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Abstract 

Antibiotic resistance is a major global problem and there is a pressing need to develop new 

therapeutic agents.  Flavonoids are a family of plant-derived compounds with potentially 

exploitable activities including direct antibacterial activity, synergism with antibiotics, and 

suppression of bacterial virulence.  In this review, recent advances towards understanding 

these properties are described.  Information is presented on the ten most potently antibacterial 

flavonoids, and the five most synergistic flavonoid-antibiotic combinations tested in the last 

six years (identified from PubMed and ScienceDirect).  Top of these respective lists are 

panduratin A with MICs of 0.06 to 2.0 µg/mL against Staphylococcus aureus, and epicatechin 

gallate which reduces oxacillin MICs as much as 512-fold.  Research seeking to improve such 

activity, and understand structure-activity relationships is discussed.  Proposed mechanisms of 

action are discussed too.  In addition to direct and synergistic activities, flavonoids inhibit a 

number of bacterial virulence factors including quorum sensing signal receptors, enzymes, 

and toxins.  Evidence of these molecular effects at the cellular level include in vitro inhibition 

of biofilm formation, inhibition of bacterial attachment to host ligands, and neutralisation of 

toxicity toward cultured human cells.  In vivo evidence of bacterial pathogenesis being 

disrupted includes demonstrated efficacy against Helicobacter pylori infection and S. aureus 

α-toxin intoxication.  
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1. Introduction 

          With antibiotic resistance reaching crisis point in many hospitals around the world [1] 

and resistance increasing in community acquired infections also [2], there is an urgent need to 

replenish our arsenal of anti-infective agents.  Ideally, this should be in the form of new 

classes of antibacterial agent [3], as the structural alteration of drugs to which resistance has 

already developed rarely provides a major solution [4].  Inhibition of resistance mechanisms 

through the development of novel adjuncts represents an important strategy also.  The β-

lactamase inhibitor clavulanate, launched in 1981, remains effective today in spite of many 

years of extensive use [5, 6].  A third promising but unproven approach is the development of 

drugs that target bacterial virulence factors.  Rather than inhibiting cellular components 

necessary for growth or viability, these compounds would ameliorate infection by interfering 

with aspects of bacterial pathogenesis eg. attachment to host tissue [7]. 

         Natural products are a major source of chemical diversity and have provided important 

therapeutic agents for many bacterial diseases [8].  Most of these agents have been of 

microbial origin, but the antibacterial properties of plant-derived compounds are attracting 

increasing attention [9, 10].  This is attributed, in part, to the fact that plants can be rationally 

selected for antibacterial testing based on ethnomedicinal use [11].  Flavonoids are a group of 

heterocyclic organic compounds present in plants and related products eg. propolis and honey 

[12].  Poultices, infusions, balms, and spices containing flavonoids as active constituents have 

been used in many cultures for centuries.  Traditional uses include treatment and prevention 

of various infectious and toxin-mediated diseases eg. sores, wound infections [13], acne, 

respiratory infections [14], gastrointestinal disease [15], and urinary tract infections [16].  Not 

surprisingly, this family of compounds is the subject of much antibacterial research. 

         There are fourteen classes of flavonoid in total, differentiated on the basis of the 

chemical nature and position of substituents on the A, B and C rings [17].  The skeleton 

structures of six of these classes are shown in Figure 1 with rings named and positions 

numbered.  Most of the reports of flavonoids possessing antibacterial properties can be 

attributed to these six structures or their isoflavonoid counterparts (flavonoids where ring B is 
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joined at position 3 of ring C instead of position 2).  Potential applications for these 

compounds include modern agents [18] and adjuncts [19] for the treatment of bacterial 

infection, drugs for treating toxin-mediated disease [20], antivirulence therapies [21], and 

capture molecules for removing endotoxin from pharmaceutical preparations [22]. 

         In this paper, reports on the diverse range of antibacterial properties exhibited by 

flavonoids are reviewed.  Emphasis is on important developments in the last six years as 

earlier research has already been discussed [13, 23].  The activity of naturally occurring 

flavonoids is covered, as well as that of semi-synthetic and synthetic flavonoids.  Proposed 

structure-activity relationships and mechanisms of action (MOAs) are reviewed too.  The 

structures of all the flavonoids discussed are presented in Supplementary Table 1.  Readers 

interested in the more specific topic of antibacterial tea flavonoids or broader topic of 

medicinal flavonoids are directed to reviews by Friedman [24] and Cazarolli et al. [25]. 

 

2. Direct antibacterial activity 

2.1 Naturally occurring flavonoids 

         For several decades, the antibacterial activity of flavonoid-rich natural products has 

been reported in the scientific literature.  This has continued in recent years, with some plant 

and propolis extracts being identified with MICs <100 µg/mL [26-28] or in one case <10 

µg/mL [29].  Antibacterial flavonoids have been successfully isolated in over 50 such studies, 

and a list of compounds with the lowest reported MICs is presented (Table 1).  To put these 

values into context, compounds with MICs ≤100 µg/mL are considered noteworthy, and those 

with MICs ≤10 µg/mL, very interesting [30].  Caution is always necessary when comparing 

flavonoid MICs determined in different laboratories [13] but, this caveat notwithstanding, 

some of the flavonoids isolated since 2005 have very impressive antibacterial activity. 

 

2.2 Semi-synthetic and synthetic flavonoids 

         Synthetic modification of natural flavonoid structures has been reported as early as 1981 

[31], but it is only in recent years that there has been a real surge of work in this area.  
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Particularly successful alterations include linking an N-heterocyclic ring to the A ring of 

chrysin (position 7).  This derivative was 16- to 32-fold more active than its parent 

compound, with MICs of 1.56 and 3.13 µg/mL against Escherichia coli and Staphylococcus 

aureus respectively [32].  Similar enhancements of activity were observed when dibutylamine 

was linked to the A ring of genistein (position 7) [18].  Alkylation of (-)-epigallocatechin 

gallate dramatically improved the activity of this compound against Gram positive pathogens.  

The derivative 3-O-decyl-(+)-catechin was 64- to 128-fold more active than its parent 

structure, with MICs of 1.0 and 2.0 µg/mL against S. aureus and Enterococcus faecalis [33]. 

              

2.3 Structure-activity relationship 

         The findings of recent structure-activity investigations are summarised below.  These 

correspond well with relationships summarised previously [13], and shed further light on this 

subject.  Structural components which improve the activity of open chain flavonoids 

(chalcones) generally improve the activity of other flavonoids.  However, in the interests of 

clarity these two groups are discussed separately. 

 

2.3.1 Chalcones 

         For the A ring, Avila et al. have confirmed that hydroxylation at position 2’ is important 

for antibacterial activity, though it is hypothesised that this feature indirectly affects activity 

by promoting structural stability [34].  Hydroxylation at other A ring positions [35] including 

position 4’ [36] improve activity too.  Interestingly, carboxylation at position 4’ has been 

shown to cause a 60-fold improvement in aqueous solubility with negligible loss of 

antibacterial activity [37].  Reports by Avila [34] and Batovska [38] suggest that A ring 

lipophilicity is important however, with chalcones possessing prenyl or geranyl groups at 

position 3’ displaying good activity [34].  Substitutions which decrease activity include 

acetoxylation or methoxylation at position 2’ [34] and fluorination at positions 3’ and 5’ [37]. 

         On the B ring, substitution at position 4 is important for antibacterial activity.  For 

example, chalcones with a 6-carbon alkyl chain and piperidine group at this position have 
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good activity [39] as do compounds with a hydroxyl group [34].  Batovska et al. report that 

hydroxylation of the B ring is not sufficient for activity on its own though, and suggest that a 

lipophilic A ring is necessary [38].  Presence of the lipophilic substituents trifluoromethyl or 

bromo at position 3 of the B ring has also been reported to improve antibacterial activity, with 

activity increasing further if one of these groups is present at position 5 [37].   

 

2.3.2 Other flavonoid classes 

         On the A ring, the presence of an O-acyl [40] or O-alkylamino chain [41] at position 7 

improves the antibacterial activity of compounds in the flavone class.  Šmejkal and colleagues 

report that hydroxylation at position 5 is also important [42], a finding which corresponds 

well with previous studies of flavones and flavanones [43, 44].  The presence of a lipophilic 

group (eg. geranyl) at position 6 or 8 of the A ring improves activity too [42].  This supports 

previous findings by Tsuchiya and colleagues [44]. 

         There has been comparatively little work on the B ring but Šmejkal et al. report that, as 

is the case with chalcones [34], methoxylation decreases activity [42].  This correlates well 

with previous work by Alcaraz and colleagues, who found that 4’-oxymethylflavanone had an 

MIC in excess of 1000 µg/mL against S. aureus [43].  Older research, worth mentioning here 

because it corresponds well with recent data for the chalcones [37], indicates that bromo- (and 

chloro-) groups at positions 2’, 3’ and 4’ improve flavanone activity [31]. 

         For the C ring, hydroxylation at position 3 improves the activity of flavanones [42].  

There is growing evidence to suggest that an O-acyl or O-alkyl chain at this position improves 

activity even further, at least in the case of flavonols [45] and flavan-3-ols [33, 46].  Recent 

work by Mughal et al., which sought to improve the activity of flavones, found that 

replacement of the oxygen atom at position 4 with sulphur or nitrogen was effective [47]. 

 

2.4 Identification of flavonoid activity as bacteriostatic or bactericidal 

         With increasing numbers of immunocompromised patients [48], there is understandable 

interest in the identification of compounds which kill bacteria rather than just inhibiting their 
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growth.  Bactericidal activity in this context is usually defined as activity resulting in a 99.9% 

reduction in bacterial numbers, and is tested for using the time-kill method or minimum 

bactericidal concentration (MBC) assay [49, 50].  Such methods have frequently been used to 

test flavonoids, and on many occasions bactericidal activity was reportedly detected [51-53].  

Studies with model membranes indicate that flavonoids cause aggregation though [54, 55], 

and in 2007 it was confirmed that the flavonol galangin has this effect on bacterial cells [56].  

The flavan-3-ol epicatechin gallate has also been reported to cause bacterial aggregation [19], 

though it is not yet clear if this observation was due to genuine aggregation (cells clumping 

together) or pseudomulticellular bacteria (cells failing to separate following binary fission 

[46]).  An important ramification of this aggregatory effect is that conventional methods are 

no longer sufficient for demonstrating the bactericidal activity of flavonoids.  This is because 

decreases in colony forming unit (CFU) numbers may be attributable to bacteria clumping 

together and not cell death (Figure 2).  There are no immediately apparent solutions to this 

methodological problem, but an interim approach might be to cease MBC testing in favour of 

time-kill studies, with microscopic analysis of treated bacteria [57].    

 

2.5 Mechanism(s) of action 

         Early flavonoid research (1987 to 2004; reviewed previously [13]) suggested that their 

direct antibacterial activity may be attributable to up to three mechanisms.  These were 

cytoplasmic membrane damage (caused by perforation [54] and / or a reduction in membrane 

fluidity [58]), inhibition of nucleic acid synthesis [59] (caused by topoisomerase inhibition 

[60, 61]), and inhibition of energy metabolism (caused by NADH-cytochrome c reductase 

inhibition [62]).  In the period since (2005 to 2010), additional evidence has been presented in 

support of each of the proposed mechanisms.  Work with compounds in the flavonol [63], 

flavan-3-ol [64, 65], and flavolan classes [66] suggests these damage the cytoplasmic 

membrane (possibly by generating hydrogen peroxide [67]), and work with flavan-3-ols [68, 

69] and isoflavones [70] suggests these inhibit nucleic acid synthesis (through topoisomerase 

[68, 71] and / or dihydrofolate reductase [69] inhibition).  In addition, compounds in the 
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flavonol, flavan-3-ol, and flavone classes have been shown to inhibit energy metabolism 

(through ATP synthase inhibition [72]).   Evidence has also been presented for two new 

mechanisms.  These are inhibition of cell wall synthesis (caused by D-alanine:D-alanine 

ligase inhibition [73]) and inhibition of cell membrane synthesis (caused by inhibition of 

FabG [74-76], FabI [74], FabZ [77], Rv0636 [78] or KAS III [79]).     

         Probably for logistical reasons, most of the above studies were conducted with just one 

or two compounds.  For a long time, this meant it was not clear whether the findings from 

these studies were due to (a) flavonoids of one structure having a single MOA and flavonoids 

of a different structure having a different MOA, (b) all flavonoids having multiple MOAs, or 

(c) all flavonoids having the same single MOA, with the suggestion of multiple MOAs 

attributable to errors in experimental design, data interpretation etc.  The possibility that 

different flavonoids have different MOAs [option (a)] was always the least probable of the 

three hypotheses because all flavonoids share broad structural similarity.  Furthermore, the 

number of flavonoid studies has now grown to the extent that the activity of some compounds 

eg. quercetin [61, 73, 80] has been investigated several times and attributed to numerous 

mechanisms.  Essentially, this leaves two viable hypotheses: either flavonoids have multiple 

MOAs, or flavonoids have a single MOA which remains to be convincingly identified. 

         Several reports suggest flavonoids have multiple MOAs [45, 73, 81] and, on face value, 

that is what the evidence suggests.  Recent developments mean the findings of some MOA 

studies are not as reliable as first thought though.  One such development is the discovery that 

epigallocatechin gallate causes aggregation of FabG enzyme purified from E. coli [75].  It is 

not yet clear if this effect occurs with other enzymes, or if other flavonoids induce similar 

enzyme aggregation.  Importantly though, this finding raises doubts about conclusions drawn 

by studies which examined the inhibitory effect of flavonoids on purified bacterial enzymes 

[60-62].  Perceived inhibitory effects may have been due to enzyme aggregation rather than 

specific inhibition, so the MOA of the tested flavonoids may not involve enzymes at all. 

         A second development is the finding that flavonoids have an aggregatory effect on 

whole bacterial cells.  This was shown to occur in cells treated with flavonol [56] and 
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possibly flavan-3-ol [19] compounds.  Prior to this, research was conducted on the basis that 

decreases in CFU numbers equated to decreases in viability.  This can no longer be assumed 

(Figure 2).  Therefore, studies where supposed decreases in bacterial viability were correlated 

with events like potassium leakage [63], inhibition of nucleic acid synthesis [70] or inhibition 

of dihydrofolate reductase [69] to draw inferences about MOA may require re-examination.  

Another consideration is that this aggregatory effect may have directly interfered with the 

results of some MOA assays.  If bacterial cells clump together when treated with flavonoids, 

this will decrease the surface area of the bacterial population.  This, in turn, is likely to result 

in decreased oxygen consumption by the bacteria, an observation previously thought to 

indicate disruption to the electron transport chain [62].  Decreased surface area is also likely 

to result in decreased uptake of nutrients such as uridine and thymidine, an observation 

previously thought to indicate inhibition of nucleic acid synthesis [70]. 

         In addition, the possibility exists that ‘cause’ and ‘effect’ have been confused in some 

MOA studies.  If an antibacterial agent damages the cytoplasmic membrane, for example, this 

will disrupt the proton-motive force.  This, in turn, will affect ATP generation and transport of 

solutes into the bacterial cell [82].  If the cell’s ability to generate energy and acquire nutrients 

is impaired, then it follows that the bacterium’s ability to synthesise DNA, peptidoglycan etc. 

will also be impaired.  In this way, a single MOA may be misinterpreted as multiple MOAs.  

Similarly, if an agent inhibits a bacterial enzyme like DNA gyrase, then this may trigger 

programmed cell death and lysis [83].  In this way an antibacterial agent which inhibits 

nucleic acid synthesis could be mistaken for one that damages the cytoplasmic membrane.            

 

3. Synergistic and antibiotic resistance modulating activity 

3.1 Naturally occurring flavonoids 

         There have been many recent reports of flavonoids increasing the activity of antibiotics, 

and information on the five most potent combinations is presented (Table 2).  Methods used 

in these studies have varied, but investigations which determined FIC index values concluded 

the effect is genuinely synergistic as opposed to just additive [84-86].  Of all the flavonoid 
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classes reported to have synergistic activity, it is the flavan-3-ols which have received most 

attention and been investigated in greatest depth.  Galloyl flavan-3-ols such as (-)-epicatechin 

gallate reduce the MICs of β-lactam antibiotics against some strains of methicillin resistant 

Staphylococcus aureus (MRSA) more than 512-fold [87].  A recent development in this area 

is the finding that nongalloylated flavan-3-ols, which are themselves unable to sensitise 

strains of  MRSA to β-lactams, can potentiate galloyl flavan-3-ol mediated sensitisation [88].     

 

3.2 Semi-synthetic flavonoids 

         (-)-Epicatechin gallate is known to sensitise MRSA isolates to a range of β-lactam 

antibiotics [87, 89, 90], but the susceptibility of this flavan-3-ol to bacterial esterases had 

raised doubts about its clinical usefulness.  Recently, a hydrolytically more stable structure 

was prepared by substituting the ester linkage between the C-ring and the galloyl D-ring with 

an amide.  This semi-synthetic flavonoid possesses a similar level of synergistic activity to its 

parent compound, reducing oxacillin MICs against strains of MRSA 32- to 512-fold [91].  

 

3.3 Structure-activity relationship 

         Structure-activity relationships for synergism and antibiotic resistance modulation are 

less well characterised than for direct antibacterial activity.  However, there is compelling 

evidence to suggest that flavan-3-ols require a gallo- or gallate group to potentiate β-lactam 

antibiotics against MRSA [87].  There has also been a study into the ability of flavones, 

flavonols, flavanones and flavan-3-ols to potentiate the effect of isoniazid against different 

Mycobacterium spp. [86].  Results from this suggest that hydroxylation of the A ring at 

positions 5 and 7 is important.  Hydroxyl groups in ring B are also thought to contribute. 

 

3.4 Mechanism(s) of action 

         Several MOAs have been proposed for the synergistic and antibiotic resistance 

modulating activity of flavonoids.  For the galloyl flavan-3-ols, it has been suggested these 

modulate β-lactam resistance by reducing D-alanylation of cell wall teichoic acid [resulting in 
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inactivation of penicillin binding protein 2a (PBP2a)] [92], or by intercalating into the 

cytoplasmic membrane [19] and inducing structural changes that result in delocalisation of 

PBP2a [93].  Mechanisms which have been discounted are inhibition of PBP2a expression, 

and binding of the flavan-3-ol to peptidoglycan [19]. 

         For less studied compounds in the flavone [94, 95], isoflavone [96], flavonol [95, 97], 

and flavolan [66] classes, it has been suggested these increase antibiotic efficacy through β-

lactamase inhibition [66, 95], efflux pump inactivation [94, 96], cytoplasmic membrane 

destabilisation [66, 95], disruption of PBP2a synthesis [95], and topoisomerase inhibition 

[97].  On the basis that some of these mechanisms do not fully account for detected activity, it 

has been proposed that these flavonoids exert their effect via multiple mechanisms [66, 94]. 

 

4. Attenuation of bacterial pathogenicity by flavonoids 

4.1 Inhibition of the quorum sensing signal receptors TraR and RhlR 

         Quorum sensing is a cell-to-cell communication system bacteria use to regulate aspects 

of virulence including biofilm formation.  Bacteria release signal molecules which bind to cell 

density-responsive receptors in neighbouring cells, resulting in activation of virulence genes 

[98].  Two recent studies suggest flavonoids disrupt the interaction between acyl-homoserine 

lactones (AHLs; signal molecules used by Gram negative bacteria) and their receptors.  Zeng 

et al. report that baicalein inhibits the cytoplasmic membrane-associated [99] receptor TraR 

[100].  Evidence presented included docking scores from computer modelling, and bioassay 

data showing receptor degradation [100].  In the second study, catechin was shown to inhibit 

the cytoplasm-associated [101] receptor RhlR [21].  This study used an RhlR-based biosensor 

to show catechin affects the rhlRI system, and P. aeruginosa reporter strains to demonstrate 

reduced expression of associated genes [21].  In both studies, sub-MIC levels of flavonoid 

reduced P. aeruginosa adhesion and biofilm formation, and this was attributed to quorum 

sensing inhibition [21, 100].  Other studies have shown flavonoids to inhibit surface adhesion 

by Gram positive bacteria [19] and even latex microspheres though [102].  Inhibition of 

biofilm formation by flavonoids must therefore be attributable to an additional mechanism(s).   
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4.2 Inhibition of sortase 

         Sortases are enzymes found in the cytoplasmic membrane of Gram positive bacteria 

which catalyse the assembly of surface proteins eg. adhesins and internalins [103].  Studies 

with knockout mutants suggest that sortases are important for the establishment of infection, 

but not bacterial viability [104].  Using purified S. aureus enzymes, Kang and colleagues 

recently demonstrated that sub-MIC quantities of morin inhibit sortases A and B [105].  

Encouragingly, there were indications of this activity at the cellular level.  Whole cells of S. 

aureus treated with morin exhibited decreased binding to fibrinogen, one of the host ligands 

to which bacteria attach during infection [105].  This suggests that the enzyme inhibition 

detected by Kang et al. is specific and not due to aggregation.  If this is the case, then sortase 

inhibition (and its knock-on effect on cell surface proteins eg. FruA and WapA [106]) may 

contribute to the ability of some flavonoids eg. flavan-3-ols [107] and flavolans [108] to 

inhibit biofilm formation by Gram positive bacteria.   

 

4.3 Inhibition of urease 

         The gastric pathogen Helicobacter pylori secretes urease during infection to survive the 

low pH of the stomach.  Recent reports suggest that compounds in the isoflavone [109] and 

chalcone [110] classes inhibit this enzyme.  This may, to some extent, explain the in vivo 

activity of the flavonol quercetin against H. pylori in guinea pigs [111] and the clinical 

efficacy of sofalcone (a chalcone derivative) in multidrug treatment of human H. pylori 

infection [112].  Other flavonoid effects may be responsible for this in vivo activity too 

though.  These include neutralisation of VacA [113] and interference with TLR-4 signalling 

[114].  It is also possible that some of the tested flavonoids have direct antibacterial activity 

against H. pylori or work synergistically with antibiotics used against this bacterium. 

 

4.4 Inhibition of listeriolysin O 

         Listeriolysin O (LLO) is a virulence factor of the intracellular pathogen Listeria 

monocytogenes.  Secretion of this protein enables bacteria to escape from phagosomes and 
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enter the cytosol of host cells, where they can multiply [115].  Kohda et al. recently showed 

that sub-MIC levels of epigallocatechin gallate inhibit growth of L. monocytogenes within 

macrophages [116].  This was attributed to LLO inhibition, following observation that the 

flavan-3-ol prevented LLO from binding to membrane lipid and inhibited LLO-induced lysis 

[116].  If this is the case, then LLO inhibition may also be partially responsible for the activity 

recently detected from β-naphthoflavone against L. monocytogenes in hepatocytes [117].   

 

4.5 Neutralisation of bacterial toxins 

         Toxins play an important role in bacterial pathogenesis, sometimes causing fatal disease 

long after the bacteria themselves have been killed [118].  Recent studies indicate flavonoids 

can neutralise these virulence factors.  Choi et al. demonstrated that polymerised catechin 

negates the effect of S. aureus α-toxin both in vitro and in vivo [20].  The isoflavone genistein 

inhibits exotoxin too [119].  Oh et al. showed that pretreatment of Hela cells with genistein 

protected them from the Vibrio vulnificus toxin RtxA1.  Genistein also had a protective effect 

against V. vulnificus infection in vivo, as demonstrated using CD-1 mice [119]. 

         In addition, Delehanty et al. [22] have shown that polymers of catechin and epicatechin 

neutralise endotoxin (lipopolysaccharide; LPS).  This effect was detected by incubating LPS 

with the flavonoids, then demonstrating a decrease in the quantity of LPS attaching to beads 

coated with binding agent.  Activity was detected against LPS from multiple species [22], and 

was retained when the flavolans were immobilised on beads [120], suggesting a possible use 

for these compounds in removing endotoxin from pharmaceutical preparations.  Furthermore, 

the flavonoids blocked interaction between LPS and its receptors TLR4/MD2 and CD14, an 

early step in the development of septic shock.  Possibly, therefore, these compounds could 

also be employed for in vivo treatment of Gram negative bacterial infections [22].    

 

4.6 Inhibition of virulence factor secretion 

         The capacity of S. aureus to cause disease is largely attributable to its ability to secrete 

enzymes and toxins.  Recent studies have shown that sub-MIC levels of flavonoid inhibit 
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release of this bacterium’s virulence factors.  Shah et al. found that epicatechin gallate 

prevents secretion of coagulase and α-toxin [121].  This was demonstrated by examining 

supernatants from treated S. aureus cultures for the ability to coagulate blood plasma and lyse 

erythrocytes.  As in the Choi et al. study [20], some direct activity was detected from the 

flavonoid against α-toxin, but not enough to account for the results obtained [121].  The 

decrease in secretion is unlikely to be related to cell aggregation (and diminished surface area) 

either, because secretion of the enzyme protease was not inhibited. 

         More recent studies by Qiu et al. show that S. aureus α-toxin secretion is also reduced 

by licochalcone A [122].  Decreased secretion of enterotoxins was noted too [123].  Real time 

PCR indicated these effects were accompanied by a decrease in transcription of the agrA 

gene, suggesting the observed results may actually be due to inhibition of virulence factor 

synthesis rather than virulence factor secretion [122, 123].  In light of these PCR results, and 

the recent demonstration that epicatechin gallate binds predominantly to the cytoplasmic 

membrane [93], it seems plausible that the above flavonoids may interfere with AgrC (a 

cytoplasmic membrane-associated [101] quorum sensing signal receptor found in S. aureus). 

 

5. Concluding remarks 

         There have been considerable advances in antibacterial flavonoid research since 2005, 

and it is important we take stock of these developments and move forward effectively.  

Recent studies have identified some flavonoids with MICs as low as 0.06 µg/mL, and others 

with impressive levels of synergistic activity.  Whilst promising, many of these compounds 

will require further analysis to determine if the detected activity is selective.  Improvements in 

the way this fundamental research is performed would facilitate the development process.  

The importance of various experimental parameters, in particular inoculum size [49, 50], is 

not always recognised.  In some laboratories, the bacterial cell density being used is too low 

(<10
5
 CFU/mL), and in others it is not being reported.  Details of such variables and other 

pertinent aspects of antibacterial screening are discussed in a review by Cos et al. [11].       

         Recent medicinal chemistry studies have identified several structural features which 
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 improve the antibacterial properties of flavonoids.  The establishment of such relationships is 

essential if flavonoid activity is to be optimised.  As with MIC testing however, there is room 

for improvement in the way these studies are executed.  It is important to bear in mind that 

increases in antibacterial activity can be accompanied by decreases in selectivity.  Future 

structure-activity studies should therefore perform cytotoxicity testing in parallel with 

antibacterial testing. 

         Definitive identification of the antibacterial MOA of flavonoids is key to the 

development of these compounds.  Identification of their cellular target(s) would permit 

anticipation of problems relating to clinical safety and drug resistance [8], and facilitate 

optimisation by means of ligand-target structure activity relationship and cocrystallography 

[124].  It has been proposed by some groups that the antibacterial properties of flavonoids are 

due to interference with specific intracellular or surface enzymes.  Future studies examining 

this possibility using cell-free assays should be wary of false positive results due to 

promiscuous inhibition of the purified enzymes via aggregation.  MOA studies with whole 

bacterial cells should be similarly wary of cell aggregation and the manifold ways this could 

influence results.  Where possible, new technologies such as genetically engineered target-

specific screening [125], ‘reporter’ strains of bacteria [126], and gene overexpression and 

inactivation studies [127] should be used to facilitate identification of flavonoid MOA.     

         In addition to direct and synergistic antibacterial activity, there is growing evidence that 

flavonoids interfere with various bacterial virulence factors including enzymes, toxins, and 

signal receptors.  This opens the possibility of flavonoids being developed as antivirulence 

therapies.  It should be noted that there are inherent limitations with this as-yet-theoretical 

approach to infection treatment.  For example, opsonophagocytosis would need to take place 

for host clearance, so patients would need to be immune-competent [103].  Nevertheless, this 

finding does add a new dimension to antibacterial flavonoid research.  Importantly, in vitro 

assays currently used to assess direct and synergistic antibacterial activity of flavonoids are 

likely to be underestimating the in vivo potential of compounds possessing these additional 

activities.  This point underscores recent concerns raised regarding the limitations of 
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pharmacology studies performed with single bioassays [128], and adds weight to wider calls 

[129] for a less reductionist approach to drug development. 
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Figure 1  The skeleton structures of six of the main classes of antibacterial flavonoids: flavones, flavonols, 

flavanones, chalcones, flavan-3-ols (chiral centres at C-2 and C-3 mean that these compounds have 4 

diastereoisomers; the 2R3S diastereoisomer is depicted above) and flavolans [occur as oligomers or polymers; R = 

0, 1, or >1 flavan-3-ol unit(s)].  Note: The convention for numbering chalcones is different to that of the other five 

flavonoid classes shown (in chalcones, the A ring positions are primed instead of the B ring positions). 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 
Figure 2  Two mechanisms by which flavonoids may reduce colony forming unit (CFU) numbers of bacteria in 

time-kill and MBC assays. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Table 1 Information on the ten most potently antibacterial natural flavonoids tested in recent years as identified by 

PubMed and ScienceDirect searches for studies published between January 2005 and December 2010 (studies 

marked with an asterisk isolated more than one highly antibacterial flavonoid).  

 

Flavonoid MIC assay Cell density 

(CFU/mL) 

MIC (µg/mL) Reference 

Gram 

positive 

Gram 

negative 

Panduratin A 

 

Isobavachalcone 

 

Bartericin A 

 

Scandenone 

 

Kaempferol 3-O-α-L-(2’’,4’’-

di-E-p-coumaroyl)-rhamnoside 

 

Sepicanin A 

 

Isolupalbigenin 

 

Flavone 

 

3’-O-methyldiplacol 

 

Licochalcone A 

 

BMID 

 

BMID 

 

BMAD 

 

BMID 

 

BMID 

 

 

BMID 

 

BMAD 

 

BMID 

 

BMID 

 

BMID 

 

5 x 105 

 

3.75 x 104 

 

NS 

 

1 x 105 

 

1 x 105 

 

 

5 x 105 

 

1 x 105 

 

5 x 105 

 

5 x 105 

 

5 x 105 

 

0.06 to 2.0 

 

0.3 to 0.6 

 

0.6 to 2.4 

 

0.5 to 8 

 

0.5 to >16 

 

 

1.2 

 

1.6 to 3.1 

 

7.8 to 31.3 

 

2 to 4 

 

2 to 8 

 

NT 

 

0.3 to >39.1 

 

0.3 to 39.1 

 

2 to 32 

 

>16 

 

 

NT 

 

NT 

 

1.95 to 31.3 

 

>32 

 

NT 

[10, 53] 

 

[130]* 

 

[52]* 

 

[131]* 

 

[45] 

 

 

[132] 

 

[133] 

 

[134] 

 

[42] 

 

[122] 

 

BMID, broth microdilution assay;  BMAD, broth macrodilution assay;  NS, not stated;  NT, not tested 

 

 

 



Table 2 Information on the five most potently synergistic flavonoid-antibiotic combinations tested in recent years 

as identified by PubMed and ScienceDirect searches for studies published between January 2005 and December 

2010 (studies marked with an asterisk identified more than one highly synergistic flavonoid). 

 

Flavonoid Antibiotic or          

antibiotic class 

Test bacteria Reduction in 

antibiotic MIC 

Reference 

Epicatechin gallate 

 

Quercetin 

 

Baicalein 

 

Myricetin 

 

ZP-CT-A 

 

Oxacillin 

 

β-lactam 

 

β-lactam 

 

Isoniazid 

 

Oxacillin 

MRSA 

 

Penicillin resistant S. aureus 

 

MRSA 

 

Mycobacterium spp. 

 

MRSA 

256- to 512-fold 

 

>20- to >80-fold 

 

16- to 1024-fold 

 

8- to 16-fold 

 

4- to 256-fold 

[92] 

 

[95]* 

 

[94] 

 

[86] 

 

[66] 

Note:  To take into account the fact that MICs can vary by a factor of 2 during testing [135], data from studies 

where flavonoids were used at a concentration just 2-fold lower than their MIC were excluded.  All of the above 

studies tested for synergy using variations of the broth microdilution method.   

 

 

 

 

 



  

Supplementary Table 1  Structures of flavonoids discussed within the review (compiled from individual research papers) 

 
Compound Substituents at carbon position 

2 3 4 5 6 7 8 2’ 3’ 4’ 5’ 6’ 

Flavone: 

Baicalein 

Chrysin 

Flavone 

β-naphthoflavone 

 

- 

- 

- 

- 

 

- 

- 

- 

- 

 

- 

- 

- 

- 

 

OH 

OH 

- 

* 

 

OH 

- 

- 

* 

 

OH 

OH 

- 

- 

 

- 

- 

- 

- 

 

- 

- 

- 

- 

 

- 

- 

- 

- 

 

- 

- 

- 

- 

 

- 

- 

- 

- 

 

- 

- 

- 

- 

Isoflavone: 

Genistein 

Isolupalbigenin 

Scandenone 

 

- 

- 

- 

 

- 

- 

- 

 

- 

- 

- 

 

OH 

OH 

OH 

 

- 

- 

Φ 

 

OH 

OH 

Φ 

 

- 

R1 

R1 

 

- 

- 

- 

 

- 

R1 

- 

 

OH 

OH 

OH 

 

- 

- 

- 

 

- 

- 

- 

Flavonol : 

Kaempferol 3-O-α-L-(2’’,4’’-di-E-p-

coumaroyl)-rhamnoside 

Galangin 

Morin 

Myricetin 

Quercetin 

 

- 

 

- 

- 

- 

- 

 

R2 

 

OH 

OH 

OH 

OH 

 

- 

 

- 

- 

- 

- 

 

OH 

 

OH 

OH 

OH 

OH 

 

- 

 

- 

- 

- 

- 

 

OH 

 

OH 

OH 

OH 

OH 

 

- 

 

- 

- 

- 

- 

 

- 

 

- 

OH 

- 

- 

 

- 

 

- 

- 

OH 

OH 

 

OH 

 

- 

OH 

OH 

OH 

 

- 

 

- 

- 

OH 

- 

 

- 

 

- 

- 

- 

- 

Flavanone: 

3’-O-methyldiplacol 

Hesperetin 

Naringenin 

Pinocembrin 

Sepicanin A 

 

- 

- 

- 

- 

- 

 

OH 

- 

- 

- 

- 

 

- 

- 

- 

- 

- 

 

OH 

OH 

OH 

OH 

OH 

 

R3 

- 

- 

- 

R3 

 

OH 

OH 

OH 

OH 

OH 

 

- 

- 

- 

- 

- 

 

- 

- 

- 

- 

OH 

 

OCH3 

OH 

- 

- 

- 

 

OH 

OCH3 

OH 

- 

OH 

 

- 

- 

- 

- 

- 

 

- 

- 

- 

- 

- 

Flavan-3-ol: 

Catechin 

Epicatechin 

Epicatechin gallate 

Epigallocatechin gallate 

 

- 

- 

- 

- 

 

OH 

OH 

R4 

R4 

 

- 

- 

- 

- 

 

OH 

OH 

OH 

OH 

 

- 

- 

- 

- 

 

OH 

OH 

OH 

OH 

 

- 

- 

- 

- 

 

- 

- 

- 

- 

 

OH 

OH 

OH 

OH 

 

OH 

OH 

OH 

OH 

 

- 

- 

- 

OH 

 

- 

- 

- 

- 

Flavolan: 

ZP-CT-A 

 

- 

 

OH 

 

R6 

 

OH 

 

- 

 

OH 

 

- 

 

- 

 

OH 

 

OH 

 

- 

 

- 

 
Compound 

 

Substituents at carbon position 

2 3 4 5 6 α β β' 2’ 3’ 4’ 5’ 6’ 

Chalcone: 

Bartericin A 

Isobavachalcone 

Licochalcone A 

Panduratin A 

Sofalcone 

 

- 

- 

OCH3 

- 

- 

 

R1 

- 

- 

- 

- 

 

OH 

OH 

OH 

- 

R9 

 

R7 

- 

R8 

- 

- 

 

- 

- 

- 

- 

- 

 

- 

- 

- 

Ψ 

- 

 

- 

- 

- 

Ψ 

- 

 

O 

O 

O 

O 

O 

 

OH 

OH 

- 

OH 

R10 

 

- 

R1 

- 

- 

- 

 

OH 

OH 

OH 

OCH3 

R9 

 

- 

- 

- 

- 

- 

 

- 

- 

- 

OH 

- 

 
-: no substitution;  *: benzene ring attached at positions C-5 and C-6;  Φ: 2,2-dimethylpyran ring attached at positions C-6 and C-7;  Ψ:  

1-methyl-2-(3-methyl-2-butenyl)-benzene ring attached at positions α and β;  R1: prenyl group;  R2: O-α-L-(2’’,4’’-di-E-p-coumaroyl)-

rhamnoside group;  R3: geranyl group;  R4: gallate group;  R5: octanoyl group;  R6: 15 epicatechin units with catechin or epicatechin as 

the terminal unit;  R7: 2-hydroxy-3-methylbut-3-enyl group;  R8: 3,3-dimethyl-1-butene group;  R9: prenyloxy group;  R10: 

carboxymethoxy group       

 


	Revised manuscript
	Figure 1
	Figure 2
	Table 1
	Table 2
	Supplementary Table 1

