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Skyrmions are a class of solitons, which are both topologically stable, meaning that their vacuum
manifold has a non-trivial π3 homotopy group, and energetically stable, meaning that they are local
minima of the field energy. The non-linear sigma model is an effective hadronic field theory, based on
a triplet of pion fields, which is a low energy approximation to QCD. With the addition of the Skyrme
term, this approximate model may be improved to yield skyrmion solutions. Further improvements
to the model allow us to give the pion fields mass. By considering a ‘spherically symmetric’, energy-
minimising skyrmion solution corresponding to a winding number of B = 1, we deduce that the
skyrmion has a mass of ∼ 1GeV and a RMS radius of ∼ 1 fm. By imposing CPT symmetry on the
theory, we require the addition of the Wess-Zumino term to the action. From a calculation of the
Noether charge corresponding to the baryon number symmetry group, U(1)V , we deduce that the
baryon number corresponds to the winding number of the skyrmion, which suggests that skyrmions
are the baryons of QCD. By canonically quantizing the rotation of the B = 1 skyrmion and imposing
electromagnetic gauge, we deduce the spin, isospin and physical electric charge. This supports the
hypothesis that skyrmions correspond to baryons, and we identify the skyrmions corresponding to
the proton and the neutron. Extending the theory, we discuss how light nuclei, with B < 7, may
be successfully modeled using the single rational map ansatz. We briefly review the complications
that arise when modeling larger nuclei (B ≥ 7) and show that certain higher-order skyrmions may
be successfully constructed using geometric rational map ansätze based on the Skyrme crystal.
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PREFACE

The aim of this essay is to give an academic introduction
to the Skyrme model in both a mathematical and physi-
cal context, focusing on its original applications to nuclear
physics. Starting from a discussion of classical solitons,
with a few prototypical examples, we go on to discuss the
construction of the classical Skyrme model, quantize the
theory and finally, review attempts that have been made
to model larger nuclei. The order is logically progressive
and is intended to provide motivation for further study.

I. INTRODUCTION

In the past century, there have been many developments
in the field of nuclear physics, which have lead to our cur-
rent understanding of the structure of the nucleus. Physics
has progressed from a simple representation of nucleons as
point particles, with effective potential interactions, to a
complete description based on quarks and gluons; known as
quantum chromodynamics (QCD). In 1961, British nuclear
physicist T. H. R. Skyrme conjectured that the interior of
the nucleus is dominated by a ‘medium’ formed of three
pion fields [1, 2]. Remarkably, this conjecture predates the
advent of QCD and so, may be regarded as an intermedi-
ary step towards the construction of the modern standard
model. However, as it was later realised, the simple ideas
of Skyrme have a far wider significance in many, seemingly
disparate, areas of physics [3].

II. CLASSICAL SOLITONS

This subsection is based on the original paper by Rus-
sell [4].

Before we go on to explore the full theory of Skyrme, it
is important to review a few basic concepts from classical
physics. Let us begin our discussion by examining soliton
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solutions in classical field theory.
The phenomenon of solitons was first documented in the

early 19th century, albeit in a more lowly form. In 1834,
Scottish civil engineer and navel architect, J. S. Russell,
first reported the phenomenon while conducting experi-
ments to improve the efficiency of canal boats on the Union
Canal in Scotland [4]. Russell observed that when a canal
boat was rapidly drawn along a narrow path and subse-
quently brought to a stop, a solitary wave of water prop-
agated out in front of it. In his own words: “the mass of
water in the channel which [the canal boat] had put in mo-
tion...rolled forward with great velocity, assuming the form
of a large solitary elevation, a rounded, smooth and well-
defined heap of water, which continued its course along the
channel apparently without change of form or diminution
of speed” [4]. Indeed, it was not the wave itself that was
surprising but rather the unusual physical properties that
it possessed; most notably, the fact that it maintained its
shape and seemingly did not dissipate energy. Russell sub-
sequently followed the wave on horseback for “one or two”
miles before he lost it due to the windings of the canal.
He later reproduced the wave in a wave tank that he had
built at home and named it the “wave of translation” [4].
So fascinated was he in his newly discovered solitary wave
of translation, that he studied it for many years conduct-
ing both theoretical and experimental research into its key
properties. Using Russell’s observations, let us informally
define a soliton in the following way:

Definition: A soliton is a wave-packet that main-
tains its shape while propagating at a constant velocity.
Broadly speaking, solitons have three defining features:

� They are of permanent form (i.e. static solutions
of the field equations),

� They are localised within a region (i.e. they have
finite size and finite energy);

� They can interact with other solitons, and emerge
from the collision unchanged, except for a phase
shift.

At the time, Russell’s ideas were hard for the scientific
community to accept because they appeared to contra-
dict the well-tested laws of hydrodynamics presented by
respected scientists, such as Newton [5] and Bernoulli [6].
In 1878, Lord Rayleigh published a paper to Philosophi-
cal Magazine supporting Russell’s observations with math-
ematical theory [7]. What Russell had named a “wave of
translation” was, in fact, a solution to a weakly non-linear
dispersive partial differential equation (PDE), where the
non-linear and dispersive effects had been canceled in the
medium. This explanation was generally well-received by
the community [8] and Russell’s solitary wave has been
studied in the field of fluid dynamics ever since.

However, it was not until the late 20th century, that the
far-reaching consequences of Russell’s observations were
beginning to be unearthed. Thanks to the capabilities of
modern computer simulations, solitons have rapidly found
applicability to various fields of science and they currently
form their own field of research.

FIG. 1. A simple pendulum hanging freely in a uniform gravita-
tional field of strength g. The set-up consists of a light, rigid rod
of length l fixed at one end to a frictionless pivot and inclined
at an angle ϕ to the vertical. A bob of mass m and negligible
size is attached to the other end of the rod. [9]

A. The Sine-Gordon Model

In order to introduce the analysis of classical solitons,
let us start by examining the simple pendulum. Consider a
simple pendulum of mass m, length l, and inclination angle
ϕ, moving freely under gravity; as shown in figure 1. From
this, we can write down the Lagrangian of the system as

L =
1

2
ml2ϕ̇2 −mgl(1− cosϕ), (1)

where ϕ̇ ≡ dϕ/dt denotes the time derivative. For simplic-
ity, let us define a set of units in which all of the constants
(i.e. m, g and l) are equal to one. This allows us to write
the Lagrangian as

L =
1

2
ϕ̇2 − (1− cosϕ). (2)

This is a classical simple harmonic oscillator with respect
to the scalar variable ϕ(t). Now, by extending this concept
to an infinite series of coupled harmonic oscillators, we can
construct a field theory.

1. 1+1 dimensions

This subsection is based on lecture notes by Demokri-
tov [10].

Imagine an infinite series of these simple, rigid pendula
hanging from an infinitely long support rod, which extends
from x → −∞ to x → ∞, as shown in figure 2. Addition-
ally, let each of the bobs of the pendula be coupled to their
nearest neighbours by some coupling constant. For exam-
ple, we may imagine they are coupled by elastic bands.
Now, if we rotate one pendulum at x → −∞ completely
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FIG. 2. A section of an infinite series of simple pendula hanging
freely along the x-axis. [11]

FIG. 3. A propagating solitary wave of rotating pendula due
to the non-zero coupling constant and the complete rotation of
the pendulum at x → −∞ by an angle of ϕx→−∞ = 2π. [12]

(i.e. by ϕx→−∞ = 2π), then since the pendula are coupled,
this will send a solitary wave of rotating pendula propagat-
ing with a constant velocity in the positive x-direction, as
illustrated in figure 3.

The Lagrangian for each pendulum may be parame-
terised by a scalar variable. Let us call this scalar vari-
able the angle ϕn(t) for oscillator n. Since we have an
infinite number of scalar variables, we may parameterise
the Lagrangian of the system by the scalar field ϕ(t, x).
Hence, working in Minkowski space with the usual particle
physics metric ηµν = diag(+1,−1,−1,−1), we may write
the Lagrangian density of the system as

L =
1

2
(ϕ̇2 − ϕ2

x)− (1− cosϕ), (3)

where ϕx ≡ ∂ϕ/∂x and the Lagrangian may be recovered
in the usual way, L =

∫∞
−∞Ldx. Note that here we have

simply moved from a scalar variable to a scalar field and
from the time derivative factor, ∂tϕ∂tϕ, in equation 2 to

the space-time derivative factor, ηµν∂µϕ∂νϕ, with c
!
= 1.

For simplicity, natural units will be assumed for the con-
tinuation of this essay. Equation 3 gives us a relativistic
theory and ensures that our scalar field is Lorentz invari-
ant. Using Einstein notation, we may write this in a more

familiar and general form as

L =
1

2
∂µϕ∂µϕ− V (ϕ), (4)

where the effective potential V (ϕ) = 1 − cosϕ ≥ 0. Now
using the Euler-Lagrange equations,

∂L
∂ϕ

− ∂µ

(
∂L

∂(∂µϕ)

)
= 0, (5)

we may derive the equation of motion for ϕ to be

∂2ϕ+ sinϕ = 0, (6)

where ∂2 ≡ ∂µ∂µ denotes the d’Alembert operator. This
is known as the sine-Gordon equation and was originally
used to study surfaces of constant negative curvature in
geometry [13]. Nowadays, however, it has attracted a lot
of interest due to its soliton solutions. The name “sine-
Gordon” is a reference to its similarity with the well-known
Klein-Gordon equation in quantum field theory. In fact,
by writing the cosine as a Taylor series, the sine-Gordon
Lagrangian density, L, may be written as the Klein-Gordon
Lagrangian density, LKG, plus higher-order terms:

L =
1

2
∂µϕ∂µϕ+

1

2
ϕ2︸ ︷︷ ︸

LKG

+
∞∑

n=2

(−ϕ2)n

(2n)!
. (7)

Now that we have our Lagrangian and equation of motion
for our 1+1-dimensional scalar field theory, let us examine
its key properties. First, note that the potential, V (ϕ), is
minimised for all values ϕ = 2πk, k ∈ Z. Furthermore,
since our system has a global symmetry ϕ → ϕ + 2πk, we
may choose the physical vacuum to be ϕ(x) ≡ 0, without
loss of generality. In our pendulum model, this corresponds
to all of the pendula hanging downwards.

Now, suppose we have a soliton in our system. We know
that solitons have a finite size and energy and so the pen-
dula must be hanging downwards at |x| → ∞. We do not
know exactly what is happening in-between but at least
the boundaries are clear:{

ϕ(x → −∞) = 0 (+2πk)

ϕ(x → +∞) = 2πn (+2πk),
(8)

where we have defined the winding number

n ≡ ϕ(∞)− ϕ(−∞)

2π
∈ Z. (9)

In other words, after we have created this soliton at x →
−∞, we may reset the phase at x → −∞ to zero, as an
arbitrary choice, and then the phase at x → ∞ will be 2πn,
where n is the number of times we have wound the first
pendulum to create the solitary wave. The whole system
of course has a global symmetry of ϕ → ϕ + 2πk and so,
strictly speaking, this term could also be present. However,
we are only concerned with relative phases here and so we
can ignore the global symmetry.

In order to have a closer look at the dynamics of the
system, we can now solve the sine-Gordon equation of mo-
tion. Since solitons are “of permanent form” and move
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at a constant velocity, we may solve the static (i.e. time-
independent) sine-Gordon equation with the argument that
we can always Lorentz boost to a frame where the soliton
is stationary. In this case, from equation 6, the static sine-
Gordon equation takes the form:

− ϕxx + sinϕ = 0. (10)

Note that our angle of inclination ϕ is now just a function
of x and so we have moved to straight derivatives in the
equation. This leaves us with a simple 2nd-order differen-
tial equation that can be solved analytically. Multiplying
through by ϕx yields

ϕxϕxx = ϕx sinϕ; (11)

which after integration becomes

1

2
ϕ2
x = − cosϕ+A, (12)

where A is a constant of integration. Noting that we are
looking for solutions where ϕ, ϕx → 0 as |x| → ∞, we can
deduce that A = 1. Using the trigonometric double-angle
identity cos 2ϕ ≡ 1− sinϕ, we may rewrite this equation in
terms of a sine function and integrate such that∫ ϕ

0

dϕ

sin ϕ
2

= ±2

∫ x

x0

dx, (13)

where x0 is the position of our soliton. Performing the
integrals yields

ln

(
tan

ϕ

4

)
= ±(x− x0), (14)

which we may subsequently rearrange to give us the final
form of our solution:

ϕ(x) = 4 arctan
(
e±(x−x0)

)
. (15)

Note that the ± in the exponent corresponds to a winding
number of n = ±1, where the n = +1 case is called the kink
solution and the n = −1, the antikink. A graph of these
solutions is shown in figure 4. The kink may also be viewed
as a non-dissipative (sech2) wave-packet of energy moving
along the x-axis, as shown in figure 5. This demonstrates
how the phase and energy propagate through our system.
Before we leave this example behind and move onto more
complex systems, however, let us first examine two impor-
tant properties of the kink soliton that will come in useful
in later examples; namely its mass and its size. In our def-
inition, we have stated that solitons are “localised within
a region”, meaning that they have finite energy and finite
size. This being the case, it must be possible to compute
these values.

The total mass of the soliton (or equivalently, the to-
tal energy, in this static configuration) may be computed
by simply integrating over the Hamiltonian density. How-
ever, since we are considering the static case and are using
the (+−−−) metric convention, this is equivalent to in-
tegrating over minus the Lagrangian density. The energy
functional is then given by

E[ϕ] =

∫ ∞

−∞
(−L) dx =

∫ ∞

−∞

[
1

2
(ϕx)

2 + V [ϕ]

]
dx. (16)

FIG. 4. The phase, ϕ, along the x-axis in the vicinity of a |n| = 1
soliton. The n = +1 case corresponds to the kink solution and
the n = −1 case to the antikink. The soliton is centred at x0

with a total length 2d. [14]

FIG. 5. The energy density, E , along the x-axis in the vicinity
of a |n| = 1 soliton. The soliton is centred at x0 with a total
length 2d. [15]

Calculating the x-derivative of our kink solution in equa-
tion 15 yields

ϕx =
4

1 + e2(x−x0)
=

4

ex−x0 + e−(x−x0)
, (17)

which in terms of hyperbolic trigonometric functions reads

ϕx = 2 sech(x− x0). (18)

This gives us a kinetic energy density of

1

2
(ϕx)

2 = 2 sech2(x− x0). (19)

Following on from this and substituting the kink solution
from equation 15 into our form of the effective potential
yields

V (x) = 1− cos
(
4 arctan(ex−x0)

)
, (20)

where the functional V [ϕ] has been reduced to a sim-
ple function of x. Using the cosine double-angle identity
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cos 2ϕ ≡ 1− 2 sin2 ϕ yields

V (x) = 2 sin2
(
2 arctan(ex−x0)

)
, (21)

which after the application of the sine double-angle iden-
tity, sin 2ϕ ≡ 2 sinϕ cosϕ, reduces to

V (x) = 8 sin2
(
arctan(ex−x0)

)
cos2

(
arctan(ex−x0)

)
. (22)

From the arctangent functions in the expression, we can
conclude that the ratio of opposite to adjacent sides of the
right-angled triangle is ex−x0 . Hence, using Pythagoras’
theorem, this expression may be rewritten, in terms of hy-
perbolic trigonometric functions, as

V (x) = 2 sech2(x− x0). (23)

Comparing this to equation 19 shows that the kinetic and
potential energies of our system are equal, which is what
we would expect from Virial’s theorem. Using these ex-
pressions, we may now perform the integral in equation 16
to find the total energy carried by our kink solution:

E[ϕn=+1] = 4

∫ ∞

−∞
sech2(x− x0) dx = 8. (24)

Note that due to the symmetry of the cosh function, this is
also the energy carried by the antikink. Although it does
not make much sense to talk about the ‘mass’ of the soliton
in this context, the concept will come in useful later.

Last of all, we need an estimate for the soliton’s size.
We can compute this by considering the root-mean-squared
(RMS) radius, rRMS ≡

√
⟨r2⟩, of the soliton’s energy wave-

packet. Following on from our discussion of the mass, the
mean-squared radius can be calculated as

⟨r2⟩ ≡
∫ ∞

−∞
(x− x0)

2(−L) dx, (25)

which after a simple change of variables, defining u ≡ x−
x0, may be evaluated to give

rRMS =

[
4

∫ ∞

−∞
u2sech2udu

]1/2
=

√
2

3
π. (26)

This gives us a value for the RMS radius of the soliton and
hence, a rough estimate of its size, which will be useful for
comparing solitons in future discussions.

The crucial point to realise is that solitons are a direct
consequence of a new vacuum of our theory (i.e. a new
state of lowest possible energy). Recall that we chose the
physical vacuum of our system to correspond to all pendula
hanging downwards (i.e. ϕ(x) = 0, ∀x). As soon as we cre-
ate a soliton, this configuration can never be reached, since
we will have a propagating wave that is traveling along an
infinitely long x-axis. Hence, in this situation, our system is
said to have a new non-trivial vacuum - non-trivial meaning
that it is topologically distinct from the physical vacuum.
This non-trivial vacuum gives rise to solitons which are fi-
nite in mass and size, and, most importantly, cannot decay
because they do not have the same topological properties
as the physical vacuum.

2. 3+1 dimensions

This subsection is based on the chapter “A Planar
Skyrme-Like Model” by Cova [16].

In our 1+1-dimensional model, we saw how our soliton
can essentially be viewed as a particle, of fixed mass and
size, propagating along the x-axis. If we now move to 2+1
dimensions, with the condition that ∂yϕ = 0 in the sine-
Gordon equation of motion, our soliton can be regarded
as a line propagating in the x-direction. By extension, in
3+1 dimensions, with the conditions that ∂yϕ = ∂zϕ = 0,
our soliton solution represents a propagating domain wall
moving in the x-direction. This propagating domain wall
separates the region in front of it, which still has the phys-
ical vacuum of ϕ = 0, and the region behind it, which has
a new vacuum of ϕ = 2π and no way of naturally decay-
ing back into the physical vacuum. Hence, we say that the
vacuum manifold, M, is a disconnected space given by

M = {ϕ : V (ϕ) = 1− cosϕ
!
= 0} (27)

and hence isomorphic to the set of all integers,

M = {. . . ,−4π,−2π, 0, 2π, 4π, . . . } ∼= Z. (28)

Note that the physical vacuum manifold, Mphys, is given
by

Mphys = {ϕ : ϕ = 0} = 0, (29)

and so is topologically distinct from M. The physical vac-
uum is trivial, as it is just a number, whereas the soliton
vacuum manifold is non-trivial, as it can take many dif-
ferent values. The observation that solitons do not decay
is therefore equivalent to the statement that the set of all
integers cannot be mapped onto a point. Although this
level of mathematical abstraction may seem unnecessary
at the moment, it will prove to be crucial for understand-
ing higher-order solitons in section IIC.

B. Homotopy Groups

This subsection is based on the chapter “Topology in
Field Theory” in Manton & Sutcliffe [17].

Now that we have seen why a non-trivial vacuum man-
ifold topology is a necessary condition for the existence of
solitons, we need a precise way of categorising manifold
topologies. Supposing we have a field theory with a given
vacuum manifold topology, once we have a way of categoris-
ing whether the vacuum topology is non-trivial, we will be
able to say whether soliton solutions could potentially ex-
ist. For this purpose, we shall use homotopy theory.
Let X and Y be two unbounded manifolds and let us

consider the continuous maps between them, Ψ : X → Y .
For example, Y could represent the vacuum manifold of
our field theory. We now need to define what it means for
such a map to be homotopic to another; or equivalently, in
the same homotopy class.
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TABLE I. Overview of the key features of the most common
n-spheres.

n-sphere Description

S0 antipodal points

S1 circle - U(1) manifold

S2 ‘ordinary’ sphere

S3 4-dimensional sphere - SU(2) manifold

Definition: A continuous map Ψ0 : X → Y is said
to be in the same homotopy class as another map Ψ1 :
X → Y if Ψ0 can be continuously deformed into Ψ1.
Formally speaking, Ψ0 is homotopic to Ψ1 if there ex-
ists a continuous map Ψ̃ : X× [0, 1] → Y where a ‘time’

τ parameterises the interval, such that Ψ̃|τ=0 = Ψ0 cor-

responds to the ‘initial’ map and Ψ̃|τ=1 = Ψ1 to the
‘final’ map.

It is the concept of continuous deformations that is crucial
to this definition.

We can extend this analysis if we consider the homotopy
classes of continuous maps from the n-sphere:

Ψ : Sn → Y. (30)

Recall that the unit n-sphere is the defined as the set of
points in Rn+1 at unit distance from the origin. The most
common n-spheres are given in table I. The homotopy
classes of continuous maps from the n-sphere are special
because one can define the composition of any two of these
classes and show that the usual group axioms of closure,
associativity, identity and inversion are satisfied. Hence,
from these homotopy classes, one can construct homotopy
groups.

Definition: The set of homotopy classes of the contin-
uous maps Ψ : Sn → Y , n ≥ 1 is known as the nth

homotopy group, πn(Y ).

Clearly the ability to sort homotopy classes into homo-
topy groups will be very useful in categorising topologies.
However, we first need to justify why it is valid for us to
use these n-sphere maps in place of our general maps from
X to Y . As suggested before, let us suppose that we have a
field theory with some vacuum manifold Y . We now want
to look at the continuous map from X to Y . In order to
make use of the n-sphere map in our analysis, we need to
show that our X manifold is isomorphic to an n-sphere.
It is easy to confirm that this requirement is satisfied, if
we consider stereographic projection. For example, con-
sider a 3-dimensional, infinite, continuous manifold R3. In
this case, R3 can be identified with S3 by a stereographic
projection from the north pole p, as shown in figure 6.
Considering an infinite 3-sphere, we can see that by pro-
jecting from the north pole of this sphere to a tangential
plane with respect to its south pole, we can recover all of
R3 apart from the point corresponding to the pole itself.
In other words, there is a one-to-one correspondence be-
tween {S3−p} and R3, assuming that all points at infinity

FIG. 6. A pictorial representation of a stereographic projection
from Sn to Rn. The north pole of the n-sphere is labeled by the
point p. [17]

are identified. Now if we attach a point at infinity to R3,
corresponding to the map of the pole, then we have our
desired representation of S3. This argument can trivially
be extended to Sn.

Let us now build some intuition and learn how to ex-
ploit these homotopy groups. One of the simplest ways to
get a feel for how these groups behave is to examine the
homotopy groups of the m-sphere (i.e. considering maps
from Sn to Sm). Let us start by examining the homotopy
groups of the circle, S1.

� π0(S
1) = 0. This corresponds to mapping antipo-

dal points onto a circle. Since any two points on S1

are connected, there is only one topologically distinct
way of putting antipodal points on a circle. There-
fore, the target (‘vacuum’) manifold is trivial with
respect to the ‘initial’ manifold, since it can only
take one value. (Note also that we have not, strictly
speaking, defined homotopy groups for n = 0. These
are known as homotopy groups of unbased homotopy
classes and need to be treated separately in a formal
discussion [17].)

� π1(S
1) ∼= Z. This corresponds to mapping a circle

onto a circle. Note that here we are referring to a
‘circle’ in its topological sense, so it does not have to
be round. In this case, we can deform a circle onto one
side of the circumference of the target circle, which
can correspond to method 0. Or, most obviously, we
can put the circle on top of the other circle, which
can correspond to method 1. Continuing in this vein,
we can wrap around the target circle twice, which
can correspond to method 2, etc. Remembering that
we can wrap around the circle both clockwise and
anti-clockwise implies that this homotopy group is
isomorphic to the set of integers. In other words,
there are an infinite number of topologically distinct
ways of mapping a circle onto another circle. Hence,
our target manifold is non-trivial with respect to the
‘initial’ manifold, since it can take multiple values.

Extending this to homotopy groups of the sphere S2, we
find that:
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� π0(S
2) = 0. This corresponds to mapping antipo-

dal points onto a 2-sphere. As argued before, there
is only one topologically distinct way of doing this,
so the target manifold is trivial with respect to our
original manifold.

� π1(S
2) = 0. This corresponds to mapping a circle

onto a 2-sphere. Any circle on a 2-sphere can be
contracted to a point, or, in other words, there al-
ways exists a homeomorphism (continuous deforma-
tion) that can take a circle on a 2-sphere to a point
on a 2-sphere. Therefore, on its surface, a circle and
a point are topologically indistinguishable, and as we
argued earlier, there is only one topologically distinct
way of mapping a point onto a sphere. Hence, the
target manifold is again trivial with respect to the
original manifold.

� π2(S
2) ∼= Z. This corresponds to mapping a 2-sphere

onto another 2-sphere. Now this case is slightly more
difficult to visualise but if we apply the same logic
that we used for π1(S

1), we can conclude that the
homotopy group is isomorphic to the set of all in-
tegers. Therefore, the target manifold is non-trivial
with respect to the original manifold.

Anything beyond these simple cases quickly becomes
very difficult to visualise, however as intuition may sug-
gest, the general result is given by

πn(S
n) ∼= Z, ∀n ≥ 1. (31)

However, note that the converse does not always hold:
πn(S

m) ̸= 0, ∀n ̸= m.
In this simple example, we have used homotopy theory

to identify non-trivial target manifolds. Now, if we exam-
ine real vacuum manifolds of some field theory, then the
homotopy groups will give us a way of checking if the man-
ifold topology is non-trivial with respect to some ‘initial’
manifold. This gives us a way of identifying and classifying
soliton solutions in a field theory.

C. Vacuum Manifold Topology

This subsection is based on the lectures by Gillioz [18].

From this point on, let us consider a 3+1-dimensional
field theory with some vacuum manifold, M (e.g. the 3+1-
dimensional sine-Gordon theory discussed in section IIA 2).
Calculating the homotopy groups of this manifold is sim-
ply an exercise in pure mathematics, as demonstrated in
section II B. Therefore, let us proceed by interpreting what
the first few non-trivial homotopy groups of the vacuum
manifold will tell us about our field theory.

� π0(M) ̸= 0. In this case, the vacuum manifold of our
field theory is non-trivial with respect to the map-
ping of antipodal points. As we saw when we studied
the homotopy classes of maps from Sn to Sm, there
is only one topologically distinct way of mapping an-
tipodal points onto a target manifold iff the antipodal

points are connected on the target manifold. Con-
sequently, in order for this π0(M) homotopy group
to be non-trivial, our antipodal points must be dis-
connected when mapped onto the vacuum manifold.
In other words, the antipodal points must be non-
contractible (i.e. impossible to bring together) or
equivalently, we must not be able to rotate the an-
tipodal points into one another. This implies that
there must be some 2-dimensional ‘wall’ (or ‘walls’)
separating the two points. In fact, in this case, we say
that our field theory has the potential for topological
solitons called domain walls. We saw an example of
this in section IIA 2.

� π1(M) ̸= 0. Here, the vacuum manifold is non-trivial
with respect to the mapping of a circle. Again, for
this homotopy group to be non-trivial, there must
be closed paths in space that cannot be contracted
to a point. This implies that there must be some 1-
dimensional ‘string’ (or ‘strings’) passing through the
circle in our vacuum manifold to prevent it from con-
tracting to a point. In this case, we say that our field
theory has the potential for topological solitons called
strings. The most famous example of this being the
cosmic strings in the abelian Higgs model, which has
a manifold M = U(1) ∼= S1 and non-trivial homo-
topy group π1(M) ∼= Z.

� π2(M) ̸= 0. This corresponds to a non-trivial vac-
uum manifold with respect to the mapping of a 2-
sphere. Extending our previous argument, there only
exists more than one topologically distinct way of
mapping a 2-sphere onto a target manifold iff the
map of the 2-sphere on the manifold is a non-trivial
surface. In other words, the map of the 2-sphere
must be non-contractible. This implies that there
must be some 0-dimensional ‘singularity’ (or ‘singu-
larities’) within the sphere to prevent it from trivially
contracting to a point. In this case, we say that our
field theory has the potential for topological solitons
called monopoles. A typical example of this being the
magnetic monopoles in the non-abelian Higgs model,
which has a manifold M = SU(2)/U(1) and non-
trivial homotopy group π2(M) ∼= Z.

� π3(M) ̸= 0. For our last example, we go one step
beyond what is easy for us to visualise. However,
based on the previous three cases, we should start
to see a pattern emerging. This homotopy group
corresponds to mapping a 3-sphere onto a vacuum
manifold. Now, 3-spheres are difficult to visualise be-
cause they are in four spatial dimensions. However,
as shown in section II B, we can identify a 3-sphere
with the 3-dimensional space R3 by stereographic pro-
jection. Hence, this homotopy group corresponds to a
non-trivial map of R3 → M. In order for this map to
be non-trivial, there must be more than one topolog-
ically distinct way of mapping R3 onto our vacuum.
So, as our intuition tells us, there could be some soli-
ton in our field theory that creates this non-trivial
surface. In fact, in this case, we say that our field
theory has the potential for topological solitons called
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skyrmions. There are many examples of theories with
skyrmions because they can potentially exist in any
theory with a SU(N), N ≥ 3 vacuum symmetry, as
we shall see later.

Notice that throughout this discussion we have identi-
fied the cases where these solitons could potentially exist.
This is because a non-trivial vacuum manifold topology is
a necessary but insufficient condition for their existence.
A soliton solution, as opposed to a topological soliton, also
needs to be a local minimum of the energy functional.

D. Derrick’s Scaling

This subsection is based on the original paper by Der-
rick [19].

Let us now consider the most general, renormalisable
scalar field theory in 3+1 dimensions. The Lagrangian den-
sity for a general scalar field theory is given by

L =
1

2
∂µϕ∂µϕ− V (ϕ), (32)

where V (ϕ) is some general potential function. As we have
seen before, the energy functional for a (static) soliton con-
figuration may be written as E[ϕ] =

∫
d3x (−L), using our

(+−−−) metric. Hence, the full expression for the energy
functional reads

E[ϕ] =

∫
d3x

[
+
1

2
∂iϕ∂iϕ− V (ϕ)

]
. (33)

We know that an additional constraint on the existence
of stable soliton solutions is that the soliton configura-
tion must be a local minimum of the energy functional.
Formally speaking, this implies that the energy functional
must satisfy

δE

δϕ

∣∣∣∣
ϕ=ϕ0

= 0 and
δ2E

δϕ2

∣∣∣∣
ϕ=ϕ0

> 0, (34)

for some soliton field configuration ϕ0(x). Let us now label
this minimised energy functional,

E0 ≡ E
(1)
0 + E

(2)
0 , (35)

where E
(1)
0 is the kinetic energy and E

(2)
0 the potential

energy of our field configuration.
Using the fact that maps to a local vacuum manifold are

continuous, we can represent any field configuration, ϕ(x),
as a rescaling of our soliton field configuration, ϕ0(x). Let
us introduce a scaling parameter λ and define a general
field configuration as

ϕλ(x) ≡ ϕ0(λx). (36)

Note that now our general field configuration corresponds
to the soliton configuration when λ = 1. Hence, our new
conditions for the existence of soliton solutions are

dEλ

dλ

∣∣∣∣
λ=1

= 0 and
d2Eλ

dλ2

∣∣∣∣
λ=1

> 0, (37)

where we have gone from functional derivatives to straight
derivatives because λ is simply a parameter. Recalling that
our expression for the parameterised energy reads

Eλ =

∫
d3x

[
1

2
∂iϕ0(λx) ∂iϕ0(λx)− V (ϕ0(λx))

]
, (38)

we may perform the substitution x ≡ x̃/λ to remove the
λ-dependence in the ϕ0 functions, such that

Eλ =

∫
d3x̃

λ3

[
λ2

2
∂iϕ0(x̃) ∂iϕ0(x̃)− V (ϕ0(x̃))

]
. (39)

This allows us to express the general parameterised energy
functional in terms of the kinetic and potential energies of
the soliton configuration:

Eλ =
1

λ
E

(1)
0 +

1

λ3
E

(2)
0 . (40)

Now imposing the conditions identified above,

dEλ

dλ

∣∣∣∣
λ=1

= −E
(1)
0 − 3E

(2)
0

!
= 0, (41)

which implies that

E
(2)
0 = −1

3
E

(1)
0 . (42)

We can then easily determine the nature of this turning
point by substituting this relation into the second deriva-
tive. Upon substitution, we find that

d2Eλ

dλ2

∣∣∣∣
λ=1

= 2E
(1)
0 + 12E

(2)
0 = −2E

(1)
0 ≤ 0. (43)

Since the kinetic energy of the soliton field configuration

is always greater than or equal to zero, E
(1)
0 ≥ 0, this

shows that the soliton configuration in a renormalisable
3+1-dimensional field theory is, in fact, a local maximum
in energy, and so solitons cannot exist. This is a special
case of G. H. Derrick’s scaling argument, which states that
stationary, localised solutions to wave-type equations are
unstable in three or more spatial dimensions. From sec-
tion IIA 2, however, we showed that we would expect a
domain wall in a 3+1-dimensional sine-Gordon model. No-
tice that although a domain wall is a topological soliton,
meaning that it has a non-trivial vacuum manifold topol-
ogy, it is not a valid soliton, as we defined them in section II,
because it is not of finite energy and finite size. Since most
of our theories of interest will be in 3+1 dimensions, Der-
rick’s scaling argument is something that we will need to
take into account.

III. THE CLASSICAL SKYRMION

In the previous section, we reviewed the basics of classi-
cal solitons that we will now use to understand the Skyrme
model. We started by looking at the sine-Gordon model,
and showed how solitons arise in a simple classical field
theory. Studying the properties of a soliton in this con-
text then gave us some intuition for how to generalise the
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concept. Following on from this, we introduced the notion
of homotopy groups and showed that non-trivial vacuum
manifolds can be identified and categorised using homo-
topy theory. Finally, we concluded that in order for soliton
solutions to exist they need to both have non-trivial vac-
uum manifolds and be local minima of the field energy.
We have now reached a point where, given some field

theory (i.e. Lagrangian) we can definitively say whether
the theory has the potential for solitons, and we are even
able to describe their topology. Let us now apply these
ideas to particle physics.

A. The Non-linear Sigma Model

This subsection is based on the conference lecture by
Farhi [20].

In 1960, M. Gell-Mann and M. Levy introduced the the-
ory of a scalar field that takes on values in a non-linear
manifold [21]. For historical reasons, this model is named
after Gell-Mann & Levy’s scalar field, Σ, which was based
on the spin-0 meson, σ, that they were modeling; however,
this name is arbitrary. As mentioned before, the non-linear
sigma model (NLSM) is a precursor to modern-day QCD.
It is an effective field theory, which is valid at long dis-
tances and is a good approximation to QCD, when model-
ing physics in which the quark structure is negligible. The
NLSM can therefore be viewed as a basic hadronic field the-
ory; the base field in the model naturally being the lightest
hadron: the pion.

This seminal theory changed the way that physicists
thought about the structure of the atom and it even pre-
dates the discovery of quarks. Now instead of thinking
about fundamental particles as points, we can think of
them as scalar fields. In the NLSM, these scalar fields are
made up of fields corresponding to the three pions:

π+ : ud̄,

π0 : 1√
2
(uū + dd̄),

π− : dū,

which were the lightest, most fundamental building blocks
that people knew of, at the time. Just as with the full
QCD picture that follows, we require that our theory has
a global symmetry group SU(2)L×SU(2)R, in order for it
to represent hadrons made up of two quark flavours.

Let U(x) be an SU(2)-valued field, such that at every
point in space-time, x, we assign an SU(2) matrix, U(x).
Note that, in general, we would consider an SU(Nf )-valued
field, where Nf is number of quark flavours. Here we
are modelling pion fields and so there are only two quark
flavours, corresponding to the up (u) and the down (d)
quarks.

Since U(x) is an SU(2) field made up of the three pion
fields {πa(x) : a = 1, 2, 3}, it may be written as

U(x) = exp(iπa(x)σa/fπ), (44)

where fπ is a pion decay constant with dimensions of mass,
which we introduce to ensure that the argument of the

exponent is dimensionless, and σa are the Pauli matrices:

{σa} =

{(
0 1

1 0

)
,

(
0 −i

i 0

)
,

(
1 0

0 −1

)}
. (45)

This is a standard result for any SU(2)-valued field and so,
may be rewritten in a more insightful way.

Derivation: By Taylor expanding the exponent, we
may split the field up into even and odd parts as follows:

eiπ·σ/fπ =
∞∑

n=0

1

n!

(
i

fπ
π · σ

)n

=
∞∑

n=0

(iπ · σ/fπ)2n

(2n)!︸ ︷︷ ︸
even

+
∞∑

n=0

(iπ · σ/fπ)2n+1

(2n+ 1)!︸ ︷︷ ︸
odd

.

(46)

Now using the Pauli matrix identity σaσb ≡ δab +
iϵabcσc, we can see that

πaσaπbσb = πaπbσaσb

= πaπbδab +((((((
iπaπbϵabcσc.

(47)

The second term vanishes because πaπb is symmetric
in its indices, whereas ϵabc is antisymmetric in a and b.
Equation 47 implies that

(π · σ)2 = π2 1, (48)

where π ≡ |π|, and 1 is the 2× 2 identity matrix, and,
more generally, the identity operator. From this, we can
conclude that

(iπ · σ/fπ)2 = −(π/fπ)
2 1 (49)

and hence

(iπ · σ/fπ)2n = (−1)n(π/fπ)
2n 1. (50)

Consequently, for our odd summand,

(iπ · σ/fπ)2n+1 = i(−1)n(π/fπ)
2n+1 π̂ · σ, (51)

where π̂ is defined to be the unit vector π̂ ≡ π/|π|.
Using these two relations, we can now express our ex-
ponential as

eiπ·σ/fπ =
∞∑

n=0

(−1)n(π/fπ)
2n

(2n)!
1

+ i
∞∑

n=0

(−1)n(π/fπ)
2n+1

(2n+ 1)!
π̂ · σ.

(52)

Expressing this in terms of harmonic functions, we find
that our field may be neatly written as

U(x) = cos(π/fπ) 1 + i sin(π/fπ) π̂ · σ. (53)

In this form, the symmetries of the field are manifest.
Now the simplest possible Lagrangian density that we can
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construct for a renormalisable scalar field theory with a
SU(2)L × SU(2)R global symmetry group is

LNLSM =
f2
π

4
tr(∂µU∂µU†), (54)

where the factor of f2
π/4 is simply a normalisation con-

stant. Using equation 53 gives us an easy way of expand-
ing the Lagrangian. Recall that we are working with pion
fields and so the π has a space-time dependence, whereas
all other quantities are constant. Taking the derivative of
equation 53 yields

∂µU = −∂µπ

fπ
sin(π/fπ) 1 + i

∂µπ

fπ
cos(π/fπ) π̂ · σ. (55)

Expanding the harmonic functions up to quadratic order,
we find that sinx ≈ x and cosx ≈ 1− x2/2 and hence

∂µU ≈ −π∂µπ

f2
π

1 + i
∂µπ

fπ
π̂ · σ − i

π2∂µπ

2f3
π

π̂ · σ. (56)

Similarly, for the remaining factor in the trace,

∂µU† ≈ −π∂µπ

f2
π

1 − i
∂µπ

fπ
π̂ · σ + i

π2∂µπ

2f3
π

π̂ · σ, (57)

since Pauli matrices are hermitian. Multiplying these two
expressions (equations 56 and 57) together yields

∂µU∂µU† ≈ ∂µπ∂
µπ

f2
π

· σ2 +
(π∂µπ)(π∂

µπ)

f4
π

1

− π2(∂µπ∂
µπ)

f4
π

· σ2,

(58)

up to quartic order in the reciprocal decay constant. Re-
calling the identities tr(1) = 2 and tr(σ2) = 2, then allows
us to expand our Lagrangian density (equation 54) as

LNLSM =
1

2
∂µπ∂

µπ

+
1

2f2
π

[
(π∂µπ)

2 − π2(∂µπ)
2
]
+O

(
1

f4
π

)
.

(59)

This justifies our choice of normalisation constant and
shows that only even powers of the decay constant survive.
Hence, our chosen Lagrangian density is simply the usual
Lagrangian density for a free pion field plus higher-order
terms ∼ O(1/f2

π).
The global SU(2)L×SU(2)R symmetry implies that our

Lagrangian is symmetric under the transformation

U → LUR†, L,R ∈ SU(2). (60)

However, recalling that UU† ≡ 1, we can choose the vac-
uum state (without loss of generality) to be ⟨U⟩ = 1, which
breaks this symmetry down to the diagonal (vectorial) sub-
group, SU(2)V . In the vacuum state, our Lagrangian is
now symmetric under

U → V UV †, V ∈ SU(2). (61)

The vacuum manifold is therefore given by the (axial) coset

SU(2)L × SU(2)R
SU(2)V

∼= SU(2)A. (62)

If we now note that SU(2)A is isomorphic to SO(3), we can
identify the topology of our vacuum manifold. Since SO(3)
can be compactified onto S3 by stereographic projection,
we can use the results from section II B (and specifically,
equation 31) to deduce that

π3(SU(2)A) ∼= Z. (63)

We can think of this as the homotopy group of the broken
symmetry or, alternatively, all the ways that one can non-
trivially transform the vacuum. Note that π1(SU(2)A) =
π2(SU(2)A) = 0 and so we do not expect to find any strings
or monopoles. However, equation 63 implies that there may
be skyrmions present in our pion field theory.

B. Topological Charge

In this subsection, we present an alternative way of iden-
tifying topological solitons: the non-zero winding number.
Recall that in our discussion of the sine-Gordon kink, we at-
tributed a winding number to our soliton (see equation 9).
This number corresponded to how many times we wound a
pendulum to produce our wave of translation. We can now
generalise this idea to higher-dimensional space.

Consider any special unitary field, such as the SU(2) field
in the NLSM. Now we would like to construct a topological
invariant in three spatial dimensions, so this will need to
involve the 3-component Levi-Civita tensor. Moreover, we
need to contract all the indices of the Levi-Civita tensor
and so we need three derivatives, ∂i, ∂j , ∂k. Since our field
U is unitary, we can only have an equal number of Us and
U†s, and because we want to output a number, we take
the trace. Consequently, the only topologically invariant
quantity that we can build for a special unitary field U in
three spatial dimensions is given by

B =
1

24π2
ϵijktr(U

†∂iU∂jU
†∂kU), (64)

where the prefactor is simply a normalisation constant, as
we shall see later. This quantity is known as the topological
charge density and hence, the topological charge may be
obtained by taking the integral B =

∫
d3xB, such that

B[U ] =
1

24π2
ϵijk

∫
d3x tr(U†∂iU∂jU

†∂kU) ∈ Z. (65)

This is also sometimes referred to as the winding number
integral as it characterises the non-trivial topology of a
field, and it only takes integer values. The reason for the
label B will become apparent later. Let us now show three
important properties of this integral.

1. B[U†] = −B[U ]. To show this, we start by writing

B[U†] =
1

24π2
ϵijk

∫
d3x tr(U∂iU

†∂jU∂kU
†). (66)

Now the fact that U is unitary, UU† ≡ 1, implies

∂µ(UU†) = (∂µU)U† + U(∂µU
†) = 0, (67)
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and hence

U(∂µU
†) = −(∂µU)U†. (68)

Using this relation in the trace, simplifies the argu-
ment down to

−(∂iU) U†∂jU ∂kU
†.

We can now use a similar identity for the second
(shaded) derivative, U†(∂µU) = −(∂µU

†)U , to yield

(∂iU)(∂jU
†) U∂kU

† .

Finally, applying our relation to the third (shaded)
derivative gives

−(∂iU)(∂jU
†)(∂kU)U†,

which after using the cyclic property of the trace
leaves us with

−U†(∂iU)(∂jU
†)(∂kU).

This shows that

B[U†] = −B[U ] (69)

and hence that the winding number integral is anti-
hermitian in its argument.

2. δB = 0 for any infinitesimal transformation of the
field U(x). To show this we can first start with the
equivalent form of our integral (using equation 69)

B = − 1

24π2
ϵijk

∫
d3x tr(U∂iU

†∂jU∂kU
†). (70)

Now applying the functional derivative with respect
to U , we find that

δB

δU
= − 1

24π2
ϵijk

∫
d3x tr(∂iU

†∂jU∂kU
†). (71)

Recall that our soliton needs to have a finite energy
and so our fields at infinity must be equal to the vac-
uum, that is U(|x| → ∞) = 1. So now when we
integrate by parts in the trace, our boundary term
will vanish and we find that

δB

δU
=− 1

24π2
ϵijk

∫
d3x

tr
(
−U†(∂i∂jU∂kU

† + ∂jU∂i∂kU
†)
)
.

(72)

When the first term in the trace is multiplied by the
Levi-Civita tensor it vanishes, because the first term
is symmetric in i and j, whereas the Levi-Civita sym-
bol is antisymmetric in i and j. Similarly for the
second term in the trace, the Levi-Civita tensor is
antisymmetric in i and k, whereas the second term is
symmetric in i and k. Hence, both terms vanish and
we conclude that

δB

δU
= 0. (73)

This shows that our winding number integral is in-
deed a topological invariant and so it will remain un-
changed under any infinitesimal transformation of the
field.

3. B[U1U2] = B[U1] +B[U2]. To show this we can start
in the expected way, by simply writing down
B[U1U2], which yields

B[U1U2] =
1

24π2
ϵijk

∫
d3x

tr(U†
2U

†
1∂i(U1U2)∂j(U

†
2U

†
1 )∂k(U1U2)),

(74)

where we have used the identity (U1U2)
† ≡ U†

2U1.
For clarity, let us only write out the argument of the
trace in our calculations. Expanding this out yields

U†
2U

†
1 (∂iU1)U2(∂jU

†
2 )U

†
1 (∂kU1)U2 term 1

+U†
2U

†
1 (∂iU1)U2(∂jU

†
2 )U

†
1 U1(∂kU2) term 2

+��U
†
2U

†
1 (∂iU1)���U2U

†
2 (∂jU

†
1 )(∂kU1)��U2 B[U1]

+U†
2U

†
1 (∂iU1)U2U

†
2 (∂jU

†
1 )U1(∂kU2) term 4

+U†
2U

†
1 U1(∂iU2)(∂jU

†
2 )U

†
1 (∂kU1)U2 term 5

+U†
2�

��U†
1U1(∂iU2)(∂jU

†
2 )�

��U†
1U1(∂kU2) B[U2]

+U†
2U

†
1U1(∂iU2)U

†
2 (∂jU

†
1 )(∂kU1)U2 term 7

+U†
2U

†
1U1(∂iU2)U

†
2 (∂jU

†
1 ) U1(∂kU2) . term 8

Here we have identified that due to the fact that our
fields are unitary, along with the additive and cyclic
properties of the trace, term 3 can be identified with
B[U1] and term 6 to B[U2]. Now using similar argu-
ments to those in the previous proof, we may inte-
grate by parts.

For example, if we integrate term 2 by parts, we know
that the boundary term vanishes due to our bound-
ary conditions, and the higher-order derivative terms
from the Leibniz rule vanish when multiplied by the
antisymmetric Levi-Civita tensor. Hence, by appro-
priate integration by parts, we can send the shaded
factor in term 2 from U1(∂kU2) → −(∂kU1)U2. Term
2 then exactly cancels term 1.

Using a similar argument in term 8, by appropri-
ate integration by parts, we can send U1(∂kU2) →
−(∂kU1)U2 and hence this term cancels exactly with
term 7.

Finally, in term 5 we can integrate by parts three
times, which gives us an expression of the same form
as term 4 as well as an overall minus sign and hence,
these terms also cancel exactly.

Consequently, using the fact that the trace is additive
in its argument, we conclude that

B[U1U2] = B[U1] +B[U2]. (75)

This implies if we take the product of two fields, to
form a new composite field, the winding numbers sim-
ply add. This is what we would intuitively expect if
we took the product of two sine-Gordon fields.
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FIG. 7. A graphical representation of the pion field configura-
tion, π ∈ R3. The magnitude of the vector arrows is directly
proportional to the radial pion field function, F (r). [22]

C. The Hedgehog Ansatz

This subsection is based on the chapter “Skyrmions” in
Manton & Sutcliffe [17], as well as discussions with Prof.
Manton.

Now that we have our topological charge, B, it is natu-
ral to ask, in the context of our SU(2)-valued field in the
NLSM: what field U will minimise B? Naturally, the vac-
uum state, U = 1, has zero winding number, B(1) = 0,
as we would expect. However, we are interested in what
non-trivial field minimises the topological charge. For this,
let us consider a ‘spherically symmetric’ field

UH(r) = exp(iF (r)r̂ · σ) ∈ SU(2), (76)

where F (r) is an arbitrary function of r and r̂ is the radial
unit vector in spherical polar coordinates. Looking back to
equation 44, we can see that this ansatz corresponds to a
pion field

π(r) = fπF (r)r̂. (77)

Hence this pion field is spherically symmetric and points
radially outwards, as shown in figure 7. As such, this is
commonly known as the hedgehog ansatz. It is now im-
portant to note the distinction between group space and
position space. “Spherically symmetric” in this sense does
not mean that the U field is merely a function of the ra-
dial coordinate, r. As we can see from equation 65, this
sort of U field would give zero winding number. In this
context, when we refer to ‘spherical symmetry’ we mean
that the field has the equivariance property that a rotation
in space is equivalent to a SU(2)V global transformation,
which, as we saw earlier, is a symmetry of the Lagrangian
(see equation 61).

We now need to look at the boundary conditions imposed
on our pion field function, F (r). As we have discussed
before, our field configuration needs to have finite energy

and so the fields at infinity must tend to our vacuum state,
which we chose to be ⟨U⟩ ≡ 1. In terms of our hedgehog
ansatz, this means that we need to impose the condition
U(|x| → ∞) = 1, which implies that

F (∞) = 0. (78)

Furthermore, we require that our field is continuous every-
where. To check this condition, let us rewrite our hedgehog
ansatz in terms of trigonometric functions, just as we did
with the NLSM field configuration in section IIIA,

UH(r) = cosF (r) 1 + i sinF (r) r̂ · σ, (79)

where we note that F (r) is actually the polar angle in
group space. At the origin, our field cannot have any
‘out-pointing’ component, due to continuity. Therefore,
our boundary condition must impose that sinF (0) = 0,
which implies

F (0) = nπ, n ∈ Z. (80)

Now that we have our boundary conditions for the hedge-
hog ansatz, we can substitute our expression for UH (equa-
tion 79) into the winding number integral B (equation 65)
and evaluate it. This is possible to do by brute force and
recalling the identity σiσj ≡ 2δij + iϵijkσk [23, 24]. How-
ever, it will prove to be a good investment to think more
deeply about the winding number.

Consider the winding number, as we first defined it in
section IIA 1, of the form

n =
ϕ(∞)− ϕ(−∞)

2π
. (81)

In this context it was very easy to visualise. It was simply
the number of times that the soliton was ‘wrapped’ around
the axis of propagation (i.e. the x-axis). The winding num-
ber was also intuitive to calculate and so we did not need
to think too deeply about the formalism. In section III B,
we generalised this concept by looking for a topological in-
variant for our field U ∈ SU(2) in three spatial dimensions.
Let us now formalise our method in a geometrical way, so
that we may gain a greater insight into how the winding
number is constructed.

In one spatial dimension, there is only one angle param-
eterising the winding number of our soliton. Let us regard
this angle, Φ, as tracing a 1-sphere of arbitrary radius.
Neglecting any constant contribution of a radius, the 2-
dimensional volume form (i.e. area form) of our 1-sphere
is

dΩS1

= dΦ. (82)

Now if we integrate this volume form over all space we find
that ∫

dΩS1

=

∫ 2π

0

dΦ = 2π. (83)

Therefore, our normalised volume form may be written as

d̂Ω
S1

=
dΦ

2π
. (84)
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Mapping our abstract space back onto our real space sends
Φ → ϕ, where ϕ is the azimuthal angle around the x-axis.
Then integrating the pullback of our normalised volume
form over the complete real space gives us the winding
number,

n =

∫
R1

˜̂
dΩ

S1

=

∫ x→∞

x→−∞

dϕ

2π
=

ϕ(∞)− ϕ(−∞)

2π
. (85)

Equipped with this formalism, let us now calculate the
winding number for our hedgehog ansatz, B[UH]. Recall
that our field theory is in three spatial dimensions and so
our (static) hedgehog ansatz is in the real space R3. We
can choose to parameterise this space with spherical po-
lar coordinates so that it has a radius r and angles (θ, ϕ).
However, our hedgehog ansatz also belongs to a higher-
order (group) space, SU(2). As we can see from the form
of the hedgehog ansatz given in equation 79, F is the po-
lar angle in group space. In other words, UH is a map
from the real space, R3, onto the target manifold, S3, with
arbitrary radius and parameterised by the angles (F , Θ,
Φ). Just as the 1-dimensional winding number could be
interpreted as the number of times we wound around a 1-
dimensional line, the 3-dimensional winding number can be
interpreted as the number of times we are winding around
a 3-dimensional sphere (see [25] for a generalisation of this
concept to arbitrary maps). Neglecting any constant con-
tribution of a radius, the 4-dimensional volume form of a
3-sphere is given by

dΩS3

= sin2 F sinΘdF ∧ dΘ ∧ dΦ. (86)

Integrating this volume form over all space gives∫
dΩS3

=

∫ π

0

sin2 F dF︸ ︷︷ ︸
π/2

∫ π

0

sinΘdΘ︸ ︷︷ ︸
2

∫ 2π

0

dΦ︸ ︷︷ ︸
2π

= 2π2, (87)

and hence our normalised volume form is

d̂Ω
S3

=
1

2π2
sin2 F sinΘdF ∧ dΘ ∧ dΦ. (88)

Now our hedgehog ansatz specifies how to pullback this
differential form onto our real space. The hedgehog ansatz
specifies that 

F → F (r) ⇒ dF = F ′dr

Θ → θ

Φ → ϕ.

(89)

Taking the pullback of our normalised volume form and
integrating over all real space yields∫

R3

˜̂
dΩ

S3

=
1

2π2

∫ 0

∞
F ′ sin2 F dr

∫ π

0

sin θ dθ︸ ︷︷ ︸
2

∫ 2π

0

dϕ︸ ︷︷ ︸
2π

, (90)

where we have been careful with the limits of our integral
over r. Note that because we integrated F between the
limits of 0 and π in equation 87, due to our boundary con-
ditions (equations 78 and 80), the limits with respect to r

must be from ∞ to 0. Hence, for the hedgehog ansatz, we
may write the winding number as

B[UH] = − 2

π

∫ ∞

0

dr F ′ sin2 F. (91)

Using the double-angle identity cos 2F ≡ 1− 2 sin2 F then
allows us to evaluate this integral. After some simplifica-
tion, this becomes

B[UH] =
1

π

[
1

2
sin 2F − F

]∣∣∣∣r→∞

r=0

= n ∈ Z. (92)

This shows that in the hedgehog ansatz, our winding num-
ber is completely determined by the freedom that we have
in choosing our boundary condition at the origin. There-
fore, if we want a winding number of one, then all we have
to do is impose F (0) = π. This is again analogous to the
sine-Gordon model, where the winding number of our soli-
ton corresponded completely to how many times we rotated
the pendulum at the ‘origin’.

Aside: We may generalise this concept further by con-
sidering the hedgehog map and non-linear elasticity the-
ory. Recall that, as we have shown, the hedgehog ansatz
is a map UH : R3 → S3. However, notice from equa-
tion 89 that certain coordinates are deformed under this
mapping, such as the radial function F , and some are
not, such as the angles (θ, ϕ). Let us now introduce a
strain tensor Dij to quantify the coordinate stretching
deformation induced by this map [17]. The strain tensor
may be defined in each point in real space as

Dij = −1

2
tr
(
(∂iU)U†(∂jU)U†) . (93)

This is a symmetric, positive-definite 3× 3 matrix with
eigenvalues λ1, λ2 and λ3. For the hedgehog ansatz
map, the strain matrix is written as

D =

λ1 0 0

0 λ2 0

0 0 λ3

 =

F ′ 0 0

0 sinF
r 0

0 0 sinF
r

 . (94)

Using the strain tensor, the topological charge, B, may
be computed as the complete spatial integral of the
topological charge density, B, given by

B =
1

2π2
λ1λ2λ3. (95)

Note that the sign of λ1, λ2 and λ3 are chosen such
that λ1λ2λ3 is positive (negative) if U is locally orienta-
tion preserving (reversing). In the case of the hedgehog
ansatz, this gives

B[UH] =
1

2π2

∫ 0

∞
F ′ sin2 F dr

∫ π

0

sin θ dθ

∫ 2π

0

dϕ, (96)

as before (cf. equation 90). Furthermore, using the
strain tensor, we may also compute the energy density,
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E , which may be expressed as

E =
1

12π2
(λ2

1 + λ2
2 + λ2

3 + λ2
1λ

2
2 + λ2

2λ
2
3 + λ2

3λ
2
1). (97)

Likewise, we can then find the (static) energy by taking
the complete spatial integral, such that E =

∫
d3x E .

D. Constructing the Skyrme Model

This subsection is based on the lectures by Gillioz [18],
as well as the review by Zahed & Brown [26].

Recall that at the end of section IIIA, we concluded
that because of the non-trivial topology of the NLSM, and
specifically the non-trivial homotopy group π3(SU(2)A),
there may be skyrmions present in our theory. In the pre-
vious section, we looked at a particular ‘spherically sym-
metric’ field configuration that can be treated analytically.
We again saw how it is possible for this field configuration
to produce a non-zero winding number, indicating the po-
tential for solitons. However, as discussed in section IID,
the scaling argument of Derrick forbids the existence of
solitons in this theory because due to our renormalisable,
3+1-dimensional scalar field Lagrangian density

LNLSM =
f2
π

4
tr(∂µU∂µU†), (98)

the soliton configuration would be a local maximum of the
field energy, and hence unstable. So, now we need to re-
think the non-linear sigma model as Skyrme did in 1961 [1].

As mentioned in section IIIA, the NLSM is a hadronic
field theory made up of a triplet of pion fields. It is an
effective field theory, which is valid when modeling physics
in which the quark structure is negligible. In other words,
it is a low energy approximation to the true theory (QCD).
Now at low energies, we know that terms in the Lagrangian
with the lowest number of space-time derivatives will domi-
nate. For the NLSM, we therefore chose a kinetic term with
the fewest number of space-time derivatives that would still
preserve the global SU(2)L ×SU(2)R symmetry, which al-
lows us to model chiral pions (i.e. two). However, at higher
energies, terms with a higher number of space-time deriva-
tives will become significant. In fact, the next higher-order
terms that still satisfy the required global symmetry are
terms with four derivatives, given by:

tr(∂µU∂µU†∂νU∂νU†), term 1

tr(∂µU∂νU
†∂µU∂νU†), term 2[

tr(∂µU∂µU†)
]2

, term 3[
tr(∂µU∂νU

†)
]2

. term 4

However, in the case of QCD only two of these terms are
linearly independent, as we can rewrite the double trace
terms as:

[
tr(∂µU∂µU†)

]2 ≡ 2 tr(∂µU∂µU†∂νU∂νU†),[
tr(∂µU∂νU

†)
]2 ≡ tr(∂µU∂µU†∂νU∂νU†)

− tr(∂µU∂νU
†∂µU∂νU†).

(99)

Hence, only terms 1 and 2 are linearly independent. The
choice of Skyrme was to add on one specific linear combi-
nation of terms 1 and 2 to the NLSM Lagrangian density,
namely

tr(∂µU∂νU
†∂µU∂νU†)− tr(∂µU∂µU†∂νU∂νU†),

which is simply term 2 minus term 1; or alternatively, mi-
nus term 4. Since the trace is additive in its argument, we
combine these into a single trace with argument

∂µU∂νU
†∂µU∂νU† − ∂µU∂µU†∂νU∂νU†.

It is then possible to show that this argument is equivalent
to

1

2
[U†∂µU,U

†∂νU ][U†∂µU,U†∂νU ],

where [·, ·] represents the commutator.

Check: Expanding these commutators out, neglecting
the factor of 1/2, leaves us with four terms:

U†(∂µU)U†(∂νU)U†(∂µU)U†(∂νU)

−U†(∂µU)U†(∂νU)U†(∂νU)U†(∂µU)

−U†(∂νU)U†(∂µU)U†(∂µU)U†(∂νU)

+U†(∂νU)U†(∂µU)U†(∂νU)U†(∂µU).

Now examining the first term more closely and applying
the identity U†(∂µU) = −(∂µU

†)U , allows to write

U†(∂µU)U†(∂νU)︸ ︷︷ ︸
−(∂νU†)�U

��U†(∂µU)U†(∂νU)︸ ︷︷ ︸
−(∂νU†)U

.

We can also see that because of the fact that the trace
is additive in its argument and due its cyclic property,
we can cycle the last U so that it cancels with the first
U†. This leaves us with

∂µU∂νU
†∂µU∂νU†,

which is of the correct form. Now let us examine the
second term more closely, namely

−U†(∂µU)U†(∂νU)U†(∂νU)U†(∂µU).

Again using the additive and cyclic property of the
trace, we can cycle this argument to

−(∂µU)U†(∂µU)U†(∂νU)U†(∂νU)U†.

We can now lower and raise the µ as per standard
summation convention and then apply the identity
U†(∂µU) = −(∂µU

†)U , which yields

−(∂µU)U†(∂µU)︸ ︷︷ ︸
−(∂µU†)�U

��U†(∂νU)U†(∂νU)︸ ︷︷ ︸
−(∂νU†)�U

��U†.

Upon cancellations, this leaves us with

−∂µU∂µU†∂νU∂νU†,
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which is also of the correct form. Repeating this process
for the third and forth terms, we get exactly the same
terms once more. Hence, accounting for the factor of
1/2, we can see that our linear combination of traces
may indeed be written as

tr(∂µU∂νU
†∂µU∂νU† − ∂µU∂µU†∂νU∂νU†)

≡1

2
tr
(
[U†∂µU,U

†∂νU ][U†∂µU,U†∂νU ]
)
,

(100)

which is the more common form in the literature.

Now, we can move from the NLSM to the Skyrme model
with the addition of one extra term, known as the Skyrme
term, L′

Skyrme. Our Lagrangian density then becomes

LSkyrme =
f2
π

4
tr(∂µU∂µU†)︸ ︷︷ ︸

LNLSM

+
1

32e2
tr[U†∂µU,U

†∂νU ]2︸ ︷︷ ︸
L′

Skyrme

,

(101)
where e is a dimensionless Skyrme coupling parameter and
the prefactor of 1/16 simply ensures proper normalisation.
In fact, the Skyrme term is the unique four derivative term
that you can add to the NLSM Lagrangian, which both sta-
bilises the energy of the skyrmion configuration and con-
tains at most two time derivatives.

The fact that the Skyrme term stabilises the energy of
the skyrmion configuration is crucial, as this is what moti-
vated us to add on this additional term in the first place.
It ensures that there is a lower bound on the mass of the
skyrmion or, in other words, it means that the local mini-
mum energy criterion is satisfied and because of the topol-
ogy of the model (see section IIIA), there will be skyrmions
in our field theory.

Furthermore, the Skyrme term contains at most two time
derivatives because it is antisymmetric in its Lorentz in-
dices. This is significant because it will allow us to canoni-
cally quantize the skyrmion and write down the usual con-
jugate momenta, as we shall see in section IVE.

Incidentally, the Skyrme term also happens to be the
dominant term in the 1/Nc expansion of QCD; as confirmed
by pion scattering data [18]. However, as mentioned before,
the Skyrme model predates QCD and so this was not known
to Skyrme at the time. Note that recently Skyrme models
with higher-order derivative terms have also been studied,
but are beyond the scope of this essay [27].

Let us now apply the scaling argument of Derrick to show
that skyrmions do indeed exist in our field theory. We shall
proceed, as in section IID, by considering the energy of a
static field configuration in D dimensions:

E[U ] =

∫
dDx

[
+

f2
π

4
tr(∂iU∂iU

†)

− 1

32e2
tr[U†∂iU,U

†∂jU ]2
]
.

(102)

Note that here we are integrating minus the Lagrangian
density. In the first term, the (+−−−) metric was used
when lowering the second index, which makes the term
positive. In the second term, the metric does not need to
be used and so, the term remains negative. Now suppose

that the energy functional has a turning point at U = U0,
such that

δE

δU

∣∣∣∣
U=U0

= 0, (103)

where U0 is the soliton field configuration under consider-
ation. Using this, we can define our energy functional as a
function of U0, such that

E0 ≡ E
(1)
0 + E

(2)
0 , (104)

where
E

(1)
0 =

f2
π

4

∫
dDx tr(∂iU0∂iU

†
0 ),

E
(2)
0 = − 1

32e2

∫
dDx tr[U†

0∂iU0, U
†
0∂jU0]

2.

(105)

Now let us define a rescaled field, scaled by some parameter
λ, such that

Uλ(x) ≡ U0(λx), (106)

where the λ = 1 case corresponds to our soliton field. In
terms of our scaled field, the energy functional may be writ-
ten as

Eλ =

∫
dDx

[
f2
π

4
tr
(
∂iU0(λx)∂iU

†
0 (λx)

)
− 1

32e2
tr[U†

0 (λx)∂iU0(λx), U
†
0 (λx)∂jU0(λx)]

2

]
.

(107)

Under the change of variables, x ≡ x̃/λ, we may write this
integral in terms of our soliton field energies

Eλ =

∫
dDx̃

λD

[
f2
πλ

2

4
tr
(
∂iU0(x̃)∂iU

†
0 (x̃)

)
− λ4

32e2
tr[U†

0 (x̃)∂iU0(x̃), U
†
0 (x̃)∂jU0(x̃)]

2

]
,

(108)

which may be expressed as

Eλ = λ2−DE
(1)
0 + λ4−DE

(2)
0 . (109)

We know that, by definition, λ = 1 is a turning point and
so

dEλ

dλ

∣∣∣∣
λ=1

= (2−D)E
(1)
0 + (4−D)E

(2)
0

!
= 0, (110)

which implies that

E
(2)
0 = −2−D

4−D
E

(1)
0 . (111)

If we check the nature of this turning point, we find that

d2Eλ

dλ2

∣∣∣∣
λ=1

= (2−D)(1−D)E
(1)
0 + (4−D)(3−D)E

(2)
0 ,

(112)
which after substitution of our result from equation 111,
becomes

d2Eλ

dλ2

∣∣∣∣
λ=1

= 2(D − 2)E
(1)
0 , (113)
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which is greater than zero, and therefore a local minimum,
for all spatial dimensions D ≥ 3:

2(D − 2)E
(1)
0 > 0, ∀D ≥ 3. (114)

Note, in particular, that for D = 3 we recover the Virial

theorem as E
(1)
0 = E

(2)
0 [26]. We will be working in D = 3

spatial dimensions and so, here we have shown that there
will be skyrmions present in our field theory.

In fact, only using the information currently at our
disposal, we can go even further and calculate a lower
bound on the skyrmion energy. By rewriting our energy
functional, using a method reminiscent of ‘completing the
square’, for an operator K we can complete the KK† to
show that

E[U ] =

∫
d3x

[
tr(KK†)

∓ fπ
4e

ϵijktr(U
†∂iU∂jU

†∂kU)

]
,

(115)

where

K ≡ fπ
2
∂iU ± 1

4e
ϵijkU∂jU

†∂kU. (116)

Now we know that the operator KK† is a norm and so is
clearly hermitian. We also know that hermitian operators
always have positive eigenvalues and that the trace is sim-
ply the sum of all eigenvalues. Hence, we can conclude that
tr(KK†) ≥ 0 and so

E[U ] ≥
∣∣∣∣fπ4e ϵijk

∫
d3x tr(U†∂iU∂jU

†∂kU)

∣∣∣∣ . (117)

This inequality is known as the Bogomolny bound, although
it was actually first introduced by Skyrme [18]. The inte-
gral should now look familiar. Indeed, it is of the same
form as the winding number integral that we defined in
equation 65. Identifying the winding number integral in
the expression leads to

E[U ] ≥ 6π2 fπ
e

|B[U ]| , (118)

which now gives us a measurable lower bound on the
skyrmion mass, M . For example, for the single (B = 1)
skyrmion, the bound is given by

MB=1 ≥ 6π2 fπ
e
. (119)

Using approximate experimental values of fπ ∼ 100MeV
and e ∼ 5 [28], we find that MB=1 ≳ 1GeV. Note that
unlike the Bogomolny bound in supersymmetry, this bound
cannot be saturated and there are no BPS states, since we
cannot choose a field such that ∂iU ∝ ϵijkU∂jU

†∂kU [18].

E. Further Remarks

In the previous subsection, we saw how we could mod-
ify the, already topologically stable, NLSM to make it also
energetically stable for soliton solutions, which in this case

happen to be skyrmions. We justified this modification to
the Lagrangian and confirmed that the new Skyrme La-
grangian is indeed energetically stable using the scaling ar-
gument of Derrick. Finally, by completing the norm, or
equivalently by the Cauchy-Schwartz inequality [26], we
put a lower bound on our expected skyrmion mass. Let us
now investigate what we can learn from this new model.

First of all, let us start by investigating the case of wind-
ing number magnitude one, |B| = 1. The simplest field
that we can use to start our investigation is the ‘spherically
symmetric’ hedgehog ansatz, UH (equation 76). If we now
substitute the hedgehog ansatz into the energy functional,
or equivalently use the eigenvalues of the strain matrix as
in equation 97, we obtain

E[UH] =4π
fπ
e

∫ ∞

0

dr[
r2F ′2 + 2(sin2 F )(1 + F ′2) +

sin4 F

r2

]
,

(120)

which is not solvable analytically when satisfying the
boundary conditions F (0) = π, F (∞) = 0, however may
be evaluated numerically to give MH ≈ 72.9fπ/e [17]. This
energy is approximately 23% larger than the Bogomolny
bound (6π2fπ/e). In fact, due to its ‘spherical symmetry’,
the hedgehog ansatz is the lowest energy solution to the
Skyrme Lagrangian for |B| = 1. Moreover, if we now eval-
uate the Euler-Lagrange equation

δE

δF
= 0, (121)

and use the double-angle identity sin 2F ≡ 2 sinF cosF ,
then after some rearrangement we obtain the 2nd-order
non-linear ordinary differential equation of motion

(r2 +2 sin2 F )F ′′ +2rF ′ + sin 2F

(
F ′2 − 1− sin2 F

r2

)
= 0.

(122)
Unfortunately, this equation is again not solvable analyti-
cally whilst satisfying the boundary conditions, however it
may be solved numerically (see [29] for a formal proof) to
plot how our pion field function, F , evolves as a function
of r; as shown in figure 8. As with the sine-Gordon model
in section IIA 1, we may now proceed in a similar way to
calculate an estimate for the RMS radius of the skyrmion:

rRMS =

√∫
d3x r2(−LSkyrme)∫
d3x (−LSkyrme)

≈ 1.46
1

fπe
. (123)

This is the RMS radius of the energy density wave-packet.
Remembering the suppressed factor of ℏ ≈ 197MeV · fm,
we find that the RMS radius is ∼ 1 fm.
In its current form, the Skyrme Lagrangian describes a

triplet of massless pion fields. As shown in equation 59, for
small fluctuations in the field, the Lagrangian density may
be expanded as

LSkyrme =
1

2
∂µπ∂

µπ +O(π4), (124)

which gives the kinetic energy term for free pions. However,
a more realistic effective Lagrangian would also include a
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FIG. 8. A plot of the pion field function, F , against radius, r, for
the B = 1 hedgehog soliton solution. The boundary conditions
are satisfied, such that F (0) = π and F (∞) = 0. Note that at
large r, F scales as 1/r2. [17]

parity invariant, global symmetry breaking term that gives
the pions mass, such that, for small fluctuations in the field,
the Lagrangian density would be expanded as

L =
1

2
∂µπ∂

µπ − 1

2
m2

ππ · π +O(π4), (125)

where mπ is the introduced pion mass. Therefore, we need
to add another term onto our Skyrme Lagrangian which
will break the SU(2)L×SU(2)R global symmetry and give
the pions a mass mπ. Recall that in a vacuum U = 1, there
are no pions present and so our field theory should not have
a mass. Therefore our additional mass term, L′′

mass, must
vanish when U = 1. The most general parity invariant
term that we can write down satisfying these conditions is

L′′
mass =

m2
πf

2
π

4
tr(U + U† − 21), (126)

where, as with the NLSM, the factor of f2
π/4 simply en-

sures proper normalisation. Hence, our improved total La-
grangian density, L, may be written as

L = LNLSM + L′
Skyrme + L′′

mass, (127)

where LNLSM corresponds to the original NLSM La-
grangian density, L′

Skyrme to the Skyrme term and L′′
mass

to the pion mass term. This is the simplest effective
field theory that successfully describes a triplet of mas-
sive pion fields with skyrmion solutions. As we have seen,
the skyrmion in this theory is a massive (∼ 1GeV), ener-
getically and topologically stable structure with conserved
quantum number, B. Skyrme made the bold assertion that
this object is, in fact, a baryon with conserved baryon num-
ber, B [1]. We shall show this in more detail in section IVC.
Now, we know that baryons are made up of three quarks
and so, are fermions. However, mesons are made up of two
quarks and so, are bosons. How can it be then, that an ob-
ject which we have built out of bosons becomes a fermion?

E. Witten reconciled this issue in 1983, by realising that a
skyrmion can be a fermion if the number of colours in the
underlying theory is odd [30, 31]. The assertion made by
Skyrme is therefore a remarkable result, which essentially
states that baryons are the topological solitons (specifically,
skyrmions) of a sigma model effective field theory. We shall
discuss this in more detail in section IVD.

When discussing higher baryon numbers, it is important
to note that the hedgehog ansatz is not generally the lowest
energy solution to the Skyrme Lagrangian. For the more
complicated cases of B ≥ 2, we need to use the rational map
ansatz instead [17, 32], which is beyond the scope of this es-
say. For example, for B = 2 we can use an axially symmet-
ric ansatz to calculate the lowest energy MB=2 ≈ 140fπ/e,
which is only slightly less than twice the computed value for
the lowest energy 2MB=1 ≈ 146fπ/e [18]. Returning to our
interpretation of these skyrmions as baryons, this observa-
tion could, for example, be used to explain why the binding
energy of deuteron is so small [33]. Deuteron is made up
of two baryons, a proton and a neutron, and it has a very
small mass deficit as a composite particle when compared
to the total mass of its constituents. Deuteron has baryon
number 2 and so may be represented by MB=2, whereas
the proton and the neutron both have baryon number 1,
which corresponds to MB=1.

At the moment this is only a crude model, however we
can see how we can quickly arrive at some interesting re-
sults. In order to make this effective model precise for these
energies, we need to quantize the theory.

IV. SKYRMION QUANTIZATION

The conjecture that skyrmions may be interpreted as
baryons in our Lagrangian is indeed a bold one, and one
that needs more justification. As we now know, baryons are
composite particles made up of three quarks. Quarks are
fermionic particles of spin 1/2 and so by extension, baryons
must also be fermionic particles. Now for particles obeying
Fermi-Dirac statistics, it is clear that quantum mechanics
plays a significant role. Therefore, in order to obtain a full
description of baryons, we need to quantize our theory. If
the conjecture of Skyrme is correct, then upon quantiza-
tion, we should be able to recover the other key details
of the baryons under consideration, hence allowing us to
identify them.

A. Lagrangian Symmetries

This subsection is based on the chapter “Skyrmions” in
Manton & Sutcliffe [17].

We begin our discussion of skyrmion quantization in the
natural way, by looking at the symmetries of our current
total Lagrangian density,

L =
f2
π

4
tr(∂µU∂µU†) +

1

32e2
tr[U†∂µU,U

†∂νU ]2

+
m2

πf
2
π

4
tr(U + U† − 21).

(128)
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As we can see, there are three discrete symmetries obeyed
by our Lagrangian and, in fact, by any Lagrangian made
up of SU(Nf )-valued fields and their derivatives:

� Charge symmetry C : U → U†. The NLSM term in
our Lagrangian is clearly invariant under this sym-
metry, as we can simply swap the U and U†, use the
cyclic property of the trace and raise and lower the µ
indices, as per the standard summation convention.

The charge symmetry in the Skyrme term is a little
less obvious. Here we need to look at the original
unsimplified form of our trace,

tr(∂µU∂νU
†∂µU∂νU†)− tr(∂µU∂µU†∂νU∂νU†).

In the first trace, we can simply move from U → U†

and then relabel µ ↔ ν. In the second trace, we can
move from U → U† and then raise and lower the µ
and ν index pairs. Hence, we can see that the Skyrme
term is invariant under this symmetry.

Finally, the pion mass term has a trivial charge sym-
metry and so our total Lagrangian is invariant under
charge transformation.

� Parity symmetry P : x → −x. Using our Minkowski
metric ηµν to contract the index in the first term,
we can clearly see that, since our derivative terms al-
ways come in pairs, our Lagrangian is invariant under
parity transformation.

� Time reversal symmetry T : t → −t. Using similar
reasoning for time reversal, we can see that because
derivatives of the field always appear in pairs, the
time transformation t → −t is negated and our La-
grangian is left unchanged.

Now, the fact that our Lagrangian obeys these three dis-
crete symmetries is problematic. It is problematic because
our Lagrangian should be a good description of natural pro-
cesses (e.g. particle decays). However, natural processes do
not obey C, P and T symmetries separately. Rather, natu-
ral processes obey CPT symmetry which is a simultaneous
transformation. Therefore, for our Lagrangian to be an ac-
curate description of nature, we first need to modify it so
that it breaks the individual C, P and T symmetries, whilst
still maintaining an overall CPT symmetry.

For this, let us examine the equations of motion of our
total chiral Lagrangian. First we apply the Euler-Lagrange
equations to our Lagrangian density (equation 128),

∂L
∂U

− ∂µ

(
∂L

∂(∂µU)

)
= 0, (129)

treat U and U† as two independent fields, and ignore the
constants brought up by the pion mass term. Note that for
this subsection, we may ignore the pion mass term com-
pletely without loss of generality. Computing this, we find
that ∂L/∂U = 0 and

∂L
∂U† = ((((((((

∂µU)U†(∂νU) +
hhhhhhhU†(∂µU)(∂νU)

−(((((((
(∂νU)U†(∂µU)−

hhhhhhhU†(∂νU)(∂µU) = 0.
(130)

Consequently, our Euler-Lagrange equations reduce to

∂µ

(
∂L

∂(∂µU)

)
= 0. (131)

This leaves our equation with five terms. After some rear-
rangement, they may be written more compactly as

∂µ

(
−f2

π

2
(∂µU)U†

+
1

8e2
[
(∂νU)U†, [(∂νU)U†, (∂µU)U†]

])
= 0.

(132)

Now we would like to introduce a breaking term (i.e. a
term with a Levi-Civita tensor) that will break all of the
individual symmetries that we have discussed but retain
the overall CPT symmetry. This may be achieved quite
simply by adding on a term with a 4-dimensional Levi-
Civita tensor, of the form

ϵµνρσ∂
µU†∂νU∂ρU†∂σU.

Here the Levi-Civita tensor ensures that all of the individ-
ual symmetries are broken and this is the simplest possible
term that we can write to contract all of the indices on
the 4-component ϵ. As we can see, the overall CPT invari-
ance remains in tact. At first glance, this would seem like
a perfect choice for our correction term in the equation of
motion. However, there is one significant problem: there
is no possible 4-dimensional term that we can add to the
action that would produce this term upon variation.

B. The Wess-Zumino Term

This subsection is based on the review by Zahed &
Brown [26].

J. Wess and B. Zumino reconciled this problem in 1971
by moving to five dimensions [34]. They proposed adding a
new 5-dimensional term to the Skyrme action, now known
as the Wess-Zumino correction, SWZ, such that our new
action may be written as

S =

(∫
d4xLSkyrme

)
± SWZ, (133)

where SWZ ≡ αΓ, α is a factor to be determined (first
introduced by Witten in 1983 [31]), and the sign ambiguity
is eliminated in our equation of motion by the use of Stokes’
theorem [26]. Here the Wess-Zumino term, Γ, is given by

Γ =− i

240π2

∫
M5

d5x

ϵµνρστ tr(U†∂µU∂νU
†∂ρU∂σU

†∂τU),

(134)

where the prefactor of −i/240π2 simply ensures proper nor-
malisation and M5 is an arbitrary 5-dimensional manifold
which has the usual 4-dimensional Minkowski space as its
boundary, ∂M5 = M4. Note that since the integrand of



19

the Wess-Zumino term may be identified with a curl, we
can use Stokes’ theorem to show that

±Γ =∓ i

240π2

∫
M5

d5x

ϵµνρστ tr(U†∂µU∂νU
†∂ρU∂σU

†∂τU)

=− i

240π2

∫
∂M5

dΣτ

ϵµνρστ tr(��U†∂µU∂νU
†∂ρU∂σU

†
�U),

(135)

where Σ is a space-time vector along the boundary of our
5-dimensional bulk, M4. From this we can see that, upon
variation of the action, we will be able to obtain a term
proportional to the one that is required in our equation
of motion. Note that by the use of Stokes’ theorem, our
equation of motion will be in 4-dimensional physical space.
Indeed, this 5-dimensional bulk that we have introduced is
merely a mathematical trick and so, it should not affect the
physics. In other words, our path integral must be indepen-
dent of the choice of M5. Now as we know, the integrand
of a path integral is of the form eiS , where S is the ac-
tion. Consequently, we can conclude that the path integral
is invariant under multiple changes of 2π in the action. In
order for our choice of M5 to not affect the physics, we
therefore require that the change in the action under the
shift M5 → M5

′ leaves the path integral invariant. This
implies

αΓ(M5)− αΓ(M5
′) = 2πk, k ∈ Z, (136)

which, topologically, means that

αΓ(M5 ∪M5
′) = 2πk, k ∈ Z. (137)

Without loss of generality, we may choose our M5 ∪M5
′

to form a 5-ball in our SU(Nf ) manifold. In our normali-
sation, this means that Γ(M5 ∪M5

′) = 2π and hence our
factor α is an integer, α ∈ Z. In other words, mapping our
5-sphere onto a group, S5 → G, implies that our factor α is
an integer provided G is a connected compact, simple Lie
group. From this topological ambiguity argument, we can
see why the factor of α ∈ Z is needed. Witten showed that
this factor is needed and that it can only take integer values
in 1983 [31] [35]. However, we have yet to identify the role
of α in our particle physics interpretation of skyrmions.

C. Baryon Number

This subsection is based on the lectures by Gillioz [18].

In the previous subsection, we showed why the choice
of manifold M5 does not affect the physics of our system
provided α ∈ Z. More generally, we require that the Wess-
Zumino correction does not alter the physics of our system.
Recall that the motivation behind adding this extra term
was to fix the symmetries of our equation of motion. There-
fore, we do not want our additional term to interfere with
our general model. We can check that the correction term,
SWZ, does not affect the physics by looking at Noether cur-
rents associated with vector and axial transformations for

U → e(iϵQ)Ue−(iϵQ), which yields{
δV U = iϵ[Q,U ],

δAU = iϵ{Q,U},
(138)

respectively, where ϵ denotes a rotation parameter and
Q denotes the global charge generator. Imposing elec-
tromagnetic gauge (see [36] for details), we find that the
4-dimensional Noether current associated with the Wess-
Zumino correction may be written as

Jµ
V/A(Q) =

α

48π2
ϵµνρσ

[
tr(QU†∂νU∂ρU

†∂σU)

∓tr(QU∂νU
†∂ρU∂σU

†)
]
.

(139)

From this we can see that the traces vanish for any SU(Nf )
charge generator and hence, the additional correction term
does not have any associated Noether currents and does
not alter the physics of our system [18].

Let us now have a look at baryon number. Since baryon
number symmetry corresponds to a U(1)V symmetry in our
theory, this implies that δV U = 0. Hence, to investigate
baryon number further, we need to look at the case where
Q = 1 in our Noether current in equation 139. Imposing
this symmetry, only the vectorial Noether current survives.
Let us denote this current as the baryon current, JB . After
some rearrangement, this may be written as

Jµ
B =

αb

24π2
ϵµνρσtr(U†∂νU∂ρU

†∂σU), (140)

where we have included the factor b, which is the baryon
charge of a single quark, as we have not yet integrated
over the triplet of fields. Noether’s theorem states that
under this continuous baryon number symmetry the baryon
current and the associated baryon charge are conserved. As
per Noether’s theorem, the actual baryon charge, QB , may
then be written as

QB =

∫
d3xJ0

B

= b

∫
d3x ϵijktr(U†∂iU∂jU

†∂kU).

(141)

Again, this integral looks familiar as it is simply the wind-
ing number integral or baryon number, B, which we intro-
duced in section III B. Therefore, the baryon charge may
be written simply as

QB = αbB. (142)

We have suggested that the winding number integral may
be interpreted as the baryon number of our theory, and
we know from the U(1)V symmetry of baryon number, to-
gether with Noether’s theorem, that QB must correspond
to baryon charge, and b to the baryon charge of an individ-
ual quark. However, we do not yet have a physical inter-
pretation for α, which could potentially confirm or refute
the idea of viewing B as the baryon number.

With the advent of QCD, we can find an interpretation
for this integer. By matching the anomalies of our infra-red
theory (i.e. chiral action + Wess-Zumino correction) to the
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anomalies of the QCD ultra-violet theory (i.e. quark model
with SU(Nc) gauge), we find that α = Nc, where Nc is the
number of quark colours. Then, by identifying the baryon
charge of a single quark to be 1/Nc, we find that

QB = B. (143)

This confirms the conjecture that the winding number of
skyrmions in our model is equivalent to baryon charge. In-
deed, we have looked at properties of mass, radius and
baryon charge, and these all seem to point towards the
fact that the skyrmions in our field theory are in fact the
baryons of QCD. This is a very exciting result, so let us
now proceed in quantizing our theory, so that we can check
whether other quantum numbers such as spin, isospin and
hypercharge agree with what we would expect.

D. Spin Statistics

This subsection is based on the chapter “Monopoles and
Skyrmions” in Shifman [36].

As mentioned before in section III E, in order to interpret
our skyrmions as baryons we need to overcome the issue of
spin. Baryons are composed of three quarks and hence are
fermions, whereas our field theory is purely mesonic, and
hence spin 0. In order to properly reconcile this issue, we
need to look carefully at the group structure of our theory.
Recall that when we were discussing classical skyrmions in
section III, we were working in the SU(Nf = 2) group,
corresponding to the up and the down quarks found in
pions. In this section, when we seek to quantize the theory,
we need to add more detail by making use of the Wess-
Zumino term and so we work in SU(Nf ≥ 3). If we also
consider the strange quark to be light, then it is natural
to work in SU(3) for most quantization purposes. It is
important to note that even in this higher-order group, our
previous results still hold. Namely, the hedgehog ansatz is
still an energy minimiser in the Skyrme model for B = 1.
However, we now think of the SU(2) group that we were
using as a subgroup of the full flavour group, SU(Nf ). For
example, in this higher-order group space, the hedgehog
ansatz may be written as

UH =

(
exp(iF (r)r̂ · σ) 0

0 1(Nf−2)×(Nf−2)

)
. (144)

Aside: Surprisingly, D. Finkelstein and J. Rubinstein
showed in 1968 that we can actually produce fermionic
skyrmions in SU(Nf = 2), without the Wess-Zumino
term [37]. They exploited the fact that π4(SU(2)) ∼= Z2

and hence there are two topologically distinct classes of
maps from space-time to SU(2). Following from this,
they weighted these two classes, so that one corresponds
to a boson and the other to a fermion. However, due to
the arguments presented in section IVA, this is gener-
ally not the correct way to quantize the theory and so
is beyond the scope of this essay.

Instead, we look at our full action (including the Wess-
Zumino correction) with fields in the full flavour group.
We proceed by making a comparison between a skyrmion
at rest and a slowly rotated skyrmion. We know that for
a skyrmion at rest, all of the time derivatives in our La-
grangian density vanish and so the action may be written
as

Srest =

∫
d3xL

∫ T

0

dt, (145)

where we are looking at the skyrmion after some long time
T . Recalling that for a static skyrmion, its energy, or equiv-
alently its mass, M , may be written as

M =

∫
d3x (−L), (146)

we can express the action simply as Srest = −MT . Now,
since in the path integral formulation the amplitude of a
process is given by eiS , we can deduce that the amplitude
of a skyrmion at rest, after a long time, T , is given by
e−iMT .

Let us now compare this with the amplitude of a pro-
cess where the skyrmion is slowly rotated by an angle of
2π. The motivation behind this step is of course the fact
that fermions are spinors and so go to minus the identity
after a 2π rotation. Conversely, bosons return to the iden-
tity after a 2π rotation. Therefore, by studying the 2π
rotation carefully, we should be able to discern the criteria
for the different skyrmion spin statistics. We consider a
slow rotation (i.e. an adiabatic approximation), so that no
other undesired physical effects come into play. With this
in mind, we can see that the NLSM term along with the
Skyrme term contain at least two time derivatives. The
mass term, on the other hand, contains no time derivatives
and so is of no interest to us. The crucial point to note
is that the Wess-Zumino term, as presented (post Stokes’
theorem) in equation 135, has four derivatives but five in-
dices on its Levi-Civita tensor and so, overall it has one
time derivative. In our adiabatic approximation, we are
only interested in the terms that are leading-order in time
derivatives and so, we can neglect the other terms in the
action and focus only on the Wess-Zumino term. Recall
now that the special feature of our hedgehog ansatz was
that it showed an equivalence relation between rotations in
real space and SU(2) transformations. This is ideal for our
current purposes as we would like to find a simple way of
rotating by 2π in real space. Let us therefore rotate the
hedgehog ansatz, such that

U ′
H = e(itT

3/2)UHe
−(itT 3/2), t ∈ [0, 2π), (147)

where T 3 is the 3rd generator in the full flavour group
SU(Nf ≥ 3) that forms an SU(2) subgroup, since we have
arbitrarily chosen to rotate in the 3-direction. By sub-
stituting this ansatz directly into the Wess-Zumino term,
Witten showed that Γ(U ′

H) = π [31]. Since we are only
considering the Wess-Zumino term for time derivatives, the
rotated action may be written as Srot = Srest+NcΓ(U

′
H) =

−MT +Ncπ. The amplitude of this process may then be
expressed as

e−iMT+iNcπ = (−1)Nce−iMT . (148)
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From this result, we can then see that the amplitude re-
turns minus the identity when Nc is odd, and the identity
when Nc is even. Since the hedgehog ansatz has this spe-
cial equivalence between rotations in real space and SU(2)
group space transformations, we can conclude that{

Nc odd ⇒ fermion,

Nc even ⇒ boson.
(149)

Furthermore, baryons are made up of three quarks of dif-
ferent colours, and so we conclude that the corresponding
skyrmion is indeed a fermion. This argument is shown in
greater detail in Witten’s second paper on the subject [31].

E. Zero-mode Quantization

This subsection is based on the chapter “Monopoles and
Skyrmions” in Shifman [36], the lectures by Gillioz [18] and
the paper by Adkins, Nappi & Witten [28].

Now that we have built up our semi-classical theory of
baryons and established their spin statistics, let us proceed
by fully quantizing the model. There are many different
ways of quantizing the theory at a variety of depths. In this
section, let us look at the simplest possible quantization
of rotation: the zero-modes around the B = 1 hedgehog
skyrmion.

Zero-modes are the flat directions around our field solu-
tion and they will tell us information about the skyrmion at
rest. In looking for the flat directions around the hedgehog
solution, we look for its symmetries. Now the hedgehog
ansatz trivially has a translation symmetry, however since
we are only interested in quantizing rotation, this is of no
interest to us. More importantly, the hedgehog ansatz has
a symmetry under spatial rotations and SU(2)V transfor-
mations. Now in the special case of the hedgehog ansatz,
we know that these two symmetries are equivalent. There-
fore, they will both be significant to us as we try to quantize
rotation.

Once we have established the applicable symmetries,
we then introduce collective coordinates that parameterise
these transformations. Let us denote our collective coordi-
nates as θ1(t), θ2(t) and θ3(t). Now if we allow our hedge-
hog skyrmion to rotate about all three spatial directions,
we can then use the special property that spatial rotations
are equivalent to SU(2)V transformations to express our
new time-dependent hedgehog solution as

UH(r, t) = R(t)UH(r)R
†(t), (150)

where

R(t) = e(iθ1T
1/2)e(iθ2T

2/2)e(iθ3T
3/2). (151)

In this context, we can see that our collective coordinates
may be thought of as Euler angles. In this discussion, we
are ignoring the radial modes of the skyrmion as it rotates
and all other such complications. The aim of this example
is merely to demonstrate the simplest quantization proce-
dure. If we now proceed by substituting our ansatz from

equation 150 into our full action (given in equation 133),
we then find that

S = −MH +
1

2
ΛH(θ̇

2
i + 2θ̇1θ̇3 cos θ2), (152)

where MH is the mass of the hedgehog skyrmion and ΛH is
its moment of inertia. The mass of the hedgehog skyrmion
is the same as that calculated in section III E, and the mo-
ment of inertia is found to be

ΛH =
2π

3

1

fπe3

∫ ∞

0

dr r2 sin2 F

(
F ′2 + 1 +

sin2 F

r2

)
.

(153)
As before, this integral cannot be evaluated analytically.
However, it is possible to find a numerical solution, which
yields ΛH ≈ 53.4/(fπe

3) [18].
Now that we have an expression for the complete ac-

tion in terms of our collective coordinates, we can proceed
to quantize in the canonical way [38]. We can Legendre

transform in terms of the canonical momenta, Θi = θ̇i,
and subsequently make the operator promotion

Θi → i
∂

∂θi
. (154)

By performing these two steps we find that our quantized
Hamiltonian becomes

H = MH +
1

2ΛH

[
1

sin2 θ2

(
∂2

∂θ21
+

∂2

∂θ23
− 2 cos θ2

∂2

∂θ1∂θ3

)
+

1

sin θ2

∂

∂θ2

(
sin θ2

∂

∂θ2

)]
,

(155)

which may be simply expressed as

H = MH +
1

2ΛH
∇2

S3 , (156)

where ∇2
S3 is the Laplacian on a 3-sphere, or equivalently

the angular part of the 4-dimensional Laplacian. Fortu-
nately, ∇2

S3 is an eigenfunction and consequently so is the
Hamiltonian. As we would expect from a spatial rotation
operator, the Wigner D-functions, Dj

mm′ , are its eigenfunc-
tions [39] with the usual eigenvalues

Ej
mm′ = MH +

j(j + 1)

2ΛH
. (157)

Here j ∈ Z + 1
2 is the total angular momentum quantum

number and m and m′ are magnetic quantum numbers,
which go from −j to j in integer steps.

1. spin and isospin

Having found the eigenenergies of our system with re-
spect to quantized rotations, the natural next step is look
at the spin and isospin states. Recall that spin, J , and
isospin, I, are defined as Noether charges associated with
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rotations and isospin transformations, respectively. Ap-
plying Noether’s theorem, using equation 150 in the full
flavour group, we find that:{

Jk = −iΛHtr(R∂tR
†T k) spin,

Ik = +iΛHtr(R∂tR
†T k) isospin.

(158)

where T k are our full flavour group generators [18]. From
this, we can see that for any skyrmion (since we have just
used the Skyrme Lagrangian in calculating our Noether
charges) spin and isospin are simply related by SO(3) ro-
tations. From this we can conclude that

J2 = I2, (159)

where J2 is our squared angular momentum operator (and
the only casimir of SU(2)). If we evaluate this operator
in terms of our collective coordinates, we find that this is
in fact equal to our Laplacian on the 3-sphere, ∇2

S3 . This
allows us to write

H = MH +
1

2ΛH
J2. (160)

Now we have simplified our quantized Hamiltonian to a
constant term plus a term proportional to the squared an-
gular momentum operator (which has the familiar eigen-
values of j(j + 1)). We know that our physical states are
eigenstates of the Hamiltonian and so correspond to the
Wigner D-functions. We may denote them as

|j = i;m,m′⟩ , (161)

where i is the total angular momentum quantum number
corresponding to isospin.

Note that for an even Nc, in the ground state there will
be an equal number of quarks with spin up and spin down,
and so the total spin of the particle will be zero. This
implies that our particle is a boson with j = 0. Since the
values of m and m′ range from −j to j in integer steps, we
can see that there will only be one ground state, given by

|0; 0, 0⟩ . (162)

The case with an odd Nc, however, is more interesting.
Generally, an odd Nc implies that our particle will be a
fermion (as we saw in section IVD). In the ground state,
the overall spin of our particle will be j = 1/2. Therefore,
our ground state is now degenerate and may be given by∣∣∣∣12 ;±1

2
,±1

2

〉
. (163)

Since baryons have an odd Nc, this will be our case of
interest.

2. physical electric charge

Now adding electromagnetism to our theory involves
moving from derivatives to covariant derivatives, ∂µU →
DµU = ∂µU − ieAµ[Q,U ], and ensuring that our Wess-

Zumino term is gauge invariant, Γ → Γ̃ [18]. As with a

standard electromagnetism gauge theory, A is our vector
potential and Q is our physical electric charge, given by
the Gell-Mann-Nishijima formula,

Q = I3 +
1

2
Y, (164)

where I3 is the third component of the isospin and Y the
hypercharge. Taking the third component of the isospin in
equation 158, we find that

Î3 =
1

2
Θ1. (165)

If this operator acts on a state, we then find that

Î3 |i;m,m′⟩ = m |i;m,m′⟩ , (166)

which means that is has eigenvalues m. Now we saw in
the previous section that for the Nc odd case (which corre-
sponds to baryons), there are two possible values of m, that
is m = ±1/2. This allows us to express our I3 operator as
a diagonal matrix:

Î3 =

(
1/2 0

0 −1/2

)
. (167)

In section IVC, we identified the baryon charge of individ-
ual quarks to be 1/Nc. This, in fact, corresponds to the
hypercharge generator, and in matrix form (for our Nc odd
case) may be expressed as

Ŷ =
1

Nc
1. (168)

Hence, substituting these results into equation 164, we may
write the physical electric charge operator for our fermionic
ground state baryons as

Q̂ =

(
1/2 0

0 −1/2

)
+

1

2Nc
1. (169)

Now recall, from section IVC, that the baryon number
symmetry corresponds to the U(1)V symmetry of our the-
ory. Hence the U(1)V Noether charge corresponds to the
hypercharge. By substitution of theB = 1 hedgehog ansatz
and hypercharge generator into equation 139, we find that
the hypercharge generator coefficient, 1/Nc, cancels with
the Wess-Zumino prefactor, Nc, and so

Y ≡
∫

d3xJ0
Y = ��Nc

��Nc
= 1. (170)

This now allows us to calculate the physical electric charge
of our particles. Note that if we had substituted the ex-
pression for the B = −1 skyrmion at this stage, we would
obtain Y = −1, which would give us the charges for the
corresponding antiparticles.

In this discussion, we only consider the fermion states,
which correspond to baryons. Let us first consider the
| 12 ;

1
2 ,

1
2 ⟩ state. We know that this state has an over-

all spin of 1/2 and, from equation 164, we know that it
has a physical electric charge of +1. Recall from sec-
tion III E, that we estimated the hedgehog skyrmion mass
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TABLE II. Candidate baryon particle states.

State Mass / GeV I3 Spin Charge / e Particle∣∣ 1
2
; + 1

2
,+ 1

2

〉
∼ 1 +1/2 1/2 +1 proton∣∣ 1

2
; + 1

2
,− 1

2

〉
∼ 1 −1/2 1/2 0 neutron

to be MH ∼ fπ/e ∼ 1GeV. For any j = 1/2 configuration,
we can see, from equation 157, that the skyrmion mass will
now be given by

E
1
2

± 1
2±

1
2

= MH +
3

8ΛH
. (171)

At the start of this section, we estimated the moment of
inertia to be given by ΛH ∼ 1/(fπe

3) ∼ 1MeV · fm2 and
so this shift in the energy is negligible. Hence the mass of
our skyrmion state is still ∼ 1GeV. From the arguments
discussed throughout this essay, we suspect that skyrmions
in our field theory correspond to baryons. Here we have a
baryon with a mass of the order of 1GeV, an overall spin of
1/2 and I3 = 1/2, which implies a physical electric charge
of +1. This corresponds to a proton.
Let us now consider the | 12 ;

1
2 ,−

1
2 ⟩ state. This state also

has an overall spin of 1/2, except this time with a different
I3 value. Hence, here we need to identify a baryon with a
mass ∼ 1GeV, an overall spin of 1/2 and I3 = −1/2, which
implies a physical electric charge of 0. This corresponds to
a neutron. See table II, for a summary of our results.

V. MODELING LARGER NUCLEI

This subsection is based on the chapter “Skyrmions and
Nuclei” by Battye, Manton & Sutcliffe [3].

In the previous section, we showed how, by quantizing
the zero-modes around the hedgehog ansatz, the quantum
states of the B = 1 skyrmion may be identified with the
proton and the neutron - the building blocks of the nu-
cleus. Following from this, it would be natural to now
check whether skyrmions are able to model larger nuclei,
so as to determine the theory’s full range of applicability.
Crucially, the Skyrme model can only be regarded as a
general theory of nuclear structure if it is able to model all
nuclei successfully. Let us proceed, therefore, by investi-
gating the skyrmion solutions for larger baryon numbers,
B > 1.
To begin, let us note a few important features of our

treatment of the B = 1 skyrmion. In the B = 1 case, we
used a ‘spherically symmetric’ hedgehog ansatz for the field
configuration and showed that it is an energy-minimising
solution of the Skyrme Lagrangian (see section IIID). We
used this to illustrate the massless pion field configuration,
in real space, shown in figure 7. However, the hedgehog
ansatz is not generally the energy-minimising solution of
the Skyrme Lagrangian. In fact, it only minimises the field
energy for B = 1. For higher baryon numbers, we need
to use the rational map ansatz instead, as mentioned in
section III E. The rational map ansatz, along with its ex-
tensions (e.g. the double rational map ansatz [40]), is suf-

FIG. 9. Baryon density isosurfaces, in real space, for 1 ≤ B ≤ 8
skyrmions derived from massless pion fields. Each subfigure
is labeled by its baryon number and symmetry group, respec-
tively. [3]

ficiently general to be successfully applied to many higher-
order skyrmions [41]. Using a new energy-minimising field
configuration is the first major change that we implement
when moving to higher baryon numbers. Notice that this
is a change in the classical treatment of the skyrmion, and
so is made before any quantization takes place.

For the B = 1 skyrmion, we plotted the massless pion
field configuration, in real space, and showed that it decays
with separation from the origin in a spherically symmetric
way (see figures 7 and 8). Therefore, if we were to plot
a pion field isosurface, we would describe a sphere. Since
our triplet of pion fields is being used to model a single
baryon, this pion field isosurface corresponds directly to
a baryon density isosurface, as shown in figure 9 - sub-
figure 1. Note that our chosen field configuration will al-
ways minimise the energy functional with respect to the
winding/baryon number, and hence this correspondence is
true in general. In this way, we are able to visualise the
real structure of skyrmions. Illustrations of the first eight
baryon density isosurfaces, using the single rational map
ansatz, is shown in figure 9. Note that each isosurface
possesses a high degree of symmetry, as we would expect
from energy-minimising field configurations. The most sta-
ble (or energetically favourable) configuration in a classical
system will usually show the highest degree of symmetry.
In this case, the B = 1 hedgehog ansatz corresponds to one
baryon and so has the lowest energy out of all the configu-
rations, which explains why it is the most symmetric. The
B = 2, 3, 4 states then show toroidal, tetrahedral and cu-
bic symmetries, respectively. In fact, the B = 4 isosurface
may be constructed from two B = 2 tori stacked on top of
one another, along their common axis, with one of the tori
flipped up-side down (as we shall explain in section VB).
Similarly, the B = 6 skyrmion may be constructed from
a stack of three B = 2 tori, with the middle torus flipped
up-side down [42]. Continuing näıvely as in figure 9, using
the single rational map ansatz, leads to all higher baryon
number isosurfaces forming hollow polyhedra, reminiscent
of carbon fullerenes [42]. As we shall discuss later, various
problems arise when we deal with higher baryon numbers,
B ≳ 7. For now, however, let us concentrate on the physi-
cal interpretation of the first few skyrmions.
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A. Deuteron (B = 2)

This subsection is based on the paper by Braaten & Car-
son [33].

The B = 1 skyrmion was the first skyrmion that was
studied and initially proposed by Skyrme in 1961 [38]. This
skyrmion solution was then quantized, using the conjecture
that the winding number of the mesonic field theory may
be interpreted as the baryon number, and hence that the
B = 1 skyrmion corresponds to a single baryon. This the-
oretical exercise was successful, in that it predicted reason-
able values for the quantum numbers and allowed Skyrme
to identify the baryon as a proton or neutron [38]. However,
without any proof to back up the conjecture, the logical
progression to higher-order skyrmions remained unexplored
for many years [33]. It was only in 1983, when Witten
proved that this idea can be extended to Nf ≥ 3 [30] and
explained why fermions can arise from a bosonic field the-
ory [31], that interest in this specific research was renewed.
Following from this, in 1988, E. Braaten and L. Carson
published a seminal paper on the B = 2 skyrmion, which
they found possessed toroidal symmetry and upon quan-
tization, they identified with deuteron (a proton-neutron
pair) [33]. This paper then lead the way for many other
attempts to model light nuclei, the majority of which have
shown very good agreement with experimental results [43].

The simplicity of the B = 1 skyrmion lends itself to
an intuitive physical interpretation. In the B = 1 case,
we only have one baryon and so we would trivially expect
the baryon density isosurface to be spherical; which is sup-
ported by empirical evidence [3]. However, the more un-
usual B = 2 toroidal skyrmion also has some phenomeno-
logical support [44]. Upon quantization, we deduce that
deuteron has isospin 0 and spin 1 [42]. Deuteron is made
up of a proton-neutron pair and so we would expect the
baryon density to be of a familiar dumbbell shape. In
fact, this toroidal skyrmion is consistent with our intuition.
When the spin component along the z-axis is zero, the spa-
tial wavefunction of deuteron (or any nucleon-nucleon pair)
will be concentrated in a torus with the z-axis as its axis of
symmetry, as confirmed by computational calculations [44].
However, if the spin component along the z-axis is ±1, then
the particle density would indeed take the shape of a dumb-
bell, as expected. This can be interpreted as a torus with
its symmetry axis in the x− y plane, spinning around the
z-axis; and so our B = 2 skyrmion also has a consistent
physical interpretation.

B. The α-particle (B = 4)

This subsection is based on the paper by Battye, Manton
& Sutcliffe [42].

The next two skyrmions, B = 3 and B = 4, are of par-
ticular significance because the corresponding particles are
found to appear as substructures of larger nuclei. This is,
in part, due to their highly symmetric, stable structure and
ability to form bonds [41]. For this discussion, let us fo-
cus on the B = 4 cubic skyrmion. Upon quantization, this

TABLE III. The additive and subtractive primary colours along
with their associated phase and unit vector. The colour spec-
trum is smooth and continuous, going from red back to red in
the range ϕ ∈ [0, 2π]. [41]

red yellow green cyan blue magenta

ϕ 0 π/3 2π/3 π 4π/3 5π/3

π̂1 + iπ̂2 1 exp
(
iπ
3

)
exp

(
i 2π

3

)
−1 exp

(
i 4π

3

)
exp

(
i 5π

3

)

skyrmion may be identified with the helium nucleus (i.e.
the α-particle) [42], which is made up of two neutrons and
two protons.

The realisation that larger skyrmions can also be built
out of B = 4 substructures is encouraging because it has
been known since the 1930’s, that many nuclei may be de-
scribed as arrangements of α-particles (provided they have
isospin 0 and B a multiple of four) [42]. As a consequence,
it will prove to be a good investment to study the B = 4
skyrmion in more detail.

Let us start, however, by finding a more intuitive way
to visualise skyrmion structure. The baryon density plots
shown in figure 9 are undoubtedly a very useful way to
visualise the overall shape of skyrmions. However, when it
comes to skyrmion interactions, these plots do little to aid
our understanding. For example, from figure 9, it is not
obvious how two B = 2 tori may be combined to form a
B = 4 skyrmion. In order to better visualise the skyrmion,
we shall proceed by adding pion field phase information to
the baryon density isosurfaces.

Consider the normalised pion field, π̂, given by

π̂ =
1

|π|

π1

π2

π3

 . (172)

In order to plot the pion field phase information on our
baryon density isosurfaces, we shall use the Runge colour
sphere convention. The Runge colour sphere, first intro-
duced by P. O. Runge in 1810 [45], is a sphere which has
the complete colour spectrum around its equator and tran-
sitions smoothly and evenly from 100% brightness (white)
at the north pole to 0% brightness (black) at the south pole.
The concept was first introduced to study colour in fine art,
however it is useful in our context because it can encode
a lot of information in a visual way. For the skyrmions,
let us use the Runge colour sphere convention based on
the π̂3 component vector of the pion field. Let the south
pole of the Runge colour sphere correspond to π̂3 = −1
and the north pole to π̂3 = +1. Since the colour sphere
transitions smoothly and evenly, it follows that the equator
corresponds to π̂3 = 0. Now, for the colour spectrum, let
us consider the argument of π̂1 + iπ̂2 = eiϕ in the range
ϕ ∈ [0, 2π). Let us define the phase plot to start at red
for ϕ = 0. The (additive and subtractive) primary colours
along with their associated phase is shown in table III.

Recall that, in the case of the B = 1 hedgehog skyrmion,
the pion field function shows a spherical symmetry. There-
fore, plotting the pion field phase information onto the
B = 1 baryon density isosurface produces the colour sphere
itself, as shown in figure 10. Let us now interpret what
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FIG. 10. Baryon density isosurfaces, in real space, for the B =
1 (hedgehog) and B = 4 skyrmions. The pion field phase is
coloured using the Runge colour sphere convention. [41]

these colours are telling us about the physics of the situa-
tion. As we have shown in this essay, the Skyrme model is
a scalar field theory and so the pion fields are scalar fields.
This implies that charges/sources of equal sign will at-
tract [41]. In this context, this refers to the pion field com-
ponents. For example, the white section of the skyrmion
with π̂3 = −1 will tend to be attracted to other white sec-
tions with π̂3 = −1 (as we shall see when discussing corner
cutting in section VD). This gives us an easy way to visu-
alise the construction of higher-order skyrmions, by bring-
ing together smaller skyrmions and matching their colour
at the joints. Going back to the example of constructing
a B = 4 cubic skyrmion by ‘gluing’ together two B = 2
tori, we can now see why one of the tori must be flipped
up-side down for this construction to work. Flipping one of
the tori up-side down results in an attractive colour match-
ing. Building on this, we may now plot the pion field phase
information on the B = 4 cubic skyrmion, as shown in fig-
ure 10. This allows us to visualise how larger skyrmions
may be constructed from these cubic building blocks.

Before we go on to construct larger skyrmions, however,
we need to discuss the issues that we encounter when deal-
ing with higher baryon numbers, B ≳ 7. There are three
main problems with our current approach to constructing
skyrmions, which only manifest themselves when modeling
larger nuclei.

1. Volume scaling: Perhaps the most obvious problem
with our current approach to skyrmion construction
is the formation of large hollow polyhedra for higher
baryon numbers, as we can see from the pattern
emerging in figure 9. At the centre of these poly-
hedra, the energy and baryon density is very small,
which implies that the nucleus is hollow. This clearly
disagrees with what we have observed in real nu-
clei [42]. In smaller nuclei, such as B = 2 and B = 6,
there is a physical interpretation as to why the nu-
cleus can be empty at the centre, and this is sup-
ported by some empirical evidence [46]. However,
for all other cases, we know that the baryon density
should be approximately constant throughout the nu-
cleus and scale ∝ B. Our current skyrmion construc-
tion implies that the baryon density is confined to a

shell of approximately constant thickness, surround-
ing a cavity whose volume scales ∝ B3/2 [42]. This
is in clear disagreement with experiment.

2. Spin/parity assignment: We have shown in sec-
tion IVE, that when quantizing the B = 1 skyrmion
we obtain quantum states with a spin/parity corre-
sponding to real B = 1 particles. This is also suc-
cessful for the B = 2 skyrmion, as well as other small
skyrmions [42]. However, these quantum numbers
are not consistent in general. Consider, for exam-
ple, the B = 7 skyrmion shown in figure 9. This
skyrmion shows a striking dodecahedral symmetry
and seems to be a natural geometric progression from
the lower-order skyrmion structures. However, upon
(zero-mode) quantization, we find that the lowest
spin state for isospin 1/2 is spin 7/2 [47, 48], which
disagrees with experimental values of spin 3/2 ob-
served in the ground state of some B = 7 particles
(namely, lithium and beryllium) [42]. This suggests
that the highly symmetric structure that we have
found for the B = 7 skyrmion may, in fact, be too
symmetric to be the ground state solution. From
a classical perspective, of course, this is undoubt-
edly the structure that minimises the classical en-
ergy. However, generally speaking, we could find a
less symmetric structure, which has a larger classical
energy but may be quantized with a lower spin, and
so will yield a lower total energy. Therefore, it is not
true, in general, that a structure that minimises the
classical energy will also minimise the total energy,
upon quantization. In fact, this tends not to be the
case for higher baryon numbers.

3. Pion mass: Finally, the pion mass plays a signifi-
cant role for higher baryon numbers [42]. Up to this
point, we have mentioned the pion mass term (in sec-
tion III E) but have since neglected it frequently, so
as to benefit from the greater symmetry of a mass-
less pion field theory. For example, all the skyrmions
plotted in figure 9 are derived from a massless field
theory. For small baryon numbers, this is indeed ac-
ceptable, as it has been shown that these solutions
are relatively insensitive to the reduction in pion mass
from its physical value to zero [49, 50]. However, for
higher baryon numbers, we are no longer able to take
this limit. For large hollow polyhedra, the addition
of a pion mass term gives the centre of the skyrmion
a field value of U = −1, which is the antipode of
the vacuum field value (U = 1). Therefore, these
structures are highly unstable and tend to squash and
pinch off into smaller sub-regions [42]. According to
current research [50, 51], the qualitative properties
of skyrmions are relatively insensitive to the actual
(positive and non-zero) value of the pion mass and
so it is common to take mπ = 1 for higher-order
skyrmion simulations [41].

Taking these issues into account, let us now make some
refinements to the way we model large skyrmions. First,
let us include the pion mass term in our calculations with
mπ = 1. Although more computationally intensive, this is
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perhaps the simplest change to implement and will typi-
cally result in stable skyrmion structures. Second, we need
to adopt, at least initially, a less systematic approach to
constructing larger nuclei. Instead of blindly using the
single rational map ansatz to build skyrmions that min-
imise the classical energy, we should treat each particle on
a case-by-case basis and perhaps use what we already know
about the geometry of the nuclear structure to efficiently
find skyrmions that minimise the total energy after quan-
tization. This should then solve both the volume scaling
and spin/parity assignment issues.

Indeed, this is the approach that has been taken in recent
years and to some degree of success [41]. For now, let us
focus on nuclei that are built out of α-particles. We have
known for many years that certain nuclei are composed of
these building blocks. For example, beryllium-8, carbon-12
and oxygen-16 nuclei are made up of two, three and four
α-particles, respectively [52]. This should give us some
indication as to what skyrmion structures to expect when
modeling these nuclei. For the purposes of this essay, let
us focus on the possible nuclear configurations of carbon-12
for various energy states.

C. The Hoyle State of Carbon (B = 12)

This subsection is based on the Physics World article by
Jenkins & Kirsebom [52], as well as the papers by Lau &
Manton [53] and Battye, Manton & Sutcliffe [42].

The states of carbon-12 are of particular interest to nu-
clear physicists because they clearly demonstrate gaps in
our modern understanding of nuclear structure. Specifi-
cally, intensive research efforts have been focused around a
particular state of carbon-12, known as the Hoyle state.

At the time of the big bang, we know that only three ele-
ments were produced: hydrogen, helium and (an extremely
small proportion of) lithium. Heavier elements, such as
carbon, are then produced through nuclear fusion in stars.
Stellar nucleosynthesis predominantly involves four hydro-
gen nuclei (i.e. protons) fusing to form a helium nucleus
(i.e. α-particle). Carbon is then formed when three of these
α-particles fuse together at high temperatures. However,
in order for three α-particles to join together, we first need
two α-particles to join to form a beryllium-8 nucleus. This
is where a problem occurs. Although two α-particles can
indeed fuse to form a beryllium-8 nucleus, the nucleus is ex-
tremely short-lived with a lifetime of ∼ 10−16 s [52]. Now,
we know that all life on Earth is carbon-based and so car-
bon is relatively abundant. This extremely short lifetime of
beryllium, however, would suggest that carbon has a very
small probability of forming and cannot possibly account
for the relative abundance that we observe today.

In 1953, British astrophysicist F. Hoyle reconciled this
issue by postulating the existence of a short-lived excited
state of carbon-12, now known as the Hoyle state, which
would serve as a resonance and accelerate the production
of carbon by seven orders of magnitude [54]. This ex-
cited state was postulated to have an excitation energy of
≈ 7MeV and was experimentally confirmed to exist soon
afterwards [55]. The theory proposed by Hoyle then suc-

FIG. 11. Configurations of carbon-12 based on the composi-
tion of three α-particles. (a) The earliest model of the Hoyle
state, proposed in 1958, comprises a linear chain of three α-
particles. (b) The ground state of carbon-12, or the most en-
ergetically favourable configuration of α-particles, is a compact
triangular arrangement. (c) In 2001, it was suggested that the
Hoyle state may be viewed as a Bose-Einstein condensate. (d)
Most recently, in 2012, the Hoyle state was calculated from first
principles and the α-particles were found to be in a bent arm
configuration. [52]

cessfully explains the relative abundance of carbon - a ne-
cessity for life on Earth. However, the current problem
stands that the nuclear shell model, the best model of nu-
clear structure that we currently possess, does not predict
the existence of such a state. In fact, similar short-lived ex-
cited states have now been observed in other light nuclei,
which the model also fails to predict [52]. This demon-
strates a major shortcoming in our understanding of the
nucleus, and the topic is among the most intensely re-
searched in the field of nuclear physics. It is interesting,
therefore, to see what the Skyrme model has to say about
the Hoyle state.

A few years after the discovery of the Hoyle state, it was
proposed that instead of interpreting the carbon nucleus as
a collection of independent nucleons, we interpret it as a
cluster of three α-particles. The first model that was pro-
posed was the linear chain, as shown in figure 11 - subfigure
(a). Now this linear chain structure would be confined to
a small nucleus length scale of ∼ 1 fm, and so, by Heisen-
berg’s uncertainty principle, its momentum would be given
a lower bound. At these expected energies, the α-particles
could exchange nucleons between one-another, and so it
was soon made apparent that a linear chain structure is
a simplification which can only represent the time-average
of a dynamic system [52]. However, this was a promising
starting point and it inspired many new ideas. For exam-
ple, since α-particles have spin 0, it was later suggested that
the carbon-12 nucleus may, in fact, be a Bose-Einstein con-
densate, as depicted in figure 11 - subfigure (c). However,
the consequences of such an idea were difficult to reconcile
with our familiar understanding of the nucleus and so, it is
not clear how this conjecture would fit in with our general
nuclear model. Currently, the consensus is that the carbon-
12 nucleus may actually be a superposition of states [52].
For example, the nucleus could be a 70% superposition of
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FIG. 12. Baryon density isosurfaces, in real space, for the
(a) linear chain (D4h symmetry) and (b) compact triangle
(D3h symmetry) configurations of the B = 12 skyrmion. The
skyrmions shown are derived from massive pion fields (mπ = 1)
and the pion field phase is coloured using the Runge colour
sphere convention. [53]

an α-particle cluster and a 30% superposition of a nucleon
cluster. This way we can retain the key features of both
models. However, this does not address the issue of what
type of α-particle cluster could possibly be responsible for
the Hoyle state.

In 2011, a theoretical physics group led by E. Epelbaum,
from Ruhr-Universität Bochum in Germany, were the first
to carry out an ab initio calculation of the energy states
of carbon-12, using a Lattice Monte-Carlo simulation de-
rived from QCD [56]. They indeed found a state at ap-
proximately 7MeV above the ground state with spin 0
and positive parity (labeled 0+), which can be identified
as the Hoyle state. This was a promising result because
a first-principles calculation can reveal the true structure
of the nucleus. In 2012, they published a follow-up paper
where they presented the nuclear structure that emerges
from their simulations [57]. They found the ground state
of carbon to be in a compact triangular arrangement of α-
particles, as illustrated in figure 11 - subfigure (b). This
result is intuitive because it possesses a high degree of sym-
metry. However, for the Hoyle state, they found that the
nucleus was actually arranged in a bent arm configuration
of α-particles, shown in figure 11 - subfigure (d). This is
currently our best understanding of the Hoyle state and so,
it begs the question: what are the total energy-minimising
skyrmion structures for B = 12?

In 2014, P. H. C. Lau and N. S. Manton published a
paper on “States of Carbon-12 in the Skyrme Model” to
investigate this issue [53]. They found B = 12 skyrmion
solutions to the Skyrme model numerically by allowing a
symmetric arrangement of three B = 4 cubic skyrmions
to relax to a minimal energy solution. The results showed
two distinct skyrmion solutions, corresponding to the com-
pact triangle and linear chain α-particle arrangements, as
shown in figure 12. They then proceeded to quantize the
rotational motion of these skyrmions and focus on the re-
sults for isospin 0. The results showed that the compact
triangle configuration can be identified with the 0+ ground
state of carbon-12 (plus rotational excitations), and the
linear chain configuration with the 0+ Hoyle state (plus ro-
tational excitations) [53]. The compact triangular ground
state is in agreement with the results from QCD and is also
somewhat intuitive. However, the linear chain 0+ Hoyle

state seems to be in disagreement with the current bent
arm consensus [57]. Furthermore, the skyrmion simula-
tions were unable to confirm the ≈ 7MeV excitation en-
ergy due to numerical uncertainties [53]. There are various
possible explanations for this apparent disagreement. As
we have mentioned before, the linear chain model is ade-
quate as a time-averaged picture of a dynamical system.
In fact, our current understanding is that the carbon-12
nucleus behaves rather like a gas of weakly-interacting α-
particles that move almost freely on relatively large nuclear
scales [52]. This allows us to take the time-average struc-
ture in this way. Moreover, it is known that the Skyrme
model is built from an approximation to QCD and so,
perhaps the results shown here are indeed in some time-
averaged limit. In any case, it is interesting to see how
the Skyrme model can be used to successfully (at least for
the ground state) build nuclei out of B = 4 cubic blocks.
There have been many detailed skyrmion calculations car-
ried out for light nuclei built out of these cubes, which
mainly show a very good agreement with experimental en-
ergies [41]. Given the success of building skyrmion struc-
tures out of cubes, compared to the large hollow polyhedra
that we had earlier, it is now important to check the range
of applicability of this new approach.

D. Higher Baryon Numbers

This subsection is based on the paper by Feist, Lau &
Manton [41].

As we saw in section VB, simply applying the single ra-
tional map ansatz to all skyrmions does not work well for
higher baryon numbers. A single rational map ansatz yields
an incorrect volume scaling of the nucleus, as well as incon-
sistent spin/parity assignments for the ground state. Con-
sequently, in order to reconcile this issue, we employ a mul-
tilayer rational map ansatz for larger nuclei [41]. The dou-
ble rational map ansatz was the first to be considered [40],
however many extensions exist. For example, the skyrmion
structures shown in figure 12 were derived from a prod-
uct map ansatz of particular arrangements of three B = 4
cubes. In this section, let us use the rational map ansatz
that allows skyrmions to be geometrically constructed from
the Skyrme crystal (as outlined in [41]) - the Skyrme crystal
being an infinitely repeating (homogeneous and isotropic)
structure made up of smaller skyrmion chunks. To begin
our discussion, let us use the (special case) product map
ansatz to produce an initial configuration and then, nu-
merically relax the system to find an energy minimum. In
particular, let us draw our attention to initial configura-
tions made up of B = 4 cubic skyrmions.

After applying the product map ansatz to produce an
initial configuration of B = 4 cubes and then numerically
relaxing the system to obtain energy-minimising construc-
tions, we find an impressive agreement with the ground
state energies of a wide variety of large nuclei. For ex-
ample, we find that the B = 8, 24, 32 skyrmions are made
up of two, six and eight cubes, respectively [41]. More-
over, if we do not restrict ourselves to an initial configu-
ration solely made of cubes and apply more general geo-
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FIG. 13. Baryon density isosurfaces, in real space, for the B =
108 and B = 100 skyrmions. The skyrmions shown are derived
from massive pion fields (mπ = 1) and the pion field phase is
coloured using the Runge colour sphere convention. [41]

metric multilayer rational map ansätze, then we find that
skyrmions ‘naturally’ tend to cluster into B = 4 subunits
and some skyrmions can even be built up from a variety
of building blocks. For example, the B = 25 skyrmion
is built from a cluster of B = 3 tetrahedra and B = 4
cubes [41]. The largest skyrmion construction to show
an agreement to real nuclear energies is, currently, the
B = 108 skyrmion made up of twenty-seven B = 4 cubes
using the three-layer rational map ansatz, as shown in fig-
ure 13. The construction clearly resembles a chunk of the
Skyrme crystal. Note that one energetically-stable way of
constructing lower-order skyrmions from larger structures
is a method known as corner cutting. Recall that colour
attraction in our diagrams means that white regions will
be attracted to other white regions. Hence, at the corner
of our larger cubic skyrmions, it is energetically stable to
move the three white regions surrounding the corner into
the corner black region to create a larger white region with
a hole. Note that the concept of corner cutting is best un-
derstood in terms of geometric rational maps, which are
beyond the scope of this essay [41]. In this way, we may
remove corner baryons from larger cubic skyrmions to pro-
duce lower-order skyrmions. For example, we may remove
the eight corner baryons from the B = 108 skyrmion to
produce the B = 100 skyrmion, shown in figure 13. Al-
ternatively, we could equally well modify the outer ratio-
nal map by removing four corner baryons to produce a
B = 104 skyrmion [41]. The corner cutting method was
first introduced to derive the 24 ≤ B ≤ 31 skyrmions from
the large B = 32 cube (made up of four B = 4 cubes) [58].
It has since been shown to work well for many other baryon
numbers [41].

VI. CONCLUSION

Starting from the sine-Gordon model in 1+1 dimensions,
we have seen how field theories may have soliton solutions.
These solutions must be both topologically stable, meaning
that they have a non-trivial vacuum manifold topology, and
energetically stable, meaning that they are local minima of

the field energy. Skyrmions are solitons which have a non-
trivial π3 homotopy group and are found to be solutions
to the NLSM - a rudimentary precursor to QCD. In order
to make these topologically stable skyrmion solutions ener-
getically stable, Skyrme added on the Skyrme term to the
Lagrangian. One can then also add on a linear term to the
Lagrangian to make the field theory massive. By consider-
ing a simple ‘spherically symmetric’ field ansatz, we then
calculated the typical mass and RMS radius of a skyrmion
which minimises the energy for a winding number of B = 1.
We found that these values correspond well to the typical
mass and size of some baryons. Adding on a third addi-
tional term to the NLSM Lagrangian allowed us to satisfy
the CPT symmetry observed in nature and consequently,
allowed us to quantize the theory. A simple rotation quan-
tization of the B = 1 energy-minimising skyrmion, with
the addition of electromagnetic gauge theory, allowed us to
further calculate spin, isospin and physical electric charge.
From this, we identified the skyrmions that correspond to
the proton and the neutron. Building on this, we briefly
reviewed attempts to construct higher-order skyrmions and
discussed the complications that arise when trying to model
larger nuclei.

This introduction to skyrmions in nuclear physics has
demonstrated the profound results that can be drawn from
this, seemingly basic, model of the nucleus. It allows us to
interpret particles in a completely new way. Since its incep-
tion in the early 1960s skyrmions have found many appli-
cations to understanding nuclear structure [53], as well as
applications to a wide variety of other fields of physics [3].
Most notably, magnetic skyrmions form a thriving area of
research in condensed matter physics [59, 60]. However,
the ideas of Skyrme have also found their way into more
abstract physical theories, such as string theory [61]. Fur-
thermore, as shown in chapter V, theorists have been able
to find skyrmion correspondence with a large number of
baryons, not only protons and neutrons. There has been
a correspondence found with baryon numbers as high as
B = 108 and all the energy-minimising solutions show a
striking symmetry [41]. Theorists have even been able to
study skyrmion scattering to better understand the par-
ticle scattering processes that experimentalists work with
on a daily basis [62]. Undoubtedly, the study of skyrmions
has provided us with a valuable insight, not only into the
world of nuclear structure, but into physics as a whole.
However, this area of research is by no means complete.
The skyrmion correspondence between all baryon numbers
has not yet been found, as certain particles, such a lithium-
7 for example [42], are proving difficult to fit to the model.
More importantly, skyrmions are solutions to the effective
theory and not to the fundamental theory [18]. Hence, their
full range of applicability and deep physical significance is
yet to be precisely determined [18, 63].

ACKNOWLEDGMENTS

Many thanks to Prof. Manton for useful discussions,
particularly regarding section III C, and to Andrew Fowler
for the careful proofreading.



29

[1] T. H. R. Skyrme, Proc. R. Soc. Lond. A260, 127 (1961).
[2] G. E. Brown, Selected Papers, with Commentary, of Tony

Hilton Royle Skyrme (World Scientific, Singapore, 1995).
[3] G. E. Brown and M. Rho, The Multifaceted Skyrmion

(World Scientific, Singapore, 2010).
[4] J. S. Russell, Brit. Assoc. Rep. 311 (1844).
[5] I. Newton, “Philosophiæ Naturalis Principia Mathemat-

ica,” Book 2, London, UK (1687).
[6] D. Bernoulli, “Hydrodynamica,” Strasbourg, France

(1738).
[7] L. Rayleigh, Philos. Mag. 5, 1, 257 (1878).
[8] D. J. Korteweg and G. de Vries, Philos. Mag. 5, 39, 422

(1895).
[9] Image adapted from Wikipedia Commons (last accessed:

30/04/15).
[10] S. Demokritov, “Sine-Gordon Equation,” Lecture notes

(chapter 5), Münster University, Münster, Germany (2010),
[last accessed: 30/04/15].

[11] Image adapted from Kyoto University On-line (last ac-
cessed: 30/04/15).

[12] Image adapted from Bochum University On-line (last ac-
cessed: 30/04/15).

[13] E. Bour, J. Ecole Imperiale Polytech. 19, 1 (1862).
[14] Image adapted from Simon Fraser University On-line (last

accessed: 30/04/15).
[15] Image adapted from Simon Fraser University On-line (last

accessed: 30/04/15).
[16] R. J. Cova, in The Sine-Gordon Model and its Applica-

tions, Nonlinear Systems and Complexity (Springer, Cham,
Switzerland, 2014) Chap. A Planar Skyrme-Like Model, p.
233.

[17] N. Manton and P. Sutcliffe, Topological Solitons (Cam-
bridge University Press, Cambridge, UK, 2004).

[18] M. Gillioz, “An Introduction to Skyrmions,” CP3-Origins
on-line lecture series, University of Southern Denmark,
Odense, Denmark (2014), [last accessed: 30/04/15].

[19] G. H. Derrick, J. Math. Phys. 5, 1252 (1964).
[20] E. Farhi, “An Introduction to the Skyrmion,” Conference

lecture, MIT, Cambridge, USA (1985).
[21] M. Gell-Mann and M. Levy, Il Nuovo Cimento 16, 705

(1960).
[22] Image adapted from SlideShare South Korea (last accessed:

30/04/15).
[23] A. D. Jackson, in Advances in Theoretical Physics: Proceed-

ings of the Landau Birthday Symposium, 13-17 June 1988
(Pergamon Press, Oxford, UK, 1990) Chap. A Skyrmion
Model of Two-dimensional Superconductors, p. 133.

[24] N. Riazzi, in Theoretical Physics 2012: Part 1, Horizons in
World Physics (Nova Science, New York, USA, 2002) Chap.
Geometry and Topology of Solitons, p. 133.

[25] M. Dunajski, Proc. Roy. Soc. Lond. A469, 20120576
(2013), arXiv:1206.0016.

[26] I. Zahed and G. Brown, Physics Reports 142, 1 (1986).
[27] I. Floratos, Multi-Skyrmion Solutions of a Sixth-Order

Skyrme Model, Ph.D. thesis, Durham University, Durham,
UK (2001).

[28] G. Adkins, C. Nappi, and E. Witten, Nucl. Phys. B228,
552 (1983).

[29] A. Schmitt, in Proceedings of the 16th Winter School “Ge-
ometry and Physics” (Circolo Matematico di Palermo,
1997) pp. 147–151.

[30] E. Witten, Nucl. Phys. B223, 422 (1983).
[31] E. Witten, Nucl. Phys. B223, 433 (1983).

[32] S. Krusch, “Quantization of Skyrmions,” (unpublished),
University of Kent, Canterbury, UK (2006), arXiv:hep-
th/0610176.

[33] E. Braaten and L. Carlson, Phys. Rev. D38, 3525 (1988).
[34] J. Wess and B. Zumino, Phys. Lett. B37, 95 (1971).
[35] Hence, SWZ ≡ αΓ is often referred to as the Wess-Zumino-

Witten term, as opposed to the Wess-Zumino term, Γ.
[36] M. Shifman, Advanced Topics in Quantum Field Theory

(Cambridge University Press, Cambridge, UK, 2012).
[37] D. Finkelstein and J. Rubinstein, J. Math. Phys. 9, 1762

(1968).
[38] T. H. R. Skyrme, Proc. R. Soc. Lond. A262, 237 (1961).
[39] J. Pagaran, S. Fritzsche, and G. Gaigalas, Comput. Phys.

Commun. 174, 616 (2006).
[40] N. S. Manton and B. M. Piette, Prog. Math. 201, 469

(2001), arXiv:hep-th/0008110.
[41] D. T. J. Feist, P. H. C. Lau, and N. S. Manton, Phys. Rev.

D87, 085034 (2013).
[42] R. Battye, N. S. Manton, and P. Sutcliffe, Proc. Roy. Soc.

Lond. A463, 261 (2007), arXiv:hep-th/0605284.
[43] O. V. Manko, N. S. Manton, and S. W. Wood, Phys. Rev.

C76, 055203 (2007), arXiv:0707.0868.
[44] J. Forest, V. Pandharipande, S. C. Pieper, R. B.

Wiringa, R. Schiavilla, et al., Phys. Rev. C54, 646 (1996),
arXiv:nucl-th/9603035.

[45] P. O. Runge, “Die Farben-Kugel, oder Construction des
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