
README.md 2023-10-19

1 / 5

Overview

In this artifact, we included the implementation of our web automation program synthesizer called Arborist.

We will evaluate its efficiency in synthesizing programs for challenging web automation tasks and compare

it with state-of-the-art techniques. In the following, we first present benchmarks we used in our evaluation,

then show instructions to reproduce our experiment.

Benchmarks

We collected 131 real-world benchmarks on web-automation tasks, with each benchmark stored in a folder

with name WxTx. Each benchmark contains the following files/folder:

*.program: the ground truth web automation program.

script.py: the selenium program used to record the action trace and doms of the simulated user

interactions on the doms.

trace.json: the json file contains a list of actions for completing the benchmark task. Each action

contains its type, corresponding selectors, and the data if applicable.

doms/: the folder contain all website dom indexed from the starting website dom before applying the

first action to the last website dom after applying the last action.

Evaluation Instructions

We packaged all code and data into a cross-platform Docker container that works for both x86 and arm

host machines. You do not need to download the Zenodo repository as our Docker container published on

the Docker Hub contains everything you need. We will show you detailed steps on how to obtain and run

that container in the Run Main Experiment section.

Since the full dataset is very large, we also offer small and tiny versions for testing. We automatically

generated the smaller versions by randomly sampling x% of prior benchmarks and x% of new benchmarks

to capture the distribution of our benchmarks. However, due to the smaller sample sizes, the resulting

graphs may look quite different from that of the full version we published in the paper. We recommend that

you pick the version that suits your device's storage capacity. If system resource permits, we suggest

using the small or full version because the sample size of tiny is too small. Here are the specification for the

full, small, and tiny versions:

Version
Container

Size

Docker

Virtual Disk

Limit*

% Prior

Benchmarks

Prior

Benchmarks

% New

Benchmarks

New

Benchmarks

Full 8.4GB >=88GB 100 76 100 55

Small 4GB >=32GB 20 15 20 11

Tiny 3.6GB >=8GB 10 7 10 5

README.md 2023-10-19

2 / 5

Note: Docker Virtual Disk Limit is a global property that represents the sum of all local containers'

disks. Therefore, the minimum value shown in the table assumes that you have no other containers

stored locally. If you have other containers that also take up virtual disk space, you need to increase

this limit.

Setup Docker Desktop

�. Install Docker Desktop if you haven't already from https://www.docker.com/products/docker-desktop/

�. Set the "Docker Virtual Disk Limit" value to be at least the minimum listed in the table above for the

container version you are using. Go to Settings -> Resources -> Virtual Disk Limit and drag the slider

to the desired value. Hit Apply & Restart to apply the changes.

Run Main Experiment

�. Pull and run the docker container for arborist. Use the command for your container version.

Full version:

docker run -ti alienkevin/arborist

Small version:

docker run -ti alienkevin/arborist-small

README.md 2023-10-19

3 / 5

Tiny version:

docker run -ti alienkevin/arborist-tiny

�. In your container's terminal, unzip test folder

mkdir tests
tar -I pigz -xf tests.tar.gz

Ignore warnings like below:

tar: Ignoring unknown extended header keyword 'SCHILY.fflags'
tar: Ignoring unknown extended header keyword
'LIBARCHIVE.xattr.com.apple.FinderInfo'
tar: Ignoring unknown extended header keyword
'LIBARCHIVE.xattr.com.apple.lastuseddate#PS'
...

�. In your container's terminal, run the main experiment

make main

For the full version, the main experiment takes around 40 minutes wall-clock time on an M1 Max

MacBook Pro. The small version took around 4 minutes and the tiny version took around 2 minutes 20

seconds.

�. In your container's terminal, plot the experiment results

python plot.py

Depending on which container version you choose, you will see different graphs. Here are the

outputs that you can expect for each version produced by an M1 Max Macbook Pro. Note that the

outputs depend on your machine's processing power so you may get slightly different results on a

faster/slower machine.

Full version's expected graphs:

README.md 2023-10-19

4 / 5

Small version's expected graphs:

Tiny version's expected graphs:

�. Export results to host machine. (Below steps all happens on your host machine's terminal, not the

container's terminal)

a. First get the name of the container running under the NAMES column:

README.md 2023-10-19

5 / 5

$ docker ps
CONTAINER ID IMAGE COMMAND CREATED STATUS
PORTS NAMES
e705b63f2247 arborist "/bin/bash" 37 minutes ago Up 37 minutes
peaceful_hertz

Here the name is peaceful_hertz.

b. Then, copy the generated figures from the container to your host machine. Here, we show how to

copy the figures to the Downloads folder.

docker cp peaceful_hertz:/workspace/figures ~/Downloads/figures

You should see that the two figures look similar to Figure 16 on page 19 of the paper.

c. You can also copy the generated result spread sheets to your host machine for inspection.

docker cp peaceful_hertz:/workspace/benchmark_summary.csv
~/Downloads/benchmark_summary.csv

