
The Essence of Verilog (Artifact Document)

1 Introduction

Our accompanying paper describes a core language, λV , that defines formal operational
semantics for Verilog.

This artifact provides a Java implementation of λV , which includes an λV interpreter
based on its formal semantics and a frontend that converts Verilog to λV .

Furthermore, this artifact offers an evaluation environment that allows for the reproduc-
tion of the results stated in our companion paper. Specifically:

• In our contribution, we describe that λV can detect semantic bugs in real-world Verilog
simulators and expose ambiguities in Verilog’s standard specification. While Sections
5.1 and 5.2 of our paper discuss some bugs and ambiguities, space constraints limit the
inclusion of all findings. Sections 3.1 and 3.2 in this document elaborate on the un-
addressed bugs and ambiguities, providing instructions and test cases for reproducing
them.

• In Section 4 of our paper, we describe that λV is tested in terms of totality for desugar-
ing real-world Verilog programs and its conformance to the Verilog specification. Our
testing involves two distinct test suites:

1. Language Features Suite. This suite comprises 824 test cases designed to
comprehensively cover various Verilog language features. Section 3.3 provides
detailed instructions to reproduce results mentioned in Section 4 of our paper
related to this test suite. It includes the results shown in Table 3 in our paper,
and the validation regarding whether λV , Icarus Verilog , and Verilator can pass
this test suite. Note that Icarus Verilog and Verilator are two reputable open-
source Verilog simulators, and their results on this test suite serve as as the closest
approximation to the absent formal Verilog specification, against which we gauge
λV ’s conformance.

2. Real-World Programs Suite. This second test suite draws from real-world
programs that tightly combine language features. Section 3.4 provides instruc-
tions to verify the results mentioned in Section 4 of our paper regarding λV ’s
ability to pass this test suite.

Before proceeding with the evaluation of these claims, let’s first set up our artifact and
perform a sanity check.

1

2 Getting Started

2.1 Basic Requirements

• Hardware. In our paper, all experiments were conducted on a mid-range desktop or
laptop with 4-6 cores and 8GB-16GB of memory. Therefore, we believe that the results
can be reproduced on most devices commonly used for daily work. However, for better
performance, we recommend a configuration with 6 cores and 16GB of memory.

• Environment. To simplify the setup of our artifact, we have provided a Docker image
that includes the fully configured evaluation environment. This Docker image includes
the installation of JDK 17, Icarus Verilog , and Verilator . Hence, the only requirement
is to have Docker installed on your machine. Our Docker image has been tested on
Linux. If you encounter any issues on Windows or macOS, we recommend using a
Linux device for optimal compatibility.

2.2 Artifact Setup

To get started, please install Docker on your system. If you have already installed Docker,
you can skip this step. Follow the instructions below based on your operating system:

• For Mac or Windows users, please visit https://docs.docker.com/get-docker/ and
follow the instructions to install Docker Desktop.

• For Linux users, we recommend installing the Docker engine by following the instruc-
tions at https://docs.docker.com/engine/install/.

Once Docker is installed, you can easily set up our artifact by following these steps:

1. Load the Docker image into your system. Note that for Mac or Windows users, you
need to first start Docker Desktop to enable the docker command. Then, type the
following command in your terminal:

$ docker load --input lv-artifact.tar.gz

Please note that this step may take several minutes due to the large size of the
Docker image. (Note: If you are using Finch instead of Docker, please add the option
--all-platforms to the command.)

2. Launch a container from the loaded image. Specify the image name as lv:oopsla23

and choose a container name, such as lv:

$ docker run --name lv -it lv:oopsla23

Once the container is launched, you will enter an interactive shell of the container. To exit
the interactive shell, use the command exit or Ctrl-d. If you want to re-enter the container
after exiting, use the following command to restart and re-enter the same container:

$ docker start -i lv

2

https://docs.docker.com/get-docker/
https://docs.docker.com/engine/install/

2.3 Artifact Content

Once you have launched the container and entered the interactive shell, please use the cd

command to navigate to the home directory (/root). You can view the content of our
artifact by executing the ls command:

$ cd && ls

In the home directory, you will find the following five directories:

• qihe/: This directory contains our implementation of λV (including its full source
code), which is a Java project using Gradle as the build tool. Additionally, this di-
rectory houses our two essential test suites. The test cases for the Language Features
Suite are located in the following path:

qihe/lambdav/src/test/resources/testcases/verilog/iverilog

Meanwhile, the test cases for the Real-World Programs Suite can be found here:

qihe/lambdav/src/test/resources/testcases/verilog/realwolrd

For ease of reference when inspecting test cases in Section 3, we’ve exported these
paths as environment variables, namely LANG SUITE and RW SUITE. You can verify
their definition using the following commands:

$ echo $LANG_SUITE

/root/qihe/lambdav/src/test/resources/testcases/verilog/iverilog

$ echo $RW_SUITE

/root/qihe/lambdav/src/test/resources/testcases/verilog/realworld

• iverilog/ and verilator/: These directories contain the source code of two other
popular open-source Verilog simulators that we will compare with in our evaluation.
They have been compiled and installed using their latest stable versions at the time
of our paper submission.

• scripts/: This directory provides easy-to-use scripts that facilitate the reproduction
of the results presented in our paper.

• demo/: This directory contains some cases for demonstration purposes.

2.4 Sanity Check

The evaluation of our artifact involves running the λV interpreter and two simulators: Icarus
Verilog and Verilator . We have compiled and installed them all in our Docker image. Let’s
perform a sanity check to ensure they can run.

To check λV , we provide a script called lv to execute the main class of our Java project,
which is placed in the /root/qihe/lambdav/build/install/lv/bin directory. Because we
have exported this directory to the PATH environment variable, you can run the lv script
directly:

$ lv --help

You will see the usage information displayed:

3

Usage: lv [-chiVx] [-o=<out>] [--seed=<seed>] [-t=<till>] [SOURCE...]

lv compiler and interpreter

[SOURCE...] the LambdaV program to interpret or the Verilog program

to compile

-c, --compile compile a Verilog program into a LambdaV program

-h, --help Show this help message and exit.

-i, --interpret interpret a LambdaV program

-o, --out=<out> output a LambdaV program into a file

--seed=<seed> set the seed of random number

-t, --till=<till> interpret the program for some specific time steps

-V, --version Print version information and exit.

-x, --explore explore the state space of a LambdaV program

Example: lv -c in.v -o out.lv (compile Verilog to LambdaV program)

or: lv -i a.lv -t 4 (interpret a LambdaV program for 4 time steps)

or: lv -x a.lv -t 4 (explore the state space of a LambdaV program)

or: lv -ci in.v -t 4 (compile and interpret a Verilog program)

or: lv a.lv -o b.lv (format a LambdaV file)

To further verify the functionality, we have included a classic “Hello World” Verilog
program. You can execute the following command to compile the Verilog program into an
equivalent λV program and interpret it:

$ lv -ci /root/demo/hello.v -o /tmp/hello.lv

In this command, the -c option instructs the lv to compile the Verilog program hello.v

into an equivalent λV program. The -o /tmp/hello.lv option specifies the output path
for the compiled λV program, which in this case is /tmp/hello.lv. You can omit this
option if you do not want to inspect the compiled λV program. After compilation, the lv

will interpret the compiled program due to the -i option. The expected output of this
interpretation should be:

Hello, world!

The generated λV program will look like this:

$ cat /tmp/hello.lv

var .dumb : b0

proc main.$p0 .dumb = $display("Hello, world!")

To check the executables of Icarus Verilog and Verilator , you can use the following
commands and observe the corresponding results:

$ iverilog -h

Usage: iverilog [-EiRSuvV] [-B base] [-c cmdfile|-f cmdfile]

[-g1995|-g2001|-g2005|-g2005-sv|-g2009|-g2012] [-g<feature>]

[-D macro[=defn]] [-I includedir] [-L moduledir]

[-M [mode=]depfile] [-m module]

[-N file] [-o filename] [-p flag=value]

[-s topmodule] [-t target] [-T min|typ|max]

[-W class] [-y dir] [-Y suf] [-l file] source_file(s)

4

See the man page for details.

$ verilator --version

Verilator 5.008 2023-03-04 rev v5.008

2.5 Run Single File

In Section 3, you may need to run different tools on individual Verilog file to reproduce the
results mentioned in our paper. To simplify this process, we provide an easy-to-use script,
/root/scripts/run.sh, which allow you to run a single Verilog file. Since we have exported
/root/scripts to the PATH environment variable, you can simply run the script and see its
usage as follows:

$ run.sh

Usage: run.sh lv <file> [args]...

or: run.sh iverilog <file>

or: run.sh verilator <file> [timeout]

The first argument indicates which tool to run (λV , Icarus Verilog , or Verilator), and
the second argument <file> specifies the path of the Verilog program to be executed. The
remaining optional arguments (e.g., [args], [timeout]) depend on the selected tool. For
lv, these arguments will be forwarded to the lv command. Therefore, executing run.sh lv

<file> [args]... is roughly equivalent to executing:

$ lv -ci <file> [args]...

When using verilator, the third optional argument allows you to specify a timeout value for
killing the execution, as verilator may not automatically finish in certain cases. However,
you can omit this argument as we have already set a sensible default timeout of one second.

As an example, you can easily run the “Hello World” program using λV by executing
the following command:

$ run.sh lv /root/demo/hello.v -o /tmp/hello.lv

As explained above, this command is roughly equivalent to executing:

$ lv -ci /root/demo/hello.v -o /tmp/hello.lv

Therefore, the output should be “Hello, world!”, and the compiled λV program will be
stored in /tmp/hello.lv.

Additionally, you can run the example using Icarus Verilog and Verilator and observe
the output “Hello, world!” by executing the following commands:

$ run.sh iverilog /root/demo/hello.v

$ run.sh verilator /root/demo/hello.v

Please note that executing run.sh verilator may take longer than other commands be-
cause Verilator converts Verilog programs into C++ files and then compiles them, which can
be a time-consuming process.

5

3 Step-by-Step Instructions

In this section, we aim to reproduce the results described in our paper.
First, as stated in our contribution, we utilized λV to detect semantic bugs in real-world

simulators and find ambiguities in Verilog specification. Therefore, we present and discuss
the test cases that can reproduce those bugs and ambiguities in Section 3.1 and Section 3.2,
respectively.

Second, as explained in Section 4 of our paper, we tested the totality and conformance
properties of λV . This involved: (1) running the λV interpreter and comparing its results
with those of Icarus Verilog and Verilator on the Language Features Suite, a comprehensive
collection of 824 test cases; (2) running the λV interpreter on the Real-World Programs
Suite. Therefore, in Section 3.3 and 3.4, we reproduce the results obtained during this testing
process, respectively. Specifically, we include the following materials that are consistent with
the descriptions in our paper:

• Table 3 (in our paper), which presents the distribution of representative Verilog fea-
tures across the Language Features Suite.

• The confirmation that Icarus Verilog fails to pass three test cases in the Language
Feature Suite and Verilator fails to pass over 100 test cases (as described in Section
4.2 of our paper).

• The identification of specific test cases within the Language Features Suite where λV

encounters failures. It is important to note that these failures do not compromise the
totality and conformance properties of λV . Some failures are attributed to bugs in
Icarus Verilog or ambiguities in the Verilog specification, as described in Section 4.2
of our paper and further discussed in Section 3.1 and Section 3.2 of this document.
Additionally, some failures are the result of either erroneous test cases or the stricter
type checker employed in our evaluation, as explained in Section 4.2 of our paper.
Figure 1 provides a summary of these cases, encompassing bugs, ambiguities, and
failures caused by erroneous test cases or our stricter type checker.

• The confirmation that λV can pass test cases in the Real-World Programs Suite.

3.1 Bugs

As mentioned in Section 5.1 of our paper, λV identified real-world semantic bugs that were
even erroneously interpreted by the two most popular open-source Verilog simulators, Icarus
Verilog and Verilator . These bugs fall into three categories including context-determined
expressions, hidden data races, and loss of newest results.

3.1.1 Context-Determined Expressions

In Section 5.1.1 of our paper, we discussed the bug related to context-determined expressions
in Icarus Verilog . In this section, we explain how to confirm this bug.

Since this bug is not a new discovery during our testing process, you can refer to https:

//github.com/steveicarus/iverilog/issues/20 to verify that an older version of Icarus
Verilog incorrectly interprets the context-determined expressions as discussed in our paper.
Figure 2 shows the content of the URL, which includes the test case that triggers the bug.
The expected result of that case should be 0, but the older version of Icarus Verilog outputs
1 instead. This bug has been confirmed by the developer.

6

https://github.com/steveicarus/iverilog/issues/20
https://github.com/steveicarus/iverilog/issues/20

Figure 1: Test cases within the Language Features Suite that λV fails to pass due to: (1)
bugs in Icarus Verilog and Verilator ; (2) ambiguities in Verilog; (3) erroneous cases; (4) our
stricter type checker.

Fortunately, λV can handle these expressions correctly. We have saved the case from the
GitHub issue URL mentioned above in /root/demo/ce.v. You can run it using run.sh as
instructed in Section 2.5:

$ run.sh lv /root/demo/ce.v

Executing this command will output 0, indicating that λV produces the correct result for
this test case.

3.1.2 Hidden Data Race

The hidden data race bug, as discussed in Section 5.1.2 of our paper, can be reproduced
in both Icarus Verilog and Verilator . In this section, we provide instructions on how to
reproduce it.

Data races are often hidden by Icarus Verilog and Verilator , leading programmers to
overlook them when writing test cases. As a result, our Language Features Suite con-
tains 99 test cases that exhibit data races, which can be used to confirm the hidden
data race bug in Icarus Verilog and Verilator . These test cases are listed in the file
/root/scripts/data-race-cases.list. You can run them using the script run.sh in-
troduced in Section 2.5.

For example, let’s consider the first test case, always3.1.5A.v, in data-race-cases.list.
You can inspect the content of this test case by running the command:

$ vim $LANG_SUITE/always3.1.5A.v

7

Figure 2: The bug report of context-determined expression in the older version of Icarus
Verilog

8

, and you will find that there is a data race on the variable value1 (line 30 reads the variable,
and line 40 writes the variable) (currently, you may well ignore the synchronous statement
#0 in line 39, whose usage is explained later). As a result, the read of value1 can produce
both the old value (4’d4) or the new value (4’d5). Therefore, running this test case may
output either PASSED or FAILED according to the Verilog specification.

You can run the following commands to see the results of different tools on this case:

$ run.sh iverilog $LANG_SUITE/always3.1.5A.v

PASSED

/root/test/always3.1.5A.v:34: $finish called at 5 (1s)

$ run.sh verilator $LANG_SUITE/always3.1.5A.v

PASSED

- temp.v:34: Verilog $finish

$ run.sh lv $LANG_SUITE/always3.1.5A.v # If PASSED

PASSED

$ run.sh lv $LANG_SUITE/always3.1.5A.v # If FAILED

FAILED - always 3.1.5A always if (constant) statement

You will observe that Icarus Verilog and Verilator only output PASSED because they hide
the data race, regardless of how many times the command is executed, while λV outputs
both PASSED and FAILED in different runs as expected. Please note that the final result of
the λV interpreter is indeterminate due to its random scheduler. You may need to run the
command several times to see both results.

Because it would be verbose to explain all the other data race cases individually, we
provide a general description of their expected results. On those cases, both PASSED and
FAILED are possible outputs due to data races. However, Icarus Verilog and Verilator will
hide these data races and output only PASSED. Fortunately, λV will expose the data races
and may output either PASSED or FAILED depending on its random scheduling.

Note that the indeterminate output of λV on the data race cases can cause a much larger
number of failed cases when running λV on the entire test suite, which can make the output
of our script that shows failed cases and their running log too long to inspect manually. To
address this issue, we have made efforts to eliminate data races in as many test cases as
possible by adding synchronous statements #0 at strategic locations, so that λV can stably
pass them. For example, in line 39 of always3.1.5A.v, we added #0 to eliminate data
races. However, data races in cases such as sched2.v, memidx.v, and pr2986528.v cannot
be eliminated. Therefore, in Figure 1, the cases with data races are marked as “most passed,
several depend on scheduling”.

Recall that you can successfully observe the data races when running the example test
case above. It is because we have removed the synchronous statements (#0) during the
execution of the script run.sh.

Next, we reproduce the results of the simple case presented in Section 5.1.2 of our paper,
which is saved as /root/demo/same-diff.v. You can execute the following commands to
observe the behavior of Icarus Verilog and Verilator :

$ run.sh iverilog /root/demo/same-diff.v

same

$ run.sh verilator /root/demo/same-diff.v

same

Running these commands will demonstrate that Icarus Verilog and Verilator can only output
same, regardless of how many times those commands are executed. In contrast, running the
following commands will show the results yielded by λV :

9

$ run.sh lv /root/demo/same-diff.v # One possible result

same

$ run.sh lv /root/demo/same-diff.v # The other possible result

different

By using λV , you will observe that it can print both same and different, as depicted in
our paper. Note again that you may need to run the command several times to see both
results.

3.1.3 Loss of Newest Results

The loss of newest results is a type of simulator bug that occurs when the simulator fails to
carry out the effect of a newly generated event. In our Language Features Suite, the test
case pr1662508.v demonstrates this bug in both Icarus Verilog and Verilator . You can
inspect the content of this test case by running the command:

$ vim $LANG_SUITE/pr1662508.v

In this test case, both PASSED and FAILED can be displayed according to the Verilog
specification, while Icarus Verilog and Verilator can only print PASSED. Let’s explore how
FAILED can be displayed.

The always block in line 47 is sensitive to the negedge of the clk. When running the
test case, the clk is initialized with the default value x. Then the initial block in line
25 is executed concurrently with other blocks, and its first iteration of the for-loop (line
26-29) sets clk to 0 (line 27). This generates an event that indicates the clk has a negedge
transition from x to 0, according to Table 9-1 of the Verilog specification [1]. This event
could trigger the always block in line 47. Once triggered, the always block asserts that
read bus === addr[3:0]*addr[3:0]. However, at this point, both addr and read bus

have just been initialized with their default values, 0 and x, respectively. Therefore, the
assertion fails, resulting in the printout of FAILED.

Due to the scheduler of Icarus Verilog and Verilator always missing the effect of the first
event on the negedge of the clock, they fail to produce the result where FAILED can indeed
be displayed in this test case. In contrast, λV can faithfully reproduce both possible results
as expected by the Verilog specification. To observe the results of different tools on this test
case, you can use the following commands:

$ run.sh iverilog $LANG_SUITE/pr1662508.v # PASSED

$ run.sh verilator $LANG_SUITE/pr1662508.v # PASSED

$ run.sh lv $LANG_SUITE/pr1662508.v # Both PASSED and FAILED

3.2 Ambiguities

As mentioned in Section 5.2 of our paper, λV has helped identify seven cases with certainty
where inconsistent results are produced by different simulators due to the ambiguities in
Verilog’s standard specification. These cases fall into four types of scenarios including timing-
controlled assignments, procedural continuous assignments, unmatched port connections,
and even the syntax regarding named events. Because Verilator cannot pass many of those
cases, we will only use Icarus Verilog for illustrating the ambiguities in this section.

10

3.2.1 Timing-controlled Assignment

The ambiguity related to timing-controlled assignments was discussed in Section 5.2 of
our paper. In our Language Features Suite, the ldelay1.v test case can reproduce the
inconsistency between λV and other simulators due to this ambiguity.

You can inspect the content of the test case by using the following command:

$ vim $LANG_SUITE/ldelay1.v

In line 28 of ldelay1.v, there is a driver (a logic AND gate and #6 (q, a, b)) that assigns
the result of a & b to q with a delay of 6 time steps. In the initial block at line 42, a and
b are set to 0 and 1 at time step 0, respectively, and q will be set to 0 at time step 6 due to
the delay in the driver. At time step 5, the value of q is still its default initialization value,
and line 48 calls the ok task to assert that the value of q is 1’bx.

However, as explained in our paper, the Verilog specification [1] states that “Nets with
drivers shall assume the output value of their drivers”, but it does not clarify what should
happen if the driver’s output value is not available during initialization. In this case, at
time step 5, the AND gate will not drive q until time step 6. Therefore, the value of q is
undefined, and λV assumes its value to be z, while Icarus Verilog assumes its value to be
x. As a result, λV outputs FAILED, while Icarus Verilog outputs PASSED. To observe the
results of different tools on this test case, you can use the following commands:

$ run.sh iverilog $LANG_SUITE/ldelay1.v

PASSED

$ run.sh lv $LANG_SUITE/ldelay1.v

00000000000000000005: FAILED: q=z, expect x

Next, we reproduce the results of the simple case presented in Section 5.2 of our paper,
which is saved as /root/demo/assume-dr.v. To observe the results as depicted in our paper,
you can run the following commands:

$ run.sh iverilog /root/demo/assume-dr.v

x

$ run.sh lv /root/demo/assume-dr.v

1

3.2.2 Procedural Continuous Assignments

In our paper, we only mentioned the identification of this type of ambiguities without any
further explanation. We introduce it here and provide tests to reproduce them for the
completeness of our artifact.

Procedural continuous assignments, such as “force lhs = rhs”, are statements used to
force the left-hand side’s value to be the right-hand side’s value. The ambiguity regarding
procedural continuous assignments in Verilog stems from the lack of specification on when the
right-hand side’s value should be assigned to the left-hand side after executing a procedural
continuous assignment statement

Intuitively, one might expect the right-hand side’s value to be immediately assigned to
the left-hand side upon executing a procedural continuous assignment. However, in λV , the
right-hand side’s value is assigned to the left-hand side in a new concurrent thread, which
may not result in an immediate assignment.

We made this design choice for the following reason. During our modeling of the seman-
tics of procedural continuous assignments, we discovered that they share the same underlying

11

mechanism as plain continuous assignments. As the name suggests, procedural continuous
assignments essentially create a driver that continuously assigns values to the left-hand side,
just like a plain continuous assignment does. The difference is that the driver is created
at runtime by a procedural continuous assignment while it is created at the preprocessing
phase by a continuous assignment. Therefore, to simplify λV , we decided to use the same
mechanism for both types of assignments.

When discussing the semantics of continuous assignments, there are two steps involved:
(1) creating a concurrent thread for each continuous assignment to serve as a driver, contin-
uously assigning the right-hand side’s value to the left-hand side (note that such thread is
represented in other equivalent way in our paper); and (2) starting these concurrent threads.
Consequently, the right-hand side’s value of a continuous assignment is not immediately as-
signed to the left-hand side.

This mechanism works well for continuous assignments because they are intended to run
concurrently, and there is no need to immediately evaluate their right-hand sides as the
variables in the right-hand sides may not have been initialized yet. For example:

1 assign a = b;

2 assign b = 1;

In this case, when the thread is created for the first continuous assignment, the value of b

has not yet been assigned 1. Therefore, there is no need to evaluate b at that point.
Following the same mechanism, when a procedural continuous assignment is executed

in λV , it first creates a concurrent thread to act as a driver and then allows the thread to
run. As a result, in λV , the right-hand side’s value is not immediately assigned to the left-
hand side. In contrast, Icarus Verilog chooses to immediately assign the right-hand side’s
value upon executing a procedural continuous assignment. Given the ambiguity in Verilog’s
specification regarding this aspect, we believe that both approaches to treating procedural
continuous assignments are reasonable.

In our Language Features Suite, we have two cases that can demonstrate the inconsistent
behavior between λV and Icarus Verilog regarding this ambiguity: force lval part.v and
pr2943394.v, as listed in Figure 1.

force lval part.v In the case of force lval part.v, the line force value[0 +: 4] =

in in line 16 continuously assigns the value of in (i.e., 4’bzx10) to value. The subsequent
if statement in line 17 checks whether value has been assigned 4’bzx10. Since Icarus
Verilog immediately assigns the right-hand side’s value, it can pass the test:

$ run.sh iverilog $LANG_SUITE/force_lval_part.v

PASSED

However, in λV , there are three possible results:

$ run.sh lv $LANG_SUITE/force_lval_part.v # Result 1

Failed: force value, expected 4’bzx10, got 1001

$ run.sh lv $LANG_SUITE/force_lval_part.v # Result 2

Failed: force value, expected 4’bzx10, got zx10

$ run.sh lv $LANG_SUITE/force_lval_part.v # Result 3

PASSED

The first two commands generate schedules that fail the test, but the command using seed 0
prints the old value (1001) of value, while the command using seed 1 prints the new value
(zx10) of value. This difference arises from whether the right-hand side’s value of the force

12

statement is assigned to the left-hand side before or after the $display statement in line 17
is executed. The third command produces the same result as Icarus Verilog by generating
a schedule that immediately updates value.

pr2943394.v In the case of pr2943394.v, line 20 uses the force statement to continuously
assign 4’b1001 to val, while line 21 uses the release statement to remove this assignment.
Due to the fact that λV does not immediately assign the right-hand side’s value to the left-
hand side, val could still have the old value (4’b0110) and subsequently fail the assertion in
lines 13-17, printing “Failed release of forced sig, expected 4’b1001, got 0110”.
Since there are two additional force/release pairs in lines 47-48 and 74-75, each of which
may or may not print a failure message, there are a total of 23 = 8 possible outcomes.
We just demonstrate λV ’s results where all failure messages are printed and where the case
passes:

$ run.sh lv $LANG_SUITE/pr2943394.v # Result with all failure messages

Failed release of forced sig, expected 4’b1001, got 0110

Failed pv release of forced sig, expected 4’b1011, got 1001

Failed release of forced sig, expected 2.0, got 1.0

$ run.sh lv $LANG_SUITE/pr2943394.v # Result where the case passes

PASSED

On the other hand, Icarus Verilog only prints PASSED on this test case:

$ run.sh iverilog $LANG_SUITE/pr2943394.v

PASSED

3.2.3 Unmatched Port Connections

In our paper, we mentioned the identification of this type of ambiguity without providing
further details. Here, we explain it in more detail and provide tests to reproduce it for the
completeness of our artifact.

The ambiguity regarding unmatched port connections in Verilog arises from the lack
of specification on how to handle connections between ports of different widths in gate
instantiations. In our Language Features Suite, the test case gate connect1.v demonstrates
the inconsistency between λV and Icarus Verilog .

You can inspect the content of gate connect1.v by using the following command:

$ vim $LANG_SUITE/gate_connect1.v

In lines 11-13 of the file, the outputs of three buf gates have a width of 1 bit, while the
inputs connected to them have widths of either 32 bits or 2 bits. Due to the ambiguity
about this situation, λV will throw a TypeCheckException to warn about this usage when
running this case. On the other hand, Icarus Verilog will truncate the inputs to match the
1-bit width requirement of the output ports. Consequently, λV fails to pass this case, while
Icarus Verilog succeeds. To observe the results, you can use the following commands:

$ run.sh lv $LANG_SUITE/gate_connect1.v # Exception thrown

$ run.sh iverilog $LANG_SUITE/gate_connect1.v # PASSED

13

3.2.4 Syntax of Named Events

In our paper, we mentioned the identification of this type of ambiguity without providing
further details. Here, we explain it in more detail for the completeness of our artifact.

In Verilog, we can declare a named event using event ev and then use a named event
control @ev to guard a statement, waiting for it to be triggered by another statement -> ev.
However, the syntax related to named events has an ambiguity according to the specification.

The syntax of named event control is defined as follows:

event_control ::= @ hierarchical_event_identifier

| @ (event_expression)

event_expression ::= expression

| posedge expression

| negedge expression

| event_expression or event_expression

| event_expression , event_expression

where the hierarchical event identifier refers to a named event in the program.
According to the syntax, a named event should not be surrounded by brackets when

used in an event control because the production of event expression does not allow it.
However, there is a case in Section 18.1.6 (page 329) of the specification [1] that contradicts
this rule. The related code snippet is as follows:

1 event do_dump;

2 initial @(do_dump)

3 forever #10000 $dumpall;

In this case, it can be seen that the named event do dump in the event control is sur-
rounded by brackets, which goes against the defined syntax.

Initially, when implementing the front-end of λV , we followed the syntax specified in the
appendix of the Verilog specification. As a result, λV failed three cases in the Language
Features Suite where named events were surrounded by brackets, as listed in Figure 1, while
Icarus Verilog can pass them. Upon inspecting those cases, we discovered the ambiguity
regarding named events, as explained above. To make λV more robust, we modified our
front-end and λV to allow named events to be involved in event expressions. As a result, λV

can now pass those test cases successfully. To observe the results, you can use the following
commands:

$ run.sh lv $LANG_SUITE/event_list.v

PASSED

$ run.sh lv $LANG_SUITE/br_gh508b.v

00000000000000000001: A

00000000000000000002: B

00000000000000000002: A

00000000000000000003: B

PASSED

$ run.sh lv $LANG_SUITE/pr2788686.v

PASSED

3.3 Results on Language Features Suite

This section provides instructions to reproduce the results related to the Language Features
Suite presented in Section 4 of our paper. The beginning of Section 3 of this document has
outlined those results.

14

Please note that running scripts in this section may take dozens of seconds to several
minutes. The provided reference time is based on running the scripts on an Intel Core i5-
9500 processor with 6 cores. Also note that all the scripts are located in the /root/scripts

directory, and to facilitate their execution, /root/scripts has been added to the PATH

environment variable. This means you can run the scripts without specifying the full path.

Reproducing Table 3 The feature distribution presented in Table 3 of our paper was
obtained by traversing the abstract syntax tree (AST) of each test case file and checking
whether it has tree nodes corresponding to those representative Verilog features. To repro-
duce this result, you can run the following script:

$ count-feature.sh

The script will generate the result in about 10 seconds, which will be displayed as follows:

Feature V: 824

Feature N: 342

Feature CE: 730

Feature TC: 542

Feature BA: 653

Feature NBA: 83

Feature PCA: 44

Feature AFC: 24

Feature CA: 293

Feature SCH: 539

Feature CONN: 303

Feature LT: 105

Feature STF: 824

Feature GATE: 28

Each line corresponds to the count of different representative features, which can be com-
pared to the one in Table 3 of our paper.

run Icarus Verilog In our paper, we described that Icarus Verilog (the compared pop-
ular simulator) actually encountered three failures out of the 824 cases in the Language
Features Suite due to a known bug resulting from an incorrect implementation of procedu-
ral continuous assignment. To observe the results, you can run the following script, which
takes approximately 40 seconds to complete. Here are the last 5 lines of the script’s output:

$ test-iverilog-lang.sh 2>/tmp/iverilog.err | tee /tmp/iverilog.out

...

wiresub1.v: PASSED

wirexor1.v: PASSED

xnor_test.v: PASSED

zero_repl.v: PASSED

Passed 821 / 824

The three failed cases are:

$ grep FAILED /tmp/iverilog.out

br605a.v: FAILED

br605b.v: FAILED

br971.v: FAILED

15

Those failures occurred due to a bug explained in br971.v:

$ head -n 2 $LANG_SUITE/br971.v

// Icarus doesn’t properly support variable expressions on the right hand

// side of a procedural CA - see bug 605.

The mentioned bug report, named “bug 605”, can be found at the following link: https:

//sourceforge.net/p/iverilog/bugs/605/. The content of the bug report is shown in
Figure 3. The bug report highlights that Icarus Verilog implements procedural continuous
assignment by evaluating the right-hand side expression only once at the time the assignment
is executed. This implementation may provide intuitive behavior and allow Icarus Verilog
to pass certain test cases discussed in Section 3.2.2. However, it comes at the cost of failing
other test cases due to the limitations of this approach.

Figure 3: The bug report on procedural continuous assignments.

run Verilator Verilator fails to pass over 100 test cases in the Language Features Suite.
To reproduce this result, run the following script, which takes about five minutes:

$ test-verilator-lang.sh

Note that the script runs much more slowly than Icarus Verilog because Verilator cannot
automatically finish on some test cases. We need to wait for a large enough time (i.e., one
second) for its total output and then kill it.

After waiting for a while, You can observe the following result (only show the last 7
lines):

...

wirexor1.v: PASSED

xnor_test.v: PASSED

zero_repl.v: PASSED

16

https://sourceforge.net/p/iverilog/bugs/605/
https://sourceforge.net/p/iverilog/bugs/605/

Passed: 609

Failed: 130

Compilation Error: 85

Total: 824

As shown, Verilator encounters compilation errors on 85 test cases and fails to pass 130 test
cases. This is due to the lack of support for many Verilog behavioral features in Verilator .

run λV λV encounters failures in certain cases within the Language Features Suite, as
summarized in Figure 1. Some failures are attributed to bugs in Icarus Verilog or ambiguities
in the Verilog specification, as discussed in Section 3.1 and Section 3.2. Additionally, some
failures are the result of either erroneous test cases or the stricter type checker employed
in our implementation (described in our paper and also mentioned above), which we will
discuss later.

To reproduce these failures, you can run the following script, which takes approximately
one minute to complete by using six threads:

$ test-lv-lang.sh 2>/tmp/lv.err | tee /tmp/lv.out

Please note that this script will display some Gradle-specific information alongside the test
results because it utilizes gradlew to execute the JUnit tests in our Java project, which in
turn runs the test cases using the λV interpreter. In order to extract useful information
from the output, you can use the following script:

$ process-lv-out.sh /tmp/lv.out

This script generates a summary of the results obtained by running λV on the Language
Features Suite. For each failed test case, including those that threw exceptions, it provides
relevant information. If a failure is due to known causes summarized in Figure 1, a brief
description is printed. Otherwise, detailed error messages will be provided. It’s important
to note that because the results of some cases depend on scheduling, as we have explained in
previous sections, the output may vary across different runs of the test-lv-lang.sh script:

Report 824 results collected from totally 824 test cases:

#Passed: 809

#Failed: 12

#Timeout: 0

#Unsupported: 0

#Exception caught: 3

#Assertion failed: 0

Following cases fail due to known reasons:

bufif.v: stricter-type-checker

ldelay1.v: ambiguity undefined-driver-output

casez3.10E.v: err-case

casez3.10D.v: err-case

br1000.v: err-case

sched2.v: bug hidden-data-race

br1001.v: stricter-type-checker

casez3.10C.v: err-case

gate_connect1.v: ambiguity unmatched-ports

17

force_lval_part.v: ambiguity force

pr2986528.v: bug hidden-data-race

casex3.9E.v: err-case

casex3.9D.v: err-case

pr2943394.v: ambiguity force

pr1662508.v: bug loss-of-newest-results

Gradle Test Executor 1 finished executing tests.

Because all failures have been meticulously accounted for, you can observe that all failures
are explicitly linked to known reasons. You can also cross-reference the results with those
listed in Figure 1 manually.

Next, we will further discuss the failures that are attributed to erroneous cases and our
stricter type checker.

The first type of erroneous cases involves the misuse of the != operator instead of the
!== operator. These cases include the files casex3.9D.v, casex3.9E.v, casez3.10E.v,
casez3.10D.v, and casez3.10C.v. The impact of this misuse is explained in Section 4.2 of
our paper (lines 849-857). When Icarus Verilog executes these cases, the result variable
retains its initial value x due to its schedule, allowing it to pass all the if statements because
x != anything evaluates to x and the statement if (x) does not branch to the then block.

The second type of erroneous cases involves the sharing of a loop variable between con-
current always blocks. This is exemplified in the file br1000.v, where the always blocks in
lines 10 and 17 share the loop variable i. This is incorrect because when one always block
updates i, it can trigger the other always block to loop and modify i, resulting in a data
race. Icarus Verilog can pass this case due to its non-preemptive scheduling.

During the writing of this document, we discovered a new type of erroneous cases caused
by arithmetic overflow. This is exemplified in the case sqrt32.v, where 10001 32-bit un-
signed integers are randomly generated to test whether a Verilog module can correctly
calculate the square root of these integers. In this case, the generated unsigned integer is
stored in the 32-bit reg A declared on line 108, and the computed square root is stored in
a 16-bit reg Z. The case then assigns A and Z to a and z of integer type, and asserts the
following condition on line 220 and 228:

z * z <= a < (z+1) * (z+1)

However, since a and z are of signed type, the expression (z+1) * (z+1) could result in
an overflow and produce a negative number (e.g., a=2147438958 and z=46340), causing the
assertion to fail. Therefore, if the generated random number is sufficiently large, a correct
simulator should fail to pass this case. Icarus Verilog can pass this case because it fixes
the seed of its random number generator and generates 10001 numbers that do not lead
to overflow, while λV generates numbers fully randomly. Hence, whether λV can pass this
case depends on its random number generator. At the time of submitting our paper, we did
not observe λV ’s failure on this case and therefore did not mention it. We will include this
information in a later version of our paper.

Additionally, our stricter type checker leads to two failures in the cases bufif.v and
br1001.v, as discussed in Section 4.2 of our paper (lines 858-863). In the bufif.v case,
the wire ad, declared as an output in line 27, is used as an input in line 35. According to
the Verilog standard (section 12.3.8), a port declared as input (or output) but used as an
output (or input) may be coerced to inout, and a warning should be issued if not coerced.
However, in our implementation, we reject this feature to avoid unexpected behavior.

18

In the br1001.v case, the wires x and y, of different types, are connected by the submod

module in lines 10-11. According to the Verilog standard (section 12.3.9), if different net
types (i.e., net kinds in λV) are connected through a module port, specific rules outlined
in Table 12-1 should be applied to resolve the dissimilar port connection. However, in our
implementation, as explained in our paper, we reject such programs during type checking
to avoid unexpected behavior.

3.4 Results on Real-World Programs Suite

In this section, we provide instructions for verifying that λV successfully passes the Real-
World Programs Suite. As detailed in our paper, this test suite encompasses a range of
designs, including notable examples such as an rv32i CPU. These tests are sourced from
various origins, with some originating from the open-source OpenPiton CPU project [2],
while others are primarily sourced from Altera Corporation.

Due to the substantial computational demands posed by tests derived from OpenPiton,
we will initially guide you through running the remaining tests.

The tests (excluding those from OpenPiton) are conveniently located within the directory
specified by the environment variable $RW SUITE:

$ ls $RW_SUITE/*.v

/root/qihe/lambdav/src/test/resources/testcases/verilog/realworld/crypto_des.v

/root/qihe/lambdav/src/test/resources/testcases/verilog/realworld/fp_sqrt.v

/root/qihe/lambdav/src/test/resources/testcases/verilog/realworld/lfsr.v

/root/qihe/lambdav/src/test/resources/testcases/verilog/realworld/priority_mux.v

/root/qihe/lambdav/src/test/resources/testcases/verilog/realworld/reg_cam.v

/root/qihe/lambdav/src/test/resources/testcases/verilog/realworld/rv32i.v

Each of these tests is encapsulated within a separate file, consisting of a design-under-test
and a test bench responsible for providing inputs to the design and verifying the outputs.

To execute λV on these tests, run the following script, which typically takes about 5
minutes (by using 6 threads) to complete:

$ test-lv-rw-misc.sh 2>/tmp/lv.err | tee /tmp/lv.out

The output format is similar to running test-lv-lang.sh. Therefore, to obtain a clear
output, use the following script, as we have used before:

$ process-lv-out.sh /tmp/lv.out

Report 6 results collected from totally 6 test cases:

#Passed: 6

#Failed: 0

#Timeout: 0

#Unsupported: 0

#Exception caught: 0

#Assertion failed: 0

Gradle Test Executor 1 finished executing tests.

As shown above, all tests have passed.
For tests originating from OpenPiton, you’ll find them housed within the $RW SUITE/openpiton

directory:

19

$ ls $RW_SUITE/openpiton/

counter_cases ifu_esl_lfsr.v lfsr_cases

ifu_esl_counter.v ifu_esl_shiftreg.v shiftreg_cases

In this directory, each test consists of a .v file containing both the design-under-test
and the associated test bench, along with a corresponding * cases directory that holds
individual test cases. These cases include inputs and expected outputs used by the test
bench. For example, the ifu esl counter.v file contains the design named “counter” to
be tested as well as a test bench that reads test cases from the directory counter cases to
test “counter”. You can use the following script to list all available designs-under-test and
their test cases:

$ test-lv-rw-op.sh -l

Available (design, test-case) pairs:

counter, clear_set

counter, clear

counter, pause

counter, set

counter, step_clear_set

counter, step_clear

counter, step_set

counter, step

lfsr, exhaust

lfsr, ldstep

lfsr, pause

lfsr, seed

lfsr, state0

shiftreg, pause

shiftreg, set_shift

shiftreg, set

shiftreg, shift

You can utilize the same script to run a single test case for a specific design-under-test
using the following format:

$ test-lv-rw-op.sh <design> <test-case>

For example, if you intend to run the test with the largest test case from OpenPiton, as
mentioned in our paper, which generates several megabytes of output over approximately
2,000,000 clock cycles, you can employ the following command, which completes in approx-
imately 1.5 hours:

$ test-lv-rw-op.sh counter step

Testing ’counter’ by case ’step’

Entering Test Suite: ifu_esl_counter

[PASSED] Test (Timeout check) succeeded

Simulation -> PASS (HIT GOOD TRAP)

If the test passes, you will see “HIT GOOD TRAP” in the output. Note that tests from Open-
Piton may occasionally encounter data races, leading to λV failing the test, which is the

20

same problem discussed in Section 3.1.2. In such cases, simply rerun the test as instructed
above; typically, you will observe “HIT GOOD TRAP” after several attempts.

If you want to run all tests, you can execute the following script, which runs test cases
for each design-under-test simultaneously:

$ test-lv-rw-op.sh --all

Note again that running some tests may not print “HIT GOOD TRAP” due to hidden data
races. In such cases, the output contains information about each test’s design and test case
name, and you can rerun those tests using the command as instructed above to see that λV

can indeed pass them:

$ test-lv-rw-op.sh <design> <test-case>

Besides, we highly recommend using the command that automatically retries failed cases
until every case hits its good trap:

$ test-lv-rw-op.sh --convergence

Testing ’shiftreg’ by case ’pause’

Entering Test Suite: ifu_esl_shiftreg

[PASSED] Test (Timeout check) succeeded

Simulation -> PASS (HIT GOOD TRAP)

Testing ’counter’ by case ’clear’

Entering Test Suite: ifu_esl_counter

[FAILED] Test (test_sink) failed, [0000 (expected) != 7fff]

Simulation -> FAIL (HIT BAD TRAP)

Testing ’lfsr’ by case ’exhaust’

Entering Test Suite: ifu_esl_lfsr

[PASSED] Test (Timeout check) succeeded

Simulation -> PASS (HIT GOOD TRAP)

...

Testing ’counter’ by case ’clear’

Entering Test Suite: ifu_esl_counter

[PASSED] Test (Timeout check) succeeded

Simulation -> PASS (HIT GOOD TRAP)

Testing ’counter’ by case ’step’

Entering Test Suite: ifu_esl_counter

[PASSED] Test (Timeout check) succeeded

Simulation -> PASS (HIT GOOD TRAP)

Given the possible retries and the substantial input data provided by each test case,
ranging from several kilobytes to hundreds of kilobytes, completing all tests may require
approximately 12 hours to finish, despite our optimization efforts to run test cases for each
design-under-test in parallel.

21

References

[1] Ieee standard for verilog hardware description language. IEEE Std 1364-2005 (Revision
of IEEE Std 1364-2001), pages 1–590, 2006.

[2] Jonathan Balkind, Michael McKeown, Yaosheng Fu, Tri Nguyen, Yanqi Zhou, Alexey
Lavrov, Mohammad Shahrad, Adi Fuchs, Samuel Payne, Xiaohua Liang, Matthew Matl,
and David Wentzlaff. Openpiton: An open source manycore research framework. In
Proceedings of the Twenty-First International Conference on Architectural Support for
Programming Languages and Operating Systems, ASPLOS ’16, pages 217–232, New York,
NY, USA, 2016. ACM.

22

	Introduction
	Getting Started
	Basic Requirements
	Artifact Setup
	Artifact Content
	Sanity Check
	Run Single File

	Step-by-Step Instructions
	Bugs
	Context-Determined Expressions
	Hidden Data Race
	Loss of Newest Results

	Ambiguities
	Timing-controlled Assignment
	Procedural Continuous Assignments
	Unmatched Port Connections
	Syntax of Named Events

	Results on Language Features Suite
	Results on Real-World Programs Suite

