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Abstract: The rise of the Internet of Things (IoT) has led to an exponential increase in data generated
by connected devices. Machine Learning (ML) has emerged as a powerful tool to analyze these data
and enable intelligent IoT applications. However, developing and managing ML applications in the
decentralized Cloud-to-Things continuum is extremely complex. This paper proposes Zenoh-Flow,
a dataflow programming framework that supports the implementation of End-to-End (E2E) ML
pipelines in a fully decentralized manner and abstracted from communication aspects. Thus, it
simplifies the development and upgrade process of the next-generation ML-powered applications in
the IoT domain. The proposed framework was demonstrated using a real-world use case, and the
results showcased a significant improvement in overall performance and network usage compared to
the original implementation. Additionally, other of its inherent benefits are a significant step towards
developing efficient and scalable ML applications in the decentralized IoT ecosystem.

Keywords: IoT; dataflow programming; machine learning; MLOps

1. Introduction

The rapid development of the Internet of Things (IoT) market [1] has led to the
integration of smart devices and sensors. These devices gather vast amounts of data,
to which Machine Learning (ML) models have proved to be effective in analyzing and
deriving useful insights [2]. ML-powered IoT applications are widely adopting a pipes-and-
filters [3,4] pattern to implement the entire End-to-End (E2E) ML pipeline. In doing so, large
applications are decomposed into a series of steps, each applying different transformations
to data. In the context of ML pipeline, these include complex tasks, such as data pre-
processing and model training, validation, deployment, and inference. These are then
split into a well-defined series of simple and independent processing steps called filters.
While this pattern has proven to work well when the application runs on a single and
isolated machine, forthcoming ML [5,6] is clearly showing that (i) computations will need
to span across multiple locations, from devices and gateways up to the edge or cloud (i.e.,
Cloud-to-Things continuum); and (ii) complex and dynamic data interactions need to be
taken into account. By continuing to adopt the pipes-and-filters pattern (as proposed in
recent MLOps best practices), developers will face new challenges to interconnect and
deploy these components transparently, increasing the complexity of applications and their
time-to-market and development costs.

Thus, the next-generation of ML-powered IoT applications are envisioned as a set of
individual components, spanning from traditional sensors and IoT gateways to compu-
tational resources (e.g., storage and computation) deployed anywhere in the continuum.
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When stitched together, these components achieve the overall application purpose. How-
ever, deploying ML models for IoT scenarios is challenging due to several factors, such as
resource constraints, network limitations, and privacy/security concerns. Based on our
previous research, a Data Flow Programming (DFP) [7] pattern is the most suitable candidate
to tackle the challenge mentioned above. By allowing applications to be represented as a
directed graph of components (called operators), as opposed to a linear pipeline [8], DFP
generalizes pipes-and-filters and provides a more suitable programming pattern for the
applications development. Based on the result of each processing step, DFP determines
at runtime the path through which data flows, allowing it to express more complex and
distributed pipelines.

This paper presents Zenoh-Flow, a novel framework designed to simplify the imple-
mentation of E2E ML pipelines using Data Flow Programming patterns. The distinctive
contribution of Zenoh-Flow lies in its ability to streamline the entire process of designing,
defining, implementing, and deploying IoT applications. Noteworthy advancements of-
fered by this work include the definition of a unified abstraction and computing model
capable of accommodating the diverse Cloud-to-Things continuum. Additionally, Zenoh-
Flow empowers developers with the ease of declarative application definition, facilitating
efficient development and deployment across the entire Cloud-to-Things spectrum. The
framework also supports real-time IoT applications, incorporating essential features such
as deadlines, time-stamping, and progress tracking. Moreover, this work validates the
feasibility of Zenoh-Flow to implement the next-generation ML-powered IoT applications
by porting a real-world scenario from the Smart Green Homes project [9], facilitating the
definition, deployment, and lifecycle management of its applications without any perfor-
mance degradation regarding the original deployment. Furthermore, it paves the way for
the implementation of more complex applications, which otherwise would be extremely
hard to achieve only with MQTT.

The remainder of the article is structured as follows. In Section 2, we briefly present a
background reference; Section 3 describes the proposed Zenoh-Flow framework, which is
later validated and evaluated over a proposed scenario on Section 4; advantages and future
challenges are discussed in Section 5; and Section 6 concludes the article.

2. Related Work

As previously mentioned, ML has become integral to advanced IoT scenarios. How-
ever, building an ML model is just one part of the process. To effectively use ML models,
it is vital to consider the entire data flow, from data collection to model deployment. Data
flow programming is a well-suited programming paradigm for building data pipelines.
In this paradigm, data are treated as a stream that flows through various processing
nodes. Each node performs a specific transformation on the data and passes it on to
the next node. This approach enables developers to build complex data pipelines by
chaining simple processing nodes. In addition to DFP, it is also essential to consider the
transport layer used to move data between processing nodes. The data transport layer
plays a critical role in the performance and scalability of a DFP. A data-centric transport
layer is a transport layer designed specifically for moving data between processing
nodes. It is optimized for high throughput and low latency, making it well-suited for
building ML pipelines.

The following subsections will dive deeper into these concepts and explore their
importance in building effective ML pipelines.

2.1. Machine Learning

With the emergence of Cloud-to-Things and Edge Computing architectures, ML mod-
els can be deployed closer to where the data are generated, enabling faster and more
efficient processing. This makes ML essential for unlocking the full potential of IoT and
driving innovation in various industries.
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MLOps refers to the set of practices and tools used to streamline and automate the
process of building, deploying, and managing ML models [10,11]. With the increasing
demand for ML, MLOps has become essential for ensuring the reliability and scalability of
machine learning projects. MLOps provides a standardized set of best practices and tools
that enable organizations to overcome unique challenges associated with ML, including
data preparation, model development, testing, deployment, and monitoring.

Following that methodology, most ML deployments can be described as a single
pipeline. They all need data; using said data, they need to be trained; once trained, they need
to be deployed. This pipeline can be roughly structured into four connected components,
as depicted in Figure 1: (i) Data Collection; (ii) Data Transformation; (iii) (Continuous) ML
(re-)training; and (iv) (Continuous) ML (re-)deployment [10,12].

Figure 1. Standard ML pipeline.

In data collection (A), the system collects data that will later be used as the input for
the model. The collected data can come from various sources (sensors, network sniffers,
or even user input). Given the possible heterogeneity of the data, it is crucial that, after it
is collected and aggregated, it is also transformed (B) into a standardized format that the
model can use. It is essential to mention that the data collection and data transformation
steps are continuous operations used for the training and deployment phases.

After it, the model (re-)training (C) takes place, where the model goes through a loop
that only stops once the model achieves the desired performance. In this loop, the model is
trained and evaluated (D) with different hyperparameters to optimize them according to a
set of metrics. This step is the hardest to perform as the results can be non-deterministic,
and human interaction is often required. In addition, the model may need to be periodically
retrained. Since the model, in its essence, learns the patterns in the training dataset,
any pattern change in the environment not reflected in the training set can decrease its
performance, and once it drops below a certain threshold, the model must be retrained.

After the model’s training, it needs to be deployed (E) into production, where the
trained model is used to predict outputs using the live data still being collected in step
(A) and transformed in step (B). It is also in this step that the model is monitored for
performance drops that trigger the retraining discussed above. This step usually requires
its own (smaller) pipeline, and the process should be automated. Every time the model is
retrained, it will be redeployed if the performance meets the desired value.

Despite offering a comprehensive approach to building efficient pipelines for contin-
uous training and deployment of machine learning ML models, MLOps fails to address
the specific challenges of data transfer and parallelization across various pipeline stages.
This work addresses this gap by providing a concrete IoT scenario with a complete
ML deployment.
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2.2. Data Flow Programming

DFP [7] is a computational model that represents applications as directed graphs,
where nodes are computational units called operators and edges are unbounded First-In-
First-Out (FIFO) streams known as links. These links, categorized as inputs or outputs,
connect operators via typed ports, enabling concurrent execution and communication.
Notably, DFP facilitates application decomposition into more straightforward operators
arranged in graphs for adequate communication abstraction.

Two notable DFP models are Kahn Processing Networks (KPNs) [13] and Dataflow
Process Networks (DPNs) [14]. KPN enforces a firing strategy requiring all inputs to
be present before any processing, ensuring functional behavior and determinism. This
is vital for safety-critical scenarios and debugging. However, it limits the processing of
incomplete data. In contrast, DPNs allows operators to fire with subsets of inputs, enabling
computations on partial data. However, to guarantee determinism and functional behavior,
DPNs operators are not allowed to perform side effects, including having an internal state.
Thus, it does not apply to complex applications requiring historical data. Nevertheless,
DFP lacks guidance on handling real-time processing, deadlines, computation periodicity,
progress tracking, and geo-distributed deployment of operators. This places additional
responsibilities on developers, leading to a more complex development process, increased
maintenance efforts, slower time to market, and elevated costs.

2.3. Data-Centric Transport Layer

IoT has relied on protocols above the transport layer to reflect a more web-based
services approach to device reachability and data consumption. However, a more complex
networking stack must be supported by IoT devices, while also requiring logically central-
ized communication points to be deployed in the network infrastructure (e.g., communi-
cation brokers). The explosion of inter-connected IoT devices across the Cloud-to-Things
continuum and the need for a scalable, decentralized, and distributed content delivery with
intrinsic security aspects is motivating next-generation IoT applications to shift towards
data-centric approaches for the transport layer.

Unlike host-centric approaches, data-centric approaches place the data itself as the cen-
tral networking element of its architecture, moving away from the host-oriented addressing
schemes and E2E principles. Data are decoupled from their location and their specific
hosts, allowing more efficient distribution and consumption. In doing so, applications (or
their components) can be deployed anywhere in the Cloud-to-Things continuum without
requiring changes in the application or its configurations.

Zenoh and Message Queue Telemetry Transport (MQTT) are innovative or widely
used data-centric network protocols designed to optimize data transfer, enable secure
communication, and enhance interoperability across distributed systems.

Other protocol solutions, such as Kafka and CoAP, were initially taken into consid-
eration but, given their limitations, have not been implemented for evaluation. Table 1
provides a qualitative analysis of the different solutions. In particular, Kafka only supports
Cloud-only deployments, while CoAP supports Things-only deployment. Therefore, we
focused our evaluation on solutions capable of communicating E2E from Things to Cloud
without requiring any protocol conversion.

2.3.1. Zenoh

Zenoh (/zeno/) is a pub/sub/query protocol unifying data in motion, data at rest,
and computations. Additionally, it is entirely decentralized and offers improved func-
tionalities such as dynamic node discovery, batching at the wire level, multiple levels of
reliability and priority, and minimal network overhead. Nevertheless, Zenoh connects to
other communication middleware, such as MQTT and Data Distribution Service (DDS).
In doing so, Zenoh can interoperate with legacy systems in the IoT domain, allowing
information to be exchanged across protocols and avoiding the creation of information
silos. Moreover, its plugin interface enables extensibility by allowing new connectors to
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be quickly developed. Such capabilities have already proven their suitability as transport
for ML workflows in the context of DAEMON, where it has been used to implement an
N-MAPE-K framework [15].

Table 1. Qualitative analysis of IoT communication solutions.

Zenoh-Flow (Proposed) MQTT Kafka CoAP

Paradigm Data-centric Data-centric Data-centric Host-centric

Topology Peer-to-Peer, Brokered, Routed Brokered Brokered Peer-to-Peer

Communication
Model

Query (Request/Reply)
Publish/Subscribe (Push)
Publish/Subscribe (Pull)

Publish/Subscribe
(Push)

Publish/Subscribe
(Pull) Request Reply

Multiparty
Communication Yes Limited Limited No

Types Aware Yes Blob Blob Blob

Composability Declarative Definition No No No

Deployment Model Cloud-to-Things Cloud-to-Things Cloud Thing

Considered for
evaluation Yes Yes No No

2.3.2. MQTT

MQTT is a messaging protocol between clients and brokers designed for resource-
constrained devices and networks. Thus, it is commonly used in IoT applications. It follows
a publish–subscribe model where clients subscribe to specific topics and receive messages
published by other clients on those same topics. MQTT relies on a communication broker,
a logically centralized intermediary for distributing all messages exchanged between
publishers and subscribers. MQTT operates on top of TCP/IP, making it less suitable for a
wide range of IoT applications that consider resource-constrained IoT devices with limited
processing power, memory, and battery life.

3. A Data Flow Framework for the Cloud-to-Things Continuum

This section describes Zenoh-Flow: a decentralized data flow programming framework for
the Cloud-to-Things continuum that leverages data-centric networking concepts [16]. De-
parting from novel IoT applications’ requirements and existing solutions’ shortcomings,
Zenoh-Flow is designed to meet specific needs, including being Cloud-to-Things native for
seamless deployment, employing a declarative approach for explicit application definitions
and analysis, enabling composition of applications by reusing or grouping operators, of-
fering core features like time-stamping, deadlines, logging, and data replay for next-gen IoT
applications, and ensuring high performance with low-latency, low-overhead, and high
throughput to support advanced IoT applications.

Note that the generic approach taken by Zenoh-Flow makes it agnostic to the appli-
cation domains. In fact, its integration into automotive and robotics applications, which
mostly rely on implicit dataflow programming approaches, are two industrial verticals
where Zenoh-Flow is being successfully deployed and integrated [17].

3.1. Solution Workflow

In Zenoh-Flow, the user starts by defining and implementing the different operators,
which are chained together in a descriptor (step 1 in Figure 2). The descriptor acts as a
contract specifying the application operators, their interconnections, and their requirements,
e.g., deadlines and access to specific hardware resources. Operators can be composed to
create more complex applications, effectively fostering code reuse. The descriptor also
contains additional information to provide automatic deployment of applications across the



Electronics 2023, 12, 3940 6 of 15

Cloud-to-Things continuum with automatic allocation. The application descriptor, along
with any operators, is on-boarded into Zenoh-Flow (step 2 in Figure 2), which, in turn,
stores them in a distributed registry (step 3 in Figure 2).

Zenoh Flow

1. User defines and implements the application

2. User onboards the descriptor to Zenoh Flow

3. Zenoh Flow stores operators and application in the registry

4. Users instantiates the onboarded application

5. Zenoh Flow loads application and operators from the registry

6. Zenoh Flow deploys the applications across the infrastructure

1

24
3

5

6 66

Figure 2. Zenoh-Flow overview and E2E application deployment workflow.

Upon an application instantiation request (step 4 in Figure 2), Zenoh-Flow creates
a runtime graph by loading operators from the distributed registry (step 5 in Figure 2),
and establishing the underlying communication between them in a location transparent
manner (step 6 in Figure 2).

3.2. Solution Overview

Following the DFP model, in Zenoh-Flow, each application is composed of a graph of
nodes. Each node is associated with different inputs and outputs, called ports. In the same
way, ports are typed and interconnected via unbounded FIFOs, called links.

Note that Zenoh-Flow presents some differences concerning state-of-the-art DFP.
In particular, it differentiates three kinds of graph nodes: source, sink, and operators. Sources
and sinks are dedicated to performing I/O operations that have side-effects, making
them not purely functional, while operators follow the KPN model. Sources can also be
triggered within a specified period, allowing sensor readings to produce new data periodi-
cally. The differentiation of source and sink enables the application graph to communicate
with the external world, thus performing I/O only before entering or when leaving the
application graph.

Note that data produced by any operator of the application graph is always times-
tamped by a Hybrid Logical Clock (HLC) [18] combined with unique IDs. Thus, HLC,
together with the unique ID, provides total ordering guarantees to Zenoh-Flow. As data
are ordered, Zenoh-Flow additionally guarantees that if some data with timestamp T are
received, all the data with timestamp t′ < T have already been received. Hence, the times-
tamp of the data enables progress tracking. Furthermore, ordered and timestamped data are
the building block for deadlines. As data timestamp is checked upon reception, Zenoh-Flow
provides notification of operators in the case of deadline miss.

Similarly to DPN, Zenoh-Flow operators can have an internal state. An internal
state allows for more complex applications that require historic information to compute an
output. The combination of the internal state of operators and the total ordering of data
enables Zenoh-Flow to support determinism. In the context of an application composed of
purely functional operators, Zenoh-Flow supports the determinism for the whole application.
In such cases, the same sequence of inputs produces the same sequence of outputs.

3.3. Architecture

Figure 3 depicts the functional architecture of Zenoh-Flow:
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• The Runners are in charge of executing the user code, abstracting data delivery, and en-
suring timely operations like deadlines. Each runner is in charge of a single operator;

• A DF instance represents a DFP application running across the continuum. Each
instance keeps track of its runtime information and has access to the runners executing
their operators;

• The Framework runtime is in charge of mapping applications to the infrastructure,
managing the life-cycle of operators, and configuring the application’s data plane.
A runtime runs on a single machine. All runtimes collaborate to provide a decentral-
ized allocation;

• The Control/Management plane is in charge of the control and management communica-
tions across different runtimes in the continuum. It also stores information about the
state of the infrastructure and any running application;

• The Data plane is in charge of moving the data between the operators, and it is config-
ured by the runtime.

Data flow application instance

Framework Runtime

User code

Control/Management Plane Data Plane

Data Fabric
Zenoh DDS

MQTTShared 
Pointers …

ICN

Runner

Control Fabric

Zenoh WAMP …ICN

Figure 3. Functional architecture of Zenoh-Flow.

3.4. Highlights

Summarizing, Zenoh-Flow introduces a wide range of functionalities that suits the
next-generation IoT applications, going beyond state-of-the-art solutions:

1. Application graphs are defined with a declarative approach, in contrast to most com-
mon programmatic approaches used nowadays;

2. Input data are timestamped (via HLC), and total ordering is provided by augmenting
the timestamps with unique IDs;

3. Deployment of applications across the Cloud-to-Things continuum is supported
natively, instead of relying on external tools;

4. Native support for functionalities relevant for next-generation IoT applications, like
loops, deadlines, and progress tracking;

5. Agnostic to the transport protocol, allowing transparently stitching dataflow graphs
across legacy and greenfield systems.
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4. Implementing an ML Pipeline over DataFlow Concepts

This section explores the potential of Zenoh-Flow in a real-world scenario by imple-
menting a ML pipeline in an IoT environment. The IoT presents several challenges for data
processing, including the sheer volume and heterogeneity of data sources and the need
for real-time processing. By leveraging the capabilities of Zenoh-Flow, next-generation
ML-powered IoT applications are empowered with a robust and scalable solution that can
efficiently process data from various IoT devices and seamlessly integrate with machine
learning algorithms across the entire Cloud-to-Things continuum.

The code used for this evaluation is publicly available on GitHub [19]).

4.1. Proposed Scenario

The proposed scenario mimics a real-world deployment from the Smart Green
Homes (SGH) project [9] with 13 houses, each with five different sensors. Although the
original project intent was to learn the comfort temperature of the user, in this scenario,
another task is solved. The objective is to deploy a distributed ML pipeline capable of
predicting if a user is present within the house. Since the output from the motion sensors
is used as the truth value, the models are solving a classification task. The readings
used by the model as features are: (i) indoor and outdoor temperature; (ii) indoor and
outdoor humidity; (iii) indoor and outdoor pressure; (iv) windspeed; (v) precipitation;
and (vi) door status.

4.1.1. ML Pipeline

The distributed ML pipeline implemented to support the proposed scenario is pre-
sented in Figure 4. As one can see from the figure, there are more components than pipeline
steps. This results from the data preprocessing being distributed through the filler, pre-
processor, and batcher. It is also visible that there is more than one trainer. Although the
trainers could be combined into a single entity, model training consumes the most time in
the system, so distributing the trained models among various trainers helped reduce the
overall time spent training.

Although the sensors provide valuable information, their publishing mechanism is
not ideal for ML, as each sensor only publishes data when it changes beyond a threshold,
instead of periodically. This is mitigated by the implemented pipeline starting in the
gateway, where the sensor data are synced and transformed into a periodic stream, filling
in missing values whenever necessary.

As the name indicates, the aggregator component combines the data from the
various houses into a single stream that will be used in the remainder of the pipeline.
The filler mitigates any failed communication between the gateway and aggregator, or
even aggregator and filler, by checking if there are no missing values between consecutive
messages from a given house and filling them when necessary. The preprocessor prepares
the raw data received from the sensors into the input expected by the trained models,
removing unnecessary information and dividing the input and output of the presence-
checking task.

Since training a model each time a new example is published is unreasonable,
the batcher is a buffer storing examples from the preprocessor until a batch of 10,000
samples is achieved. Once the batch is published, six different ML algorithms are trained
in parallel in a five-fold cross-validation scheme on the collected data, and their results
compared by the comparator. Whenever one of the models’ performance surpasses
the best model so far, the comparator publishes it to the evaluator, where the model is
used to infer the presence in the houses. The constant retraining and redeployment are
essential as the various seasonal changes related to the indoor presence (e.g., vacations)
can cause prediction drift.
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FillerAggregatorGateway

User feedback

Motion sensor

Outside data

Door sensor

Inside sensor

House 1

Gateway

User feedback

Motion sensor

Outside data

Door sensor

Inside sensor

House 13
Preprocessor

Trainer 1

Evaluator

Results

Batcher Trainer 6

Comparator

Figure 4. Overview of the proposed scenario.

4.1.2. ML Models

The models used in the trainers are six Scikit-learn models: Logistic Regression (LR),
Support Vector Machine (SVM), K-Nearest Neighbors (k-NN), Decision Tree (DT), Random
Forest (RF), and Multi-layer Perceptron (MLP), with a set seed of 42. Based on the dataset
analysis [20], a shallow model should be sufficient to capture the underlying pattern:

• The simplest model is the LR [21]. Borrowed from statistical analysis, LR estimates
the probability of an event happening given a set of features;

• SVM, is very similar to LR. The difference between them is how the fitted curve is
created. While LR only cares about separating the different classes, the SVM maximizes
the margins between the decision boundary and the examples [22];

• The k-NN algorithm uses an entirely different approach to classifying examples.
Instead of fitting a curve that separates the two classes, when a new data point needs
to be classified, the algorithm searches the closest k terms and uses them as a voting
system [22];

• Like k-NN, the DT does not try to fit a curve on a hyperplane. As its name states,
the class prediction is formulated as a tree structure where the nodes verify fea-
tures [21];

• The RF is a bagging classifier that creates several DTs and trains them on different
subsets of the training dataset [22];

• Finally, the MLP considered is a classical Artificial Neural Network (ANN) with
one hidden layer comprised of simple dense neurons that performed non-linear
calculations [23].

4.1.3. Dataset

Data were gathered from 13 houses (within Portugal), each with five data sources.
There are three indoor sensors (a motion sensor, a door sensor, and a temperature and
humidity sensor), one outdoor sensor that registers the outside conditions, and one feedback
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source where the user can state whether he is comfortable. The data were collected,
compiled, and published as an anonymized dataset [20].

4.2. Scenario Implementation and Deployment

To validate the feasibility of Zenoh-Flow as a solution for implementing ML pipelines
for next-generation IoT applications, the proposed scenario was implemented using MQTT
as the widely used legacy protocol for IoT applications, and Zenoh-Flow as the novel
solution proposed in this work. The following subsections present an overview of the
implementation process for both approaches.

4.2.1. MQTT Implementation

Although the proposed scenario envisioned sequential communication between the
pipeline nodes, implementing the system with MQTT was impossible, as communications
must be sent to a central broker. Instead, the communications between nodes would use
different topics to define the message flow. For example, the communication between the
gateway and aggregator would flow through the topic “house_data” while the communi-
cation between the aggregator and filler would flow through the topic “filler”. Figure 5
displays how the different components interact with the MQTT broker. Sensors deployed
within the house are not represented, since the communications inside the house do not rely
on MQTT. Since most components receive and send messages, they all send and receive
messages from the MQTT broker. The only exceptions are the gateways, which only send
data, and the evaluator, which only receives.

FillerAggregator

Gateway

Gateway

Preprocessor Trainer 1 Evaluator

Results

Batcher Trainer 6 Comparator

MQTT broker

Figure 5. Overview of the scenario implemented in MQTT.

4.2.2. Zenoh-Flow Implementation

Zenoh-Flow takes a descriptive approach to the definition of the message flux. Thus,
the scenario depicted in Figure 6 represents the exact data flow implemented in Zenoh-Flow.
Zenoh-Flow defines unique topic names between nodes running on different hosts, and
thus alleviates the developers in determining terms that could conflict, causing data mixing
between applications. Two parts can be distinguished in the Zenoh-Flow implementation:
the gateways and the ML pipeline. The nodes represented by a right-pointing triangle
are the source of the pipeline (i.e., the ones injecting data from the external world), which
are the gateways in this particular scenario. The left-pointing triangle represents the sink
(i.e., the one sending back data to the external world). All other nodes, represented as
circles, are operators which perform data computation from their inputs, sending them
to their output. As Zenoh-Flow relies on Zenoh as its transport protocol, the actual data
flow implementation leverage peer-to-peer communication, thus reducing the number of
communication hops and avoiding a single point-of-failure.
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FillerAggregator
Gateway

Gateway

Preprocessor

Trainer 1

Batcher

Trainer 6

Comparator Evaluator Results

Figure 6. Overview of the scenario implemented with Zenoh-Flow.

Both implementations were written in Python, as it is a popular choice for ML pipelines
due to its ease of use, flexibility, and the availability of numerous open-source libraries
and frameworks. Additionally, Python’s popularity means that a large community of
developers and resources is available for support, making it a reliable choice for building
and maintaining ML pipelines and leveraging the proposed solution. An implementation
analysis of both solutions is summarized in Table 1, alongside qualitative analysis of Kafka
and CoAP.

Each component of the pipeline has been run as an isolated docker container. The con-
tainers are managed via docker-compose for reproducbility and to enable interconnectivity
between them. Specifications of the testbed are presented in Table 2.

Table 2. Testbed specifications.

Hardware

CPU RAM Operating System

AMD EPYC 7502 512 GB Ubuntu 20.04.5 LTS

Software

Environment Communication Protocols Language/Libraries

Docker 23.0.1
MQTT 1.6.1 Python 3.8.10

Zenoh 0.7.0rc0 Pandas 1.4.3
Zenoh-Flow 0.4.0rc0 SciKit-Learn 1.1.2

4.3. Evaluation

Although this work focuses primarily on proposing a novel dataflow programming
framework, a proper ML model evaluation is required to validate that its performance,
data transferred, and model accuracy do not differ between implementations. To do so,
Mathews Correlation Coefficient (MCC) was selected, as it correctly handles imbalanced
datasets, penalizing misclassifications harder than the f1-score.

Given the distributed approach adopted in the ML pipeline design, it is vital to
understand how different solutions impact the overall system performance in terms of time
taken for message passing and network utilization. Since the code executed in each node
is always the same, any considerable delay seen in the results will result from how the
data were communicated. Figure 7 depicts the variation in the MCC across time. Since the
models had set seeds, they would consistently achieve the same performance given the
same batch of data, so performance values can be used to compare different experiment
runs. At time 12,000 s, the pipeline implemented using Zenoh-Flow is slightly ahead of
the one implemented using MQTT, which delta continues to accumulate until the end of
the experiment (e.g., by time 17,000 s, this difference becomes even more apparent). This
difference is around 1.20% in the evaluated scenario, with the tests running for a total of
5.5 h. This trend shows that, along with time passing, the Zenoh-Flow-based pipeline
creates less overhead than the MQTT-based one allowing the data to flow faster.
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Figure 7. MCC over training time.

Such behavior can be explained by the lower network overhead the underlying Zenoh
protocol provides, as shown in Table 3. Thus, Zenoh-Flow accounts for 40% less network
overhead in the evaluated scenario, compared to MQTT. Moreover, the Round-Trip-
Time (RTT) of a message between two solutions varies significantly, as depicted in Figure 8.
On the one hand, see that 99th-percentile Zenoh-Flow messages are delivered within 50 µs
and 100 µs, with a consistent distribution. On the other hand, MQTT presents a step
distribution pattern, where only a small amount of data are delivered within less than
500 µs (i.e., less than 20%), and it can take up to 1 ms to deliver a message.

Figure 8. eCDFs of communication RTT.
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Table 3. Analysis of CLOC and wire overhead for the different solutions.

Zenoh-Flow MQTT

Component CLOC

Aggregator 43 48

Filler 145 161

Preprocessor 83 105

Batcher 75 98

Trainers 102 116

Comparator 135 155

Inference 70 91

Total 522 774

Overhead

Payload Size (bytes) 20,969 20,969

Total Sent (bytes) 20,977 20,982

Overhead (bytes) 8 13

Finally, Zenoh-Flow abstracts the developer of defining unique topic names between
nodes running on different hosts, thus requiring fewer lines of code to implement each
application’s component. As depicted in Table 3, the overall code base was shrunk by 32%.

5. Discussion

This section further elaborates on the evaluation results, contextualizing them in the
overall solution and discussing some of its benefits.

The differences in message overhead and RTT come from the distinct communica-
tion approaches taken by the underlying network protocols. While Zenoh-Flow enables
decentralized communication across components by leveraging Zenoh protocol, MQTT
requires a message broker to mediate the communication. Thus, MQTT introduces an
additional hop in the communication, resulting in higher latency and a single point of
failure. The MQTT broker becomes a bottleneck for the pipeline and, in case of failure, no
component can communicate anymore. In turn, Zenoh-Flow provides a dynamic discovery
mechanism that allows components to discover and connect between themselves, thus
creating a full mesh of connected applications with an optimal path for exchanging data.

By abstracting all the communication aspects, Zenoh-Flow allows the developers to
focus solely on their application logic, thus reducing the overall amount of code to be
written to support the communication between components of their application. The less
the code to be implemented, the lower the likelihood of errors and bugs, as there are fewer
opportunities for mistakes to be introduced into the codebase. In addition, such abstraction
also facilitates the re-definition of the ML pipeline, together with better scalability, with-
out requiring additional lines of code as opposed to MQTT. Altogether, such an approach
enables reduced development times and costs, while providing faster time-to-market and
while improving both the efficiency and quality of software development.

Regarding the ML models’ performance, the fact that there is no difference between
the two solutions indicates that the pipeline is the same in both approaches. Furthermore,
the performance obtained is aligned with the previous analysis of the dataset [20].

This finding suggests that Zenoh-Flow is a more efficient and effective framework
than MQTT, not only for applications that require low latency and minimal overhead. Its
latency, overhead, and CLOC improvements are beneficial for different sets of applications,
including pipeline-based data processing like the proposed ML IoT scenario, or even in
robotics and automotive ones.
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6. Conclusions

The next generation of IoT applications is expected to truly embody an ML approach
while, at the same time, becoming fully decentralized across the entire Cloud-to-Things
continuum. Not only will the development of such applications become more complex,
but also their lifecycle management.

This work proposes Zenoh-Flow as a framework for implementing E2E ML pipelines
employing dataflow programming patterns. This framework was demonstrated over a real-
world application from the Smart Green Homes project, with results showcasing a better
performance in terms of throughput and latency and lower network overheads without a
negative impact on the model training compared to the MQTT implementation. Benefits in
terms of development, including re-definition of the ML pipeline or its scalability, are also
achieved by abstracting all the communication aspects and requiring lines of code to be
implemented only for the application logic.

In future work, we intend to improve the pipeline by creating trainers and evaluators
dedicated to each house, as it will help the model results improve significantly. In addition,
we want to apply the proposed solution in different tasks, such as distributed learning,
as the tool to move model weights for training using various machines.
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