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Annotation of Fungal Genomes
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We describe the annotation process for fungal genome sequencing projects, with special emphasis on
protein-coding genes. The characteristics of gene structures in various fungal phyla and strength and
weaknesses of the available gene prediction programs are discussed. The automated pipelines used for
annotation of fungal genomes at various large-scale sequencing centers are also reviewed.

Keywords: gene prediction, fungal genomes, automatic annotation pipelines

INTRODUCTION

Fungal large-scale genome annotation and
analysis started after the sequencing of the yeast
Saccharomyces cerevisiae was completed (Goffeau
et al., 1990), followed by another yeast Schizosac-
charomyces pombe (Wood et al., 2002). This period
also saw the first filamentous fungi N.crassa (Gala-
gan et al., 2003), the first basidiomycete genome of
P.chrysosporium (Martinez et al, 2004) and
through the Phytophthora Genome Initiative
(Waugh, 2000) the first oomycetes were sequenced,
from the economically important genus Phytoph-
thora, P.sojae and P.ramorum (Tyler et al., 2000).
Both the Broad and the JGI are also begun to se-
quence members of the zygomycetes and the chy-
tridiomycetes. In the 1990's there was a call for
many other fungal genomes to be sequenced, and to
heed this call, the Fungal Genome Initiative (FGI)
started a coordinated effort on targeted sequencing
fungal genomes in a kingdom-wide manner - that
is, by selecting a set of fungi that maximizes the
overall value through a comparative approach.
Currently, from the list of about 50 genomes, 27
were sequenced at Broad/MIT.

Other large genome sequencing centers have
begun to focus some of their sequencing capacity on
the fungal kingdom. One such center, the Joint Ge-
nome Institute (www.jgi.doe.gov), started the se-
quencing and annotation of fungi with the whiterot
genome (P.chrysosporium) over five years ago and
now has approximately 20 genomes at various stages
of the sequencing and pipeline and has hosted sever-
al fungal annotation jamborees. Unlike the Broad
Center's FGI, the JGI is sequencing individual fungi
proposed by researchers world-wide and selected
through the Community Sequencing Program
(www jgi.doe.gov/CSP/index.html) on basis of their
scientific and economic importance.
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The Gynolevures Consortium is another large
initiative on fungal genomics, focused on large-
scale comparative genomics between Saccharo-
myces cerevisiae and 14 other yeast species repre-
sentative of the various branches of the Hemiasco-
mycetous class, sequenced and manually curated
the complete genome sequences of four yeast spe-
cies Debaryomyces hansenii, Kluyveromyces lactis,
Candida glabrata, and Yarrowia lipolytica and a
number of random genomic libraries (Dujon et al.,
2004 ; Sherman et al., 2004).

Many sequencing centers offer resources to
make genomic information more accessible and
assist in stimulating research, collectively termed
annotation. In the field of genomics, the term anno-
tation refers to two types of annotation. The first
type, gene modeling, is performed after assembly,
to locate genes and describe gene structure. For
fungi, as for other eukaryotes this task can be quite
challenging due to the complexity of eukaryotic
gene structure and the amount of non-coding DNA.
The second phase of annotation is called functional
annotation. It is based largely on an analysis of the
resulting protein.

Features of Fungi gene structures

The G+C content of genomes is a feature of ge-
nomic organization that affects codon usage and oth-
er oligonucleotide preferences. Most gene modelers
predict more accurately in low GC regions because
they strongly rely on hexamer frequencies to discri-
minate between coding and non-coding regions. In
fungal genomes the G+C content varies greatly from
33% for C.albicans to 57% of P.chrysosporium.
The number of exons per gene also varies greatly
among diverse fungi, from the largely single-exon
gene structure of S.cerevisae to the high number of
multi-exon genes in C.neoformans. However, in
comparison ~ with  metazoan genes, fungal

177



Martinez et al.

genes have relatively short introns. In addition many
fungal introns lengths fall into a narrow range of 50
to 70 bp. For example in C.neoformans, preliminary
analysis have shown that introns have a very tight
distribution around 68 bp and therefore for annotat-
ing this genome, authors explicitly coded this
'spiked’ intron length distribution in the TWINSCAN
program, instead of the default geometric distribu-
tion used in original program (Tenney et al., 2004).
Kupfer et al. (2004) provided the first comprehen-
sive analysis of introns and splicing sites in five di-
verse fungi, which included yeasts S.cerevisae and
S.pombe, 2 well-studied Ascomycetes: A.nidulans
and N.crassa and one Basidmycete: C.neoformans.
Based on EST data they found that for all studied
fungi more than 98% of all splice sites have the ca-
nonical 5'GT ... AG3' donor-acceptor pairs in agree-
ment with vertebrate splice sites. On the other hand,
they found that polypyrimidine tracts between 3'ss
and the branch point are absent in large fraction
(31%-72%) of introns across all studied genomes.
Their results also suggest that for some short introns,
absent polypyrimidine tracts may be compensated by
poly(T) tracts upstream of the branch point.

Gene finding in Fungi

Genes in eukaryotic genomes can be predicted
using a variaty of different approaches, including ab
initio, homology-based, EST-based, and synteny-
based methods, and the first two of which are the
most used approaches especially in absence of ESTs
or sequences of other closely related genomes. Over-
all, performance of ab initio gene finding algorithms
greatly depends on which species gene structures
were used the generation of modeling parameters. In
general, the predicted models will be highly inaccu-
rate if the genome that the gene finding algorithm is
applied to is different in gene structure than the ge-
nome that the algorithm was trained on (Korf, 2004;
A.S. unpublished observations). Therefore one seeks
to train a modeling algorithm on as much data from
the genome that it is going to be run on.

Gene-specific parameters are generally subdi-
vided on content-based and signal-based. Content-
based parameters describe oligonucleotide compo-
sitions of coding, intronic and intergenic sequences
and also such characteristics as distribitions of exon
and intron lengths specific for a given genome, av-
erage number of exons per gene, etc. Many pro-
grams, like HmmMark, Genscan and Fgenesh use
5" order Markov chain probabilities for describing
oligonucleotide preferences of genomic sequences.
Signal-based parameters describe the specific pat-
terns of splice sites, branch points, polypirimidine
tracts and other functional signal, important for me-
chanisms of splicing and transcription. They can be
modeled by position weight matrices, weight array
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matrices (generalized multi-positional weight ma-
trices) or by some combined features of sequences,
implemented for example through neural nets, dis-
criminant functions and other techniques. Last year
brought a new generation of gene predictions me-
thods based on conditional random fields (CRF),
which promise to improve de nove gene finding
(Brent, 2008).

If a given genome has a sufficient number of
known genes or full-length cDNAs, then all these
parameters can be efficiently computed and imple-
mented through existing gene-finding algorithms.
This presents a problem for many newly sequenced
genomes, including new fungal genomes, where
there is a scarcity of high-quality information about
gene structures. In such a situation, some glimpses
about particular gene structures, prevalent in a giv-
en genome can be inferred from EST data. EST
collections are a significant source of data for anno-
tation. They can be either mapped directly, or used
in EST-based gene predictors like GrailEXP or Ex-
onerate. Since most gene predictors predict only
CDS, JGI uses ESTs for gene model extension
(e.g., adding UTR) and validation. Similarly protein
data can be used for finding genes where relatively
little gene information is known. This data set
usually comes from close protein homologs, using
homology-based gene-predictors such as GeneWise
(Birney and Durbin, 2000) or Fgenesht+
(www .softberry.com).

Gene modeling parameters are tuned based on
a collection of information. For genomic informa-
tion, there should be at least several pieces at least
some relatively large (> 50kb) genomic contig se-
quences, and this is usually available from early
stages of genomic sequencing. All known genes
from Genbank, FI. cDNA and EST data are then
mapped to the genomic sequences, providing cod-
ing, intronic and information about splice sites. Ex-
ploratory data analysis is then performed, for ex-
ample removing redundancy in sequences, remov-
ing some questionable EST mappings and estimat-
ing if enough data is available to make the reliable
values of the parameters needed. A subset of the
above information is usually set aside to form a test
set from known genes, where prediction accuracies
with various methods and parameters can be esti-
mated. From the above it is obvious that the quality
of estimated parameters greatly depends on the
number of available known gene structures for a
given genome. For example, if number of known
genes is quite small for reliable estimation of oligo-
nucleotide composition, it is better to use those pa-
rameters from other related species, for which they
were calculated, or at least from organisms with
comparable GC content. For some functional sig-
nals, like the TATA-box, signal peptides, polyA



signals and transcription start sites (TSS), little spe-
cies-specific information is known, and is thus dif-
ficult to train them for specific genomes and only
general available data might be used, and is usually
left to the end-user of the information to find.

In recent years there has been a trend to se-
quence and annotate genomes of closely related
organisms, some even in the same genus. This ra-
pidly increasing number of complete genomes of
closely related organisms allows us to effectively
use synteny-based gene prediction methods that
predict genes in one genome on basis of compari-
son with models in another. In the last few years a
number of such methods have been developed
(Manolis et al., 2005). Although in general they
provide a reasonable quality of predicting exons,
large scale genome prediction suffers from chimer-
ism, i.e. linking neighbor models into one long
model. Therefore, application of these methods is
often limited to correction of gene models. For ex-
ample, in the annotation of Phytophthora sojae and
Phytophthora  ramorum  genomes, Fgenesh2
(www.softberry.com) was used to correct ortho-
logous gene models predicted by other methods if
coverage of the alignment between the orthologs
was higher in one protein than in another (Tyler et
al., 2006). Other examples of successful use of
these methods include the annotation of two Asper-
gillus genomes by TIGR using TWAIN (Majoros
and Salzberg, 2005) in combination with TigrScan
and annotation of different serotypes of Cryptococ-
cus neomorphans genome using TwinScan, fol-
lowed by RT-PCR validation (Cawley, 2001).

Each gene prediction method has its own ad-
vantages and disadvantages. A number of bench-
marks of different gene prediction methods on dif-
ferent sets of data have been published (Guigo et
al., 1996; Yao, 2005). Combining different methods
can improve overall quality of gene models. There
are two traditional ways to do it. One is to combine
different types of evidence and assemble models
from signals coming from these different types of
evidence (fle. Eugene (Foissac et al., 2003) and
Combiner (Allen et al., 2004)). Another is to
choose a model predicted by one of multiple me-
thods without changing model structure (e.g., Baye-
sian framework (Pavlovic et al., 2001)). The former
is better in situations when most of evidence comes
from experimental data (ESTs, homology, etc.).
The latter wins when someone tries to combine dif-
ferent gene predictors, almost each of which al-
ready maximally utilizes available evidence.

Validation of gene predictions

Validation of predicted gene models is an im-
portant part of automated annotation. It is not suffi-
cient to determine an average accuracy of gene pre-
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dictors on the test set of genes. Divergency of fun-
gal genomes makes it impossible to use the same
parameters for different genomes and therefore ac-
curacy also varies from a genome to genome.

Two types of evidence can be used to compu-
tationally validate predicted gene models (ii)
gene/protein conservation and (i) indication of
gene/protein expression. Homology of a predicted
protein to proteins from other organisms — either
hand curated datasets like SwissProt, or all proteins
in NCBI non-redundant set — described for example
in terms of alignment coverage for both predicted
protein and its best homolog can serve as a measure
of completeness of predicted gene model, especial-
ly, when we consider alignments between the or-
thologs. In the case of two or more closely related
genomes, independently of gene prediction, com-
parison of DNA sequence can support predicted
genes, regions of conservation in these DNA
alignments indicate location of exons and non-
coserved functionally important regions. VISTA
genome conservation became the standard feature
of JGI genome annotation (Mayor et al., 2000).
Gene expression can be described in terms of
EST/cDNA coverage, microarray oligos, or pep-
tides from mass-spec experiments aligned against
genomic sequence.

While number of gene models supported by ei-
ther of above mentioned types of evidence describes
overall quality of gene models, knowing quality of
every individual gene model is important for a biol-
ogist. Based on the same lines of evidence all genes
are divided into more or less reliable predictions us-
ing gene naming conventions. While the naming
conventions varies from place to place, all genes can
be divided into 3 major categories by their functional
assignment (i) higher confidence assignment based
on strong homology to protein from GenBank or
SwissProt (e.g., TIGR: ‘known’/’putative’, Broad
Institute: ‘known’/’conserved hypotheti-
cal’/’hypothetical, similar to”), (ii) lower confidence
assignment supported by ESTs (TIGR: ‘expressed’)
or weak homology (Broad Institute: ‘hypothetical’),
and (iii) ab initio gene predictions without homology
or EST support (TIGR: ‘hypothetical’, Broad Insti-
tute: ‘predicted’).

Analysis of above mentioned lines of evidence
may help to elucidate an overpredicted portion of
genes set, i.e. ab inito gene models without any ad-
ditional support. On the other hand, conservative
approach to genome annotation can cause gene un-
derprediction, which can be assessed given a ‘core’
reference set of genes/functions. This is however a
challenging task. First, generation of such a set re-
quires analysis of large collection of diverse ge-
nomes. Second, lack of a ‘core’ gene in a genome
does not necessary means underprediction because
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of (i) draft nature of genome sequence and a good
chance to find the gene in gaps or unassembled
DNA reads, or (i1) non-homologous gene substitu-
tion, i.e. recruitment of a different protein to per-
form same or similar function. Both of these tasks
for the moment can be only addreassed by human
curator.

Automated functional Annotation in Fungi

The attempt to transfer gene function from an
unknown protein to a known protein can be a diffi-
cult task, as evolution can change the context of
what a gene does depending on the environment that
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Figure 1. Annotation pipeline workflow

the organism has been in since the time of specia-
tion.

One method is to tease out evolutionary rela-
tionships by distinguishing orthologs and paralogs
from sequences with some amount of identity in
whole genomes. Functional annotation by the iden-
tification of orthologs is a step in the direction of
high quality annotations. Orthologs are defined as a
genes descended from common ancestor, as first
defined by Fitch (1970). Alignments to other pro-
teins in the genome are possibly also related, how-
ever, they are likely originated from inter-genome
duplications. Such genes are termed 'paralogs'.
There are several ways of finding orthologous and
paralogous relationships. While function of the pro-
tein is not necessarily a part of the definition of or-
thology, it would reason that the conservation is
due to a conserved function preserved through time
(Storm and Sonnhammer, 2002; Koonin, 2005).

Methods of inferring orthology are mostly
based on the analysis of phylogenetic trees. There
are have been some progress in automated ortolo-
gy/paralogy discovery (Storm and Sonhammer
2002; Zmasek and Eddy, 2002), but they are still
limited because of complexities in building phylo-
genetic trees.
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Experimental support of annotation

With a dramatic increase in the number of un-
known and hypothetical genes being produced from
whole genome projects, there is a need to integrate
the data from high throughput experiments into the
annotation process. In organisms such as yeast, this
technique has been used to identify possible func-
tion/process involvement of many unknown genes
(Uetz et al., 2000; Hazbun and Fields, 2001; Ito et
al., 2001; Gavin et al., 2002; Ho et al., 2002). This
approach has gained wide acceptance in other or-
ganisms, including the filamentous fungi. Data de-
rived from these techniques, so-called transcriptom-
ics and proteomics, is valuable information in the
field of annotation.

With transcriptomics we are able to understand
under what conditions and times mRNAs accumu-
late in the cell. The power of this technique is appar-
ent in Sims et al. (2004a). This also includes the
approach to create a probe for every predicted exon,
so that it is possible to verify the automated gene-
structure prediction, with useful suggestions on how
to correct some gene models. Transcriptomic studies
in pathogenesis are important as it is possible that
genes that are organism or fungal specific (thus
listed as hypothetical and function unknown) may be
involved in processes that are unique to the organism
or fungi, providing rare information (Rementeria,



2005).

Since most functioning genes create proteins it
is also possible to describe them with proteomics.
In fungi this is usually understanding what proteins
are secreted, as fungi are important degraders of
biomass, have symbiotic relationships with roots of
agriculturally important plants (Martin et al., 2008)
and protect plants from other soil-borne microbes
(Grinyer, 2005). A search of the available literature
will lead one to the realization that what is studied
with the above techniques is usually an investiga-
tion into the unique abilities and processes of fungi.
This is a key benefit to annotation, as one might
expect some of the unknown and hypothetical
genes to be involved in these unique fungal abili-
ties.

Pseudogenes

In all studied genomes, eukaryotic and proka-
ryotic, there are remnants of genes that are no long-
er transcriptionally active. These inactivated genes
are called pseudogenes. There are two types of
pseudogenes that are named for how they arise,
processed and non-processed. Processed pseudo-
genes occurr when a normal gene is transcribed,
introns removed, and a DNA copy is made from the
gene by the reverse-transcriptase enzyme of a re-
trotransposon. Processed pseudogenes usually do
not appear to have introns, regulatory elements and
can often have poly-A tails. In addition, this type of
pseudogene usually contains disablements over the
length, such as stop codons in the coding frame.
The second type, non-processed pseudogenes, was
once genes or was duplications of genes. Like
processed pseudogenes they contain disablements,
however, pseudogenes of the non-processed type
often have features that make them appear to be
genes. This makes non-processed psuedogenes can
be more difficult to identify and can be listed erro-
neously as a transcribing gene.

Pseudogene Discovery

Finding pseudogenes can be difficult. One of
the key features of pseudogenes is the appearance
of stop codons in the coding region. This is usually
found by using GeneWise (Birney et al., 2004)
which performs a sensitive alignment to a known
gene in order to create a gene model, placing an
“X” in the predicted amino acid sequence, thus al-
lowing the extension of the gene model beyond
what could be a sequencing error. There are other
criterions (Zhang and Gerstein, 2004); however, the
stop appears to be the strongest signal. This is the
primary difficulty in finding pseudogenes for many
genome projects. The target quality for Whole Ge-
nome Shotgun projects is phred q20 minimum. This
means that the minimum quality is an assembly
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error of 1 bases every 10,000. While the probability
is low that the error will result in a mutation, it is
still difficult to tell if the likely error is a legitimate
stop or a sequencing error.

Recently, Torrents et al. (2003) has devised a
novel technique in verifying pseudogenes that does
not rely on the presence of stops. This method ap-
plies the Ka/Ks ratio test (rate of synonymous vs.
non-synonymous substitutions) to decide whether a
gene is really a pseudogene. In a recent technique
comparison from Zhang and Gerstein (2004), with
some alteration of parameters the technique is able
to predict the standard 14,000 or so pseudogenes in
the human genome. Application of this technique to
draft genomes, gives promise to correct identifica-
tion of pseudogenes.

Annotation pipelines

The centers involved in fungal annotation use
a system of steps in order to produce a final set of
gene models and annotation, collectively called a
pipeline.

The overall workflow is similar between the
different pipelines and includes a few major steps
common to all (Figure 1). These common steps are
repeal masking, mapping ESTs/known genes, ho-
mologs, gene modeling using different methods
sequentially or in parallel and then combining
them, and finally annotating produced sets of gene
models using various domain prediction and ho-
mology searches.

The JGI and the Broad Institute both use a
similar basic set of gene predictors (Fgenesh (Sa-
lamov  and  Solovyev, 2000), Fgenesh+
(www.softberry.com), and GeneWise (Birney et al.,
2004)), but in order to produce a non-redundant set
of genes they combine them in a slightly different
way.

Broad Institute uses a prioritization system
weighting various gene predictors on the amount
and quality of information that exists and the per-
formance of each algorithm. This system gives first
priority to GeneWise models with >90% amino
acid identity to the translated genome, the second to
Fgenesh+ models with identity between 80% and
90%, and then select the one with the best homolo-
gy among Fgenesh, Fgenesh+ and GeneWise pre-
dictions. And this is a sequential gene prediction
procedure.

JGI predicts all models independently, utiliz-
ing ESTs to correct and expand predicted gene
models and add UTR regions, fix incomplete mod-
els by analysis of local genomic regions and then
treat all models equally (except known genes that
have a higher weight). The JGI selection procedure
analyzes each cluster or locus of overlapping mod-
els. The final gene model is chosen according to a
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hierarchy of criteria: (i) homology to other proteins,
(i1) EST support, and (iii) length and completeness.

After gene models are predicted, each of them
is translated and the predicted proteins are func-
tionally analyzed in terms of functional domains
and homologs. Functions are automatically as-
signed on basis of the best homology hit. Compari-
son with the specialized databased (e.g., KEGQG)
and functional classification allows one to map the
predicted proteins onto metabolic pathways, Gene
Ontology and KOG categories, that provide user
with multiple entry points into the annotation data.
Although implementations of these steps varies,
most of the pipeline utilize Blast or Smith-
Waterman searches to find the list of homologs,
InterproScan or various domain-search methods to
predict domains, and use public software (like
TMHMM, SignalP, TargetP, etc.) for more specia-
lized analysis.

Automated annotation and functional genomics
methods have reduced the amount of work nceded to
turn the data in whole genome projects into useful
information. There is however still some amount of
error in the results in both automated functional and
structural annotation. To verify the calls made by
automatic methods and to add the value of personal
knowledge to the information presented, volunteers
will manually curate the data. Community annota-
tion usually begins with a conference, often termed
“Jamboree”. The jamboree serves several purposes.
The volunteers that will be manually curating the
information are trained how to use the specialized
tools. The group of curators will then proceed to ma-
nually verify both automated gene calls as well as
automated functional data using custom interfaces
that connect to a relational database, usually via the
web through a web browser.
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