

University

Analysis of load severeness for the transplanter PTO by planting condition

Wan-Soo Kim¹, Sun-Ok Chung¹, Chang-Hyun Choi², Jong-Seung Cho³, Dug-Soon Choi³, Yong-Joo Kim^{1*}

Dept. of Biosystems Machinery Engineering, Chungnam National University, Daejeon, 305–764, Republic of Korea ² Dept. of Bio-Mechatronics Engineering, Sungkyunkwan University, Suwon, 440-746, Republic of Korea ³ Research Institute, Kukje Machinery Co., Ltd., Okcheon-Gun, Chungbuk, 29036, Korea

The global market for transplanter in 2013 reached \$10,650 million dollars, and it is expected to reach to \$15,150 million dollars in 2018

Introduction

- Farmers are demanding transplanter that can fast transplanting for save time and money
- Transplanting speed affects the load on the transplanter, fast transplanting affects the fatigue life of the machine, and reduces durability

Purpose

Background

The purpose of this study was to analyze the load severeness of the transplanter PTO shaft during field operation by planting condition.

Materials and Methods

Specification

- The transplanter (PF2R, Yanmar, Japan) used in this study had a total mass of 615 kg and dimensions of 3,160 \times 1,725 \times 1,925 mm (length \times width \times height)
- The rated power of the transplanter was set at 7.1 kW at an engine revolution speed of 3,600 rpm

Load measurement system

- In order to measure the loads acting on the PTO shaft of transplanter, a load measurement system was installed on the transplanter
- A load measurement system was constructed with torque sensors (TRS605, FUTEK, USA) to measure the torque of a PTO shaft, a measurement device to acquire sensor signals, and embedded system to calculate the damage sum

(a) Torque sensor assembly diagram

(b) Installed torque sensor transplanter PTO shaft

Fig. 1 Torque sensor used in this study

Field experiments

- Field experiments were conducted four planting distances (26, 35, 43, and 80 cm) and three planting depths (level 1, 5, and 10) on a field with similar soil conditions
- The ground speed was selected as driving gear levels 2 (0.9 m/s)

Load analysis

The load of the transplanter PTO shaft was analyzed by collecting load signals, analyses of load spectra, and calculations of damage sum

The load data was converted to a load spectrum using the rain-flow counting method and SWT (Smith Watson Topper) equations in Eq. (1)

$$T_e = \sqrt{(t_a + t_m)t_a} \tag{1}$$

where T_e is the equivalent torque (Nm), t_a is the torque amplitude (Nm), and t_m is the mean torque (Nm)

The number of cycles had to be extended to the total transplanter usage time in Eq. (2)

$$N_T = 3600NLh$$

where N_T is the total number of load cycles (cycles), N is the number of cycles of the measured torque (cycles/s), L is the lifespan of the transplanter (year), and h is the annual usage time (h/year)

The S-N curve was obtained for the material of the PTO shaft, SCM 420H, using the ASTM standard 2004 in Eq. (3)

$$N = 10^{\left(6 - 6.097 \log\left(\frac{S}{223}\right)\right)}$$
 (3)

where N is the number of cycles and S is the shear stress (MPa)

To calculate the damage sum, the equivalent torque of the load spectrum was converted to stress in Eq. (4) (4)

where S is the stress (MPa), T is the equivalent torque (Nm), and d is the diameter of the shaft (mm)

The damage sum was calculated by dividing the number of fatigue life cycles by the number of cycles

where D_t is the damage sum, n_i is the number of cycles, and N_i is the fatigue life (cycles)

Results and discussion

Torque data

- The average torque on the transplanter PTO shaft increased significantly as the planting distance decreased from 80 to 26 cm
- Also, the average torque on the PTO shaft increased as the planting depth increased from level planting depth level 1 to 10

Fig. 2 Example of torque on the PTO at planting distance 43 cm and planting depth 105 mm

Table. 1 Average torque (Nm) on the transplanter PTO by planting depth and planting distance

	Planting distance (cm)	Planting depth (mm)		
		Level 1 (85)	Level 5 (105)	Level 10 (136)
	26	13.10 ± 7.37^{1}	14.38 ± 8.34	17.22 ± 11.15
	35	13.08 ± 6.85	13.88 ± 7.26	16.03 ± 10.21
	43	12.59 ± 6.33	13.47 ± 6.92	15.33 ± 8.93
	80	10.88 ± 6.57	12.88 ± 6.86	14.16 ± 9.16

¹ Average ± standard deviation

Load spectrum

- \bigcirc The torque ratios were similar in the high-cycle region from 10^8 to 10^9 cycles.
- When the planting distance decreased and planting depth increased, the torque ratio on the transplanter PTO shaft increased

(b) Planting depth level 5 (105 mm) (c) Planting depth level 10 (136 mm) (a) Planting depth level 1 (85 mm) Fig. 3 Load spectrum of the PTO at different planting distances (26, 35, 43, and 80 cm)

Relative severeness

The load severeness on the transplanter PTO shaft increased as planting distance decreased and planting depth increased

Table. 2 Relative severeness by planting depth and planting distance

Planting distance (cm)	Planting depth (mm)		
	Level 1 (85)	Level 5 (105)	Level 10 (136)
26	6.13	10.82	58.24
35	4.31	7.53	45.52
43	1.88	3.05	22.55
80	1.00	1.53	5.49

Conclusions

- The load severeness increased as planting distance decreased and planting depth increased
- The results of this study provide useful information for the optimum design of a transplanter PTO considering field load
- Future studies need to provide basic data for the design of the transplanter by considering the working speed and various work conditions

References

- Kim, W.S., Chung, S.O., Choi, C.H., Cho, J.S., Choi, D.S., Kim, Y.S., Lee, S.D., Hong, S.J., Koo, S.M., Kim, Y.J., 2016. Analysis of the PTO torque of a transplanter by planting condition. J. Biosyst. Eng. 41 (4), 313-318.
- Kim, Y.J., Chung, S.O., Choi, C.H., 2013. Effect of gear selection of an agricultural tractor on transmission and PTO load during rotary tillage. Soil Till. Res. 134, 90–96.
- Lee, D.H., Kim, Y.J., Chung, S.O., Choi, C.H., Lee, K.H., Shin, B.S., 2015. Analysis of the PTO load of a 75kW agricultural tractor during rotary tillage and baler operation in Korean upland fields. J.Terramech. 60, 75–83.

(5)