
ACM CCS’23 Artifact Appendix: Assume but Verify: Deductive
Verification of Leaked Information in Concurrent Applications

Toby Murray, University of Melbourne, Australia, toby.murray@unimelb.edu.au
Mukesh Tiwari, University of Cambridge, United Kingdom, mt883@cam.ac.uk

Gidon Ernst, LMU Munich, Germany, gidon.ernst@lmu.de
David A. Naumann, Stevens Institute of Technology, USA, naumann@cs.stevens.edu

1 Artifact Appendix

This artifact appendix is a self-contained document which
describes a roadmap for the evaluation of the artifact for the
paper Assume but Verify: Deductive Verification of Leaked
Information in Concurrent Applications at the 30th ACM Con-
ference on Computer and Communications Security (CCS).

1.1 Abstract
The paper presents an approach to specify and verify expres-
sive declassification policies for systems software. The con-
tribution encompasses the theoretical approach as well as a
practical demonstration. This artifact contains the correspond-
ing soundness proofs mechanized in Isabelle/HOL, a tool
implementation, and multiple case studies.

1.2 Description & Requirements
1.2.1 Security, privacy, and ethical concerns

None. The usual disclaimer applies: This is free software that
comes with no warranties whatsoever.

1.2.2 How to access

• Artifact archive: https://dx.doi.org/10.5281/
zenodo.10037769

• Project website: https://covern.org/

• Tool repository: https://bitbucket.org/covern/
secc/

1.2.3 Hardware dependencies

None.

1.2.4 Software dependencies

For validating the proofs that are part of the Isabelle/HOL
formalization

• Isabelle/HOL, tested with current Isabelle2023 and with
Isabelle2022 , available at https://isabelle.in.tum.
de/index.html.

For verifying the case studies

• Java (tested with Java version 17 and 18), and

• Linux (tested with Ubuntu 16.04 and 18.04 as well as
recent Arch Linux), or

• Mac OS (tested with 10.13 and 10.14)

For running the case studies

• Bash

• A C compiler, e.g. gcc or clang, invoked as binary cc
on PATH (can be overridden)

1.2.5 Case Studies (was: Benchmarks)

The contribution of this paper encompasses four case studies.
Details are described in the paper, resp. Readme files and
comments in the source code.

• A differentially private location server service, located
at examples/case-studies/location-server.c

• A sealed bid auction server, located at
examples/case-studies/auction.c

• A verified implementation of the game Wordle, located
at examples/case-studies/wordle.c.

Additional background on this case study can be found in
several blog posts by the first author: https://verse.
systems/blog/post/

• A private learning application, located at
examples/case-studies/private-learning.c

1

mailto:toby.murray@unimelb.edu.au
mailto:mt883@cam.ac.uk
mailto:gidon.ernst@lmu.de
mailto:naumann@cs.stevens.edu
https://dx.doi.org/10.5281/zenodo.10037769
https://dx.doi.org/10.5281/zenodo.10037769
https://covern.org/
https://bitbucket.org/covern/secc/
https://bitbucket.org/covern/secc/
https://isabelle.in.tum.de/index.html
https://isabelle.in.tum.de/index.html
https://verse.systems/blog/post/
https://verse.systems/blog/post/

1.3 Set-up
1.3.1 Installation

We recommend to install all dependencies via the package
manager of your system/distribution.

Manual installation

• Download and installation of Isabelle/HOL is described
at https://isabelle.in.tum.de/installation.
html for multiple platforms.

For Linux:

wget https://isabelle.in.tum.de/dist/ \
Isabelle2023_linux.tar.gz

tar -xzf Isabelle2023_linux.tar.gz

Past versions can be found here: https://isabelle.
in.tum.de/download_past.html.

• Ensure that the isabelle binary can be found via PATH.
On Linux, this can be achieved e.g., by

export PATH="$PWD/Isabelle2023/bin:$PATH"

• Java is available for manual download and instal-
lation here: https://www.java.com/de/download/
manual.jsp. Since it is a very common software pack-
age, we do not provide any further installation instruc-
tions in this document.

1.3.2 Basic Test

Checking that Java is installed and executable

java -version

The output should look something like this

openjdk version "17.0.9" 2023-10-17
OpenJDK Runtime Environment (build 17.0.9+8)
OpenJDK 64-Bit Server VM (build 17.0.9+8, mixed mode)

Checking that Isabelle/HOL is installed and executable:

isabelle version
Isabelle2023 # expected output

Note: running Isabelle/HOL for the first time after installation
will automatically compile various of its libraries. This may
take significant amount of time (e.g up to an hour), depending
on the hardware used. This initial setup is not part of the
evaluation of this artifact.

Since neither step in the evaluation of this artifact takes a
long time, no separate functionality test have been included.

1.4 Evaluation workflow
[Mandatory for Artifacts Functional & Results Reproduced,
optional for Artifact Available] This section should include
all the operational steps and experiments which must be per-
formed to evaluate if your your artifact is functional and to
validate your paper’s key results and claims. For that pur-
pose, we ask you to use the two following subsections and
cross-reference the items therein as explained next.

1.4.1 Major Claims

The major claims of the paper supported by this artifact are
listed below. Soundness of the approach rests on adequacy
of mechanizing the definitions, as well as validity of Theo-
rems 5.6 (the policy agnostic security guarantee) and Theo-
rem 6.5 (the policy-specific security guarantee). The artifact
contains two independent formalizations of the theory, one
that builds on the existing one for SecCSL, which covers
Theorem 5.6, and a simplified variant builds on a standard se-
mantics of sequential programs (lacking separation logic and
concurrency, which covers the entire theory including both
theorems 5.6 and 6.5. While porting the second result to the
SecCSL formalization would be feasible, in our opinion the
significant additional effort does not appear to be worthwhile.

Concrete laims regarding soundness:
(C1): The proof rules presented in Sec 4.2 ensure Theo-

rem 5.6 (policy-agnostic guarantee) with respect to the
semantics in Sec 4.3 and the formalization of attacker
knowledge in Sec 5.

(C2): The extended proof rules for audit triples in Sec 6
ensure Theorem 6.5 (policy-specific guarantee) with re-
spect to the definitions of policy audit the corresponding
release policy.

Moreover, all case studies satisfy the goals outlined in Sec 2:
(C3): All four case studies leak information only via failed

assumptions associated with _(assume ...) annota-
tions placed in the program’s source code, and that these
information leak are bounded by the respective policies.

1.4.2 Experiments

Running the Isabelle/HOL proofs:
(E1): [Soundness of SecCSL + Theorem 5.6] Expected effort:

up to five compute-minutes (+ 10min up to 1h for the
initial Isabelle/HOL library compilation).
This experiment validates (C1).
Preparation: Switch to folder seccsl_isabelle in
the artifact.
Execution: isabelle build -c -d . -v SecCSL
Results: The expected output looks like this:
[...]

Session Pure/Pure

2

https://isabelle.in.tum.de/installation.html
https://isabelle.in.tum.de/installation.html
https://isabelle.in.tum.de/download_past.html
https://isabelle.in.tum.de/download_past.html
https://www.java.com/de/download/manual.jsp
https://www.java.com/de/download/manual.jsp

Session Misc/Tools
Session HOL/HOL (main)
Session Unsorted/SecCSL
Cleaned SecCSL
Running SecCSL ...
SecCSL: theory SecCSL.Syntax
SecCSL: theory SecCSL.Semantics
SecCSL: theory SecCSL.Separation
SecCSL: theory SecCSL.Logic
SecCSL: theory SecCSL.Locks
SecCSL: theory SecCSL.Shared
SecCSL: theory SecCSL.Soundness
SecCSL: theory SecCSL.SecCSL
SecCSL: theory SecCSL.Knowledge
Timing SecCSL ([...])
Finished SecCSL (0:01:13 elapsed time [...])
A failed proof would appear in the output, e.g., lines
like this together with diagnostics information, but this
should not happen.
SecCSL FAILED ([...])

(E2): [Soundness of the approach: Theorems 5.6 and 6.5]
Expected effort: around 1 compute-minute.
This experiment validates (C1) as well as (C2).
Preparation: Switch to folder audit_isabelle in the
artifact.
Execution: isabelle build -c -d . -v Audit
Results: The expected output looks like this:
[...]

Session Pure/Pure
Session Misc/Tools
Session HOL/HOL (main)
Session Unsorted/SecCSL
Cleaned Audit
Running Audit ...
Audit: theory Audit.Commands
Audit: theory Audit.Secure
Audit: theory Audit.Guarantee
Audit: theory Audit.Rules
Audit: theory Audit.Policy
Timing Audit ([...])
Finished Audit (0:00:23 elapsed time [...])

(E3): [Verify the case-studies] Expected effort: 5 human min-
utes and 1 compute minute.
Preparation: Switch to folder verdeca-tool in the
artifact.
This experiment validates (C3).
Compile Verdeca (takes a few minutes and may need
internet access to download dependencies):
make
which should ultimately print
[...]
[info] done compiling
[37/37] secc.jar

out/secc/launcher.dest/run
./mill secc.launcher
[41/41] secc.launcher
[echo] Verdeca.sh
[chmod] Verdeca.sh
Verify the example from the motivation as follows:
./Verdeca.sh examples/case-studies/average.c
The expected output is the name of the file, followed
by the status of correctness of each of the functions
contained withing, for example:
examples/case-studies/average.c
avg_sum_thread ... success ♥ (time 322ms)
avg_declass_thread ... success ♥ (time 94ms)

Execution: Verify the case studies with the following
commands:
./Verdeca.sh examples/case-studies/location-server.c
./Verdeca.sh examples/case-studies/auction.c
./Verdeca.sh examples/case-studies/wordle.c
./Verdeca.sh examples/case-studies/private-learning.c
Results: For each function, Verdeca should print
success ♥. A function that fails to verify will lead to a
long symbolic trace to be printed with a clear indication
of the proof obligation that failed at the top.

1.4.3 Theories and Tool

Please refer to the individual README.md files in the sub-
folders to find the respective definitions and theorems in the
Isabelle sources, and for further information on how to use
Verdeca.

1.5 Version
Based on the LaTeX template for Artifact Evaluation
V20231005. Submission, reviewing and badging methodol-
ogy followed for the evaluation of this artifact can be found
at https://secartifacts.github.io/acmccs2023/.

3

https://secartifacts.github.io/acmccs2023/

	Artifact Appendix
	Abstract
	Description & Requirements
	Security, privacy, and ethical concerns
	How to access
	Hardware dependencies
	Software dependencies
	Case Studies (was: Benchmarks)

	Set-up
	Installation
	Basic Test

	Evaluation workflow
	Major Claims
	Experiments
	Theories and Tool

	Version

