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Mark-recapture distance sampling uses detections, non-detections
and recorded distances of animals encountered in transect surveys to
estimate abundance. However, commonly available distance sampling
estimators require that distances to target animals are made with-
out error and that animals are stationary while sampling is being
conducted. In practice these requirements are often violated. In this
paper, we describe a marginal likelihood framework for estimating
abundance from double-observer data that can accommodate move-
ment and measurement error when observations are made consecu-
tively (as with front and rear observers) and when animals are ran-
domly distributed when detected by the first observer. Our framework
requires that two observers independently detect and record binned
distances to observed animal groups, as we well as a binary indica-
tor for whether animals were moving or not. We then assume that
stationary animals are subject to measurement error whereas moving
animals are subject to both movement and measurement error. Inte-
grating over unknown animal locations, we construct a marginal like-
lihood for detection, movement, and measurement error parameters.
Estimates of animal abundance are then obtained using a modified
Horvitz-Thompson-like estimator. In addition, unmodelled hetero-
geneity in detection probability can be accommodated through ob-
server dependence parameters. Using simulation, we show that our
approach yields low bias compared to approaches that ignore move-
ment and/or measurement error, including in cases where there is
considerable detection heterogeneity. We demonstrate our approach
using data from a double-observer waterfowl helicopter survey.

1. Introduction. Distance sampling surveys (Burnham, Anderson and1

Laake, 1980; Buckland et al., 2001) are often used to estimate the abundance2

of wildlife populations. Historically, such surveys were conducted by a sin-3

gle observer who followed a transect line and recorded the perpendicular4

Keywords and phrases: aerial survey, double-observer, mark-recapture distance sam-
pling, measurement error, movement, point independence

1

http://www.imstat.org/aoas/


2

distance to each detected animal group. Assuming 100% detection on the5

transect line, models can be fitted to these data that estimate abundance6

over the surveyed area while accounting for detection probabilities that de-7

cline with distance from the transect line.8

More recently, investigators discovered that double-observer surveys have9

some large advantages over single-observer surveys. For instance, one can use10

records of detection/non-detection to relax the assumption of perfect detec-11

tion on the transect line (Borchers, Zucchini and Fewster, 1998), a crucial12

development for many species and sampling situations (e.g. aerial surveys).13

Analysis of double-observer distance data is now canonically referred to as14

“mark-recapture distance sampling” (MRDS; Laake and Borchers, 2004) be-15

cause there is a detection history (i.e. binary detection/nondetection records16

for each observer) in addition to recorded distances.17

Several authors have investigated consequences and corrections for move-18

ment in distance sampling applications. For instance, Glennie, Buckland and19

Thomas (2015) showed that movement could cause considerable bias (typi-20

cally positive) in distance-based abundance estimators, but did not attempt21

to develop methods to adjust for such bias. Hiby and Lovell (1998) developed22

a likelihood framework to estimate abundance when movement is random23

(i.e., nonresponsive to the survey platform) and occurs between successive24

observations.25

Likewise, Borchers et al. (2010) showed that measurement errors could26

cause substantial (usually positive) bias in distance sampling abundance es-27

timators. A number of authors have proposed models that account for mea-28

surement error in specific distance sampling applications (see e.g. Schweder29

et al., 1999; Borchers et al., 2010, and references therein).30

Several observer configurations are possible within an MRDS estimation31

framework (Burt et al., 2014) and have important implications for bias con-32

trol when animals move in response to a survey platform (i.e. “responsive”33

movement). In an “independent” configuration, observers detect animals in-34

dependently of one another. Under this configuration it is possible to try35

to account for heterogeneity in detection probabilities (e.g. visual distinc-36

tiveness of different animal groups) by modelling lack of fit between the37

distribution of observed distances and estimated detection probabilities as38

a function of distance (Laake and Borchers, 2004; Borchers et al., 2006;39

Buckland, Laake and Borchers, 2010). The ability to account for such het-40

erogeneity is important, since abundance estimators are negatively biased41

otherwise. Alternatively, in a “trial” configuration (Buckland and Turnock,42

1992), one observer searches ahead, while another searches closer to the sur-43

vey platform. Under this configuration, detections by the first observer are44
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used as trials for the second observer. The trial configuration is useful for45

reducing bias associated with responsive movement of animals (which of-46

ten positively biases abundance estimators), but one can no longer model47

heterogeneity in detection probability (Burt et al., 2014).48

In this paper, we develop an integrated likelihood framework to account49

for movement and measurement error using an independent observer MRDS50

configuration. Specifically, we address movement between the time two ob-51

servers (e.g., front and rear seat observers in aerial surveys) are able to make52

detections. Our objective is to account for the biasing effects of measurement53

error and responsive movement while also being able to model individual het-54

erogeneity through an observer dependence specification. The remainder of55

this article is structured as follows. First, we describe a motivating data set,56

in which distance, detection histories, and individual covariates are assem-57

bled from a double-observer waterfowl aerial survey. Second, we describe a58

maximum marginal likelihood (MML) framework for analyzing these data.59

Under this framework, true animal locations are treated as latent variables.60

Next, we illustrate our method by analyzing the waterfowl data set and61

examine estimator performance with two simulation studies. We conclude62

with a short discussion.63

2. Waterfowl data. In June of 2014, biologists conducted a pilot double-64

observer helicopter (BELL 206L on floats) survey of Arctic bird species in65

the Queen Maud Gulf Migratory Bird Sanctuary (Nunavut, Canada). The66

birds surveyed were predominantly waterfowl, but also included cranes and67

ptarmigan; we refer to them collectively as waterfowl for the remainder68

of the paper. The purpose of this particular survey was not to estimate69

abundance. Rather, researchers were interested in comparing estimates of70

detection probability from double-observer distance sampling with those71

from strip transects. The survey is described in greater detail elsewhere72

(Alisauskas and Conn, 2017), but we briefly provide information relevant to73

the analysis conducted later in this paper.74

During the survey, two observers, one behind the other, on the same (left)75

side of the helicopter independently detected and recorded the perpendicular76

distance from the transect line to each bird group they observed. Distances77

were binned into 6 classes: 0-40m, 40-80m, 80-120m, 120-160m, 160-200m,78

and 200m+ (note that observations in the final bin are not used in subse-79

quent analysis). They also recorded species, the number of waterfowl in each80

detected group (“group”), and a binary indicator for whether the waterfowl81

group was flapping their wings (“moving”). These data were previously an-82

alyzed by Alisauskas and Conn (2017), who used standard MRDS methods83



4

that ignored movement and measurement error in their analysis. Their anal-84

ysis suggested higher detection probabilities for moving individuals, larger85

group sizes, and for the front seat observer (relative to a rear seat observer).86

They also estimated similar species effects on detection for 7 of the 9 species87

analyzed; here, we pool detections of these 7 species (Canada goose, king88

eider, long tailed duck, northern pintail, rock patarmigan, sandhill crane,89

and white fronted goose) to form an illustrative dataset. This protocol led90

to a total of 964 unique waterfowl group detections; 359 were detected by91

both observers, 348 by the front observer only, and 257 by the back observer92

only. Note that the back observer’s view of the first distance bin nearest the93

transect line was partially obstructed by the left helicopter float. A plot of94

observed distance deviations suggested asymmetrical responsive movement95

(away) from the aircraft for nonstationary animal groups. There were also96

some minor distance discrepancies for animal groups that were not mov-97

ing, suggesting measurement error (Fig. 1). Hence, our objectives were to98

build models that formally account for movement and measurement error99

processes.100

3. Model development. Consider a double-observer MRDS survey101

where each observer records binned distances to detected animal groups,102

independently of the other observer, and a total of n animal groups are103

encountered by at least one observer (see Table 1 for a complete list of no-104

tation). We develop a two stage approach for estimating abundance in the105

surveyed area from such data. In the first step, a MML framework is used to106

simultaneously estimate parameters of detection, movement, and measure-107

ment error processes. In the second, a Horvitz-Thompson-like estimator is108

used to estimate abundance conditioned on parameter estimates from step109

1 (a bootstrap procedure is used to quantify precision). For purposes of110

this paper we do not explicitly consider the problem of extrapolating abun-111

dance/density to a larger region (e.g. to unsurveyed locations), although this112

would be a natural extension in applied situations; we touch on this issue in113

the Discussion.114

In MRDS surveys with binned distances, observers record animals as oc-115

curring in one of nS perpendicular distance bins, S = S1,S2, . . . ,SnS . De-116

tection probability typically decreases with distance from the transect line,117

and the maximum distance bin is often set such that animals further away118

are poorly detected and can be ignored without greatly affecting precision of119

abundance estimates. Movement and measurement error introduce compli-120

cations: in addition to movement and measurement errors among elements121

of S, animals can potentially move into or out of S, and animals outside122



DISTANCE SAMPLING WITH MOVEMENT 5

of S can be detected in S. For these reasons, the models we develop rely123

on augmenting S with additional distance bins to allow for movement and124

measurement error (Fig. 2). Call this augmented set Z.125

Let yoi be a binary indicator for whether or not the ith animal group was126

detected by observer o. Similarly, let doi denote the distance bin recorded127

by observer o for animal group i (note doi is only defined when yoi = 1).128

Letting bold lower case symbols denote vectors (e.g. yo· gives a sequence129

of detections for observer o, i = 1, 2, . . . , n) and bold upper case symbols130

denote matrices (e.g. Y is (2×n) matrix of all detection/nondetections), we131

seek to define a marginal likelihood [θ|Y,D,X], where θ = {β, φ, ϕ} are132

parameters describing probabilities of detection, movement, and measure-133

ment error, and X include individual covariates collected for each animal134

group that can be used to explain variation in detection probabilities.135

3.1. Likelihood. To construct such a likelihood, we start with the gen-136

eral framework proposed by Borchers et al. (2015) for spatial mark-recapture137

and distance sampling surveys. Conditioning on detection, Borchers et al.138

(2015) suggested that the joint distribution of animal locations and detec-139

tions could be written as a product of (1) a joint probability density function140

(pdf) for the latent locations of animals, and (2) a joint probability mass141

function (pmf) for the encounter histories conditional on location. We ex-142

pand upon this framework to allow movement to affect the distribution of143

animal locations and to incorporate a measurement error mechanism.144

Letting zo denote the true locations of animals when they enter the field of145

view of observer o, we write the joint probability mass function of observed146

data as a product of147

1. [Z|θ], a bivariate probability mass function for the distribution of true148

animal locations, given detection by at least one observer; and149

2. [Y,D|Z,θ,X], a model for binary detections and observed distances150

given true unobserved locations and individual detection covariates.151

If we knew the true locations of observed animals, we could simply base152

inference on the likelihood153

[θ|Y,D,X] ∝ [Z|θ][Y,D|Z,θ,X].

However, we do not know the actual animal locations so instead integrate154

(sum) over an augmented set of distance bins Z that could plausibly have155

resulted in a detection (see Distribution of animal locations for more discus-156

sion of bin augmentation). As such, we write the joint marginal likelihood157
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of detection, movement, and measurement error parameters as158

[θ|Y,D,X] ∝
∏
i

 ∑
zi1∈Z

∑
zi2∈Z

[zi·|θ][yi·,di·|zi·,θ,xi]

 .(3.1)

Recall that we use the zi· notation to indicate the two element vector of159

true distance values (over both observers’ subscripts; see Table 1 for other160

notation). We now describe each of the likelihood components in further161

detail.162

3.1.1. Distribution of animal locations. The first component of the like-163

lihood (Eqn. 3.1) is the joint probability mass function for the locations of164

group i, [zi·|θ] given detection by at least one observer. We write this distri-165

bution as a function of (i) an initial state distribution, [zi1]; (ii) a movement166

kernel, [zi2|zi1,φ]; and (iii) detection probability by at least one observer,167

p∗i (zi1, zi2|xi,β,φ,ϕ). Specifically, we set168

[zi·|θ] ∝ [zi1][zi2|zi1,φ]p∗i (zi1, zi2|xi,β,φ,ϕ).

We make the assumption that the first observer (typically in a front seat)169

detects animal groups before movement out of the initial distance bin has170

occurred. Under this assumption, random placement of transect lines should171

help ensure that perpendicular distances of animals from the transect line are172

uniformly distributed in space (cf. Buckland et al., 2001). Letting πj denote173

the proportional diameter of distance bin j (i.e. πj = aj/
∑

k ak where aj is174

the diameter of of distance bin j), we simply have175

[zi1] = Categorical(π1, π2, . . . , πnZ ),

where it is understood that “Categorical” denotes a multinomial distribution176

with index 1, and nZ is the number of latent distance bins.177

Next, the bivariate movement pmf [zi2|zi1,φ] describes the location of178

animal group i when it enters the field of view of observer 2 as a function of179

the location when it was in the field of view of observer 1. We model this as180

another categorical distribution:181

[zi2|zi1,φ] = Categorical (ψ(zi1, 1), ψ(zi1, 2), . . . , ψ(zi1, nZ)) .(3.2)

For applications in this paper, we parameterize the movement transition182

probabilities ψ using asymmetric kernels k (e.g. Fig 3). Using an asymmetric183

kernel can allow movement rates to be different toward and away from the184
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transect line (anticipating a behavioral response to the survey platform). In185

particular, we set186

(3.3) ψ(zi1, zi2) ∝ k(zi1, zi2|φ), where187

188

(3.4) k(zi1, zi2|φ) =


f(δi2|µ = δi1, σ = φ1) zi2 < zi1,mi = 1
f(δi2|µ = δi1, σ = φ2) zi2 ≥ zi1,mi = 1

1.0 zi2 = zi1,mi = 0
0.0 zi2 6= zi1,mi = 0

189

Here, f() gives a probability density function; in our examples, we consider190

Laplace (double exponential) and Gaussian distributions as choices for f().191

Note that δio gives the perpendicular distance from the transect line to192

the midpoint of distance bin zio. Also note that we assume that stationary193

animals (i.e. with mi = 0) do not change distance bins.194

Finally, the thinning probability p∗i (zi1, zi2|xi,β,φ,ϕ) describes the prob-195

ability of being detected by at least one observer for an animal that is in196

distance bin zi1 at time 1 and zi2 at time 2. For generality, we calculate prob-197

ability as the sum of obtaining one of the three possible detection histories:198

11, 10, or 01 (detected by both observers, detected by the front observer199

but not the back, or detected by the back observer but not the front). In200

particular,201

p∗i (zi1, zi2|xi,β,φ,ϕ) = pi1(zi1)ω(zi1,S)pi2(zi2)ω(zi2,S) +

pi1(zi1)ω(zi1,S) [pi2(zi2)(1− ω(zi2,S)) + (1− pi2(zi2))] +

pi2(zi2)ω(zi2,S) [pi1(zi1)(1− ω(zi1,S)) + (1− pi1(zi1))] .

This expression is slightly different than typically encountered in mark-202

recapture calculus, as one must account for two ways of getting a 0 in a203

capture history: an observer can miss the animal group, or an observer can204

detect the group but determine it is out of the truncation range of the tran-205

sect (i.e. /∈ S). To account for the latter possibility, we make use of the206

measurement error kernel ω, which can be parameterized similarly to φ (see207

Eqs. 3.3-3.4). In applications in the paper, we consider use of symmetric208

kernels (Gaussian or Laplace) with a single dispersion parameter, ϕ. Our209

expression for p∗i also relies on individual- and observer-dependent detection210

probabilities, pio(zio). In order to impart meaningful variation in detection211

probability, it is useful to express these in a regression framework on a logit-212

linear scale, such that213

logit(p) = Xβ.(3.5)
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Note that we write pio as a function of zio to emphasize that the design214

matrix X will often depend on distance from the transect line (a latent215

quantity).216

3.1.2. Likelihood of observed detections. The next component of the like-217

lihood is [yi·,di·|zi·,θ,xi], the probability of observing the particular detec-218

tion history and distance bin values for animal group i conditional on true219

location. Conditional on detection by at least one observer, there are again220

three possible types of encounter histories: ’11’, ’10’, or ’01’. For ’11’ histo-221

ries, there are n2S combinations of possible recorded distance bins; for ’10’222

histories, there are nS distance bins possible for observer 1; for ’01’ histo-223

ries, there are nS distance bins possible for observer 2. Thus, we can view224

[yi·,di·|zi·,θ,xi] as a multinomial distribution with index 1 and n2S + 2nS225

possible outcomes. The likelihood contribution for a particular animal group226

i can thus be written as227

(p∗i )
−1×


pi1(zi1)ω(zi1, di1)pi2(zi2)ω(zi2, di2) if yi1 = yi2 = 1

pi1(zi1)ω(zi1, di1) [pi2(zi2)(1− ω(zi2,S)) + (1− pi2(zi2))] if yi1 = 1, yi2 = 0
pi2(zi2)ω(zi2, di2) [pi1(zi1)(1− ω(zi1,S)) + (1− pi1(zi1))] if yi1 = 0, yi2 = 1.

3.2. Horvitz-Thompson-like abundance estimator. Minimizing the neg-228

ative log-likelihood in Eqn. 3.1 provides marginal maximum likelihood es-229

timates for detection, movement, and measurement error parameters, but230

does not provide a direct estimate of animal abundance, N . We developed231

a Horvitz-Thompson-like procedure to calculate abundance estimates, as is232

common in distance sampling literature (see e.g. Buckland et al., 2004). This233

is especially useful when coping with detection probabilities that vary as a234

function of individual detection covariates, as one does not need to model235

covariate values for undetected animal groups. For instance, in standard236

MRDS applications, one might estimate abundance as237

N̂ =
n∑

i=1

gi/p
∗
i .

However, direct application of this estimator is clearly inappropriate under238

movement and measurement error, as it can potentially include animals239

outside of the surveyed area, or include animals that move into the surveyed240

area.241

Since distance sampling produces estimates of abundance at a single point242

in time, we must first define the time and location for which the estimate243

applies before constructing an appropriate estimator. In the case of respon-244

sive movement away from a survey platform, we are better off referencing245
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abundance relative to the position of animals when they enter the field of246

view of observer 1 than we are for observer 2 since we assume observer 1247

detects an animal first. Also, since analysis only uses animals perceived to248

be in S, it may be best to limit the scope of inference to those animals249

that truly occur in S. We construct a Horvitz-Thompson-like estimator for250

abundance in the surveyed region S at time 1 as follows:251

N̂ |θ =
∑
i

∑
zi1∈S

∑
zi2∈Z

gi × [zi·|θ]

p∗i (zi1, zi2)
.(3.6)

This formulation integrates over the latent position of animal groups at252

times 1 and 2 with the restriction that the position at time 1 is within S.253

To produce estimates of precision and confidence limits, we implemented a254

parametric bootstrap procedure. In particular, we approximate the sampling255

distribution of parameter estimates as256

[θboot] = Multivariate Normal(θMLE ,Σ),

where Σ is a covariance matrix calculated as the inverse Hessian matrix257

of the likelihood evaluated at the MLE estimates. Then, for each of k =258

1, 2, · · · , nboot replicates, we259

1. Sample θk ∼ [θboot],260

2. Transform θk into real-scale parameters using inverse link functions,261

3. Calculate N̂ boot
k using Eqn. 3.6.262

We then use quantiles of N̂ boot
k to represent confidence intervals and calculate263

V̂ar(N̂) as Var(N̂ boot).264

3.3. Extension to incorporate detection heterogeneity. So far, we have265

not attempted to model detection heterogeneity outside of individual co-266

variates (e.g. through Eqn. 3.5). However, it is common knowledge that267

other factors (e.g. variation in plumage, lighting, topography, background,268

etc.) can affect the distinctiveness of different animal groups and impart269

additional heterogeneity leading to (often positive) dependence in observer270

detection and thus negative bias in N̂ (Laake and Borchers, 2004; Buckland,271

Laake and Borchers, 2010; Burt et al., 2014).272

In traditional MRDS applications (i.e. without movement and measure-273

ment error), one approach is to correct for this bias by estimating observer274

dependence parameters, typically through inclusion of an additional proba-275

bility density function for observed distances in the likelihood (cf. Buckland,276

Laake and Borchers, 2010). However, inclusion of such a pdf in our likelihood277
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appears problematic, as movement alters interpretation of distance distri-278

butions (Burt et al., 2014). Alternatively, MacKenzie and Clement (2016)279

suggested that observer dependence could also be included by modeling con-280

ditional detection probabilities; that is, including detection by one observer281

as a covariate for detection of the other. For instance, detection probabili-282

ties could potentially be written as a logit-linear function of an autocovariate283

ξio = yi,3−o. We adapt this latter idea as a way to accommodate detection284

heterogeneity in data subject to movement and measurement error.285

The major complication with using a detection autocovariate as a predic-286

tor in our case is that we are no longer able to say that an animal group287

with yio = 0 was actually undetected by observer o. It could, for instance,288

have been detected but determined to not be in S. As such, we view the au-289

tocovariate ξio as a latent variable. If yio = 1, then ξi,3−o = 1 with certainty;290

however, if yio = 0 we do not know whether ξi,3−o is 0 or 1. Summing over291

each encounter history type (11,01,or 10) subject to uncertainty about ξio,292

we now need to calculate the probability of being observed by at least one293

observer as294

p∗i (zi1, zi2|xi,β,φ,ϕ) = pi1(zi1|ξi1 = 1)ω(zi1,S)pi2(zi2|ξi2 = 1)ω(zi2,S) +

pi1(zi1|ξi1 = 0)ω(zi1,S)(1− pi2(zi2|ξi2 = 1)) +

pi1(zi1|ξi1 = 1)ω(zi1,S)pi2(zi2|ξi2 = 1)(1− ω(zi2,S)) +

pi2(zi2|ξi2 = 0)ω(zi2,S)(1− pi1(zi1|ξi1 = 1)) +

pi2(zi2|ξi2 = 1)ω(zi2,S)pi1(zi1|ξi1 = 1)(1− ω(zi1,S)).

We adopt a similar construct for the observation model, [yi·,di·|zi·,θ,xi],295

recasting the likelihood contribution for animal group i as follows according296

to their detection histories:297

• yi1 = yi2 = 1:298

(p∗i )
−1pi1(zi1|ξi1 = 1)ω(zi1, di1)pi2(zi2|ξi1 = 1)ω(zi2, di2)299

• yi1 = 1, yi2 = 0:300

pi1(zi1|ξi1 = 1)ω(zi1, di1)pi2(zi2|ξi2 = 1)(1− ω(zi2,S))+301

pi1(zi1|ξi1 = 0)ω(zi1, di1)(1− pi2(zi2|ξi2 = 1))302

• yi1 = 0, yi2 = 1:303

pi2(zi2|ξi2 = 1)ω(zi2, di2)pi1(zi1|ξi1 = 1)(1− ω(zi1,S))+304

pi2(zi2|ξi2 = 0)ω(zi2, di2)(1− pi1(zi1|ξi1 = 1))305

Following these adjustments, we use the “symmetric” parameterization306

(MacKenzie and Clement, 2016) of observer dependence to include ξio in307

the logit-linear model for pio. For instance, point independence (Laake and308

Borchers, 2004; Buckland, Laake and Borchers, 2010), where observers are309
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assumed to detect animal groups independently near the transect line but to310

have increasing dependence with distance, can be implemented by including311

an interaction between zio and ξio with no main effect for ξio. Alternatively,312

limiting dependence (Buckland, Laake and Borchers, 2010), where there is313

a base level of dependence on or near the transect line, can be implemented314

by including a main effect for ξio in addition to the interaction (MacKenzie315

and Clement, 2016).316

3.4. Goodness-of-fit. Goodness-of-fit is often summarized with χ2 tests317

when distance data are binned (Burnham et al., 2004). However, this de-318

pends on having adequate sample sizes and homogeneous probabilities of319

detection within classes of animals. This latter requirement is problem-320

atic when detection probability is written in terms of individual covari-321

ates. In order to get around this problem, we developed a simulation-based322

goodness-of-fit procedure similar in spirit to posterior predictive checks used323

in Bayesian analysis (e.g. Gelman et al., 2014). Our procedure consists of324

1. Sampling θk ∼ [θboot],325

2. Simulating new data (dk,yi) from [dk,yk|X,θk].326

3. Calculating a discrepancy measure T (y,d,θ) to compare the observed327

data to data simulated under the model.328

For instance, we might compute the proportion of observations that occur329

in each distance bin when subset by various explanatory variables for our330

observed data and compare these to the distribution of proportions that we331

obtain by simulating data from our model when all assumptions are met.332

For some specific examples, see section 4.333

3.5. Computing. We conducted MML inference in the R programming334

environment (R Development Core Team, 2016). We have collated all code335

and data needed to recreate our analyses into an R package, MRDSmove. The336

package is currently available at https://github.com/pconn/MRDSmove/337

releases and will be archived on a publicly available data repository upon338

manuscript acceptance.339

4. Analysis of waterfowl data. We fitted 12 MML models to our wa-340

terfowl data, varying by (1) movement and measurement kernel type (Gaus-341

sian vs. Laplace), (2) observer dependence type (none; point independence,342

or limiting independence), and (3) whether or not moving individuals had343

a different distance function than individuals that were not moving (Table344

2). We calculated marginal AIC to select among these models. We also fit-345

ted two Huggins-Alho (HA; Huggins, 1989; Alho, 1990) models to our data346

https://github.com/pconn/MRDSmove/releases
https://github.com/pconn/MRDSmove/releases
https://github.com/pconn/MRDSmove/releases
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using program MARK (White and Burnham, 1999) via an RMark (Laake,347

2013) interface. The HA models suppose independent detection of observers348

and do not account for movement or measurement error; abundance esti-349

mates are generated with a Horvitz-Thompson-like procedure. The two HA350

models had the same structure but differed in how data were formatted: in351

the first (HA1), distance was set to di1 whenever di1 6= di2; in the second352

(HA2), conflicting distance measurements were averaged. For the HA mod-353

els, detection probability was set to the structure on the MML model with354

the best AIC score. All models included the following predictors within the355

logit-linear model for detection probability: group size, moving/not moving,356

observer (front vs. back), distance, distance2, and an interaction between357

the distance effects and the observer effects. The latter interaction was in-358

cluded because the view of the first distance bin was partially obstructed for359

observer 2 whose distance distribution appeared to peak further away from360

the helicopter (see Alisauskas and Conn, 2017).361

AIC strongly favored models with Laplace movement and measurement362

error kernels (Fig. 3) over Gaussian kernels, although the impact of the func-363

tional form of the kernel on resultant abundance estimates was quite small364

(Table 2). The highest ranked model had an interaction between distance365

and moving/not moving, suggesting different detection function shapes for366

moving vs. stationary animals. However, pairwise model comparisons with367

and without such an effect had similar AIC scores, so this effect was likely368

small (also see Fig. 4). Point independence (‘pi’) and limiting independence369

(‘li’) models were favored over full independence (‘fi’) models, suggesting370

some level of detection heterogeneity that was not captured via gathered371

covariates.372

The form of dependence had large effects on abundance estimates and373

accompanying standard errors. In general, ‘li’ models produced the smallest374

estimates (Ĝ = 1122 to 1130), ‘fi’ models produced the next highest esti-375

mates (Ĝ = 1244 to 1259), and ‘pi’ models produced the highest estimates376

(Ĝ = 1394 to 1519; Table 2). Models with similar support often produced377

estimates of abundance that were quite different. For instance, the top two378

models (including a pi model and an li model) were only 1.2 AIC units apart379

but produced estimates of Ĝ = 1519 and Ĝ = 1122, respectively. The ‘pi’380

models predict increasing observer dependence with distance, while the ‘li’381

models suggested strongly negative observer dependence near the transect382

line which linearly increased to positive dependence in distance bin 5 and383

beyond. This latter type of observer dependence could occur if observers384

have different fields of view and are likely to detect different animal groups385

close to the aircraft, but are more likely to see the same animals (presumably386
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the highly distinctive ones) farther away.387

Plots of movement and measurement error kernels (Fig. 3) for the highest388

ranked model resembled raw data histograms (Fig. 1). However, inclusion389

of movement and measurement error in the model did not appear to largely390

affect abundance estimates. For instance, HA1 and HA2 (the models with-391

out movement or measurement error) produced estimates of 1239 and 1278392

waterfowl groups, respectively. By comparison, the 4 ‘fi’ models (which, like393

the HA models, presume conditional independence in observer detections),394

produced estimates of 1244-1259. In our example, it seemed far more im-395

portant to account for different types of observer dependence. If an estimate396

were needed for management or conservation purposes, it would be wise397

to compute a model averaged estimate that incorporates uncertainty about398

the correction functional form of observer dependence (as well as attendant399

standard errors, which are much higher for ‘li’ and ‘pi’ models than for ‘fi’400

models). We note that several of the ‘li’ models did not converge, a rela-401

tively frequent occurence when fitting MRDS models (Buckland, Laake and402

Borchers, 2010; MacKenzie and Clement, 2016).403

To examine fit of our model to the data, we compared the properties of404

our MRDS dataset to 1000 data sets simulated from the highest ranked AIC405

model. In general, data sets simulated under our model had similar propor-406

tions of animals observed in the five distance bin classes as we observed in407

the field (Fig. 4). A notable exception was a tendency to overpredict the408

proportion of moving animals in distance bin 3. We are unsure why there409

may have been a dip in detections in the third distance bin, but have resisted410

the urge to consider more highly parameterized structures since a smooth411

decrease in the number of animals encountered as a function of distance is412

often expected a priori (Buckland et al., 2001), and it would be difficult to413

fit this particular “dip” in our distance data without making the detection414

model multimodal. Our model did a reasonable job in replicating the pro-415

portions of animals with each detection history type observed in the field.416

For instance, the number of ‘11’, ‘10’ and ‘01’ histories compiled for moving417

animals was 289, 261, and 179, respectively; these compared to 95% simula-418

tion intervals of (257,307), (227,276), and (173,219). For stationary animals,419

we observed 64 ‘11’, 92 ‘10’ and 79 ‘01’ histories compared to simulation420

intervals of (53,80), (74,103), and (68,95).421

5. Simulation studies. We conducted two simulation studies to inves-422

tigate bias, precision, and confidence interval coverage of our MML models423

and compared these to other MRDS analyses that do not account for move-424

ment and measurement error. The first simulation study assumed indepen-425



14

dence between observer detections (i.e., no residual detection heterogeneity).426

The second experiment focused on performance of different approaches to427

estimation when heterogeneous detection probabilities were simulated using428

random effects.429

5.1. Simulation study I: Basic model performance. Our first simulation430

study was designed to investigate estimator performance over different move-431

ment and measurement error rates, and only considering variation imparted432

by measurable covariates. For this study, we simulated three different Gaus-433

sian movement kernel (Eqn. 3.4) scenarios, corresponding to (i) no movement434

(φ1 = φ2 = 0), (ii) symmetric movement (φ1 = φ2 = 0.7), and (iii) asymmet-435

ric movement with much higher rates of movement away from the transect436

line than towards the transect line (φ1 = 0.5, φ2 = 1.5). We considered two437

levels of measurement error for each movement scenario: no measurement438

error, or minor measurement error (ϕ = 0.5). The latter value of measure-439

ment error was chosen to approximate the level of error we observed in our440

waterfowl data.441

In each of 500 simulations for the 6 movement and measurement error442

scenarios, we conducted the following steps:443

1. For each of i ∈ 1, 2, · · · , 1000 animals, we simulated an initial, latent444

position zi1 in 10 equally sized distance bins using a uniform distribu-445

tion.446

2. After generating mi ∼ Bernoulli(0.75) (so that approximately 75% of447

animals were moving), we simulated zi2 using Eqn. 3.2. For animals448

with mi = 0, we simply set zi2 = zi1.449

3. We simulated yio and dio using detection and measurement error mod-450

els, where the first five distance bins were subject to observation (i.e.451

S = {Z1,Z2, · · · ,Z5}). Detection probabilities were configured as452

logit(pio) = β0 + β1mi + β2zio + β3z
2
io,

where β0 = 1, β1 = 0.5, β2 = 0.07, and β3 = −0.09.453

4. We fit a sequence of three models to each such data set. These included454

(i) the movement and measurement error model proposed in this paper455

(configured with 8 latent distance bins), as well as the two Huggins-456

Alho models described in section 4. For all three estimation procedures,457

we used the same structure when estimating pio as used to generate458

the data. For simulations where data were generated with φ = 0 or459

ϕ = 0, we fixed the corresponding parameter in the estimation model460

to zero to prevent numerical errors.461
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5. For each model and data set, we tabulated bias in abundance (note462

that Ĝ = N̂ since group sizes were all 1.0), coefficient of variation463

(CV), 95% confidence interval coverage, and root mean square error464

(RMSE).465

Note that in initial simulation work, we also fit movement and measurement466

error models with 10 latent distance bins, finding that results were almost467

identical to those with 8 latent distance bins (parameter estimates were often468

within 0.0001 of each other).469

In general, bias from our new method was zero to slightly negative, while470

positive bias from the HA models could be substantial when movement471

and/or measurement error occurred (up to 10%; Table 3). Precision and472

mean squared error were always better for the MML models than the HA473

models, with confidence interval coverage closer to nominal for most of the474

MML to HA model comparisons. However, coverage was less than nomi-475

nal (85-91% for a 95% interval) for the MML models, suggesting that our476

bootstrap-based interval estimation procedure produced estimates of vari-477

ance that were too small. Interestingly, HA1 estimates tended to have better478

properties (lower bias, better coverage, lower RMSE) than HA2 estimates,479

suggesting that taking distance values from observer 1 may be a better strat-480

egy than averaging distance values to resolve discrepancies if one cannot481

model movement and measurement error directly.482

5.2. Simulation study II: Heterogeneous detection. In our second simu-483

lation scenario, we examined performance of our proposed approach when484

MRDS data are simulated with highly heterogeneous detection probabilities.485

The main structure of our simulations was largely similar to the preceding486

section. We considered two different movement and measurement error sce-487

narios corresponding to none (φ1 = φ2 = ϕ = 0) and to movement away488

from the survey line (φ1 = 0, φ2 = 1.5, ϕ = 0.5). For each of these sce-489

narios, we considered two different expected sample sizes in the sampled490

area: E(N) = 200 and E(N) = 1000. In each combination of simulation491

replicates, we conducted 500 simulations via following steps:492

1. For each of i ∈ 1, 2, · · · , 2E(N) animals, we simulated an initial, latent493

position zi1 in 10 equally sized distance bins using a uniform distribu-494

tion.495

2. We generated mi and zi2 as in Simulation Study 1.496

3. We simulated dio and yio as in simulation study 1, once again using497

5 observable distance bins. However, we used a half-normal model for498
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detection probability,499

pio = p0io
f(zio|µ = 1, σio)

f(1|µ = 1, σio)

where p0io gives detection probability in the first distance bin, and the500

half normal model describes how detection probability declines in bins501

that are farther away. These models were further parameterized as502

logit(p0io) = β0 + β1mi, and

log(σio) = α0 + α1mi + εi

where β0 = α0 = 1, β1 = 0.5, α1 = 0.2, and εi ∼ Uniform(−0.7, 0.7).503

The half-normal model seemed a reasonable way to implement point504

independence (Laake and Borchers, 2004) using random effects (Fig.505

5).506

4. We fitted four models to each such data set. These included the same507

three models from Simulation Study 1, and a fourth, marginal likeli-508

hood model that attempted to estimate an observer dependence pa-509

rameter in addition to movement and measurement error. Observer510

dependence used a point independence specification (i.e. an interac-511

tion between ξio and δio).512

513

5. For each model and data set, we tabulated bias, coefficient of variation514

(CV), 95% confidence interval coverage, and root mean square error515

(RMSE).516

Simulations suggested that the MML model with observer dependence517

did a reasonable job at estimating abundance under all scenarios (Table 3)518

even though the estimation model differed from the data generating model519

(polynomial vs. half normal detection model; observer dependence effect vs.520

random effects) . In particular, bias was low (-0.03 to 0.03) and 95% confi-521

dence interval coverage was close to nominal (0.91 - 0.96) for all scenarios522

examined. In contrast, bias of models ignoring observer dependence could523

be considerable (up to -9%) with precision that was too high, leading to524

confidence interval coverage that was too low (as low as 6% in one sce-525

nario). Not surprisingly, bias was typically negative when ignoring observer526

dependence. However, there was a mediating effect on bias whenever data527

were simulated subject to both movement, measurement error, and observer528

dependence. Since movement and measurement error alone induce positive529

bias, and observer dependence alone produces negative bias, both processes530
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combined attenuated bias. For instance, HA models actually performed bet-531

ter when both sources of bias were present than when one source of bias was532

present.533

6. Discussion. In this paper, we developed an approach to account534

for movement and measurement error in MRDS analyses when observers535

independently record distances to animals, and when there is a binary co-536

variate for movement. In simulation studies, our approach exhibited low537

bias and RMSE when compared to a procedure that ignores movement and538

measurement error (the latter resulted in positive biases of up to 10%). Im-539

portantly, we were able to conduct estimation even in the face of residual540

detection heterogeneity, which seems like a useful advance. Indeed, estima-541

tion of abundance in our field study was much more sensitive to different542

functional forms for observer dependence than it was to different functional543

forms for movement or measurement error.544

Several avenues of future research are desirable. First, our bootstrap-based545

estimates of variance resulted in confidence interval coverage that was less546

than nominal in some of the simulation scenarios. A more robust method547

for producing confidence intervals for Horvitz-Thompson-like abundance es-548

timates would be useful. Second, although our focus here was on errors in549

distances, other errors may occur (e.g. errors in group size determinations,550

individual covariates, species, etc.). Errors in species identification can be551

particularly problematic (see e.g. Conn et al., 2014) and should ultimately552

be addressed in multi-species surveys. Third, we have assumed additive mea-553

surement error in the present development; in some situations, multiplicative554

measurement error (whereby animals further away are subject to greater555

measurement error; Borchers et al., 2010) may make more sense. Finally,556

we have temporarily ignored the problem of expanding estimates from the557

surveyed area to some larger area of inference. One approach to expanding558

the scope of inference would be to include a sample inclusion probability559

in the denominator of the Horvitz-Thompson estimator (i.e. Eqn. 3.6). An-560

other approach would be to produce sequences of estimates for different561

surveyed areas (presumably sharing detection and movement/measurement562

error parameters between areas), and to use such estimates as responses for563

subsequent spatial modelling efforts (see e.g. Miller et al., 2013).564

In this paper we conditioned on binary variables mi for whether a de-565

tected group was moving or not. This approach let us separately estimate566

movement from measurement error by making the assumption that animals567

with mi = 0 do not move. In other situations and study taxa (e.g. many ma-568

rine mammals), all animals may be moving in some fashion, and thus there569
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may be insufficient data to separate these processes. In these circumstances,570

auxiliary data (e.g. animals with known location to estimate measurement571

error; cf. Borchers et al., 2010) may be needed to implement our methods.572

One exciting avenue for future research would be to expand our type573

of modelling approach to allow movement within spatial capture-recapture574

(SCR; see e.g. Borchers and Efford, 2008; Royle et al., 2013) models. The575

generalized likelihood structure of MRDS and SCR is actually very similar576

(Borchers et al., 2015; Borchers and Marques, 2017), so incorporating move-577

ment could likely be accomplished using the same construct in the paper578

(i.e. by viewing an animals’ locations as unobserved latent variables and in-579

tegrating over all possible sequences of locations). The challenge would likely580

be a numerical one, as space would need to be increased from one to two581

dimensions and over a finer mesh, and the temporal dimension would need582

to increase from two observers to a finite number of sampling occasions. One583

approach to high dimensional integration would be to adopt a Bayesian per-584

spective within a data augmentation framework (Royle, Dorazio and Link,585

2007; Conn, Laake and Johnson, 2012).586

Acknowledgements. We thank Jeff Laake and Brett McClintock for587

comments on an earlier draft of this paper.588

References.589

Alho, J. M. (1990). Logistic regression in capture-recapture models. Biometrics 46 623–590

635.591

Alisauskas, R. T. and Conn, P. B. (2017). Evaluating detectability of Arctic waterfowl592

populations in double-observer helicopter surveys. To be submitted to the Euring 2017593

Proceedings.594

Borchers, D. L. and Efford, M. G. (2008). Spatially explicit maximum likelihood595

methods for capture–recapture studies. Biometrics 64 377–385.596

Borchers, D. L. and Marques, T. A. (2017). From distance sampling to spatial capture-597

recapture. AStA Advances in Statistical Analysis doi:10.1007/s10182-016-0287-7.598

Borchers, D. L., Zucchini, W. and Fewster, R. M. (1998). Mark-recapture models599

for line transect surveys. Biometrics 54 1207-1220.600

Borchers, D. L., Laake, J. L., Southwell, C. and Paxton, C. G. M. (2006). Ac-601

comodating unmodeled heterogeneity in double-observer distance sampling surveys.602

Biometrics 62 372-378.603

Borchers, D., Marques, T., Gunnlaugsson, T. and Jupp, P. (2010). Estimating604

distance sampling detection functions when distances are measured with errors. Journal605

of Agricultural, Biological, and Environmental Statistics 15 346–361.606

Borchers, D. L., Stevenson, B. C., Kidney, D., Thomas, L. and Marques, T. A.607

(2015). A unifying model for capture–recapture and distance sampling surveys of608

wildlife populations. Journal of the American Statistical Association 110 195–204.609

Buckland, S. T., Laake, J. L. and Borchers, D. L. (2010). Double-observer line610

transect methods: Levels of independence. Biometrics 66 169-177.611



DISTANCE SAMPLING WITH MOVEMENT 19

Buckland, S. T. and Turnock, B. J. (1992). A robust line transect method. Biometrics612

901–909.613

Buckland, S. T., Anderson, D. R., Burnham, K. P., Laake, J. L., Borchers, D. L.614

and Thomas, L. (2001). Introduction to Distance Sampling: Estimating the abundance615

of biological populations. Oxford University Press, Oxford, U.K.616

Buckland, S. T., Anderson, D. R., Burnham, K. P., Laake, J. L., Borchers, D. L.617

and Thomas, L. (2004). Advanced Distance Sampling. Oxford University Press.618

Burnham, K. P., Anderson, D. R. and Laake, J. L. (1980). Estimation of density for619

line transect sampling of biological populations. Wildlife Monographs 72 7-202.620

Burnham, K. P., Buckland, S. T., Laake, J. L., Borchers, D. L., Marques, T. A.,621

Bishop, J. R. B. and Thomas, L. (2004). Further topics in distance sampling In Ad-622

vanced distance sampling 307–392. Oxford University Press Oxford, United Kingdom.623

Burt, M. L., Borchers, D. L., Jenkins, K. J. and Marques, T. A. (2014). Using mark–624

recapture distance sampling methods on line transect surveys. Methods in Ecology and625

Evolution 5 1180–1191.626

Conn, P. B., Laake, J. L. and Johnson, D. S. (2012). A hierarchical modeling frame-627

work for multiple observer transect surveys. PLoS ONE 7 e42294.628

Conn, P. B., Ver Hoef, J. M., McClintock, B. T., Moreland, E. E., Lon-629

don, J. M., Cameron, M. F., Dahle, S. P. and Boveng, P. L. (2014). Estimating630

multi-species abundance using automated detection systems: ice-associated seals in the631

eastern Bering Sea. Methods in Ecology and Evolution 5 1280-1293.632

Gelman, A., Carlin, J. B., Stern, H. S. and Rubin, D. B. (2014). Bayesian data633

analysis, Third edition. Taylor & Francis.634

Glennie, R., Buckland, S. T. and Thomas, L. (2015). The effect of animal movement635

on line transect estimates of abundance. PloS one 10 e0121333.636

Hiby, L. and Lovell, P. (1998). Using aircraft in tandem formation to estimate abun-637

dance of harbour porpoise. Biometrics 1280–1289.638

Huggins, R. M. (1989). On the statistical analysis of capture-recapture experiments.639

Biometrika 76 133–140.640

Laake, J. L. (2013). RMark: An R Interface for Analysis of Capture-Recapture Data641

with MARK AFSC Processed Rep. No. 2013-01, Alaska Fish. Sci. Cent., NOAA, Natl.642

Mar. Fish. Serv., Seattle, WA.643

Laake, J. L. and Borchers, D. L. (2004). Methods for incomplete detection at distance644

zero. In Advanced Distance Sampling (S. T. Buckland, D. R. Anderson, K. P. Burnham,645

J. L. Laake, D. L. Borchers and L. Thomas, eds.) 108-189. Oxford University Press,646

Oxford, U.K.647

MacKenzie, D. I. and Clement, D. (2016). Accounting for Lack of Independence and648

Partial Overlap of Observation Zones in Line-Transect Mark-Recapture Distance Sam-649

pling. Journal of Agricultural, Biological, and Environmental Statistics 21 41–57.650

Miller, D. L., Burt, M. L., Rexstad, E. A. and Thomas, L. (2013). Spatial models for651

distance sampling data: recent developments and future directions. Methods in Ecology652

and Evolution 4 1001-1010.653

Royle, J. A., Dorazio, R. M. and Link, W. A. (2007). Analysis of multinomial models654

with unknown index using data augmentation. Journal of Computational and Graphical655

Statistics 16 1-19.656

Royle, J. A., Chandler, R. B., Sollmann, R. and Gardner, B. (2013). Spatial657

capture-recapture. Academic Press.658

Schweder, T., Skaug, H. J., Langaas, M. and Dimakos, X. K. (1999). Simulated659

Likelihood Methods for Complex Double-Platform Line Transect Surveys. Biometrics660

55 678–687.661



20

R Development Core Team (2016). R: A Language and Environment for Statistical662

Computing R Foundation for Statistical Computing, Vienna, Austria ISBN 3-900051-663

07-0.664

White, G. C. and Burnham, K. P. (1999). Program MARK: Survival estimation from665

populations of marked animals. Bird Study 46 Supplement 120-138.666



DISTANCE SAMPLING WITH MOVEMENT 21

7600 Sand Point Way NE
Seattle, WA 98115 USA
E-mail: paul.conn@noaa.gov

Prairie and Northern Wildlife Research Centre
115 Perimeter Rd.
Saskatoon, SK S7N 0X4 CANADA
E-mail: ray.alisauskas@canada.ca

667

mailto:paul.conn@noaa.gov
mailto:ray.alisauskas@canada.ca


22 FIGURES

Moving Not moving

0

50

100

150

200

−2 0 2 4 −2 0 2 4
Distance bin discrepancy

N
um

be
r 

of
 g

ro
up

s 
de

te
ct

ed

Fig 1. Distribution of observed distance bin discrepancies (do=2 − do=1) for bird groups
detected by both front (o = 1) and rear (o = 2) observers in helicopter surveys. Negative
values imply movement (or measurement error) towards the helicopter, while positive val-
ues imply movement away from the helicopter. For moving birds, the distance bin observed
by the rear observer tended to be further away than the bin observed by the front observer.
Since the second observer always detected birds later than the front observer, this suggests
that most movement was responsive away from the aircraft. For stationary birds, a nonzero
distance bin discrepancy represents error in ascribing distance by either or both observers.
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Fig 2. A depiction of observed (S) and latent (Z) distance bins that could potentially be
used in analysis of a hypothetical mark-recapture distance sampling (MRDS) survey. In
this example, only animals encountered in one of the three shaded distance bins to the right
of the transect line (dashed line) are recorded; however, the state space is augmented with
an additional three bins to account for possible animal movement and measurement error.
In practice, the number of augmented distance bins that are needed will be a function of
the magnitude of the movement and measurement error processes.
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Fig 3. Estimated movement and measurement error kernels for waterfowl mark-recapture
distance sampling (MRDS) data from the highest ranked maximum marginal likelihood
model. Measurement error used a (discretized) symmetric Laplace kernel, while movement
had an asymmetric Laplace kernel.
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Fig 4. A plot of the number of observed and predicted waterfowl groups by observer and
movement status. Observed data are given by the thick solid line, while the thick dashed line
represents mean predictions and the thin, dashed lines represent 2.5th and 97.5th quantiles
of model-based simulations (including variance due to uncertainty of MML estimates).
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Fig 5. Detection probability for a random sample of 20 individuals from Simulation Study
2, where heterogeneity is incorporated via a random effect on the log of the standard devi-
ation associated with a half-normal detection model. Detection probabilities are presented
for cases where animals are moving (black lines) or not moving (gray lines)
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Table 1
Definitions of fixed and estimated quantities for the double-observer mark-recapture
distance sampling (MRDS) model incorporating movement and measurement error.

Quantity Definition

A. Fixed quantities
n Number of animals detected by at least one observer
yio Binary indicator for whether animal group i was detected by observer o
dio Distance bin recorded by observer o for animal group i (if recorded)
mi A binary indicator for whether animal group i was moving when observed (a single determi-

nation is made)
xi A vector of covariates used to explain variation in detection probability for group i
gi Number of animals in group i (a single determination is made)
S The set of distance bins for which data are recorded, S = S1,S2, . . . ,SnS

Z The set of latent distance bins used for modelling true animal locations, Z = Z1,Z2, . . . ,ZnZ

πj Proportion of Z covered by latent distance bin j
B. Parameters and functions of parameters
zio True (latent) distance bin of group i when encountered by observer o
ξio An indicator for whether or not observer 3− o detected group i
δio Perpendicular distance from the transect line to the midpoint of bin zio
β A vector of parameters governing logit-linear variation in detection probability
φ Parameters governing animal movement
ϕ Parameters governing distance measurement error
θ The set of detection, movement, and measurement error parameters (θ = {β,φ,ϕ})
pio(zio) Probability that observer o detects group i given that the group is truly in distance bin zio
p∗i (zi1, zi2) Probability that at least one observer detects group i given the group is in distance bin zi1

at time 1 and zi1 at time 2
ψ(zi1, zi2) Probability that an animal that is in latent distance bin zi1 when it passes observer 1 will

be in latent distance bin zi2 when it passes observer 2
ω(z, d) Probability that an animal group in distance bin z is recorded as being in distance bin d
ω(z,S) Probability that an animal group in distance bin z will have a recorded distance bin falling

within S
X A design matrix used to impart logit-linear structure on detection probabilities; note this

will often include latent distance values, zi·
N True abundance of animals in the surveyed area
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Table 2
Estimated abundance of waterfowl surveyed in Arctic Canada. The first 10 models

account for movement and measurement error and are fitted via maximum marginal
likelihood (MML), while the last two are Huggins-Alho models (HA) that ignore

movement and measurement error. MML models are ranked by AIC; we also provide the
number of parameters in each model (k), log likelihood (LogL) at the MMLEs, the

estimated number of waterfowl groups Ĝ, and the estimated number of waterfowl (N̂).
MML models varied by the functional form of movement and measurement error kernels
(Gaussian vs. Laplace), the form of observer dependence (fi: full independence, pi: point

independence; li: limiting independence), as well as whether the detection function
included a distance:moving interaction. HA models varied by method used to reconcile

distance measurements (HA1: prefer measurement of observer 1; HA2: mean distance).
For HA models, only estimated bird groups are reported owing to software constraints.

For reference, the number of detected bird groups was 964 and the total number of
detected birds was 2666. The ‘NA’ values represent ‘not available,’ either because models

did not converge, because HA likelihood and AIC values were not comparable to MML
values, or because of N̂ values were unavailable from the software used to conduct

estimation for the HA model.

Model ∆AIC k LogL Ĝ(ŜE) N̂(ŜE)

MML.Laplace.pi.move 0.0 14 -2725.4 1519 (142) 3808 (302)
MML.Laplace.li 1.2 13 -2727.0 1122 (106) 2993 (222)
MML.Laplace.pi 3.2 12 -2729.0 1399 (99) 3562 (209)
MML.Laplace.fi 6.1 11 -2731.5 1244 (33) 3240 (73)
MML.Laplace.fi.move 6.7 13 -2729.8 1255 (35) 3261 (77)
MML.Gaussian.pi.move 55.5 14 -2753.2 1516 (149) 3800 (315)
MML.Gaussian.li 56.5 13 -2754.7 1130 (118) 3009 (247)
MML.Gaussian.pi 58.3 12 -2756.6 1394 (101) 3552 (212)
MML.Gaussian.fi 62.9 11 -2760.0 1248 (35) 3248 (80)
MML.Gaussian.fi.move 63.6 13 -2758.2 1259 (35) 3269 (79)

MML.Gaussian.li.move† NA NA NA NA NA

MML.Laplace.li.move† NA NA NA NA NA
HA1 NA 10 NA 1239 (47) NA
HA2 NA 10 NA 1278 (56) NA

† Did not converge
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Table 3
Mean proportion relative bias (RelBias), coefficient of variation (CV), 95% confidence
interval coverage (Cover), and root mean squared error (RMSE) for the two simulation

studies. For the first simulation scenario, “Configuration” gives values for movement (σ1

and σ2) and measurement error (ϕ) parameters, e.g. (0,0,0), respectively; in simulation
study 2, it indicates these parameters as well as expected population size in the surveyed
area N = 200 or N = 1000. Three estimation models (Model) were fitted to each data set

in simulation study 1: the maximum marginal likelihood (MML) model accounting for
movement and measurement error, and two Huggins-Alho models which do not account
for movement, measurement error, or observer dependence (HA1 and HA2; described in
the text). For simulation scenario two, we fitted an additional MML model that accounts

for observer dependence (MMLd).

Configuration Model RelBias CV Cover RMSE

A. Simulation study 1

(0,0,0) MML 0.00 0.03 0.91 214
(0,0,0) HA1 0.01 0.04 0.95 532
(0,0,0) HA2 0.01 0.04 0.95 529
(0.7,0.7,0) MML 0.01 0.03 0.87 268
(0.7,0.7,0) HA1 0.04 0.05 0.84 1144
(0.7,0.7,0) HA2 0.06 0.05 0.80 1763
(0.5,1.5,0) MML -0.02 0.03 0.89 371
(0.5,1.5,0) HA1 0.08 0.07 0.77 3086
(0.5,1.5,0) HA2 0.07 0.07 0.84 2883
(0,0,0.5) MML 0.00 0.03 0.91 245
(0,0,0.5) HA1 0.01 0.05 0.95 490
(0,0,0.5) HA2 0.03 0.05 0.93 740
(0.7,0.7,0.5) MML 0.01 0.03 0.87 306
(0.7,0.7,0.5) HA1 0.04 0.05 0.86 1237
(0.7,0.7,0.5) HA2 0.07 0.06 0.75 2676
(0.5,1.5,0.5) MML -0.03 0.03 0.85 471
(0.5,1.5,0.5) HA1 0.07 0.07 0.82 3045
(0.5,1.5,0.5) HA2 0.10 0.08 0.77 4387

B. Simulation study 2

(0,0,0), N = 200 MMLd 0.03 0.12 0.94 435
(0,0,0), N = 200 MML -0.04 0.05 0.89 194
(0,0,0), N = 200 HA1 -0.06 0.06 0.83 312
(0,0,0), N = 200 HA2 -0.06 0.06 0.83 312
(0,1.5,0.5), N = 200 MMLd -0.01 0.15 0.96 692
(0,1.5,0.5), N = 200 MML -0.08 0.06 0.74 440
(0,1.5,0.5), N = 200 HA1 0.04 0.13 0.95 2581
(0,1.5,0.5), N = 200 HA2 0.00 0.12 0.92 921
(0,0,0), N = 1000 MMLd 0.03 0.05 0.91 2574
(0,0,0), N = 1000 MML -0.05 0.02 0.33 3519
(0,0,0), N = 1000 HA1 -0.08 0.02 0.22 6315
(0,0,0), N = 1000 HA2 -0.08 0.02 0.22 6312
(0,1.5,0.5), N = 1000 MMLd -0.03 0.05 0.94 3092
(0,1.5,0.5), N = 1000 MML -0.09 0.02 0.06 8817
(0,1.5,0.5), N = 1000 HA1 -0.01 0.05 0.92 2607
(0,1.5,0.5), N = 1000 HA2 -0.03 0.04 0.84 3080
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