parameters of model 3 in

general have lower values than their analogues of model 2 for

all three samples. In model 3, less compensation is needed to

correct for the gain detector uncertainty and other types of

errors, owing to the use of the largest intensity of symmetry-

related observations instead. Model 3 adjusts the error esti-

mates of the strongest reflections without unnecessary exag-

geration of the e.s.u.’s. It provides a good compromise between

adjusting the error estimates and maintaining a decent

number of observed reflections.

6. Conclusion

Various models for adjustment of estimated standard uncer-

tainties of reflection intensities in 3D ED data were investi-

gated with the aim of verifying if the models commonly used

for single-crystal X-ray diffraction data are also suitable for

3D ED data. The tests on three experimental data sets showed

that the best model is model 3, which differs from the

commonly used approach by employing the maximum of the

symmetry-equivalent intensities in the calculation of normal-

ized residuals rather than the average value.

It is not surprising that accurate estimates of the e.s.u.’s are

useful, but it is notable how much improvement model 3

brings to the kinematical refinement compared with the case

with no error-model adjustment, but also with the other tested

models. The benefits of using the model include an overall

enhanced accuracy of atomic positions, covalent bond lengths

and improved R factors. The benefits of model 3 are expected

to be most pronounced in data with low redundancy and large

variation in the intensities of symmetry-related reflections. It

may be expected that with data obtained by averaging a large

number of individual data sets, an approach becoming more

and more popular in contemporary 3D ED studies, the

differences between the models would become smaller.

The procedure according to model 3 is implemented in the

software package PETS2 (Palatinus et al., 2019), available at

http://pets.fzu.cz/.

Funding information

This research was supported by the Czech Science Founda-

tion, project No. 21-05926X. AS and HC acknowledge funding

by the H2020 ITN project NanED, grant agreement No.

956099. CzechNanoLab project LM2023051 funded by MEYS

CR is acknowledged for financial support of the measure-

ments at LNSM Research Infrastructure.

References

Abrahams, S. C. & Keve, E. T. (1971). Acta Cryst. A27, 157–165.
Blessing, R. H. (1997). J. Appl. Cryst. 30, 421–426.
Brewster, A. S., Bhowmick, A., Bolotovsky, R., Mendez, D., Zwart,

P. H. & Sauter, N. K. (2019). Acta Cryst. D75, 959–968.
Bruhn, J. F., Scapin, G., Cheng, A., Mercado, B. Q., Waterman, D. G.,

Ganesh, T., Dallakyan, S., Read, B. N., Nieusma, T., Lucier, K. W.,
Mayer, M. L., Chiang, N. J., Poweleit, N., McGilvray, P. T., Wilson, T.
S., Mashore, M., Hennessy, C., Thomson, S., Wang, B., Potter, C. S.
& Carragher, B. (2021). Front. Mol. Biosci. 8, 648603.

Capitelli, F. & Derebe, M. (2007). J. Chem. Crystallogr. 37,
583–586.

Diamond, R. (1969). Acta Cryst. A25, 43–55.
Evans, P. (2006). Acta Cryst. D62, 72–82.
Evans, P. R. (2011). Acta Cryst. D67, 282–292.
Howell, P. L. & Smith, G. D. (1992). J. Appl. Cryst. 25, 81–86.
Kabsch, W. (2010). Acta Cryst. D66, 125–132.
King, M. D., Buchanan, W. D. & Korter, T. M. (2011). J. Pharm. Sci.

100, 1116–1129.
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Klementová, M. (2019). Acta Cryst. B75, 512–522.
Palatinus, L. & Chapuis, G. (2007). J. Appl. Cryst. 40, 786–790.
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