23
24
25
26
27
28
29

39
40
41
42
43
44

Belief-Driven Software Product Line Development and Evolution

Anonymous Author(s)

ABSTRACT

The planning, realization, and release of a Software Product Line
(SPL) are driven by features. Therefore, many high-level decisions
about the evolution of an SPL are made at the feature level. However,
a feature can involve many stakeholders with different expertise,
and taking their opinions into account to make the right decisions
is not trivial. In this paper, we propose using belief uncertainty
in conjunction with feature models to assist in the evolution of
SPLs by explicitly quantifying opinions. We outline three evolution
scenarios in which subjective logic can be used to represent the
opinions of stakeholders and explain in detail how to use subjective
logic to make decisions in the context of the next release problem.
We illustrate our ideas with a Smartwatch SPL. Finally, we discuss
different ways of combining the opinions of stakeholders depending
on the situation, the goals and the risks that can be assumed.

CCS CONCEPTS

« Software and its engineering — Software product lines;
Software evolution; Collaboration in software development.

KEYWORDS

Decision making support, feature model, software product line,
subjective logic, uncertainty

ACM Reference Format:

Anonymous Author(s). 2023. Belief-Driven Software Product Line Devel-
opment and Evolution. In Proceedings of 27th ACM International Systems
and Software Product Lines Conference (SPLC’23). ACM, New York, NY, USA,
6 pages. https://doi.org/XXXXXXX.XXXXXXX

1 INTRODUCTION

The planning, realization and release of a software product line (SPL)
centers around features [2]. In fact, feature models have become the
main artifact that guides the whole SPL process [28], specifying
the variability of the system as a collection of common and vari-
able features. As a result, it is therefore not surprising that many
high-level decisions about the evolution of an SPL are made at the
granularity of features [22]. For example, at some point, a decision
might be needed on whether or not to add a certain feature to the
set of planned features of the SPL (aka evolution of the variabil-
ity [1, 22]). Another question might be to identify which features
should be realized for the coming release (aka the next release prob-
lem [4, 21, 37]). Or, finally, one might want to decide on how many
products to sell to end users, that is, whether to allow end users
to customize their products as much as the realization allows, or
whether to reduce the number of possible products artificially (aka
variability reduction [12, 34]).

To make the right decisions, many SPL stakeholders with differ-
ent expertise might be involved. This includes obviously software
developers that are experts in different domains, but also hardware

SPLC’23, August 28 — September 1, 2023, Tokyo, Japan
2023. ACM ISBN 978-1-4503-XXXX-X/18/06...$15.00
https://doi.org/XXXXXXX.XXXXXXX

experts, financial planners, human resources, marketers, etc. Tak-
ing the opinions of that many people into account to make the
right decisions is not trivial. Conflicting opinions often arise among
stakeholders due to their differing opinions (or beliefs) about a spe-
cific statement, making it difficult to reach a consensus. Moreover,
in an SPL, features often have dependencies between them, and
decisions about specific features must consider those dependencies,
increasing the uncertainty of appropriate decisions.

In this paper, we propose a novel approach that uses belief uncer-
tainty [36] in conjunction with feature models to explicitly quantify
the opinions of stakeholders regarding the evolution of an SPL. We
outline three scenarios in which subjective logic [17], a formalism
for reasoning under belief uncertainty, is used to represent and
combine the opinions of stakeholders. We explain how to use sub-
jective logic to make decisions in the context of the next release
problem, and how to use the appropriate fusion operators to reach
a consensus depending on the desired decision strategy.

The remainder of the paper is structured as follows. Section 2
briefly presents the necessary background on belief uncertainty
and subjective logic. Section 3 explains the three feature model
evolution scenarios that we cover and illustrates them by means of a
Smartwatch SPL. Section 4 applies our approach to the next release
problem, again in the context of the Smartwatch SPL. Section 5
presents related work, and the last section draws some conclusions.

2 UNCERTAINTY AND SUBJECTIVE LOGIC

Uncertainty [20] is defined as the state that involves imperfect
and/or unknown information. It applies to predictions of future
events, estimations, physical measurements, or unknown proper-
ties of a system. Uncertainty can take different forms. For example,
measurement uncertainty [36] refers to the inability to know with
complete precision the value of a quantity. It can be due to different
causes, such as unreliable data sources and communication net-
works; tolerance in the measurement of the values of the physical
elements; estimates due to the lack of accurate knowledge about
certain parameters, or the inability to determine whether a particu-
lar event has actually happened or not. Belief uncertainty [36] is a
particular type of uncertainty where an agent is uncertain about
an statement. For instance, it can capture the inability to decide
whether something is true or not (i.e., a Boolean predicate), and
depends on the individual stating such uncertainty.

In [36] different kinds of uncertainty were identified and clas-
sified. The authors also analyzed how uncertainty is represented
in software models and used in the context of model-based soft-
ware engineering (MBSE). In many occasions, belief uncertainty is
expressed by probabilities (interpreted in Probability theory [8] or
in Uncertainty theory [20]), possibilities (in Fuzzy set theory [39]),
plausibilities (in the Dempster—Shafer theory of evidence [31]) or
opinions (in subjective logic [17]). In this paper, we focus on subjec-
tive logic [17] which is a type of probabilistic logic that explicitly
takes uncertainty into account.

In subjective logic, each opinion about a statement is composed
of four values: (1) the degree of belief b that the statement is true; (2)

5
60

61

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

106

107

108

109

110

111

112

114

115

116

https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX

117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149

150

159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174

SPLC’23, August 28 — September 1, 2023, Tokyo, Japan

the degree of disbelief d that the statement is false; (3) the degree of
uncertainty u about the statement (i.e., the amount of uncommitted
belief); and (4) the base rate a or prior probability of the statement
(i.e., the objective probability). The four values are represented in
an SBoolean vector [6] defined as a 4-tuple (b, d, u, a), and satisfying
b+d+u=1,and b,d,u,a € [0,1].

Let us illustrate the use of SBoolean with an example. Hana
checks the weather forecast for Tokyo and it says that the probabil-
ity of rain is 45%, but she knows that the website she is checking is
not always very accurate. Therefore, she expresses her opinion on
the fact that the following day will rain as SBoolean(0.6, 0.1, 0.3,
0.45), which means that she trusts the original prediction (0.45)
with a degree of belief of 60%, she thinks that it might be wrong
with a degree of disbelief of 10%, and she expresses her uncertainty
with a 30%.

The projected probability [6] (or projection) of an SBoolean opin-
ion is defined as P = b+ a X u, and allows us to move from opinions
expressed in subjective logic to a single value opinion, (i.e., a proba-
bility). For example, the projection of Hana’s opinion on the weather
forecast is 0.735 (73.5%).

Subjective logic comes with a set of fusion operators that can
be used to combine opinions of different agents about the same
statement. Which fusion operator to apply depends on several
factors, such as, whether one wants to minimize risk when dealing
with contradicting opinions. We will introduce some operators later
in Section 4. The interested reader can consult the formal definitions
of fusion operators in [17, 18, 38].

3 DECISION MAKING IN SPL DEVELOPMENT

During the development of an SPL, there will be a moment in time
where there is a variability model of the current state of the SPL,
that is, the features that have already been realized: FM,¢4jiz¢q. In
the case where marketing or other reasons warrant that not all
possible products of the SPL are made available to end users in
a release, there might also be a variability model FM,,g,,c0q that
encodes the (artificially) reduced configuration variability for end
users. Most likely there is also a variability model of the planned
features of the SPL for future releases: FMpjanneq- It holds that
FMyeduced © FMrealized © FMplanned~

Figure 1 depicts the evolution of those three variability models
over time. The feature planning (FMpanneq), the feature realization
(FM,ealizeq), and the feature release (FM,ogyceq) Of the SPL can
evolve at different speeds, and moving from one variability model
to the next requires decisions to be made.

3.1 Evolution Scenarios for Feature Models

We identified three different kinds of evolution scenarios for the
variability models that require collaborative decision-making among
stakeholders (highlighted with blue arrows in Figure 1):
(1) Feature Model Evolution [1, 22]: How should the plan of the
variation of the SPL evolve?

FMplanned,current - FMplunned,next

Scenario 1 consists of using the current plan FM,4ppeq as a basis,
and suggesting edits [35] such as adding new features, including
new relationships or updating existing ones, adding cross-tree

Anon.

Now +H—— Future —8™ >

FM
planned Feature Model
Evolution
Next Release
FMreaIized

Problem

Variability
Reduction

reduced

Legend
FM Feature

Mandatory

Optional

Or

Xor

Cross-tree Constraint

§22%N

Figure 1: SPL evolution scenarios for variability models.

constraints if necessary, and potentially even removing planned
features that have not been realized yet.

(2) Next Release Problem [4, 21, 37]: Which features should be
implemented next?

FMrealized,current - FMrealized,next

Scenario 2 consists in choosing which planned features that have
not been realized yet (i.e., features that are part of FMpanneq
and are not part of FM,,4jizeq) should the development team
work on next.

(3) Variability Reduction [12, 34]: How can the configuration
space of the current realized SPL be reduced to a reasonable
number of possible configurations for the current release?

FMrealized,current - FMreduced,current

Scenario 3 consists in choosing which edits to apply to FM,c41ized

to reduce the variability (e.g., making an optional feature manda-

tory or deciding which additional cross-tree constraints to add).

Reducing the variability of a SPL simplifies maintainability and

quality assurance [3], as fewer products need to be considered.

The decision making for these three scenarios is non-trivial,
as different stakeholders have different views on the SPL features
depending on the scenario. For example, when deciding on what fea-
tures to realize next (Scenario 2), opinions of different stakeholders
could range from “Marketing: in high demand from end users”, to
“Distribution expert: high maintenance cost”, to “Developer: unclear
how to implement efficiently”.

3.2 Smartwatch SPL Example

Figure 2 presents a Smartwatch SPL. A smartwatch is a wearable
computer in the form of a watch. It offers multiple characteris-
tics to users such as ContactlessPayment or an ActivityTracker,
which can provide ContinousMonitoring and/or OnDemand monitor-
ing. All these features are optional, but in order to support them,
the SPL provides several Sensors and Connectivity. For example,
to include the ActivityTracker feature, an Accelerometer or an
HeartRateSensor are required, as specified in the cross-tree con-
straint ActivityTracker = Accelerometer V HeartRateSensor. The

182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231

232

233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276

278
279
280
281
282
283
284
285
286
287
288
289

290

Belief-Driven Software Product Line Development and Evolution

Smartwatch

Sensors

SPLC’23, August 28 — September 1, 2023, Tokyo, Japan

\\
[ActivityTracker][ContactlessPayment | [HeartRateSensor][Accelerometer |[Infrared][GPS][Bluetooth4.0 |[BluetoothBLE
<>

Electrical

[OnDemand | [ContinuousMonitoring |

[Bluetooth4.0BLE][BluetoothV5.0 |

HeartRateVariabiIit

ContactlessPayment REQUIRES NFC
Infrared REQUIRES NFC
ActivityTracker = Accelerometer V HeartRateSensor
Bluetooth4.0 EXCLUDES BluetoothBLE

Legend
[[_JFeatures already implemented @Alternative (xor) group ¢ Mandatory
[IFeatures not implemented

@Or group (/ Optional

Figure 2: A feature model for a Smartwatch SPL.

HeartRateSensor can be either Electrical or Optical, the latter can
also include the HeartRateVariability feature to compute fluctua-
tions on the user’s heartbeats. Other available sensors in the SPL are
the Infrared and the GPS, while for connectivity the SPL provides
NFC, GSM, WiFi, and different versions of Bluetooth (Bluetooth4.0 and
the low energy versions Bluetooth4.@BLE or BluettothVs.e). Other
cross-tree constraints in the SPL specify that in order to have the
ContactlessPayment or the Infrared sensor, the NFC feature must be
included as well. Furthermore, only one version of Bluetooth can
be present in a smartwatch.

The complete feature model of Figure 2 represents FMy4ppeq
for the Smartwatch SPL. In the current state of the SPL, only those
features highlighted in gray are already implemented, represent-
ing FM,¢alizeq- Different versions of the smartwatch have been
released in the market including only those implemented features,
thus FM,eguced = FMyealized- According to our three evolution sce-
narios, the Smartwatch SPL can first evolve by adding new features
to FMplanned for the future releases of the smartwatch or by remov-
ing features that stakeholders think should never be realized. For
instance, the marketing team proposes to incorporate a new Sp02
sensor into the SPL in order to track the blood oxygen saturation
level of the user, while the distribution experts propose to remove
the WiFi feature from the SPL because WiFi consumes a lot of en-
ergy and does not make sense for a smartwatch with other types
of connectivity. Hence, that feature will most likely never be imple-
mented in any release. In the second scenario, the stakeholders need
to make decisions about what features to implement and include in
the next release (i.e., features to be included in FM,4j;5¢q)- Here
decisions may involve deciding the incorporation of an indepen-
dent feature (e.g., GPS), deciding on a feature with dependencies on
other features (e.g., to incorporate the ContactlessPayment feature,
the NFC feature must be implemented too), or deciding on a group
of related features, such as, a variation point and its variants (e.g.,
the development of the HeartRateSensor feature and its variants).
Finally, the third scenario is illustrated in the Smartwatch SPL when
the number of possible products of FM,,4jizeq is too high and it
does not make sense to have that many versions of the smartwatch
on the market. In this case, it needs to be decided which specific
products can be omitted from being released by reducing the vari-
ability. For example, the distribution experts propose the exclusion
of the Bluetooth4.@ feature already implemented in the SPL from
any smartwatch version of the current release because there is no
technical support for such an old version of Bluetooth in the new
version of the operating system. This decision reduces the variabil-
ity exposed by the SPL in FM, ,4;,ceq and the number of products
to be maintained is more manageable.

4 BELIEF UNCERTAINTY APPLIED TO SPL

We illustrate our decision-making approach based on subjective
logic using the second evolution scenario (the next release problem),
while the decisions for the other scenarios can be modeled similarly.

4.1 Decision Making about Features

4.1.1 Deciding on an independent feature. It needs to be decided
whether the GPS feature should be realized or not. To make this de-
cision, representatives from the marketing, hardware, and software
departments sit together and provide their opinions on the feature.

The marketing stakeholder Bob thinks that GPS is an interesting
feature for physically active customers that will increase the number
of units sold according to a market study performed. This study
was a poll sent to customers who have bought previous versions
of the watch, so the results are not representative of the general
population. Therefore, his opinion carries uncertainty and can be
represented by the SBoolean(0.95, 0.0, ©.05, 0.5). That is, Bob
has a belief of 0.95 on the fact that the GPS should be included, a
disbelief of 0, and an uncertainty of 0.05. Note that the base rate is
0.5 because the a priori probability that a feature is included is 50%
as there are only two options: it is included, or it is not included.

On the other hand, Alice, the representative of the hardware
department, does not recommend the realization of the GPS feature
because she knows that it will have a considerable impact on power
consumption. She knows that there is new GPS hardware in de-
velopment that would affect the battery less, but whether or not
that technology will be available in time is uncertain. She gives her
opinion as SBoolean(@.1, 0.7, 0.2, 0.5).

Finally, the software department representative Taylor thinks
that from their department’s point of view, it does not make a
difference whether the watch has a GPS integrated or not. But they
think that since it does not add any additional cost, it would be
good to have it. Their opinion is SBoolean(0.3, 0.05, 0.65, 0.5).

To be able to use our approach to help make a decision, we
need to fuse these three opinions, hence we need to choose the
appropriate fusion operator. We are facing a case of epistemic un-
certainty (vs. aleatory uncertainty). Since we have one person from
each department giving their opinions based on their independent
experiences and backgrounds, we can assume that there are no
dependencies among these opinions. Therefore, the fusion operator
that applies in this situation is Epistemic Cumulative Belief Fusion
(ECBF). When fusing the three opinions using the ECBF operator,
the result is: SBoolean(0.668, 0.0, ©.332, 0.5), whose projection
(i.e., the probability) is 0.83. Therefore the three stakeholders decide
that the GPS feature should be realized.

291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344

345

347
348

362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406

SPLC’23, August 28 — September 1, 2023, Tokyo, Japan

4.1.2 Deciding on a feature with cross-tree constraints. The smart-
watch company has suggested to the hardware department to study
the viability of realizing contactless payment. As Figure 2 shows,
the realization of the feature ContactlessPayment (CP) requires the
realization of the feature NFC. Instead of making an authoritarian
decision, the manager of the department asks a group of three engi-
neers for their opinions. The SBooleans that represent the engineers’

opinions on these features are presented in Table 1.
Table 1: Opinions of the three engineers on each feature.

‘ Engineer 1 ‘
CP (0.5,0.1,04,05) | (0.9,0.03,0.07,05) | (0.8,0.15, 0.05, 0.5)
NEC | (0.5, 0.25,0.25,0.5) | (0.75, 0.2, 0.05, 0.5) | (0.94, 0.03, 0.03, 0.5)
To take into account the feature dependency, we need to aggre-
gate the individual feature opinions using the logical and operator
(A). Only then can we combine the resulting opinions with the ap-
propriate fusion operator. Therefore, the fused opinion is calculated
using the following formula:

Engineer 2 ‘ Engineer 3

FUSION(OpEng1CP A OpEngl1NFC, OpEng2CP A OpEngiNFC,
OpEng3CP A OpEng3NFC)

We are again facing a case of epistemic uncertainty. However,
since the manager is asking for the opinion of three engineers that
work in the same department, they all have more or less the same
background and knowledge about the company and the team (i.e.,
in terms of subjective logic, they are observing the same fact), hence
their opinions are considered dependent. There are three fusion oper-
ators that apply to this case: Average Belief Fusion (ABF), Weighed
Belief Fusion (WBF) and Consensus and Compromise Fusion (CCF).
The first one should be applied when every opinion carries the
same weight (i.e., when one wants to give the same credibility to
each person), the second should be applied when one wants to
give more credibility to those people with stronger opinions (i.e.,
with less uncertainty), and the third one should be used when the
desired behavior is that in the presence of divergent opinions the
level of uncertainty in the resulting opinion is increased. While the
operator CCF provides a more conservative opinion, the operators
ABF and WBF are more “risky”. Table 2 presents the fused opinions

for these three operators.
Table 2: Fused opinions for CP A NFC.

Operator ‘ Fused Opinion ‘ Projection
ABF (0.715, 0.206, 0.078, 0.25) 0.734787
WBF (0.724, 0.203, 0.073, 0.25) | 0.742006
CCF (0.524, 0.190, 0.286, 0.25) 0.595724

After checking the results, the manager observes that, even in
the more conservative case, the engineers support the inclusion
of contactless payment with almost 60% of confidence, hence he
decides to suggest the implementation of both features.

4.1.3 Deciding on a group of related features. For the next meeting
with its main shareholders, the smartwatch company needs to
determine whether the HeartRateSensor feature and its variants are
likely to be implemented or not. We can observe in Figure 2 that
there are different options when it comes to integrating a heart
rate sensor (HRS): it could be an electrical sensor (E), which is more
accurate, or an optical sensor (0), which is cheaper. If an optical
sensor is included, the software team could potentially implement
a feature that measures the heart rate variability (HRV), which can
detect heart problems.

Anon.

Once someone gives their opinion on each feature of the tree,
the individual opinion of that person on the fact that one way or
another a heart rate sensor is included in the next realization is
calculated with the following formula:

(HRS A E) V (HRS A 0) V (HRS A O A HRV)

The formula is a disjunction of all possible configurations of the
subtree. Since the HRS is the parent of an xor group it can not be
realized on its own. Furthermore, the realization of a child feature
always depends on the realization of the parent.

The different departments collect and aggregate the opinions of
their members as described in Section 4.1.2. In summary, the general
opinion of the marketing department states that it is important to
implement the HRS, but they do not have an opinion on whether
it should be electrical or optical. On the other hand, the hardware
department prefers an optical sensor because it is cheaper, while the
software team has a slight preference for an electrical sensor and, if
the decision is to implement an optical sensor, they are against the
HRV, mainly because the team is currently operating at full capacity
and they do not have the resources to do additional work. Table 3
presents these opinions.

Table 3: Opinions for the Heart Rate Sensor features.

‘ Marketing ‘ Hardware Software
HRS | (0.98,0.01,0.01,05) | (0.7,0.1,02 05) | (0.6,0.2,0.2,0.5)
E (0.1,0.1,0.8,05) | (0.15,0.8,0.05,0.5) | (0.7,0.1, 0.2, 0.5)
0 (0.1,0.1,0.8,05) | (0.9,0.05,0.05,0.5) | (0.7,0.1,0.2,0.5)

HRV | (0.1,0.1,0.8,0.5) (0.2,0.1,0.7,05) | (0.1,0.8,0.1,0.5)

After applying the formula above and fusing the opinions with
the CBF, the resulting opinion is SBoolean(0.733, 0.000, 0.267,
0.508) with projection 0.87. Based on this result, it is decided that
the heart rate monitor will be presented to the shareholders.

The next step is to decide on the technical level how exactly the
HRS is going to be implemented. For this, each possible branch of
the tree needs to be explored. Table 4 presents the opinions of each
department for each branch, as well as the fused opinions for the
branch using the CFB fusion operator and its projection.

Given these results, the company decides that the features HRS
and 0 will be realized, while the features E and HRV will not.

4.2 Determining Feature Priorities

It is one thing to determine whether a feature should be realized
or not, but in the end what needs to be decided is which feature(s)
should be realized for the next release, taking into account the
available development resources. Therefore, we suggest ranking
the features based on the projection value of the fused opinions.
The resulting list can then be used to prioritize feature realizations.
For example, for our smartwatch SPL the resulting prioritized
feature list for the next release is:
(1) 0.87:NFC
(2) 0.83: ECBF
(3) 0.73: CP (assuming that NFC is already realized)
(4) 0.71: HRS and 0
With this information, and information on how much resources
are needed to realize each feature and how much resources are
available, the decision on which features to implement for the next
release can be made.

407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445

446

463

465

466

467

468

469

470

471

472

473

474

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494
495

Belief-Driven Software Product Line Development and Evolution

SPLC’23, August 28 — September 1, 2023, Tokyo, Japan

Table 4: Opinions for the branches of the Heart Rate Sensor subtree.

‘ Marketing ‘ Hardware Software ‘ Fused ‘ Projection
HRS A E (0.360, 0.109, 0.531, 0.250) | (0.127, 0.820, 0.053, 0.250) | (0.507, 0.280, 0.213, 0.250) | (0.000, 0.026, 0.974, 0.250) 0.24344
HRS A O (0.360, 0.109, 0.531, 0.250) | (0.702, 0.145, 0.153, 0.250) | (0.507, 0.280, 0.213, 0.250) | (0.614, 0.000, 0.386, 0.250) 0.710287
HRS A O AHRV | (0.167, 0.198, 0.635, 0.125) | (0.355, 0.231, 0.414, 0.125) | (0.075, 0.856, 0.069, 0.125) | (0.019, 0.000, 0.981, 0.125) 0.141517

5 RELATED WORK

Subjective logic has been applied in several domains such as ar-
tificial intelligence [16], software engineering [36], or digital hu-
manities [23]. In the software engineering domain, Bertoa et al. [5]
applied subjective logic to software models (e.g., primitive dataypes
in UML/OCL models) to enrich them with individual opinions from
experts and reach agreements about the uncertainty of the values
obtained from physical measurements or user estimations. Bur-
gueiio et al. [6] proposed an approach to applying subjective logic
to model-based software engineering (MBSE) dealing with belief
uncertainty in domain models.

To the best of our knowledge and according to the survey pre-
sented in [36], subjective logic has not been applied before to SPLs.
However, several works deal with uncertainty and probabilities
in SPLs for decision-making at different stages of the SPL pro-
cess, including requirements elicitation [10, 32, 33], product con-
figuration [7, 24-27, 29], and automated analysis of feature mod-
els [13, 14]. In fact, recently, Horcas et al. [14] identify up to ten
SPL problems where uncertainty is present in the decision-making
process, including product configuration and reverse engineering
of feature models. They propose a simulations-based framework
to apply Monte Carlo methods which deal with the uncertainty of
the large configuration spaces of SPLs. However, only five of the
ten identified problems are modeled and solved, while the next re-
lease problem and evolution of feature models are only mentioned.
Sree-Kumar et al. [32, 33] proposed a method to check whether a
feature model meets the textual specifications of the SPL require-
ments. They assign a confidence score [0..1] to each feature and
relationship in the feature model that measures the likelihood that
the textual requirements identify this element as relevant in the
SPL. However, such a confidence score is automatically assigned
using natural language processing (NLP) based on the correctness
(choice of representative elements) and completeness (no missing
elements) of the feature model, and thus, the values do not consider
subjective opinions from relevant stakeholders. Famelis et al. [10]
made a research vision about combining variability abstractions
with partial modeling [11], a technique for managing design uncer-
tainty within a software model [9] that explicates decision points
and represents the set of possible models that could be obtained by
making decisions and resolving design uncertainty.

Product configuration is the SPL process where decision-making
techniques have been applied the most so far. The concept of prob-
abilistic feature models [7] was introduced to automate the choice
propagation of features according to the constraints by applying an
entropy measure to guide the configuration process. Also, Feature
relations graphs (FRoGs) [24] show the impact of a given feature
on all other features using a confidence metric that represents the
probability of finding a product that violates a constraint. Both
works [7, 24] also rely on historical data to extract probabilities
without taking into account opinions from domain experts. In fact,
historical data from previous users’ configurations has been a wide

source of knowledge to feed recommendation systems and guide
decisions in the next release problem. Rodas-Silva et al. [29] propose
a recommender system for the selection of the best components set
to implement a given configuration of the SPL based on the users’
rating of such components. Mazo et al. [25] proposed recommen-
dation heuristics to prioritize choices and recommend candidate
features to be configured. The purpose of their approach is to reduce
the number of configuration steps and optimize the computation
time required by the solver to propagate the configuration choices.
Nohrer et al. [26] investigate the ordering of the decisions when
configuring a product to automatically optimize user guidance by
reducing the number of decisions that need answering. Pereira et
al. [27] proposed a feature-based personalized recommender sys-
tem for product-line configuration that guides decision-makers in
understanding users’ needs and preferences. It focuses on decision-
makers who lack the sufficient personal experience to evaluate the
complex technical properties of the features. The main drawback
of these works [25-27, 29] is that they do not take into account the
expertise of the domain experts, only the final users’ rating [29],
users’ needs and preferences [27], or historical data from previous
users’ configurations [25, 26] are considered.

Finally, in [30] the authors propose an approach for decision sup-
port on the uncertainty in feature model evolution. They assist the
selection of an optimal configuration, which is a set of features to be
implemented, and define two evolution models: Evolution Possibil-
ity Model (ePM) to describe potential possibilities a feature model
could evolve, and Evolutionary Feature Model (eFM) to describe
the feature model with all changes due to evolution incorporated.
They use two analysis techniques to facilitate the decision support:
Survivability analysis that answers whether a configuration (i.e.,
set of features) could survive during the expected evolution, and
repair cost analysis that answers which configuration requires less
effort to get repaired due to changes.

6 CONCLUSIONS AND FUTURE WORK

In this paper we outlined how the uncertainty that inevitably arises
during the development and evolution of an SPL can be dealt with
in a rigorous way using subjective logic. In particular, we described
three feature model evolution scenarios, and explained in detail how
to quantify the opinions of different stakeholders when deciding
on which features to implement for the next release problem, and
how to combine the opinions taking into account feature depen-
dencies. Different decision strategies (e.g., risky vs. conservative)
are supported through the use of different fusion operators. We en-
vision that subjective logic could become a new tool of great value
in the SPL practitioner’s toolkit whenever opinions of different
stakeholders have to be taken into account.

As future work we plan to investigate how our approach can
consider complex constraints [19] beyond requires and excludes
constraints and other variability modeling relationships [15].

539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562

581
582
583
584

586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610

612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637

638

SPLC’23, August 28 — September 1, 2023, Tokyo, Japan

REFERENCES

(1]

(2]

[10

(11

[12]

[13]

[14]

[15]

[16

[17]

(18]

[19]

[20]

[21

[22

Nazakat Ali, Sangwon Hwang, and Jang-Eui Hong. 2019. Your Opinions Let us
Know: Mining Social Network Sites to Evolve Software Product Lines. KSII Trans.
Internet Inf. Syst. 13, 8 (2019), 4191-4211. https://doi.org/10.3837/tiis.2019.08.021
Sven Apel, Don S. Batory, Christian Kastner, and Gunter Saake. 2013. Feature-
Oriented Software Product Lines - Concepts and Implementation. Springer. https:
//doi.org/10.1007/978-3-642-37521-7

Ebrahim Bagheri and Dragan Gasevic. 2011. Assessing the maintainability of
software product line feature models using structural metrics. Softw. Qual. 7. 19,
3(2011), 579-612. https://doi.org/10.1007/s11219-010-9127-2

Anthony J. Bagnall, Victor J. Rayward-Smith, and Ian M. Whittley. 2001. The
next release problem. Inf. Softw. Technol. 43, 14 (2001), 883-890. https://doi.org/
10.1016/S0950-5849(01)00194-X

Manuel F. Bertoa, Lola Burgueiio, Nathalie Moreno, and Antonio Vallecillo. 2020.
Incorporating measurement uncertainty into OCL/UML primitive datatypes.
Softw. Syst. Model. 19, 5 (2020), 1163-1189. https://doi.org/10.1007/s10270-019-
00741-0

Lola Burgueno, Paula Mufioz, Robert Clariso, Jordi Cabot, Sébastien Gérard, and
Antonio Vallecillo. 2022. Dealing with Belief Uncertainty in Domain Models.
ACM Trans. Softw. Eng. Methodol. (jun 2022). https://doi.org/10.1145/3542947
Krzysztof Czarnecki, Steven She, and Andrzej Wasowski. 2008. Sample Spaces
and Feature Models: There and Back Again. In 12th International Conference on
Software Product Lines (SPLC). IEEE Computer Society, 22-31. https://doi.org/10.
1109/SPLC.2008.49

Bruno De Finetti. 2017. Theory of probability: A critical introductory treatment.
Vol. 6. John Wiley & Sons. https://doi.org/10.1002/9781119286387

Mouna Dhaouadi, Kate M. B. Spencer, Megan H. Varnum, Alicia M. Grubb, and
Michalis Famelis. 2021. Towards a Generic Method for Articulating Design-time
Uncertainty. J. Object Technol. 20, 3 (2021), 3:1-14. https://doi.org/10.5381/jot.
2021.20.3.a3

Michalis Famelis, Julia Rubin, Krzysztof Czarnecki, Rick Salay, and Marsha
Chechik. 2017. Software Product Lines with Design Choices: Reasoning about
Variability and Design Uncertainty. In ACM/IEEE 20th International Conference
on Model Driven Engineering Languages and Systems (MODELS). 93-100. https:
//doi.org/10.1109/MODELS.2017.3

Michalis Famelis, Rick Salay, and Marsha Chechik. 2012. Partial models: Towards
modeling and reasoning with uncertainty. In 34th International Conference on
Software Engineering (ICSE). 573-583. https://doi.org/10.1109/ICSE.2012.6227159
Marc Hentze, Chico Sundermann, Thomas Thiim, and Ina Schaefer. 2022. Quan-
tifying the variability mismatch between problem and solution space. In 25th
International Conference on Model Driven Engineering Languages and Systems
(MODELS). ACM, Montreal, Quebec, Canada, 322-333. https://doi.org/10.1145/
3550355.3552411

Ruben Heradio, David Fernandez-Amoroés, Christoph Mayr-Dorn, and Alexander
Egyed. 2019. Supporting the statistical analysis of variability models. In 41st
International Conference on Software Engineering (ICSE). IEEE / ACM, 843-853.
https://doi.org/10.1109/ICSE.2019.00091

José Miguel Horcas, José A. Galindo, Ruben Heradio, David Fernandez-Amor0s,
and David Benavides. 2023. A Monte Carlo tree search conceptual framework
for feature model analyses. J. Syst. Softw. 195 (Jan. 2023), 111551. https://doi.
0rg/10.1016/j.jss.2022.111551

José Miguel Horcas, Ménica Pinto, and Lidia Fuentes. 2023. A modular metamodel
and refactoring rules to achieve software product line interoperability. J. Syst.
Softw. 197 (2023), 111579. https://doi.org/10.1016/j.js5.2022.111579

Eyke Hiillermeier and Willem Waegeman. 2021. Aleatoric and epistemic uncer-
tainty in machine learning: an introduction to concepts and methods. Mach.
Learn. 110, 3 (2021), 457-506. https://doi.org/10.1007/s10994-021-05946-3
Audun Jesang. 2016. Subjective Logic - A Formalism for Reasoning Under Uncer-
tainty. Springer. https://doi.org/10.1007/978-3-319-42337-1

Audun Jesang, Dongxia Wang, and Jie Zhang. 2017. Multi-source fusion in
subjective logic. In 20th International Conference on Information Fusion (FUSION).
1-8. https://doi.org/10.23919/ICIF.2017.8009820

Alexander Kniippel, Thomas Thiim, Stephan Mennicke, Jens Meinicke, and
Ina Schaefer. 2017. Is there a mismatch between real-world feature models
and product-line research?. In 11th Joint Meeting on Foundations of Software
Engineering (ESEC/FSE). ACM, 291-302. https://doi.org/10.1145/3106237.3106252
Baoding Liu. 2010. Uncertainty Theory. Springer Berlin Heidelberg, Berlin,
Heidelberg, 1-79. https://doi.org/10.1007/978-3-642-13959-8_1

Abdullah Al Mamun, Fahim Djatmiko, and Mridul Kanti Das. 2016. Binary
multi-objective PSO and GA for adding new features into an existing product
line. In 19th International Conference on Computer and Information Technology
(ICCIT). 581-585. https://doi.org/10.1109/ICCITECHN.2016.7860263

Maira Marques, Jocelyn Simmonds, Pedro O. Rossel, and Maria Cecilia Bastarrica.
2019. Software product line evolution: A systematic literature review. Information
and Software Technology 105 (2019), 190-208. https://doi.org/10.1016/j.infsof.
2018.08.014

[23

[24]

[25]

[26]

[27

(28]

[29]

[30

[31

(32]

(33]

[35

[36

(37]

(38]

(39]

Anon.

Patricia Martin-Rodilla and Cesar Gonzalez-Perez. 2019. Conceptualization
and Non-Relational Implementation of Ontological and Epistemic Vagueness of
Information in Digital Humanities. Informatics 6, 2 (2019). https://doi.org/10.
3390/informatics6020020

Jabier Martinez, Tewfik Ziadi, Raul Mazo, Tegawendé F. Bissyandé, Jacques Klein,
and Yves Le Traon. 2014. Feature Relations Graphs: A Visualisation Paradigm for
Feature Constraints in Software Product Lines. In 2nd IEEE Working Conference on
Software Visualization (VISSOFT). IEEE Computer Society, Victoria, BC, Canada,
50-59. https://doi.org/10.1109/VISSOFT.2014.18

Rail Mazo, Cosmin Dumitrescu, Camille Salinesi, and Daniel Diaz. 2014. Rec-
ommendation Heuristics for Improving Product Line Configuration Processes.
In Recommendation Systems in Software Engineering. Springer, 511-537. https:
//doi.org/10.1007/978-3-642-45135-5_19

Alexander Nohrer and Alexander Egyed. 2013. C20 configurator: a tool for
guided decision-making. Autom. Softw. Eng. 20, 2 (2013), 265-296. https://doi.
0rg/10.1007/s10515-012-0117-4

Juliana Alves Pereira, Pawel Matuszyk, Sebastian Krieter, Myra Spiliopoulou,
and Gunter Saake. 2018. Personalized recommender systems for product-line
configuration processes. Comput. Lang. Syst. Struct. 54 (2018), 451-471. https:
//doi.org/10.1016/j.c1.2018.01.003

Mikko Raatikainen, Juha Tiithonen, and Tomi Mannisté. 2019. Software product
lines and variability modeling: A tertiary study. Journal of Systems and Software
149 (2019), 485-510. https://doi.org/10.1016/j.js5.2018.12.027

Jorge Rodas-Silva, José Angel Galindo, Jorge Garcia-Gutiérrez, and David Bena-
vides. 2019. Selection of Software Product Line Implementation Components
Using Recommender Systems: An Application to Wordpress. IEEE Access 7 (2019),
69226-69245. https://doi.org/10.1109/ACCESS.2019.2918469

Le Minh Sang Tran and Fabio Massacci. 2014. An Approach for Decision Sup-
port on the Uncertainty in Feature Model Evolution. In IEEE 22nd International
Requirements Engineering Conference (RE). 93-102. https://doi.org/10.1109/RE.
2014.6912251

Glenn Shafer. 1976. A mathematical theory of evidence. Vol. 42. Princeton
university press.

Anjali Sree-Kumar, Elena Planas, and Robert Claris6. 2018. Extracting Software
Product Line Feature Models from Natural Language Specifications. In 22nd
International Systems and Software Product Line Conference (SPLC), Vol. 1. ACM,
43-53. https://doi.org/10.1145/3233027.3233029

Anjali Sree-Kumar, Elena Planas, and Robert Clarisé. 2021. Validating Feature
Models With Respect to Textual Product Line Specifications. In 15th International
Working Conference on Variability Modelling of Software-Intensive Systems (Va-
MoS). ACM, Krems, Austria, 15:1-15:10. https://doi.org/10.1145/3442391.3442407
Chico Sundermann, Michael Nieke, Paul Maximilian Bittner, Tobias Hef3, Thomas
Thiim, and Ina Schaefer. 2021. Applications of #SAT Solvers on Feature Models.
In 15th International Working Conference on Variability Modelling of Software-
Intensive Systems (VaMoS). ACM, Krems, Austria, 12:1-12:10. https://doi.org/10.
1145/3442391.3442404

Thomas Thiim, Don S. Batory, and Christian Kastner. 2009. Reasoning about edits
to feature models. In 31st International Conference on Software Engineering (ICSE).
IEEE, Vancouver, Canada, 254-264. https://doi.org/10.1109/ICSE.2009.5070526

Javier Troya, Nathalie Moreno, Manuel F. Bertoa, and Antonio Vallecillo. 2021.
Uncertainty representation in software models: a survey. Softw. Syst. Model. 20,
4(2021), 1183-1213. https://doi.org/10.1007/s10270-020-00842- 1

Muhammad Irfan Ullah, Giinther Ruhe, and Vahid Garousi. 2010. Decision
support for moving from a single product to a product portfolio in evolving
software systems. J. Syst. Softw. 83, 12 (2010), 2496-2512. https://doi.org/10.
1016/j.jss.2010.07.049

Rens W. Van Der Heijden, Henning Kopp, and Frank Kargl. 2018. Multi-Source
Fusion Operations in Subjective Logic. In 21st International Conference on Infor-
mation Fusion (FUSION). 1990-1997. https://doi.org/10.23919/ICIF.2018.8455615
Hans-Jirgen Zimmermann. 2001. Fuzzy set theory—and its applications. Springer
Science & Business Media.

639
640
641
642
643
644
645
646
647
648
649
650

652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696

https://doi.org/10.3837/tiis.2019.08.021
https://doi.org/10.1007/978-3-642-37521-7
https://doi.org/10.1007/978-3-642-37521-7
https://doi.org/10.1007/s11219-010-9127-2
https://doi.org/10.1016/S0950-5849(01)00194-X
https://doi.org/10.1016/S0950-5849(01)00194-X
https://doi.org/10.1007/s10270-019-00741-0
https://doi.org/10.1007/s10270-019-00741-0
https://doi.org/10.1145/3542947
https://doi.org/10.1109/SPLC.2008.49
https://doi.org/10.1109/SPLC.2008.49
https://doi.org/10.1002/9781119286387
https://doi.org/10.5381/jot.2021.20.3.a3
https://doi.org/10.5381/jot.2021.20.3.a3
https://doi.org/10.1109/MODELS.2017.3
https://doi.org/10.1109/MODELS.2017.3
https://doi.org/10.1109/ICSE.2012.6227159
https://doi.org/10.1145/3550355.3552411
https://doi.org/10.1145/3550355.3552411
https://doi.org/10.1109/ICSE.2019.00091
https://doi.org/10.1016/j.jss.2022.111551
https://doi.org/10.1016/j.jss.2022.111551
https://doi.org/10.1016/j.jss.2022.111579
https://doi.org/10.1007/s10994-021-05946-3
https://doi.org/10.1007/978-3-319-42337-1
https://doi.org/10.23919/ICIF.2017.8009820
https://doi.org/10.1145/3106237.3106252
https://doi.org/10.1007/978-3-642-13959-8_1
https://doi.org/10.1109/ICCITECHN.2016.7860263
https://doi.org/10.1016/j.infsof.2018.08.014
https://doi.org/10.1016/j.infsof.2018.08.014
https://doi.org/10.3390/informatics6020020
https://doi.org/10.3390/informatics6020020
https://doi.org/10.1109/VISSOFT.2014.18
https://doi.org/10.1007/978-3-642-45135-5_19
https://doi.org/10.1007/978-3-642-45135-5_19
https://doi.org/10.1007/s10515-012-0117-4
https://doi.org/10.1007/s10515-012-0117-4
https://doi.org/10.1016/j.cl.2018.01.003
https://doi.org/10.1016/j.cl.2018.01.003
https://doi.org/10.1016/j.jss.2018.12.027
https://doi.org/10.1109/ACCESS.2019.2918469
https://doi.org/10.1109/RE.2014.6912251
https://doi.org/10.1109/RE.2014.6912251
https://doi.org/10.1145/3233027.3233029
https://doi.org/10.1145/3442391.3442407
https://doi.org/10.1145/3442391.3442404
https://doi.org/10.1145/3442391.3442404
https://doi.org/10.1109/ICSE.2009.5070526
https://doi.org/10.1007/s10270-020-00842-1
https://doi.org/10.1016/j.jss.2010.07.049
https://doi.org/10.1016/j.jss.2010.07.049
https://doi.org/10.23919/ICIF.2018.8455615

	Abstract
	1 Introduction
	2 Uncertainty and subjective logic
	3 Decision Making in SPL Development
	3.1 Evolution Scenarios for Feature Models
	3.2 Smartwatch SPL Example

	4 Belief Uncertainty Applied to SPL
	4.1 Decision Making about Features
	4.2 Determining Feature Priorities

	5 Related Work
	6 Conclusions and Future Work
	References

