

Basic tests for automatic nutrient monitoring for hydroponic crop production system

College of Agriculture and Life Sciences, Chungnam National University¹, Daejeon, Republic of Korea

Materials and Methods

Sensing issues: Measurement Error, Signal drift, Calibration, Data acquisition interval and Solution temperature.

Nutrient B

***** Schematic diagram

Sensing Unit **Processing Unit**

	Control Unit	
Distill Water	Nutrient A	

CNU

Main

Computer

Fig. 1: Diagram of automated nutrient monitoring and supply system

Fig. 2: Pictorial view of the system developed in this research

Results and discussion

Increased or decreased reading of same concentrated solution affects nutrients control

Measurement error

- Measurement error gradually increased with usage Regular rinsing could prevent signal drift Calibration removed measurement error and signal drift
- Proper data acquisition interval helped to take accurate readings Appropriate solution temperature was good for real data acquisition as well as plant growth

Acknowledgement

This work was supported by Korea Institute of Planning and Evaluation for Technology in Food, Agriculture, Forestry and Fisheries(IPET) through "Development of ICT-fused integrated greenhouse environment management system with better performance than foreign products, low cost, and easy-to use" project, funded by Ministry of Agriculture, Food and Rural Affairs (MAFRA) (Project No. 313059031SB010).