
Received 14 September 2023, accepted 26 September 2023, date of publication 4 October 2023,
date of current version 11 October 2023.

Digital Object Identifier 10.1109/ACCESS.2023.3322035

Guidelines for Secure Process Control:
Harnessing the Power of Homomorphic
Encryption and State Feedback Control
M. FURKA , M. KALÚZ , M. FIKAR , AND M. KLAUČO , (Member, IEEE)
Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, 81237 Bratislava, Slovakia

Corresponding author: M. Furka (matus.furka@stuba.sk)

This work was supported in part by the Scientific Grant Agency of the Slovak Republic under Grant 1/0545/20, in part by the Slovak
Research and Development Agency under Project APVV-20-0261 and Project APVV-21-0019, and in part by the European Union’s
Horizon Europe through the Fostering Opportunities Toward Slovak Excellence in Advanced Control for Smart Industries under Grant
101079342.

ABSTRACT The paper presents applications of homomorphic cryptographic schemes in process control.
Homomorphic encryption is a particular type of encryption that allows performing mathematical operations
over encrypted data. Therefore the user can use third-party services as controllers without revealing any
vulnerable information, like process data. Homomorphic properties make it possible to perform data
aggregation or evaluate control actions without having any knowledge about the process data. Our paper
explores two fully homomorphic cryptographic schemes, namely Brakerski/Fan-Vercauteren (BFV) and
Cheon-Kim-Kim-Song (CKKS) cryptosystems. Each scheme is briefly described with its advantages and
drawbacks, conditions, and applications. We present a case study involving linear-quadratic (LQ) control
strategy implemented in an encrypted setup. This serves for comparison and a step-by-step guide for
implementing encrypted process control.

INDEX TERMS Modern cryptography tools, homomorphic encryption, state feedback control.

I. INTRODUCTION
The modern industry heavily relies on information sharing
and network control systems. Hence, the need for data
security and privacy became increasingly important aspects.

The traditional encryption schemes such as AES [1] or
RSA [2] are dominant in securing the world’s network
traffic, most of computer systems, and software applications.
Homomorphic encryption (HE) schemes are designed to
allow certain types of operations over encrypted data without
the need for prior decryption. Some of the early HE schemes,
commonly known as partially homomorphic encryption
(PHE) schemes allow either an unbounded number of
modular multiplications over the ciphertexts (RSA [2],
ElGamal [3]) or an unbounded number of modular additions
(Benaloh [4], Paillier [5]).

The associate editor coordinating the review of this manuscript and

approving it for publication was S. K. Hafizul Islam .

Fully homomorphic encryption (FHE) first introduced by
Gentry [6] is an encryption technique that allows one to
evaluate arbitrary functions over the encrypted data without
decryption. Several cryptographic systems and frameworks
have been introduced in recent years that provide extended
FHE properties. The notable ones are BFV [7], BGV [8],
THFE [9], FHEW [10], and HEAAN/CKKS [11].

Homomorphic encryption finds its use in a variety of
applications, mainly in those where the preservation of
privacy is of imminent interest.Many applications of HE have
been proposed or directly implemented in recent years. These
tend to secure privacy in various fields such as transportation
[12], geo-location [13], e-voting [14], to deal with an analysis
of a sensitive medical [15] or biometric data [16], [17]. The
utilization of HE came to a point when it is considered to
become a mandatory standard for certain applications [18].
Several HE-related studies have been conducted in the field

of control systems as show in [19], [20], [21], and [22].

110328

 2023 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ VOLUME 11, 2023

https://orcid.org/0000-0003-1945-6772
https://orcid.org/0000-0001-6654-6354
https://orcid.org/0000-0003-0042-4607
https://orcid.org/0000-0003-0098-2625
https://orcid.org/0000-0002-2703-0213

M. Furka et al.: Guidelines for Secure Process Control

However, it is fair to say that HE-related control schemes
are mostly in the proof-of-concept state, and we will have
to wait for their adoption in industrial applications. Many of
these studies rely on the utilization of Paillier cryptosystem
(PCS), despite the fact that it does not support fully homomor-
phic multiplication. Nevertheless, PCS provides sufficient
security, performance, and homomorphic framework to
support applications such as: linear controllers on dedicated
hardware [23]; nonlinear [24] and distributed [25] network
control systems; cooperative schemes [26]; quadratic opti-
mization [27]; implicit [28] MPC; and explicit MPC [29]
respectively. However, modern HE schemes have usually,
several cryptographic parameters, which often depend on
each other, thus the setup of the HE scheme is not
trivial.

The novelties of this paper are:

• comprehensive guideline of the configuration of param-
eters of homomorphic cryptographic schemes leading
to satisfactory implementation in closed-loop control
applications,

• exhaustive analysis of encoding, encryption, and
pre-processing procedures of BFV and CKKS frame-
works with respect to varying parameters of crypto-
graphic configurations.

We emphasize, that selecting encoding and encryption
parameters in BFV and CKKS is crucial to balance security,
performance, and numerical precision. The cryptographic
parameters of both schemes are highly interdependent, thus
the selection of each parameter is a non-trivial task. Hence,
we provide a step-by-step algorithm, that results in proper
cryptographic configuration regarding the process control
requirements.

The paper is organized as follows: In Section III,
we discuss general terms of homomorphic encryption and its
practical usage in various applications. Next, in Section IV
we present BFV and CKKS cryptographic schemes, along
with their homomorphic properties. Section V is dedicated
to the description of cryptographic parameters in terms
of practical implementation and their impact on encoding,
encryption, and numerical correctness. Section V provides
the guideline for cryptographic parameter setup for each
scheme according to application requirements. In Section VI,
we present simulation results of encrypted closed-loop state
feedback control, while in Section VII we conclude the paper
with evaluation of achieved results.

II. RELATED WORK
In recent years, several open-source libraries have been
created considering different HE schemes for various appli-
cations. However, they generally provide only a few examples
with correct cryptographic parameters, but not the guideline
itself. The setting of cryptographic parameters is a non-trivial
the task, especially for LWE-based encryption frameworks.
Moreover, the cryptosystem configuration in these libraries
is not automated and has to be done manually. So far, only a

few proposals have looked at the construction of guidelines
for fully homomorphic encryption frameworks [30], [31],
[32]. Authors in [30] provide a guideline for BGV [33]
cryptosystem implemented with HElib library [34], while
in [31] the authors discuss and construct instructions for
CKKS [11] configuration with Lattigo library [35]. In [32],
the author focuses on BFV [7] guideline considering its
implementation within Microsoft SEAL [36]. Our proposal
provides a guideline involving simple computational steps
resulting in the correct setting of cryptographic parameters
for both BFV and CKKSwhile utilizing their implementation
in TenSEAL library. The configuration guideline leads
the non-specialists towards correct cryptographic parameter
setup for secured process control applications. Furthermore,
the guideline respects the required measurement and con-
troller gain precision, while ensuring the security level at least
128 bits.

III. HOMOMORPHIC ENCRYPTION
A. GENERAL & PRACTICAL ASPECTS
Homomorphic encryption (HE) algorithms allow to perform
mathematical operations on encrypted data without the need
for its decryption. This brings several benefits since we can
utilize third-party services without revealing data.

Before we provide a basic description of cryptographic
schemes, we define three levels of encrypted information as
follows:

• message commonly noted asm and is defined as a ‘‘raw’’
scalar or a vector (positive or negative integer or floating
point numbers) that needs to be processed before it can
be encrypted. Raw numbers are processed via encoding
procedures resulting in the form of messages suitable for
cryptographic schemes since their algorithms are based
on modular (integer) arithmetic.

• plaintext is the form of message, which is accept-
able for cryptographic schemes. Plaintext is usually
noted as p and has a form of positive integer or
polynomial with integer coefficients depending on the
cryptographic scheme. After decryption, plaintexts are
decoded to recover the original value of message
m or the result from homomorphic operation over
ciphertexts.

• ciphertext often marked as c represents the encrypted
plaintext p hiding the value of the original message in
large integers or polynomials.

These definitions describe the main differences between
messages, plaintexts and ciphertexts. For example, for Paillier
cryptosystem may the values of m, p and c have the
form

−0.5917︸ ︷︷ ︸
m

fD
⇆
fE

4177750720︸ ︷︷ ︸
p

D
⇆
E

741304627931510405︸ ︷︷ ︸
c

(1)

where fE denotes encoding procedure, fD is decoding,
E stands for encryption and D for decryption. The rest of
further used notation is listed in Table 1.

VOLUME 11, 2023 110329

M. Furka et al.: Guidelines for Secure Process Control

TABLE 1. Notation.

The HE algorithms are generally divided into two
main groups, partially (PHE) and fully (FHE) homomor-
phic encryption algorithms. This classification is obtained
regarding the possibility of providing either homomorphic
addition or homomorphic multiplication (PHE) or both
(FHE). The choice of a cryptosystem is generally specified
given the application or user requirements.

In the following lines, we present some of the many
applications where homomorphic algorithms find their use,
such as:

• Voting – One of the simple examples of using HE
schemes is the voting system. It is usually a matter
of counting individual votes, which are anonymous.
For this purpose, cryptographic schemes providing
homomorphic addition find great use [37].

• Data processing – Nowadays exist a lot of cloud
applications that can process data using their algorithms
and can return results in various forms. However, sharing
personal or vulnerable data in public space is not a good
option. Here, HE algorithms can find their use. The
cloud application works with ciphertexts but is still able
to process the real data thanks to homomorphism. The
outcome remains encrypted and only the data owner can
decrypt the result [38].

• Process Control – Based on the process or requirements,
the partially or fully HE algorithms can be used. There
are three types of scenarios for including encryption
schemes into process control algorithms. One aim can be
to secure only the data and the controller remains public.
On the other hand, sometimes the control algorithms
are more valuable than the data itself. Finally, the fully
encrypted closed-loop control can be employed, where
both the data and the controller are encrypted. The
type of HE scheme is chosen for the given control
scenario [29], [39].

In this paper, we focus on the third scenario, the process
control secured via fully homomorphic encryption frame-
works. The majority of current research is focused on secured
data processing, not process control applications. Moreover,
papers oriented towards secured process control consider
partially homomorphic encryption frameworks. The main
drawback of PHE schemes relies on securing only one
element of a closed-loop scheme, thus either the process

measurements or controller parameters remain unencrypted.
By involving fully homomorphic frameworks, we provide
cryptographic security for both, process data and controller.

B. HOMOMORPHIC ENCRYPTION IN PROCESS CONTROL
We consider homomorphic encryption algorithms to secure
the data flow between multiple layers of control systems,
like between the sensor and the controller, or between the
controller and the actuator. Such a feature is heavily needed in
the process industry, where sensors, controllers, and actuators
are rarely tightly coupled in one device but can be connected
via an intranet, wireless networks or they are geographically
separated.

We operate with homomorphic encryption procedures
using the asymmetric key setup. Hence, all messages are
encrypted with a public key but can be decrypted only with
a private key. In process control, we consider the process
as the holder of both keys, whereas in abstract terms, the
sensor encrypts process measurements with the public key,
and sends them to the controller, which has access only to
the public key. The process finally receives encrypted values
of manipulated variables, which are decrypted on the process
side with the private key.

Since the controller has no access to decrypted values of
process measurements, we exploit homomorphic properties
of several cryptographic schemes allowing us to perform
mathematical operations over encrypted values. Note, that the
public key is distributed alongside the encrypted measured
values since the mathematical operations (like addition or
multiplication) cannot be performed without the knowledge
of the public key. Recall, that the encrypted values cannot be
decrypted without the knowledge of the private key, which
remains stored only on the process side.

This paper exploits the possibilities of implementing
traditional control algorithms in a cryptographically secure
framework. We offer step-by-step procedures of how the
implementation of LQ controllers is done within two FHE
schemes.

IV. HOMOMORPHIC ENCRYPTION ALGORITHMS
This section provides the implementation details of incor-
porating a fully homomorphic framework in closed-loop
control. First, we introduce the specifics of the BFV

110330 VOLUME 11, 2023

M. Furka et al.: Guidelines for Secure Process Control

(Section IV-A) and CKKS cryptosystems (Section IV-B).
Second, we introduce the guidelines for setting up individual
parameters of BFV and CKKS for this class of applications.

Given the several existing encryption frameworks pro-
viding cryptographical security for various applications,
we emphasize the most important reasons directing our
choice towards the use of BFV and CKKS cryptosystems:

1) Future-proof Security: Both CKKS and BFV are based
on hardness assumption known as Ring Learning With
Errors (RLWE) and are also classified as lattice-based
or post-quantum cryptosystems. Today, there are no
known algorithms that would solve the RLWE in
sub-exponential time complexity. Contrary to RLWE,
other cryptosystems that rely on large integer factor-
ization (IF) or hardness of discrete logarithm problem
(DLP) are proved to be vulnerable to Shor’s quantum
algorithm. Some of the most popular homomorphic
cryptosystems belong to this category: RSA (IF),
Paillier cryptosystem (IF), Benaloh cryptosystem (IF),
and ElGamal (DLP).

2) Homomorphic Features: Both BFV and CKKS can
perform homomorphic addition and multiplication
while respecting the predefined depth of the arithmetic
circuit. Encoding and decoding procedures are imple-
mented in libraries by default.

3) Process Control Features: Encryption libraries provide
additional features built on top of cryptosystems. In the
case of Microsoft SEAL, we can utilize efficient
algorithms for polynomial evaluation, matrix/vector
addition, matrix-vector multiplication, and vector rota-
tion. These operations are often used in control
algorithms.

4) Parallelism: CKKS and BFV operate in a Single
Instruction/Multiple Data (SIMD) fashion. Multiple
numerical messages can be encoded into the slots
of a single ciphertext, and the subsequent operations
are carried out over all the slots. The implementer
can utilize quite a large number of N /2 (CKKS)
or N (BFV) slots with N being the polynomial
modulus degree (e.g.,N : 1024, 2048, 4096, 8192, etc.).
This brings significant capabilities for parallel data
processing.

In the following lines we describe cryptographic schemes and
homomorphic properties of both BFV and CKKS encryption
frameworks.

A. BRAKERSKI/FAN-VERCAUTEREN (BFV) CRYPTOSYSTEM
The BFV [7] scheme is a leveled HE scheme, which allows
performing the modular arithmetic on encrypted integers.
The number of levels is defined as the number of possible
multiplications over a single ciphertext in one arithmetic
circuit. BFV operates with vector messages encoded and
encrypted into polynomials. The authors relied on the
Brakerski-Gentry-Vaikuntanathan (BGV) [8] scheme, where
they changed the Learning With Errors (LWE) setting to

Ring Learning With Errors (RLWE). Given the RLWE setup,
the ciphertexts in BFV are represented by tuples of two
polynomials, i.e., c = (c[0], c[1]), thus having the size of
2. The ciphertext in BFV is a space bounded by integer
modulus q including message payload and cryptographic
noise. These two elements have to be separated and must
not interact during homomorphic operations, otherwise, the
cryptographic noise will spoil the original message or result.
The payload is limited by interval (0, τ − 1) with τ being
a plaintext modulus and cryptographic noise can move in
the interval (τ, q− 1). The decryption works correctly while
both message payload and cryptographic noise remain in
predefined intervals.

The BFV scheme provides the exact computations, there-
fore, it is the best choice when requiring exact results.

1) HOMOMORPHIC SCHEME
The BFV scheme provides the following procedures:

• Key generation: Given security parameter λ, the private
key kpvt is sampled from uniform distribution over
integers 2. By using this private key and integer coeffi-
cient modulus q, the generation algorithm computes the
public key in the form kpub = ([−Xkpvt + e]q,X) withX
sampled from 2 and e sampled from discrete Gaussian
distribution over integers 8. Also, two important keys
are generated:
– evaluation key keval used to relinearize the cipher-

text obtained from multiplication back to size 2.
– galois key kgal allows to rotate the vectors of

encrypted values to effectively perform homomor-
phic multiplications.

• Encoding: The message vector m in BFV scheme is
encoded into plaintext p having the form of polynomial
whose space is a ring Rτ = Z+

τ [X]/(X
N

+ 1), where
τ is integer plaintext modulus and N is polynomial
modulus degree. The encoding function fE(·) takes as
input plaintext modulus τ and message vectorm

p = fE(m, τ), m = [m1,m2, . . . ,mN] ∈ ZN (2)

and returns plaintext polynomial p in form

p = [p0]τX0
+ [p1]τX1

+ · · · + [pN−1]τX
N−1 (3)

where p0, p1, . . . , pN−1 are positive integer coefficients
smaller than τ .

• Encryption: The polynomial space for ciphertexts is
defined as R2

q = Z+
q [X]/(X

N
+ 1), where 2 in upper

subscript stands for tuple of two elements. To encrypt
the plaintext p, the public key kpub and three random
polynomials v0, v1, v2 with coefficients sampled from8

are used to get the ciphertext c defined as tuple

c = (c[0], c[1]), (4)

with two coordinates c[0] and c[1] computed as

c[0] = [δ · p+ kpub[0] · v0 + v1]q, (5a)

VOLUME 11, 2023 110331

M. Furka et al.: Guidelines for Secure Process Control

c[1] = [kpub[1] · v0 + v2]q. (5b)

where δ = ⌊q/τ⌋ and q is integer coefficient modulus
fulfilling 1 < τ < q.

• Decryption: To decrypt ciphertext c, the decryption
function takes as input private key kpvt and solves

p =

[⌊
τ · [c[0] + c[1] · kpvt]q

q

⌉]
τ

. (6)

• Decoding: The original message or resulting vector
from homomorphic operation is recovered from c by
decoding the plaintext p

m = fD(p, τ) (7)

where fD(·) denotes decoding function.

2) HOMOMORPHIC PROPERTIES
The BFV scheme allows us to perform both homomorphic
addition and homomorphic multiplication operations with
ciphertexts. Thus the cryptographic properties of BFV can be
summarized as follows:

• Ciphertext Addition: To add messages m1 and m2
homomorphically, first step is to encode and encrypt
them into ciphertexts c1 and c2 as

c1 = E(fE(m1)) = (c1[0], c1[1]), (8a)

c2 = E(fE(m2)) = (c2[0], c2[1]), (8b)

and then compute

cA = c1 + c2 = (cA[0], cA[1]), (9a)

cA[0] = [c1[0] + c2[0]]q, (9b)

cA[1] = [c1[1] + c2[1]]q, (9c)

which is the encryption ofm1 + m2.
• Plaintext Multiplication: The BFV scheme provides
multiplication of ciphertext by plaintext (constant)
defined by relation

cP = p · c1 = ([p · cP[0]]q, [p · cP[1]]q), (10)

where p is plaintext or public vector.
• Ciphertext Multiplication: Multiplication of two mes-
sagesm1 andm2 encoded and encrypted as c1 and c2 is
defined as

cM = c1 · c2 = (cM[0], cM[1], cM[2]), (11a)

cM[0] =

[⌊
τ · c1[0] · c2[0]

q

⌉]
q
, (11b)

cM[1] =

[⌊
τ · (c1[0] · c2[1] + c2[0] · c1[1])

q

⌉]
q
,

(11c)

cM[2] =

[⌊
τ · c1[1] · c2[1]

q

⌉]
q
. (11d)

To take the size of the ciphertext cM back to 2, the
relinearization procedure fR(·) using the evaluation key
keval is carried out in the form

cR = fR(cM, keval) = (cR[0], cR[1]), (12a)

cR[0] = cM[0] +

k∑
i=0

keval[i][0] · cM[2](i), (12b)

cR[1] = cM[1] +

k∑
i=0

keval[i][1] · cM[2](i), (12c)

where cR[0] and cR[1] are coordinates of final relin-
earized ciphertext cR.

B. CHEON-KIM-KIM-SONG (CKKS) CRYPTOSYSTEM
The CKKS [11] is a leveled HE scheme that provides
arithmetic operations with real and complex numbers,
and yields approximated results. Similarly to BFV, the
operations in CKKS are carried out over the polynomial
ring Rq = Z+

q [X]/f (X), where q is coefficient modulus
and f (X) = XN + 1 is a polynomial known as polynomial
modulus, while N is chosen to be a power of two. The
elements of Rq are polynomials with integer coefficients
smaller than q and of degree at most (N − 1). The CKKS
uses these polynomials as elements of both plaintexts and
ciphertexts. The main difference in the ciphertext structure
between BFV and CKKS is that CKKS adds cryptographic
noise to the underlying ciphertext payload. To avoid the loss
of numerical correctness, before the encryption, the payload
is multiplied by a scaling factor 1 that moves the significant
bits of the message to the left. After that, the noise is added
to less significant bits of the message space. By encrypting
two numerical vector messages m1 and m2, the underlying
ciphertext payloads would be m1 · 1 and m2 · 1. It is
easy to see that result of ciphertext multiplication (m1 ×

m2) · 12 grows by a factor of 1. To avoid uncontrolled
growth of payload inside the message space, the authors
of CKKS implement a technique called rescaling. During
this procedure, the resulting ciphertext is reduced by 1,
which not only brings the message to the original scale
but also resets the magnitude of cryptographic noise in the
payload. The downside is that the coefficient modulus of
ciphertext polynomials is also rescaled to q/1. To cope with
this issue, the authors introduced a concept of levels. The
fresh ciphertext uses coefficient modulus q at the highest
level L that represents the maximum number of consecutive
multiplications. After every multiplication, the modulus is
reduced by 1. The ciphertext modulus at the highest level
q = q0 · q1 · . . . · qL consists of distinct primes, defined by
their bit sizes, where special prime q0 is the base modulus,
and the number of primes q1, · · · , qL defines the maximum
multiplicative depth of the arithmetic circuit. Additionally,
the public key, relinearization key, and rotation key are
defined at level L + 1 and use another special prime qL+1.
The bit size of these primes is defined during the setup of the
CKKS scheme in the form of an array (sec. V-A, eq. 24).

110332 VOLUME 11, 2023

M. Furka et al.: Guidelines for Secure Process Control

1) HOMOMORPHIC SCHEME
The functionality of the CKKS scheme is based on the
following procedures:

• Key generation: Secret key kpvt is an N -degree poly-
nomial sampled from R2 with coefficient in {−1, 0, 1}
chosen from distribution described in [11, Sec. 3.4].
The public key is then generated as a tuple of two
polynomials kpub = (kpub[0], kpub[1]) = ([−a · kpvt +
e]q, a), where a is polynomial uniformly sampled from
Rq, and e is a random error polynomial with coefficients
sampled from discrete Gaussian distribution 8, defined
by Homomorphic Encryption Security Standard [40].
Similar to BFV, the CKKS also works with:
– evaluation key keval used to reduce the number of

ciphertext elements (polynomials) from three back
to two after every homomorphic multiplication,

– Galois key kgal used to perform encrypted vector
rotation on ciphertexts.

• Encoding: During this procedure, the message payload
in the form of a complex vector

m = [m1, . . . ,mN /2] ∈ CN /2 (13)

is encoded into plaintext polynomial p ∈ Rq. Both
encoding and decoding are done via mapping function
π (·) that performs complex canonical embedding (see.
[11, Sec. 2.2]). The transformation of message m into
plaintext p is then performed via encoding function fE(·)
such that

p = fE(m, 1) =

⌊
1 · π−1(m)

⌉
. (14)

• Encryption: The ciphertext c = (c[0], c[1]), formed by
a tuple of two polynomials, is obtained by the encryption
function

c = E(p, kpub), (15)

calculated element-wise as

c[0] = [kpub[0] · u+ e0 + p]q, (16a)

c[1] = [kpub[1] · u+ e1]q, (16b)

where u ∈ R2 is a random polynomial with signed
binary coefficients, and e0, e1 ∈ 8 are random error
polynomials.

• Decryption: The decryption of ciphertext c on the
private key kpvt is done by evaluating

p̃ = D(c, kpvt) = [c[0] + c[1] · kpvt]q = p+ e. (17)

It is obvious, that the decryption p̃ is not exactly p, but
p+e. If the noise e is small enough, the original plaintext
message p and decrypted p̃ should be very close.

• Decoding: When decoding, the decrypted plaintext is
divided by the scale and mapped back to CN /2 using
a decoding function

m̃ = fD(p̃, 1) = π

(
1
1

· p̃
)

. (18)

2) HOMOMORPHIC PROPERTIES
The CKKS scheme provides the following homomorphic
properties:

• Ciphertext Addition: Assume we have two vector
messages m1 and m2 encoded and encrypted as c1 and
c2, where

c1 = E(fE(m1)) = (c1[0], c1[1]), (19a)

c2 = E(fE(m2)) = (c2[0], c2[1]). (19b)

The homomorphic addition is computed as

cA = c1 + c2 = (cA[0], cA[1]) (20a)

cA[0] = [c1[0] + c2[0]]q, (20b)

cA[1] = [c1[1] + c2[1]]q, (20c)

which after decryption and decoding results in
m1 + m2 + e ≈ m1 + m2.

• Plaintext Multiplication: Multiplication of ciphertext
c by plaintext p is computationally simpler and is
performed as

cP = p · c = ([p · c[0]]q, [p · c[1]]q). (21)

• Ciphertext Multiplication: The CKKS scheme also
provides homomorphicmultiplication of two ciphertexts
c1 and c2 defined as

cM = c1 · c2 = (cM[0], cM[1], cM[2]), (22a)

cM[0] = [c1[0] · c2[1]]q , (22b)

cM[1] = [c1[0] · c2[1] + c2[0] · c1[1]]q , (22c)

cM[2] = [c1[1] · c2[1]]q . (22d)

Since the size of the ciphertext grows, the resulting
ciphertext cM requires the relinearization procedure fR(·)
in order to ensure that the ciphertext has 2 elements.
Ciphertext cM is relinearized as

cR = fR(cM, keval) = (cR[0], cR[1]) (23a)

cR[0] = cM[0] + [⌊γ −1
· cM[2] · keval⌉]q (23b)

cR[1] = cM[1] + [⌊γ −1
· cM[2] · keval⌉]q (23c)

where fR(·) is relinearization function, cR is relinearized
ciphertext, γ is a big integer and keval is evaluation key
described in [11].

V. EXPERIMENTAL SETUP
In our case, the simulation experiments were performed using
Python language. All the results presented in this paper were
obtained on a computer with 3.4GHz processor, 128GB of
RAM and 64-bit operating system. In order to use abovemen-
tioned cryptographic schemes we use the TenSEAL python
library [41] built on the Microsoft SEAL [36]. This section
presents in detail, the effects and importance of individual
parameters for successful implementation of homomorphic
encryption in process control.

VOLUME 11, 2023 110333

M. Furka et al.: Guidelines for Secure Process Control

A. CRYPTOGRAPHIC PARAMETERS
Library TenSEAL includes all the homomorphic properties
and key generation algorithms for BFV and CKKS cryp-
tosystems defined in Microsoft SEAL library. The very first
step when using TenSEAL is to define variable context, which
contains the basic initialization parameters such as

• Polynomial Modulus Degree – denoted as N defining
the degree of plaintext and ciphertext polynomials,
as given in (2) and in (3). The value of N has to be a
power of 2, for example N ∈ (1024, 2048, . . . , 32768).
When choosing N we often face the speed vs. security
compromise problem. The security level grows with
increasing N , but also the computational complexity of
operations over ciphertexts. Thus the choice ofN is not
trivial and depends on the application use case.

• Coefficient Moduli Chain – is a vector of bit lengths of
primes used to handle the size of ciphertext coefficients
(from Eq. (20)). These primes are in cryptographic
definitions often noted as q. The vector consisting of q
sizes has the form of

QQQ = [QS,QM, . . . ,QM︸ ︷︷ ︸
L

,QS] (24)

where QS are called special primes and middle primes
QM are used to handle the ciphertext coefficient
size with L defining the number of QM. In SEAL
implementation, each prime has to respect the restriction
QM,QS ≤ 60 bit. Finally, the sum of QQQ elements is
bounded by security level for defined N (Table 2).

• Plaintext modulus – noted as τ in BFV description.
It represents the largest possible number or result to be
sufficiently decrypted. The value of τ has to be chosen
for the given N as

mod (2N , τ) = 1. (25)

with respect to condition q > τ .
• Scale – the scaling factor 1 defines the space for
messages in CKKS cryptographic scheme, as in (14).
In TenSEAL the 1 is defined in bit length, i.e.,
1 = (15, 20, 25, . . .).

Parameters N and τ are mandatory to choose for BFV
scheme and N and 1 are mandatory parameters for CKKS
configuration. Parameter QQQ is optional and can be set for
both schemes. If the vectorQQQ is not defined, TenSEAL library
chooses default values of prime sizes to ensure the maximal
possible level for given N with respect to security level λ.
By keeping default values, the TenSEAL sets QQQ, such that
a maximum number of homomorphic operations is allowed,
which leads to unnecessary increased time for evaluation of
homomorphic operations. From the perspective of control
applications, where keeping all operations within one sample
instant is of paramount importance, we aim to set the QQQ as
small as possible.

TABLE 2. Bit-security bounds on coefficient modulus bit-sizes in SEAL.

B. CKKS ENCODING & ENCRYPTION
This section presents and elaborates on inaccuracies caused
by the encoding and encryption procedures in the CKKS
approximate arithmetic. Specifically, we consider the follow-
ing indicators:

• absolute error between the chosen testing vector V
and its encoded-decoded result Vecd computed as∑

|V − Vecd|,
• absolute error between V and its encrypted-decrypted
version Vecd defined by relation

∑
|V − Vecd|.

where V = [2.5, 4, −5.6, 9.4, 18.9, −3.5]. The testing
procedure consisted of fixing one or two values of CKKS
initialization parameters and increasing or decreasing the
third one. The results are presented graphically at Figure 1
for encoding procedure and at Figure 2 for encryption.
The bar charts depicted in Figure 1 show the sums of

absolute deviations between V and Vecd with changing
setup parameters. The left chart at Figure 1 shows that
with increasing polynomial modulus degree N the errors
increase, but remain relatively small. In this case, we fixed
the value of scale 1 and coefficient modulus sizes in Q.
Next, the middle graph of Figure 1 shows how the scale
1 affects the precision of encoding in CKKS for fixed
values of N and QQQ. The higher the 1, the more precise the
encoding procedure is. By increasing the scale parameter,
we also increase the space between signal and noise, thus the
encoding procedure provides more precise results. Finally,
when values of coefficient modulus primes in QQQ are getting
larger along with the scale 1, the error between V and Vecd
indistinctly decreases, which is confirmed by the right bar
chart at Figure 1.
Next, we discuss errors introduced by encryption in

CKKS. The results obtained from the testing procedure
for encryption are graphically presented in Figure 2. Since
encryption is the next step after encoding, there already
will be a loss of accuracy from the encoding procedure.
As depicted in Figure 2, the encryption procedure adds more
inaccuracy to encrypted values. However, this amount of
imprecision is negligible compared to the encoded messages.
The high impact of scale on the precision of the original
vector remains the same.

110334 VOLUME 11, 2023

M. Furka et al.: Guidelines for Secure Process Control

FIGURE 1. Bar charts of absolute deviations between vector V and its encoded-decoded version Vecd resulting from testing procedure for
encoding. Left: fixed ∆ and QQQ, middle: fixed N and QQQ, right: fixed N .

FIGURE 2. Bar charts of absolute deviations between vector V and its encrypted-decrypted form Venc resulting from testing procedure for
encryption. Left: fixed ∆ and QQQ, middle: fixed N and QQQ, right: fixed N .

C. BFV WITH FLOATING POINT NUMBERS
The BFV scheme operates with integers. Thus, to modify or
transform the floating point number into an integer we can
simply multiply the number by powers of 10 as

I = ⌊F · 10θ
⌋, (26)

where I is integer, F is floating point number and θ is
precision degree, usually equal to 1, 2, 3 or higher. Note,
that the final value of the I can be both positive and
negative. There are limits on θ due to parameters N and τ ,
as shown later. One such parameter that bounds the value
of θ is plaintext modulus τ , which defines the maximum
value of an integer that can be encoded. The correct choice
of θ is important mainly with respect to the plaintext
modulus τ .
Consider an example of two floating point numbers

F1 = 0.1587 and F2 = 2.9879. The aim is to homomorphi-
cally multiply F1 by F2. First, we transform F1 and F2 into
integer form with (26) and the required precision degree θ as

I1 = ⌊F1 · 10θ
⌋, (27a)

I2 = ⌊F2 · 10θ
⌋. (27b)

TABLE 3. Table of plaintext modulus and precision degrees for BFV.

Next, we encrypt I1 and I2 and homomorphically multiply
them. Since the result from homomorphicmultiplication, thus
the precision degree θ is limited by plaintext modulus τ as

τ > I1I2, (28)

we performed several experiments with several combinations
of θ and τ to demonstrate their interdependence.

The results presented in Table 3 show that precision degree
is dependent on plaintext modulus τ . From the final column,
it is clear that with rising plaintext modulus τ we are able
to get more precise results. However, the value of τ has
to be chosen according to the BFV scheme polynomial

VOLUME 11, 2023 110335

M. Furka et al.: Guidelines for Secure Process Control

modulus (25). In our case, we considered polynomial
modulus N = 8192 and used the default QQQ for given N
provided by TenSEAL library.

D. BFV & CKKS LEVELS
Before HE schemes will be included to control algorithms,
we performed several settings and computational experi-
ments to find the suitable scheme setup for the process
control. Both BFV and CKKS are presented as leveled
cryptographic schemes, where the number of levels is defined
by a number of possible homomorphic multiplications over
a single ciphertext until the relinearization procedure is
able to recover the original message. This property is also
referred to as multiplicative depth. The testing procedure for

Algorithm 1Multiplicative Depth Test
M = 0
while a = D(ae) do

ae = aebe
M = M+ 1

end

the acquisition of the multiplicative depth for each scheme
was performed using the Algorithm 1, where a = 1,
ae = E(1), be = E(1) and the value of M represents
the multiplicative depth. We define various combinations of
parameters (N ,QQQ,1) for CKKS and (N ,QQQ,τ) for BFV and
use the testing algorithm to define the maximal level of both
schemes for different cryptographic settings. The numerical
results are presented in Table 4.

Based on the results listed in Table 4 we conclude that the
number of middle primes L defines the multiplicative depth
M for given initialization parameters. Thus, we introduce the
following steps leading to the correct setting of cryptographic
parameters with respect to definitions in SectionV-A, Table 4,
and user requirements.

E. GUIDELINE FOR CONFIGURATION SETUP
For CKKS, we recommend the following procedure for
selecting the moduli chain QQQ, scaling factor 1, and corre-
sponding polynomial modulus degreeN . Recall that sizes are
expressed in a number of bits, and the guideline is as follows:

1) Select the desired binary precisions of messages’
integer part ηI = QS − QM and decimal part
ηD ≈ 2QM − QS.

2) Calculate the sizes ofQS andQM, such thatQM ≥ 20,
QS ≥ QM + 10, and QM,QS ≤ 60.

3) Set scaling factor 1 = QM.
4) Select a maximum multiplicative depth M of an

arithmetic circuit to be the longest consecutive chain
of homomorphic multiplications of a ciphertext propa-
gating through the algorithm.

5) Calculate
∑
QQQ = 2QS +MQM.

6) For desired security level λ, findN in Table 2 such that∑
QQQ ≤ Qmax.

TABLE 4. Table of BFV and CKKS multiplicative benchmarks.

7) If N is too high, and therefore the setup is too
computationally complex, the implementer can iterate
through the procedure and select lower precision
requirements.

8) On the other hand, if the computational burden is of
little concern, and the difference between

∑
QQQ and

Qmax is considerable, the implementer can increase the
precision of messages.

Example: Consider the required precision for integer part
ηI = 14 bits and decimal part ηI ≈ 17 bits. Solving
the equations in the first point yields QS = 45 bits and
QM = 31 bits. The scale 1 would be set to be the length of
31 bits. If the implementer needs to perform three consecutive
multiplications, the multiplicative depth is M = 3, which
results in the sum of the moduli chain to be

∑
QQQ = 2 ×

45 + 3 × 31 = 183 bits. Table 2 shows that for 128-bit
security level, the polynomial modulus degree is N = 8192.
Since the maximum sum of the moduli chain is 218 bits,
the implementer still has 35 bits to allocate for setup. These
can be used to increase the precision or extend multiplicative
depth by another operation.

For selecting the moduli chainQQQ, plaintext modulus τ , and
polynomial modulus N for BFV, we recommend the follow
this procedure.

1) Select the desired precision degree θ to obtain integer
form as in (26).

2) Define maximum multiplicative depth M given the
application or user requirements.

3) For givenM, compute τ0 = 10(M+1)θ

4) Calculate the sizes of QS and QM, such that
QM ≥ log2(τ010

3),QS ≥ QM+10, andQM,QS ≤ 60.
5) Calculate

∑
QQQ = 2QS +MQM

6) For desired security level λ, findN in Table 2 such that∑
QQQ ≤ Qmax.

7) Regarding N , calculate plaintext modulus τ using the
algorithm 2 initialized with τ0.

8) If N is too high, and therefore the setup is too
computationally complex, the implementer can iterate
through the procedure and select lower precision
requirements.

9) On the other hand, if the computational burden is of
little concern, and the difference between

∑
QQQ and

110336 VOLUME 11, 2023

M. Furka et al.: Guidelines for Secure Process Control

Algorithm 2 Plaintext Modulus Generation
τ = τ0
while mod (2N , τ) ̸= 1 do

τ = nextPrime(τ)
end

Qmax is considerable, the implementer can increase the
precision of messages.

Note, that the function nextPrime() gives the nearest
greater prime number to τ .
Example: Consider the required precision degree θ =

2 and multiplicative depth M = 2. Solving the equations
in the third point yields τ0 = 106. According to limitations in
point four, we getQM = 30 andQS = 40. If the implementer
needs to perform two consecutive multiplications, the sum of
themoduli chain is

∑
QQQ = 2×40+2×30 = 140 bits. Table 2

shows that for 128-bit security level, the polynomial modulus
degree isN = 8192. For givenN , the algorithm 2 generates
τ = 1032193. Since the maximum sum of the moduli chain
is 218 bits, the implementer still has 78 bits to allocate for
setup. These can be used to increase the precision degree or
extend multiplicative depth by another operation.

Recall that the bit length 60 comes from the TenSEAL
library, as presented in Sec. V-A. Note that the definition of
QQQ is optional and not trivial. The user can omit the setting of
QQQ manually, and TenSEAL library will provide the defaultQQQ
ensuring the maximal possible level of the scheme for given
N with regard to the security level. However, we recommend
manually setting the QQQ for direct control of the number of
homomorphic multiplications and sizes of all primes.

VI. ENCRYPTED PROCESS CONTROL
This section presents the implementation of homomorphic
crypto schemes in connection with a state-feedback con-
trol algorithm. We utilize the setup guideline from the
previous section to define the cryptographic parameters
for each cryptosystem regarding the encrypted control
scenario. Here, the simulated measurement data are fully
encrypted between the sensor of the process, the controller,
and the actuator. Moreover, we also present a scenario
where the state-feedback gain is also encrypted. From the
technical point of view, the private key is stored only at
the side of the process; hence no other elements of the
closed-loop have access to the actual values of the simulated
measurements.

A. LQR CONTROL
For this case study we worked with the model of the inverted
pendulum. This process was chosen mainly because of its
fast dynamics, thus to test the efficiency of the homomorphic
crypto schemes with different setup parameters. The behavior
of the inverted pendulum is described by discrete time state
space model derived from nonlinear model [42] for the

sampling period Ts = 0.05 s and defined as

xk+1 = Axk + Buk (29)

where matrices A and B are

A =


1 0.0498 0.0034 0.0001
0 0.9909 0.1348 0.0034
0 −0.0006 1.0392 0.0507
0 −0.0229 1.5779 1.0392

 (30a)

B =
[
0.0023 0.0908 0.0057 0.2292

]⊤ (30b)

and uk is scalar control input at current step k . State vector
xk contains 4 states representing the physical quantities as
follows:

x1 − pendulum angle,

x2 − pendulum angular velocity,

x3 − cart position,

x4 − cart linear velocity,

and uk represents pendulum cart acceleration.
We present control strategy with the LQR controller using

the homomorphic encryption properties to compute the state
feedback control action respecting the control law

uk = −Kxk (31)

where the controller K was acquired by solving problem

min
∞∑
k=0

(x⊤
k Qxk + u⊤

k Ruk), (32a)

s.t. xk+1 = Axk + Buk (32b)

for system matrices (30) and tuning factors

Q = diag
([
1 0 1 0

])
, (33a)

R = 1. (33b)

The feedback gain was of the following form

K =
[
−0.7277 −1.2529 15.7967 2.9145

]⊤ (34)

Next step was to include BFV and CKKS cryptographic
schemes in the state feedback control algorithm for two
scenarios.

In the first scenario S1, the controller K was considered
a public constant and only states xk were encrypted. For the
second scenario S2, both the states and the controller parame-
ters were encrypted, thus we exploit the ciphertext-ciphertext
multiplication property. We performed several experiments
with various setups listed in Table 5 to demonstrate the
impact of cryptographic parameters on the control quality
and computational complexity for both scenarios. We also
measured the storage sizes V(·) of all keys. Configurations of
HE schemes were defined according to guidelines described
at the end of Section V-E.

The experiments were performed using algorithm 3, which
represents the closed-loop encrypted state feedback control
including presented HE schemes. Here, symbols pxk and puk

VOLUME 11, 2023 110337

M. Furka et al.: Guidelines for Secure Process Control

TABLE 5. Table of various parameter setups and corresponding key sizes.

FIGURE 3. Control performances and inputs of encrypted control for the scenario S1 with public controller K and encrypted states xEk . Two upper
graphs represent state behavior obtained by control inputs depicted at two lower graphs for each scheme. The subsequent lines represent
encrypted control with the following setups from Table 5: Dotted line - B1 and C1, dashed line - B2 and C2, solid line - B3 and C3.

represent state and control input plaintexts, cxk and c
u
k denote

state and control input ciphertexts and cK marks controller
ciphertext.

For each experiment, we computed the sum of control
input errors U =

∑
|u − uenc|, average (t̄) and maximum

(t̂) evaluation times of control law over ciphertexts, and
ciphertext binary size V(c). The graphical results are depicted
at Figure 3 and Figure 4 and the corresponding numerical
results are listed in Table 6.

The set of graphs in Figure 3 represent the results of
encrypted control for scenario S1 with three setups for each
scheme listed in Table 5. The associated numerical results
are presented in Table 6. Setup B1 for BFV provides the
highest sum of control input errors U = 16.19 comparing
to B2 and B3. This result is a consequence of low precision
degree θ . On the other hand, setup B1 offers the fastest
computations over ciphertexts (t̄ = 1.5ms, t̂ = 2.9ms)

due to lowest modulus degree N . The opposite to B1 is
setup B3 providing the lowest U = 0.15 but for the price
of highest computational times (t̄ = 6.8ms, t̂ = 8.2ms).
The more precise results are obtained thanks to higher θ ,
thus larger τ . However, the computations over ciphertexts
are slower due to the higher value of N . The setup B2 is
somewhere between B1 and B2 in terms of computational
times and also numerical results. For the CKKS, the results
have similar characters when switching between setups C1,
C2, and C3. Here, the results are more precise for higher values
of 1, but the computations get slower with increasing N .
The ciphertext sizes V(c) are for the BFV twice as big as
for CKKS, since BFV encodes and encrypts N slots, while
CKKS only N /2 slots.

The graphical results depicted in a group of charts at
Figure 4 were obtained for scenario S2. The corresponding
numerical results are listed in Table 6. For BFV setups B1,

110338 VOLUME 11, 2023

M. Furka et al.: Guidelines for Secure Process Control

FIGURE 4. Control performances and inputs of encrypted control for the scenario S2 with encrypted controller KE and encrypted states xEk . Two
upper graphs represent state behavior obtained by control inputs depicted at two lower graphs for each scheme. The subsequent lines represent
encrypted control with the following setups from Table 5: Dotted line - B1 and C1, dashed line - B2 and C2, solid line - B3 and C3.

Algorithm 3 Encrypted State Feedback Control

Process:
Measure states: xk
Encode states: pxk = fE(xk)
Encrypt states: cxk = E(pxk)

Controller:
if Scenario S1 then

Evaluate control law: cuk = −Kcxk
else if Scenario S2 then

Evaluate control law: cuk = cK cxk
end

Process:
Decrypt control input: puk = D(cuk)
Decode control input: uk = fD(puk)
Apply control input: uk

return

B2 and B3 the values of U remain the same due to similar
precision degrees θ and plaintext modulus τ . What differs
the scenario S1 from S2 are the computational times t̄ and
t̂ . Since for S2 we utilize the homomorphic multiplication
over ciphertext, both t̄ and t̂ are more than two times higher
due to the relinearization procedure that needs to be evaluated
after each homomorphic multiplication. For the CKKS setups
C1, C2 and C3 we observe an increase of sum of control
input errors U . This growth is a consequence of errors

TABLE 6. Table of experimental results for both control scenarios.

emerging from encoding procedures based on approximate
arithmetic. With increasing of scaling factor 1 the sum of
control input errorsU decreases since higher1 providesmore
space for messages and the rounding error affects less the
original message. Similar to BFV, the computational times
t̄ and t̂ have grown due to the presence of relinearization
procedure after homomorphic multiplication. However, both
times remained almost two times smaller compared to BFV
setups as in scenario S1. The ciphertext sizes V(c) remained
at the same level as for scenario S1.
Overall, we conclude that from a computational com-

plexity point of view, all of the presented setups were

VOLUME 11, 2023 110339

M. Furka et al.: Guidelines for Secure Process Control

sufficient, thus their average and maximum computational
times remained within the sampling period Ts = 50ms.
However, regarding the computed sum of control input errors
and graphical results, we conclude that setups B2 and B3 for
BFV or C2 and C3 for CKKS provide sufficient results in
encrypted control of such a fast and unstable process like the
inverted pendulum.

The presented results confirm that with increasing polyno-
mial modulus degreeN grows the computational complexity.
However, higher N defines larger ring R providing more
space for numerical precision (higher τ or 1) and giving the
possibility to perform several homomorphic multiplications
(more middle primes inQQQ).

VII. CONCLUSION
Homomorphic encryption is a promising technique for
ensuring data security in the process control domain.
We presented fully homomorphic encryption (FHE) methods
that allow deploying controllers in any cloud services without
revealing sensitive process data. We explored two principal
FHE frameworks, BFV and CKKS, built above the RLWE
approach. This paper provides a detailed guideline for
implementing a state-feedback controller in the process
control and the mechatronics domain. The overall success of
closed-loop implementation with FHE depends on the proper
selection of parameters. Therefore, we suggest following
the guidelines in this paper for setting parameters to ensure
that the encryption scheme provides the desired level of
security, computational efficiency, and satisfactory control
performance.

REFERENCES
[1] M. Dworkin, E. Barker, J. Nechvatal, J. Foti, L. Bassham, E. Roback, and

J. Dray, ‘‘Advanced encryption standard (AES),’’ Tech. Rep., 2001.
[2] R. L. Rivest, A. Shamir, and L. Adleman, ‘‘A method for obtaining digital

signatures and public-key cryptosystems,’’ Commun. ACM, vol. 21, no. 2,
pp. 120–126, Feb. 1978.

[3] T. Elgamal, ‘‘A public key cryptosystem and a signature scheme based
on discrete logarithms,’’ IEEE Trans. Inf. Theory, vol. IT-31, no. 4,
pp. 469–472, Jul. 1985.

[4] J. Benaloh, ‘‘Dense probabilistic encryption,’’ in Proc. Workshop Sel.
Areas Cryptogr., 1994, pp. 120–128.

[5] P. Paillier, ‘‘Public-key cryptosystems based on composite degree residuos-
ity classes,’’ in Advances in Cryptology—EUROCRYPT, vol. 1592, J Stern,
Ed., 1999, pp. 223–238.

[6] C. Gentry, ‘‘Fully homomorphic encryption using ideal lattices,’’ in Proc.
41st Annu. ACM Symp. Theory Comput., New York, NY, USA, May 2009,
pp. 169–178.

[7] J. Fan and F. Vercauteren, ‘‘Somewhat practical fully homomorphic
encryption,’’ Cryptol. ePrint Arch., Tech. Rep. 2012/144, 2012.

[8] Z. Brakerski, C. Gentry, and V. Vaikuntanathan, ‘‘(Leveled) fully
homomorphic encryption without bootstrapping,’’ ACM Trans. Comput.
Theory, vol. 6, no. 3, pp. 1–36, Jul. 2014.

[9] I. Chillotti, N. Gama, M. Georgieva, and M. Izabachéne, ‘‘FHE: Fast fully
homomorphic encryption over the torus,’’ J. Cryptol., vol. 33, pp. 34–91,
Jan. 2020.

[10] L. Ducas and D. Micciancio, ‘‘FHEW: Bootstrapping homomorphic
encryption in less than a second,’’ Cryptol. ePrint Arch.,
Tech. Rep. 2014/816, 2014.

[11] J. H. Cheon, A. Kim, M. Kim, and Y. Song, ‘‘Homomorphic encryption for
arithmetic of approximate numbers,’’ in International Conference on the
Theory and Application of Cryptology and Information Security, T. Takagi
and T. Peyrin, Eds. Cham, Switzerland: Springer, 2017, pp. 409–437.

[12] H. Karim and D. B. Rawat, ‘‘TollsOnly please—Homomorphic encryption
for toll transponder privacy in Internet of Vehicles,’’ IEEE Internet Things
J., vol. 9, no. 4, pp. 2627–2636, Feb. 2022.

[13] H. Yu, L. Yin, H. Zhang, D. Zhan, J. Qu, and G. Zhang, ‘‘Road distance
computation using homomorphic encryption in road networks,’’ Comput.,
Mater. Continua, vol. 69, no. 3, pp. 3445–3458, 2021.

[14] X. Yang, X. Yi, S. Nepal, A. Kelarev, and F. Han, ‘‘A secure verifiable
ranked choice online voting system based on homomorphic encryption,’’
IEEE Access, vol. 6, pp. 20506–20519, 2018.

[15] A. Wood, V. Shpilrain, K. Najarian, and D. Kahrobaei, ‘‘Private naive
Bayes classification of personal biomedical data: Application in cancer
data analysis,’’ Comput. Biol. Med., vol. 105, pp. 144–150, Feb. 2019.

[16] G. S. Çetin, H. Chen, K. Laine, K. Lauter, P. Rindal, and Y. Xia, ‘‘Private
queries on encrypted genomic data,’’ BMC Med. Genomics, vol. 10, no. 2,
p. 45, Jul. 2017.

[17] H. Huang and L. Wang, ‘‘Efficient privacy-preserving face verification
scheme,’’ J. Inf. Secur. Appl., vol. 63, Dec. 2021, Art. no. 103055.

[18] IEEE Standard for Biometric Privacy, Standard IEEE 2410–2021, Institute
of Electrical and Electronics Engineers, Institute of Electrical and
Electronics Engineers, 2021.

[19] M. Schulze Darup, A. B. Alexandru, D. E. Quevedo, and G. J. Pappas,
‘‘Encrypted control for networked systems: An illustrative introduction and
current challenges,’’ IEEE Control Syst. Mag., vol. 41, no. 3, pp. 58–78,
Jun. 2021.

[20] L. Zhang, Y. Chen, and M. Li, ‘‘ADP-based remote secure control for
networked control systems under unknown nonlinear attacks in sensors
and actuators,’’ IEEE Trans. Ind. Informat., vol. 18, no. 9, pp. 6003–6014,
Sep. 2022.

[21] S. Zhou, Z. Yu, E. S. A. Nasr, H. A. Mahmoud, E. M. Awwad, and
N. Wu, ‘‘Homomorphic encryption of supervisory control systems using
automata,’’ IEEE Access, vol. 8, pp. 147185–147198, 2020.

[22] M. Miyamoto, K. Teranishi, K. Emura, and K. Kogiso, ‘‘Cybersecurity-
enhanced encrypted control system using keyed-homomorphic public key
encryption,’’ IEEE Access, vol. 11, pp. 45749–45760, 2023.

[23] J. Tran, F. Farokhi, M. Cantoni, and I. Shames, ‘‘Implementing homo-
morphic encryption based secure feedback control,’’ Control Eng. Pract.,
vol. 97, Apr. 2020, Art. no. 104350.

[24] Y. Lin, F. Farokhi, I. Shames, and D. Nešić, ‘‘Secure control of nonlinear
systems using semi-homomorphic encryption,’’ in Proc. IEEEConf. Decis.
Control (CDC), Dec. 2018, pp. 5002–5007.

[25] M. Ruan, H. Gao, and Y. Wang, ‘‘Secure and privacy-preserving
consensus,’’ IEEE Trans. Autom. Control, vol. 64, no. 10, pp. 4035–4049,
Oct. 2019.

[26] M. S. Darup, A. Redder, and D. E. Quevedo, ‘‘Encrypted cooperative
control based on structured feedback,’’ IEEE Control Syst. Lett., vol. 3,
no. 1, pp. 37–42, Jan. 2019.

[27] A. B. Alexandru, K. Gatsis, Y. Shoukry, S. A. Seshia, P. Tabuada,
and G. J. Pappas, ‘‘Cloud-based quadratic optimization with partially
homomorphic encryption,’’ IEEE Trans. Autom. Control, vol. 66, no. 5,
pp. 2357–2364, May 2021.

[28] A. B. Alexandru, M. Morari, and G. J. Pappas, ‘‘Cloud-based MPC with
encrypted data,’’ in Proc. IEEE Conf. Decis. Control (CDC), Dec. 2018,
pp. 5014–5019.

[29] M. S. Darup, A. Redder, I. Shames, F. Farokhi, and D. Quevedo, ‘‘Towards
encrypted MPC for linear constrained systems,’’ IEEE Control Syst. Lett.,
vol. 2, no. 2, pp. 195–200, Apr. 2018.

[30] C. Gouert, R. Khan, and N. G. Tsoutsos, ‘‘Optimizing homomorphic
encryption parameters for arbitrary applications,’’ Cryptol. ePrint Arch.,
to be published.

[31] J. Cabrero-Holgueras and S. Pastrana, ‘‘Towards automated homomorphic
encryption parameter selection with fuzzy logic and linear programming,’’
Expert Syst. Appl., vol. 229, Nov. 2023, Art. no. 120460.

[32] V. Herbert, ‘‘Automatize parameter tuning in ring-learning-with-errors-
based leveled homomorphic cryptosystem implementations,’’ Cryp-
tol. ePrint Arch., Tech. Rep., 2019/1402, 2019. [Online]. Available:
https://eprint.iacr.org/2019/1402

[33] M. Yagisawa, ‘‘Fully homomorphic encryption without bootstrapping,’’
IACR Cryptol. EPrint Arch., vol. 2015, p. 474, Jan. 2015.

[34] (May 2013). Helib v2.2.1. [Online]. Available:
https://github.com/homenc/HElib

[35] (Aug. 2022). Lattigo v4, EPFL-LDS, Tune Insight SA. [Online]. Available:
https://github.com/tuneinsight/lattigo

110340 VOLUME 11, 2023

M. Furka et al.: Guidelines for Secure Process Control

[36] Microsoft SEAL (Release 3.6), Microsoft Research, Redmond, WA, USA,
Nov. 2020. [Online]. Available: https://github.com/Microsoft/SEAL

[37] S.M. Anggriane, S.M. Nasution, and F. Azmi, ‘‘Advanced e-voting system
using Paillier homomorphic encryption algorithm,’’ in Proc. Int. Conf.
Informat. Comput. (ICIC), Oct. 2016, pp. 338–342.

[38] W. Ding, Z. Yan, and R. H. Deng, ‘‘Encrypted data processing
with homomorphic re-encryption,’’ Inf. Sci., vols. 409–410, pp. 35–55,
Oct. 2017.

[39] M. Furka, K. Kiš, M. Klauco, and M. Kvasnica, ‘‘Usage of homomorphic
encryption algorithms in process control,’’ in Proc. 23rd Int. Conf. Process
Control (PC), Jun. 2021, pp. 43–48.

[40] M. Albrecht, M. Chase, H. Chen, J. Ding, S. Goldwasser, S. Gorbunov,
S. Halevi, J. Hoffstein, K. Laine, K. Lauter, S. Lokam, D. Micciancio,
D. Moody, T. Morrison, A. Sahai, and V. Vaikuntanathan, ‘‘Homomorphic
encryption security standard,’’ HomomorphicEncryption.org, Toronto,
ON, Canada, Tech. Rep., Nov. 2018.

[41] A. Benaissa, B. Retiat, B. Cebere, and A. E. Belfedhal, ‘‘TenSEAL: A
library for encrypted tensor operations using homomorphic encryption,’’
Tech. Rep., 2021.

[42] P. Bakarác,M.Kalúz, and L. Cirka, ‘‘Design and development of a low-cost
inverted pendulum for control education,’’ in Proc. 21st Int. Conf. Process
Control (PC), Jun. 2017, pp. 398–403.

M. FURKA received the master’s degree in
process control from the Slovak University of
Technology in Bratislava, where he is currently
pursuing the Ph.D. degree with the Department of
Information Engineering and Process Control. His
research interest includes the implementation of
homomorphic encryption frameworks in secured
process control strategies.

M. KALÚZ received the M.Sc. and Ph.D. degrees
in process control from the Slovak University of
Technology in Bratislava (STUBA), in 2010 and
2014, respectively. Currently, he is a Postdoc-
toral Researcher and an Assistant Professor with
STUBA. His research interests include control
education, information technologies, and process
control security.

M. FIKAR received the M.E. and Ph.D. degrees in
chemical engineering from the Slovak University
of Technology in Bratislava, in 1989 and 1994,
respectively. He has stayed with the Faculty
of Chemical and Food Technology, STUBA,
where he is currently a Professor and the Insti-
tute Director. He was a Postdoctoral Fellow in
Nancy, France, Alexander von Humboldt Fellow
in Bochum, Germany, and has spent several stays
in Denmark, Germany, France, and Switzerland.

He is the coauthor of two international monographs, 80 journal articles, and
more than 200 peer-reviewed conference publications. His current research
interests include optimal control, MPC, and chemical process control.

M. KLAUČO (Member, IEEE) received the M.Sc.
degree in automation from Denmark Technical
University and the master’s degree in process
control from the Slovak University of Technology
in Bratislava (STUBA), where he is currently
pursuing the Ph.D. degree (summa cum laude) in
process control. He is also an Associate Professor
in cybernetics and the Head of the Department
of Information Engineering and Process Control,
STUBA. His current research interests include

applications of optimal control and machine learning in connection with
secure control.

VOLUME 11, 2023 110341

