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Introduction

Integrate-and-fire neurons are being used extensively in the field of neuroscience for
modeling spiking behaviors [1]. In this work we provide a reference implementation
of [3], where the authors have introduced a generalization of the leaky integrate-and-
fire neuron model. The Mihalas-Niebur Neuron (MNN) model is a linear integrate-
and-fire neuron model capable of expressing a rich spiking behavior based on a set of
parameters.

An MNN model expresses tonic and phasic spiking, class 1 and 2, spike frequency
adaptation, accommodation, threshold variability, rebound spike, integrator, input
bistability, hyperpolarizing spiking and bursting, tonic, phasic and rebound bursting,
mixed mode, afterpotentials, basal bistability, preferred frequency and spike latency.
Due to its simplicity, the MNN model has been used in neuromorphic implementations
such as [2].

The model consists of linear differential equations, which describe the membrane
and threshold potentials and internal currents. All the results provided in [3] have
been obtained by using only two internal currents and thus we use the exact same
number of internal currents in this work. The subthreshold dynamics are defined by a
set of linear ordinary differential equations, while an instantaneous threshold potential
controls when the neuron fires an action potential (spike) in a dynamic way. The ability
of the MNN model to generate such a diverse spiking behavior is due to the complex
update rules. In this work the MNN model has been implemented in Python (version
3.6.1) using Numpy (version 1.13.1) and Matplotlib (version 2.0.2) packages.

Methods

In order to implement the model described in [3], we discretized the dynamical system
using the forward Euler integration scheme. The time step is fixed to 0.1ms for all
the simulations, and the total simulation time ¢; varies according to figure 1 of the
original paper. Our implementation differs from the one in the original paper, since in
[3], authors numerically solve equation 3.5 (algebraic equation) under the constraint
imposed by inequality 3.4 and thus they compute the spike times. On the other hand,
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in this work we directly compute numerically the solution of the dynamical system
defined by equations 2.1 and 2.2 in [3] (see tables 2 and 3).

We provide all equations and parameters of the model in tables as it has been
suggested by [4]. Table 1 provides the summary of the model. Tables 2 and 3 give
the subthreshold dynamics (differential equations) describing the membrane and the
threshold potentials as well as the two internal currents and the update rules. The
parameters for all the simulations are given in table 4, while the external current
intensities and pulse duration are provided in table 5. The parameters in this work
are exactly the same used in the original paper (table 1, pg. 711). We had to infer the
time intervals and the total simulation times for the pulses since they are not given
explicitly in the original paper. Thus, we extracted the time intervals from figure 1 of
[3] by visual inspection. The initial conditions are given in table 6.

All simulations ran on a Dell OptiPlex 7040, equipped with a sixth generation i7
processor, 16 GB of physical memory and running Arch Linux (x86_64). The total
execution time of all simulations was 2.41 seconds and the peak consumed memory
was 162 MB!.

Table 1: Summary of the model.

Model Summary

Populations No population — single neuron model
Topology -

Connectivity -

Neuron Model Linear Integrate-and-Fire Neuron

Channel Models  Linear, first order ODEs
Synapse Model -

Plasticity -
Input Constant current/rectangular pulses
Measurements Membrane potential, phase plane

Table 2: Description of the subthreshold dynamics of Mihalas—Niebur neuron model. V' (¢) and
O(t) are the membrane and threshold potentials, respectively. FE; and © are the reversal
potentials for the membrane and threshold variables, respectively. a, b, k1, k2 and G are constant
parameters. I. is the external current applied on the neuron model.

Neuron Model

Name Mihalas-Niebur Neuron (MNN)
Type Linear Leaky Integrate-and-Fire Neuron
Membrane Potential d‘ggt) =2 (Ie +L+1L,-GV(t)— EL))
Instantaneous Threshold Potential d(?jgt) =a(V(t)— EL) —b(O(t) — O)
Internal Currents dlégt) =—ki111(t)

At _ 11 1)

Python memory profiler used (https://pypi.python.org/pypi/memory_ profiler).
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Table 3: Update rules. V. and ©, are the reset values for the membrane and threshold potentials,
respectively. R1, R2, A1 and As are constants.

Variable Rule
V(t) V,

o)  max{O,,0(1)
I,(t) Ry x I (t) + Ay
IQ(t) R2 X Ig(t) + AQ

Table 4: Simulation Parameters. Common parameters for all simulations: b = 10s™*, G/C =
50s7", k1 = 200s™", k2 = 205", O = —0.05V, Ry =0, Ry = 1, B, = —0.07V, V, =
—0.07V, ©, = -0.06 V.

Figure a(s™!) (V/s) 22(V/s) tys
1A 0 0 0 0.2
1B 0 0 0 0.5
1C 5 0 0 0.2
1D 5 0 0 0.5
1E 5 0 0 1.0
1F 5 0 0 0.4
1G 5 0 0 1.0
1H 5 0 0 0.3
11 5 0 0 0.4
1J 5 0 0 1.0
1K 30 0 0 0.4
1L 30 10 —0.6 0.4
1M 5 10 —0.6 0.5
1IN 5 10 —0.6 0.5
10 5 10 —0.6 1.0
1P 5 5 -0.3 0.5
1Q 5 5 -0.3 0.2
1R 0 8 —0.1 0.2
1S 5 -3 0.5 0.8
1T —-80 0 0 0.05
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Table 5: External current. This table provides the external current for each panel in Figure 1.
There are two types of external currents, constants and pulses. In the case of pulses the duration
of each pulse is given in seconds along with its intensity.

Figure Type I./C(V/s)

1A 15

1B -~ 1410°°¢

1C 2

1D 15

1E a- 1.5(0.1s), 0(0.5s), 0.5(0.1s), 1(0.1s), 1.5(0.1s), 0(0.1s)

1F e 1.5(0.02s), 0(0.18s), —1.5(0.025s), 0(0.025s), 1.5(0.025s), 0(0.125s)

1G e 0(0.058), —3.5(0.756s), 0(0.194s)

1H 0 2(14+1079)

11 e 1.5(0.02s), 0(0.01s), 1.5(0.02s), 0(0.25s), 1.5(0.02s), 0(0.02s)
1.5(0.02s), 0(0.04s)

1J  naee 1.5(0.1s), 1.7(0.4s), 1.5(0.1s), 1.7(0.4s)

1K [ |

1L [ |

1M 2

1N 15

10 neen 0(0.1s), —3.5(0.5s), 0(0.4s)

1P 2

1Q 2(0.015s), 0(0.185s)

1R e 5(0.018), 0(0.09s), 5(0.01s), 0(0.09s)

18 e 5(0.0058), 0(0.005s), 4(0.005s), 0(0.385s), 5(0.005s), 0(0.045s)
4(0.005s), 0(0.345s)

1T 8(0.002s), 0(0.048s)

Table 6: Initial Conditions In all simulations the same initial conditions have been used, except
from the one illustrated in Figure 1 H.

Variable Initial Value

V(t) —0.07V / —0.03V (Figure 1H)
O(t) —0.05V / —0.03V (Figure 1H)
L(t) 0.01V

Ly(t) 0.001V

Results

All three figures from the original article have been successfully replicated. All the
different spiking behaviors of the model are illustrated in Figure 1, where the black
solid line indicates the membrane potential (V' (¢)), the red dashed line illustrates the
instantaneous threshold potentials (O(¢)), and the gray line shows the input to the
neuron (I./C). The z-axis scales in all panels are exactly the same as in the original
paper (indicating the total simulation time (¢s), while the y-axis scale differs from the
one in the original paper. In this work the y-axis scale is the same for all the subplots
([-95, —25] mV), except for panels G and O ([—145, —25] mV).

Figures 2 and 3 depict the phase space of the phasic spiking (V(t) and ©(t)) and
phasic bursting (V' (), I1(t), and Iz(¢)). In both figures the blue curves and the black
dots indicate the trajectory of the system and spike events, respectively. In Figure 2
the gray arrows show the evolution of the system (vector field of the system). Figure 3
has a different orientation from the original one but both the original figure and the
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replicated one illustrate the same trajectories and spike events of the system. All the
figures express the same qualitative behavior as the original figures in [3].

Conclusion

All figures in Mihalag and Niebur [3] have been successfully replicated with high fidelity.
Overall, the whole reproducing process was smooth and without obscure points since
most of the parameters are provided in the original article. Only the time intervals for
which the external current is applied to the model and the initial conditions are not
provided explicitly. Therefore, we had to extract that information from figure 1 of the
original article. To conclude, the article [3] has been successfully reproduced without
any discrepancy.
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Figure 1: Neural responses of MNN. Black solid lines indicate the membrane potential (V (¢)),
the red dashed lines show the threshold potentials (©(¢)), and the gray lines the external currents
applied on each case. A tonic spiking, B class 1, C spike frequency adaptation, D phasic spiking, E
accommodation, F threshold variability, G rebound spike, H class 2, | integrator, J input bistability,
K hyperpolarization induced spiking, L hyperpolarization induced bursting, M tonic bursting, N
phasic bursting, O rebound burst, P mixed mode, Q afterpotentials, R basal bistability, S preferred
frequency, T spike latency.
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Figure 2: Phase space of phasic spiking. Blue solid lines indicate the trajectories of the model
in the phase spiking behavior (Figure 1 D). The dashed line corresponds to V' (t) = ©(t), and the
black dots represent spike events. The parameters for this simulation are the same as in Figure 1
D.
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Figure 3: Phase space of phasic bursting. Blue solid lines represent the trajectories of the
system and the black dots indicate spiking events. The parameters for this simulation are the

same as in Figure 1 N.
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