
Evaluating the Integration of Wireless
Time-Sensitive Networking with Software-Defined
Networking for Dynamic Network Configuration

Alberto Morato∗, Claudio Zunino∗, Manuel Cheminod∗, Stefano Vitturi∗,
Dave Cavalcanti† Susruth Sudhakaran†, and Federico Tramarin‡

∗National Research Council of Italy, CNR-IEIIT
Email: {alberto.morato, claudio.zunino, manuel.cheminod, stefano.vitturi}@ieiit.cnr.it,

† Intel Labs, Intel Corporation, Hillsboro, Oregon, USA
Email: {dave.cavalcanti, susruth.sudhakaran}@intel.com,

‡Department of Engineering ”Enzo Ferrari”, University of Modena and Reggio Emilia, Modena, Italy
Email: federico.tramarin@unimore.it

Abstract—The introduction of Time-Sensitive Networking
(TSN) is revolutionizing real-time networks and time-critical
applications. Recent advancements in this field extended the TSN
capabilities to wireless technologies, giving rise to the concept of
wireless TSN (WTSN). This paper focuses on the integration of
wireless TSN with Software-Defined Networking (SDN) to enable
dynamic network configuration and improve the performance
of time-sensitive applications. We present a practical test en-
vironment that uses a hybrid network configuration consisting
of wireless and wired TSN links. The primary objective is to
evaluate the effectiveness of combining a TSN-capable network
with an SDN controller. This setup enables dynamic configuration
and routing within the system, allowing for prompt actions to
address network issues, such as seamlessly re-routing data paths
between the two links due to an increase in latency or packet
loss. A measurement setup using OpenVSwitch in the wireless
TSN domain is presented, along with the evaluation of time
synchronization and dynamic route selection capabilities.

Index Terms—Time-Sensitive Networking (TSN), Wireless
TSN, Software-Defined Networking (SDN), Seamless routing,
Traffic shaping and scheduling, Hybrid TSN

I. INTRODUCTION

The introduction of the IEEE 802.1 Time-Sensitive Net-
working (TSN) [1] is revolutionizing the design and imple-
mentation of industrial networks and applications [2].

TSN comprises more than 20 standards that focus on various
functionalities, including synchronization (802.1AS-2020) [3],
traffic shaping and scheduling (802.1Qbv) [4], and network
management (802.1Qcc) [5].

Although TSN was originally conceived for wired networks
(Ethernet), recently, both the industry and academia have
started to actively explore a new research direction that in-
volves the development and adoption of wireless technologies
with TSN supporting capabilities, known as wireless TSN.
Currently, 5G and 802.11 are the primary candidates for
enabling wireless TSN. The ultimate goal of TSN research
and industry efforts is to support TSN functionalities across

This work has been partially funded by the EU Horizon Europe SNS JU
PREDICT-6G (GA 101095890) Project.

a wide range of wireless protocols. Interestingly, both 5G
and 802.11 may be integrated with Ethernet TSN, leading
to the emergence of Hybrid TSN architectures. Hybrid TSN
offers significant advantages, including increased flexibility,
cost-effective deployment, and seamless device interoperabil-
ity regardless of the type of network connection (wired or
wireless) they use.

TSN–based networks may be used in conjunction with SDN
(Software-Defined Networking) [6] [7], a paradigm originated
from the field of Information Technology that, provides a so-
lution for programmable network architectures by introducing
centralized control entities. The idea of combining these two
technologies has been explored in [8], where an architecture
based on TSN synchronization and Time Aware Shaping, and
SDN has been evaluated.

By merging the features of TSN with SDN, it is possible
to extend and enhance the capabilities of TSN, as well as
to ensure greater dynamism in the (re–)configuration of net-
works. This will allow to achieve better network performance,
synchronization and integration of time-sensitive applications.

Recent studies have explored the integration of Software-
Defined Networking (SDN) and Time-Sensitive Networking
(TSN) to address challenges in industrial automation [9],
mixed-criticality control applications [10], dynamic path re-
configuration [11], and failure handling [12]. However, these
studies primarily focus on legacy TSN applications, i.e. those
based on Ethernet networks. In this paper, we extend this sce-
nario by introducing TSN in the wireless domain. Specifically,
we present a proof of concept that accomplishes the following

• Introduction of TSN and time synchronization over the
wireless link.

• Evaluation of the end-to-end latency to detect possible
delays in the communication path that may cause perfor-
mance bottlenecks.

• Dynamic routing of time-sensitive traffic through hy-
brid (wired/wireless) networks based on latency mea-
surements, to achieve ensure reliable and low-latency



communication.

Clearly, the use of SDN for managing hybrid TSN networks
is based on the capability of seamlessly switching traffic flows
over different links and devices. In this scenario, the switching
from a wireless link to a wired one and vice versa, represents
a challenge. The assessment of such a capability is one of
the main goals of this paper. Specifically, in this direction,
we present a test environment that utilizes a hybrid network
configuration managed by a SDN controller. This hybrid
network comprises both a wireless TSN link and a wired one.
The setup uses SDN to dynamically re–configure the network.
Specifically, as will be better explained in the next Sections,
we will investigate how a traffic flow can be seamlessly moved
from the wired link to the wireless one, maintaining the same
level of performance, when communication issues are detected
on the wired link. In detail, the paper describes the practical
setup and the results of the experimental sessions carried out
to assess the effectiveness of the proposed solution.

II. MEASUREMENT SETUP AND APPROACH

In this section, we will discuss the setup used for dynamic
route selection using OpenVSwitch in TSN networks.

The setup shown in Figure 1 provides an overview of
the used configuration. It is mainly composed of two 11th
generation Intel NUCs equipped with i5-1135G7 processors.
Both devices are running Ubuntu 22.04 with kernel version
6.2. The device named NUC1 serves as packet source, it
generates packets within the Linux network namespace src
and sends them to the OpenVSwitch (OVS) switch through the
virtual Ethernet interface veth0. On NUC1, the OVS switch
and a controller implemented using Ryu manager are executed
in the userspace. The controller exposes a REST endpoint
accessible from both the Ethernet and Wi-Fi physical NICs,
enabling dynamic packet routing from the Linux network
namespace through any of the two physical NICs. By default,
the controller routes all packets through the Ethernet NIC.

As can be seen in the figure, the Ethernet NIC on NUC1
is connected to NUC2 via an Ethernet switch. This allows to
insert a source of additional traffic on the link, represented
by the network tool iperf3, that is used to stress the
communication between the two NUCs over the wired link.
To this regard, the Ethernet links between the NUCs are set
to 100Mbps, while the interfering source is configured for
1Gbps. This deliberate configuration allows for easier control
and observation of the network behavior under different traffic
conditions.

In particular, this setup allows to investigate the dynamic
route selection capabilities of OpenVSwitch in TSN networks
as well as to analyze the effects of interfering traffic on latency
and overall network performance.

Moving on to the wireless link, NUC1 has been configured
as a SoftAP (AP) on the 5GHz band to provide connectivity
to NUC2, which is configured as a station (STA). This wireless
connection forms the Wireless TSN (WTSN) domain where,
with respect to the IEEE 802.1AS standard, NUC1 acts as

the Grand Master (GM) and provides the clock reference for
synchronization to NUC2, which acts as a Follower.

Noticeably, in the setup, we introduced a cutting-edge
element by utilizing the wireless link for time synchronization,
deviating from the traditional approach of using Ethernet
for time synchronization in TSN networks. By employing
wireless synchronization based on the IEEE 802.1AS standard,
we explore the potential of wireless connectivity to enhance
the capabilities and versatility of time-sensitive applications.
In this way, we are testing in a real setup the feasibility
and performance implications of integrating wireless com-
munication within TSN networks, all obtained maintaining
synchronization accuracy.

In addition to its role in time synchronization, the wireless
interface implements also the IEEE 802.1Qbv. This TSN
standard allows to enable time-aware packet scheduling and
prioritization, facilitating the coexistence of real-time and best-
effort traffic on the same network while ensuring guaranteed
bounded latency. In the setup shown in Figure 1, the scheduler
has been configured with a cycle of duration 1ms. Within
this cycle, a window of 250µs has been allocated for best-
effort traffic, and another one of 700µs for real-time traffic.
Moreover, 50µs have been introduced as guard band between
the two windows to prevent mutual interference.

In the first set of experiments shown in this paper, however,
the best effort traffic was not taken into consideration. In other
words, a single data stream was configured and synchronized
to exclusively utilize the real-time window. This is because
the experiments carried out were primarily meant to i) assess
the effectiveness of the synchronization implemented over the
wireless link and ii) to investigate the seamless switching
capability from the wired link to the wireless one.

Clearly, we are aware of the importance of exploring more
complex configurations that involve also the use of the best-
effort window and, more in general, of diverse traffic types.
These scenarios will be addressed in forthcoming work, in
which we will investigate the full capabilities and performance
potential of the proposed approach.

The packet generator, placed in the source Linux network
namespace, generates User Datagram Protocol (UDP) frames.
These frames have a total length of 298 bytes and are sent at
a constant rate of 1000 packets per second (pps), equivalent
to a transmission of a packet every 1ms. The data field of
each frame encapsulates the timestamp indicating the instant
of time when the frame was scheduled for delivery. Assuming
the clocks on the two NUCs are precisely synchronized
through the WTSN domain, the end-to-end latency can be
accurately evaluated by subtracting the transmission timestamp
to the reception one. This calculation is carried out by a
dedicated listener running on the userspace of NUC2 when
a frame arrives at NUC2. Moreover, the listener continuously
calculates the moving average of the latency over a predefined
number of samples, permitting an on-the-fly analysis of the
latency trends. If the moving average exceeds a predefined
threshold, the listener automatically calls the REST endpoint
on the controller. This action triggers the dynamic switching



Fig. 1. Experimental setup

TABLE I
PARAMETERS USED FOR THE EXPERIMENT.

Parameter Value

Protocol UDP
Packet Size 298 (bytes)
Traffic type Constant rate 1000pps
Moving avg window 200 samples
Latency threshold 45ms
Injection of interfering traffic after about 10000pkts

of packets from the wired link to the wireless one, enabling the
network to adapt and optimize its transmission path. Once the
switching is successfully achieved, the packets remain routed
through the WiFi connection, until a manual intervention from
the user restores the original configuration.

Table I summarizes the key parameters used in the exper-
imental setup, providing an overview of the specific values
used to evaluate the system performance.

III. RESULTS

In this section, we present and discuss the results obtained
from the measurement sessions carried out on the experimental
setup.

A. Time Synchronization

As discussed earlier, ensuring time synchronization is es-
sential for accurately calculating and characterizing the system
latency. Figure 2 illustrates the empirical probability density
function of the time synchronization offset recorded by the
clock management tool, while Table II provides additional
comprehensive statistics for reference.

Thus, with the achieved level of synchronization, it is possi-
ble to confidently proceed with the latency measurements and
analysis, knowing that the time synchronization component

TABLE II
SYNCHRONIZATION OFFSET OF THE TWO DEVICES REPORTED BY THE

CLOCK MANAGEMENT SOFTWARE

Offset (ns)

mean 21.71
std 1703.25
min -4934.00
max 7025.00
99th percentile 4872.77

−5000 −2500 0 2500 5000 7500
Offset (ns)

0.00000

0.00005

0.00010

0.00015

0.00020

0.00025

D
en

si
ty

Fig. 2. Synchronization offset of the two devices reported by the clock
management software

falls well within acceptable limits [13], providing assurance
that data collection and analysis will be accurate and reliable.

B. Dynamic routing with OpenVSwitch

The second set of results concerns the experiments car-
ried out with OpenVSwitch. The corresponding outcomes are



9000 10000 11000 12000 13000 14000 15000
Packet index

0

10000

20000

30000

40000

50000

L
at

en
cy

(u
s)

Threshold

Ethernet
Wi-Fi
Avg Latency

Fig. 3. End-to-End latency measured up to the userspace. The injection of
interfering traffic begins at approximately packet index 10000. The green line
represents the moving average of latency over 200 packets. Transients in WiFi
latency are attributed to power-saving issues in the wireless NIC.

shown in Figure 3. Initially, all traffic was routed through
the Ethernet NIC, resulting in a relatively low latency (i.e.
the communication time from NUC1 to NUC2) of about
2ms. However, once we introduced the source of interfering
packets after transmitting approximately 10000 packets, the
average latency began to increase rapidly, as clearly indicated
in Figure 3. Upon reaching the latency threshold of 45ms,
the SDN controller was triggered, and the traffic flow was
redirected through the wireless link (which was not interested
by the interfering traffic). This resulted in a reduction in
latency. However, it may be noticed that the WiFi channel
exhibits sharp transients in latency, fluctuating between 2ms
and 20ms. We have assessed that such fluctuations are mainly
caused by the power-saving mechanism of the WiFi NIC. In-
deed, it has been observed that the NIC periodically enters the
power-saving mode, where incoming (from the higher layer)
packets are necessarily enqueued for later transmission, with
the consequent increase of both the latency and its randomness.
Addressing this issue will be one of the focuses of future works
with the aim, as discussed in [14], of achieving an end–to–
end latency bounded to few milliseconds. By resolving the
power-saving-related latency fluctuations, it will be possible
to establish more stable, reliable, and timely latency on the
wireless link. However, the experiments demonstrated the
feasibility of the proposed technique, since the traffic flow
was switched from one link to another without loss of packets
and with significant benefits in terms of latency.

In such a direction, as an interesting experimental practice,
we found that to ensure seamless link switching without packet
loss, it is necessary to first create a link on the WiFi NIC with
higher priority before deleting the link between the Ethernet
NICs.

Finally, it has to be remarked that throughout the entire
experimental process, the WTSN domain remained active, and
synchronization between the two devices was maintained. This
outcome is significant as it demonstrates the feasibility of

utilizing the WiFi channel for time synchronization while si-
multaneously supporting dynamic routing with OpenVSwitch.

IV. CONCLUSIONS

In conclusion, our research focused on evaluating a hybrid
network configuration that combines a TSN wireless link with
a wired link. Our objective was to assess the effectiveness of
integrating a TSN-capable network with an SDN controller
and a probe. The preliminary setup implemented allowed for
dynamic configuration adjustments and seamless transition
between links for issue resolution. Further investigations will
optimize the performance of this hybrid network configuration.

REFERENCES

[1] “Time-Sensitive Networking (TSN) Task Group,.”
https://1.ieee802.org/tsn/. Accessed: 2023-05-19.

[2] S. Vitturi, C. Zunino, and T. Sauter, “Industrial communication systems
and their future challenges: Next-generation ethernet, iiot, and 5g,”
Proceedings of the IEEE, vol. 107, no. 6, pp. 944–961, 2019.

[3] “Ieee standard for local and metropolitan area networks–timing and
synchronization for time-sensitive applications,” IEEE Std 802.1AS-2020
(Revision of IEEE Std 802.1AS-2011), pp. 1–421, 2020.

[4] “Ieee standard for local and metropolitan area networks – bridges and
bridged networks - amendment 25: Enhancements for scheduled traffic,”
IEEE Std 802.1Qbv-2015 (Amendment to IEEE Std 802.1Q-2014 as
amended by IEEE Std 802.1Qca-2015, IEEE Std 802.1Qcd-2015, and
IEEE Std 802.1Q-2014/Cor 1-2015), pp. 1–57, 2016.

[5] “Ieee standard for local and metropolitan area networks–bridges and
bridged networks – amendment 31: Stream reservation protocol (srp)
enhancements and performance improvements,” IEEE Std 802.1Qcc-
2018 (Amendment to IEEE Std 802.1Q-2018 as amended by IEEE Std
802.1Qcp-2018), pp. 1–208, 2018.

[6] W. Zhuang, Q. Ye, F. Lyu, N. Cheng, and J. Ren, “Sdn/nfv-empowered
future iov with enhanced communication, computing, and caching,”
Proceedings of the IEEE, vol. 108, no. 2, pp. 274–291, 2020.

[7] T. Das, V. Sridharan, and M. Gurusamy, “A survey on controller
placement in sdn,” IEEE Communications Surveys & Tutorials, vol. 22,
no. 1, pp. 472–503, 2020.

[8] T. Kobzan, I. Blöcher, M. Hendel, S. Althoff, A. Gerhard, S. Schriegel,
and J. Jasperneite, “Configuration solution for tsn-based industrial
networks utilizing sdn and opc ua,” in 2020 25th IEEE International
Conference on Emerging Technologies and Factory Automation (ETFA),
vol. 1, pp. 1629–1636, 2020.

[9] M. Seliem and D. Pesch, “Software-Defined Time Sensitive Networks
(SD-TSN) for Industrial Automation,” in 2022 14th International Con-
ference on Computational Intelligence and Communication Networks
(CICN), pp. 1–7, Dec. 2022.

[10] F. Kurtz, G. Stomberg, and et. al, “Software-Defined Networking driven
Time-Sensitive Networking for Mixed-Criticality Control Applications,”
in 2022 13th International Conference on Information and Communi-
cation Technology Convergence (ICTC), pp. 99–104, Oct. 2022.

[11] N. S. Bülbül, D. Ergenç, and M. Fischer, “Towards SDN-based Dynamic
Path Reconfiguration for Time Sensitive Networking,” in NOMS 2022-
2022 IEEE/IFIP Network Operations and Management Symposium,
pp. 1–9, Apr. 2022.

[12] G. N. Kumar, K. Katsalis, P. Papadimitriou, P. Pop, and G. Carle,
“Failure Handling for Time-Sensitive Networks using SDN and Source
Routing,” in 2021 IEEE 7th International Conference on Network
Softwarization (NetSoft), pp. 226–234, June 2021.

[13] S. Sudhakaran, C. Hall, D. Cavalcanti, A. Morato, C. Zunino, and F. Tra-
marin, “Measurement method for end–to–end Time synchronization of
wired and wireless TSN,” in 2023 IEEE International Instrumentation
and Measurement Technology Conference (I2MTC), (Kuala Lumpur,
Malaysia), IEEE, May 2023.

[14] S. Sudhakaran, K. Montgomery, M. Kashef, D. Cavalcanti, and R. Can-
dell, “Wireless Time Sensitive Networking Impact on an Industrial
Collaborative Robotic Workcell,” IEEE Transactions on Industrial In-
formatics, vol. 18, pp. 7351–7360, Oct. 2022.


