

Achieving Energy Efficiency with a Software Product Line Engineering Approach

Author Daniel Jesús Muñoz Guerra

Supervisors Lidia Fuentes Fernández Mónica Pinto Alarcón

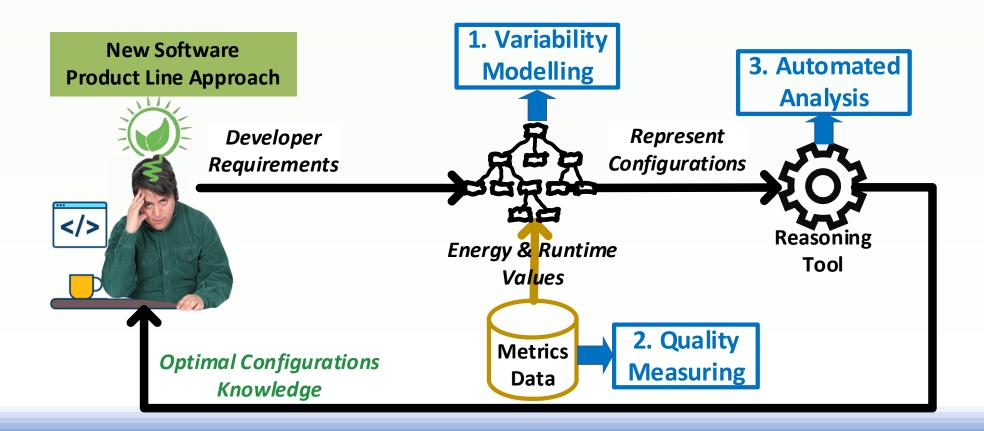
Why Energy Efficiency?

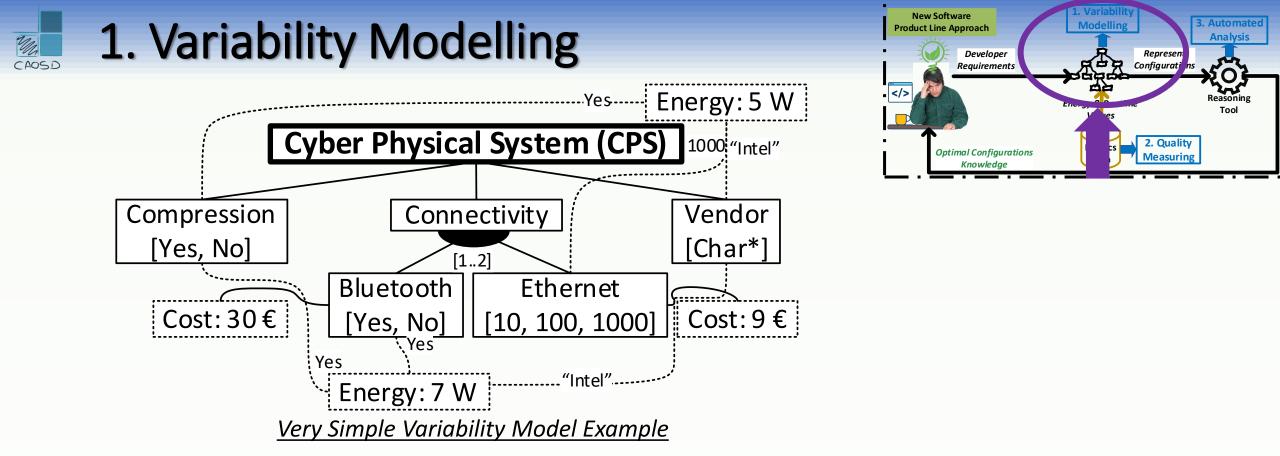
"Today"

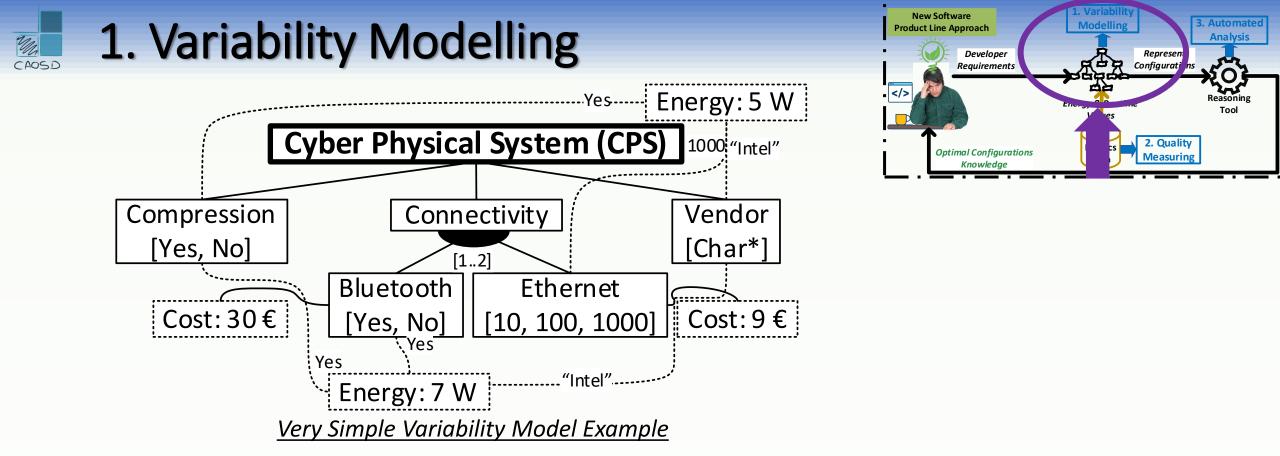
Future

Decrease energy consumption!

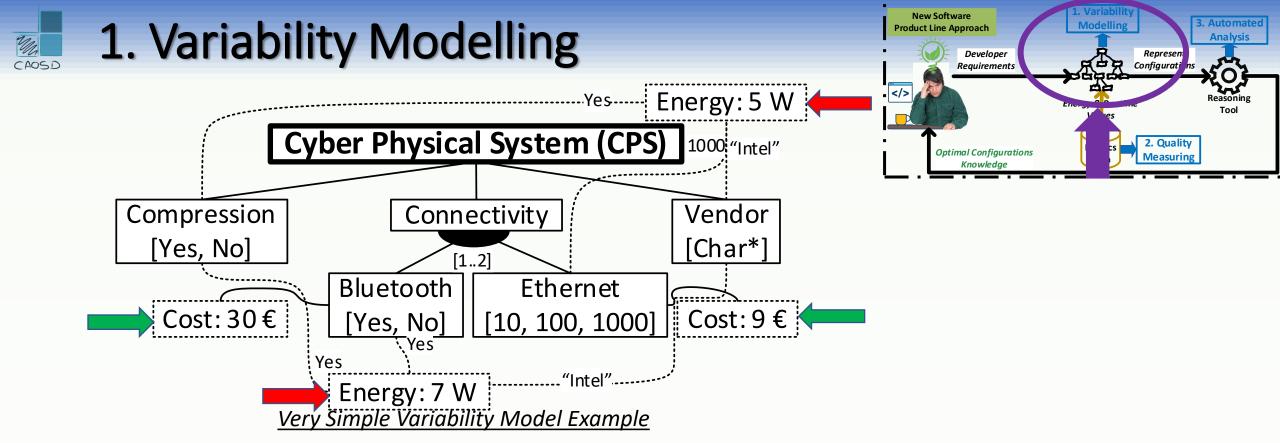
Why Green Software?



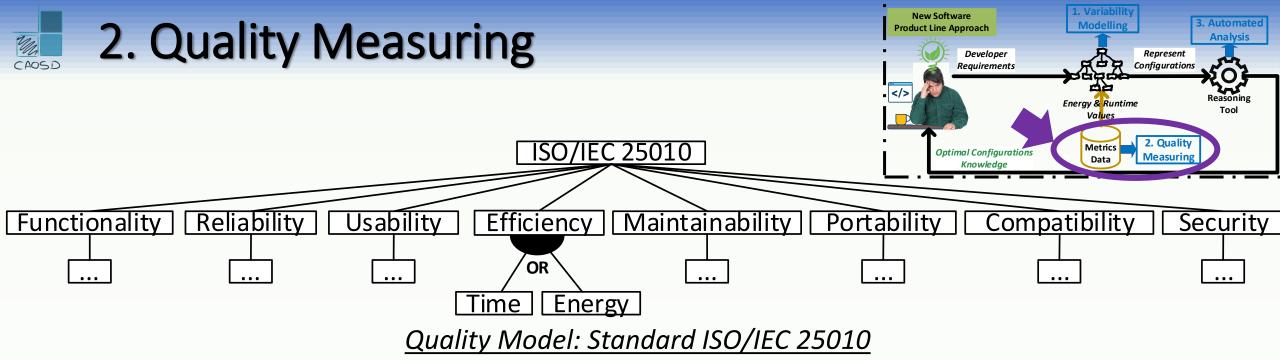

- E.g., Datacentres 1% of Global Energy
- ICT <u>surpassed</u> Aeronautic Industry
- Intel: "We can reduce the software energy consumption up to a 90%"
- Heterogenous technology: Cyber Physical Systems, the Cloud, Edge Computing, IoT, Virtual Networks...
- Wireless devices with large energy demands and low capacity batteries.


CAOSE

Automatically Analysing Alternative Features of Complete Software Configurations

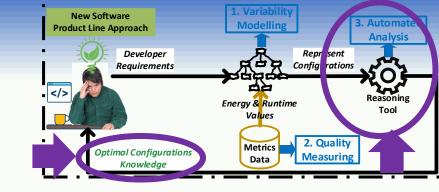


- CPSs need different types of features: Boolean, Numerical and String
- CPSs have <u>complex</u> constraints:
 - E.g., Bluetooth and (Ethernet = 1000) requires (Vendor = "(Media | Real)tek Inc.")


- CPSs need different types of features: Boolean, Numerical and String
- CPSs have <u>complex</u> constraints:
 - E.g., Bluetooth and (Ethernet = 1000) requires (Vendor = "(Media | Real)tek Inc.")

Boolean Variability Models present many Limitations when Modelling CPSs

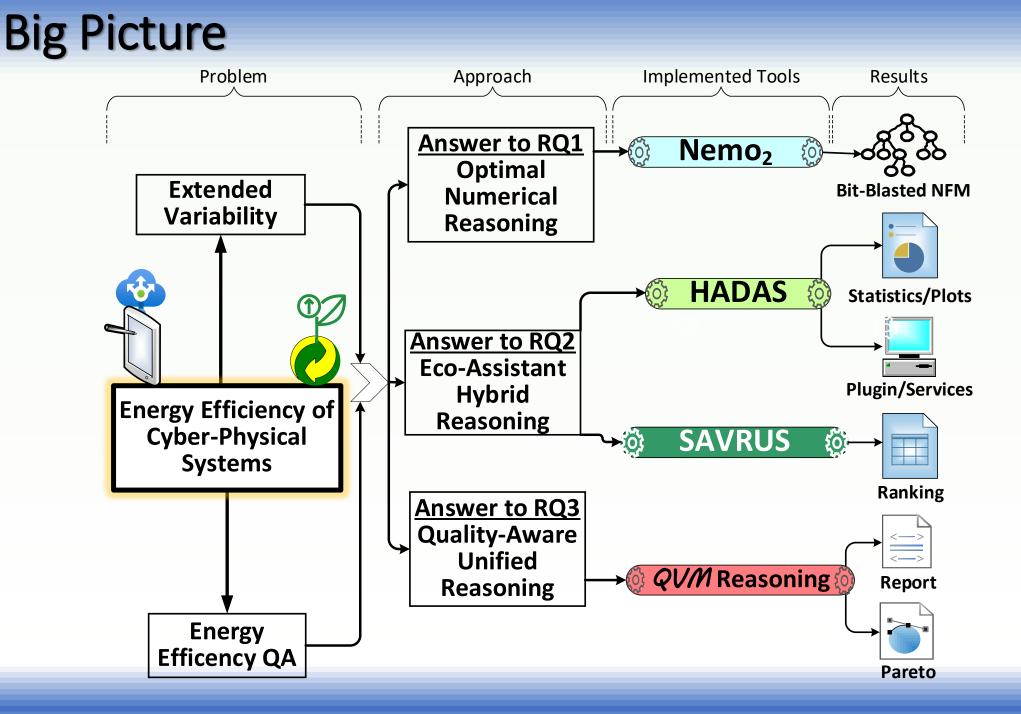
- CPSs need different types of features: Boolean, Numerical and String
- CPSs have <u>complex</u> constraints:
 - E.g., Bluetooth and (Ethernet = 1000) requires (Vendor = "(Media | Real)tek Inc.")
- <u>Qualities Attributes</u> (QAs) interact at different levels: Feature/Variant-wise.


Feature-wise QAs CANNOT ACCURATELY MODEL configuration space QAs

- Energy consumption is too complex for feature-wise modelling
 - Quality Variant-wise Modelling and Measurement of Large
 - Unfortul Heterogeneous Configuration Spaces is hard
- Integrate variability, QAs modelling and measured values.
- We need tooling expertise to measure energy consumption.
- We cannot automatise the measurement of large heterogenous spaces.
 - E.g., <u>Linux</u> Kernel 2.6 configuration space size is $\sim 10^{2000}$ configurations.

- An SPL approach provides the tools to analyse large variability spaces.
- We need many **operations**: satisfiability, counting, sampling, optimisation, etc.
- Different solvers for different problems ordered by best performing:
 - **#SAT** for counting Boolean SPLs.
 - SAT is fiability for Boolean SPLs.

Not enough for real-world CPSs models as Variant-wise QAs are not natively supported


- Constraint Programming for simple arithmetic SPLs.
- Satisfiability Modulo Theory for complex arithmetic.

RQ1: How can we extend the state-of-the-art (Boolean) solvers to automatically support NFMs without performance degradation?

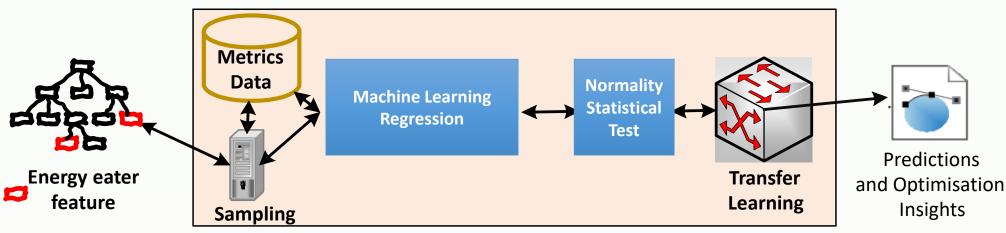
RQ2: How can we automatically provide energy efficiency insights when dealing with colossal, partially unknown, and partially-measured solution spaces based on NFMs and <u>variant-wise QAs</u>?

RQ3: How can we properly <u>unify extended NFMs and QMs</u> while having the native support of automated reasoning tools?

CAOSD

BACKGROUND

Feature-Oriented Software Product Lines and Quality Attributes


We need feature models that support numerical features, feature-wise QAs and variant-wise QAs - RQs[1-3]

- Classical <u>Feature Models (FMs)</u>: 1st formalisation of <u>Boolean</u> VMs.
- <u>Numerical</u> FMs: FMs that support <u>arithmetic</u> (e.g., Integer).
- Extended FMs: FMs that support feature-wise QAs with aggregation formulas.
 - E.g., Cost QA aggregation is a simple Addition of individual costs.
- Other representations of Boolean VMs
 - Propositional Formulas (PF)
 - Binary Decision Diagrams (BDD). They are the fastest for counting-based operations.

Quality Models are disconnected from Feature Models

Sampling, Statistics and Machine Learning for QAs

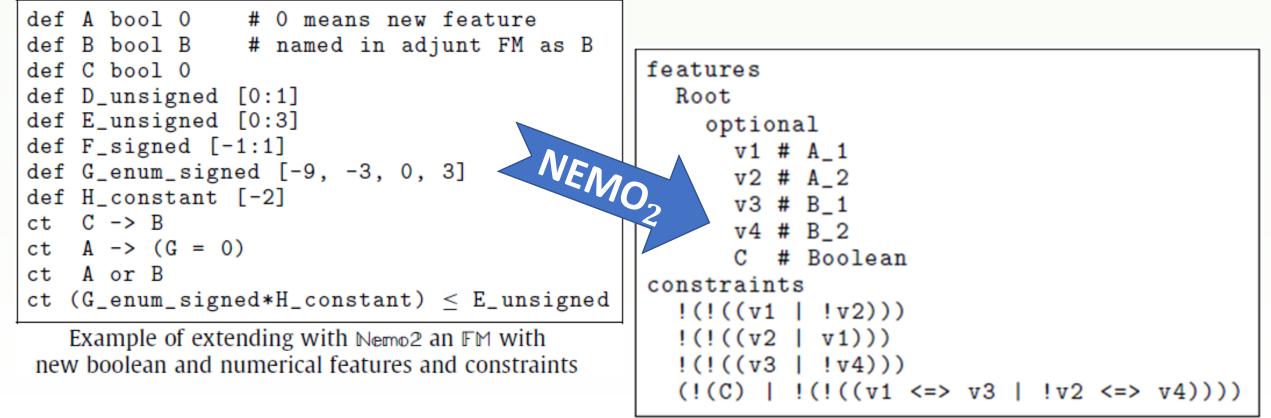
We need techniques that help to identify the <u>energy eater features</u> without measuring and analysing the complete configuration space

- <u>Representative subspace by sampling</u>: T-wise, Random, Recursive and Probabilistic **RQs[1-3]**.
- <u>Statistical significancy</u>: x^2 and **M**ann-**W**hitney **U** (MWU) **RQs[1-2]**.
- <u>Regression Approximation</u> of QA values: *k*-Nearest Neighbourgs (*k*NN) RQ2[SAVRUS].
- <u>Transfer Learning</u>: Rank interactions by Scores function **RQ2[SAVRUS]**.

RQ1 Approach Optimal Numerical Reasoning

Bit-Blasting: Encode Numerical Features as <u>bits</u>, and arithmetic as PF clauses:

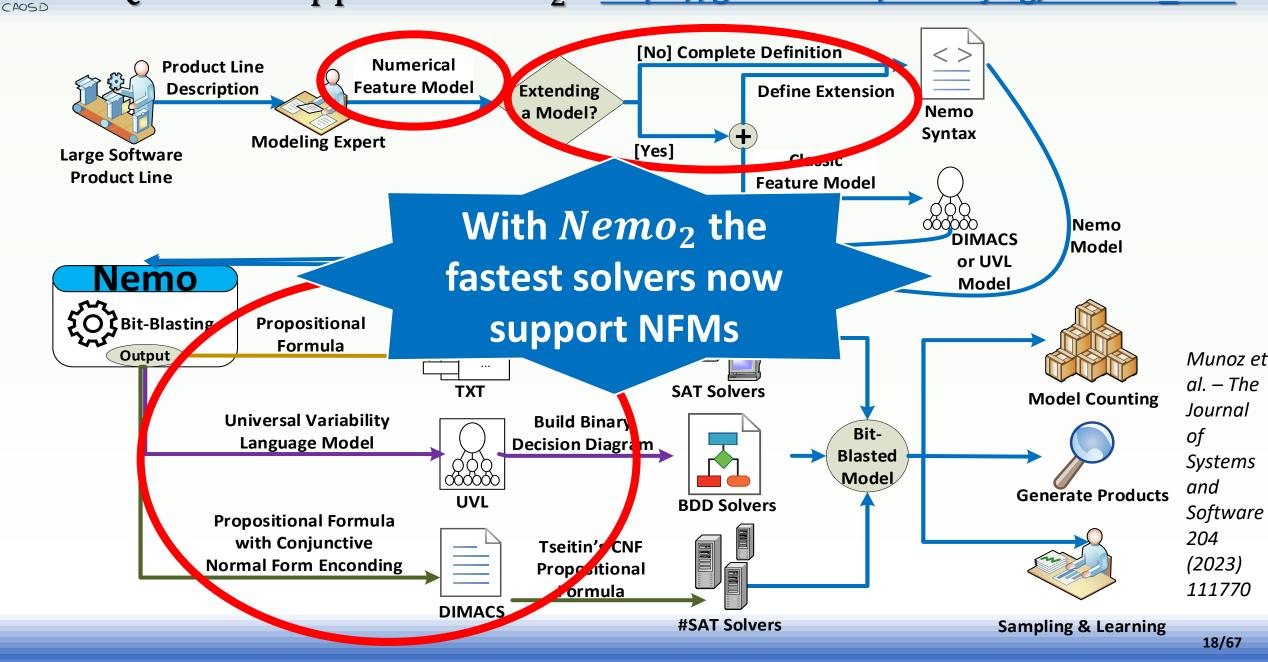
- <u>Bit-vectors</u> are signed integers by Big-endian binary two's complement encoding.
- <u>Arithmetic</u>: equality (=), inequalities (≠,>, >), addition (+), subtraction (-), multiplication (*), division (/), and modulo (%).


Propositiona	Formulas	for	3-bit	Two's	Complement	Signed	Integers	
--------------	----------	-----	-------	-------	------------	--------	----------	--

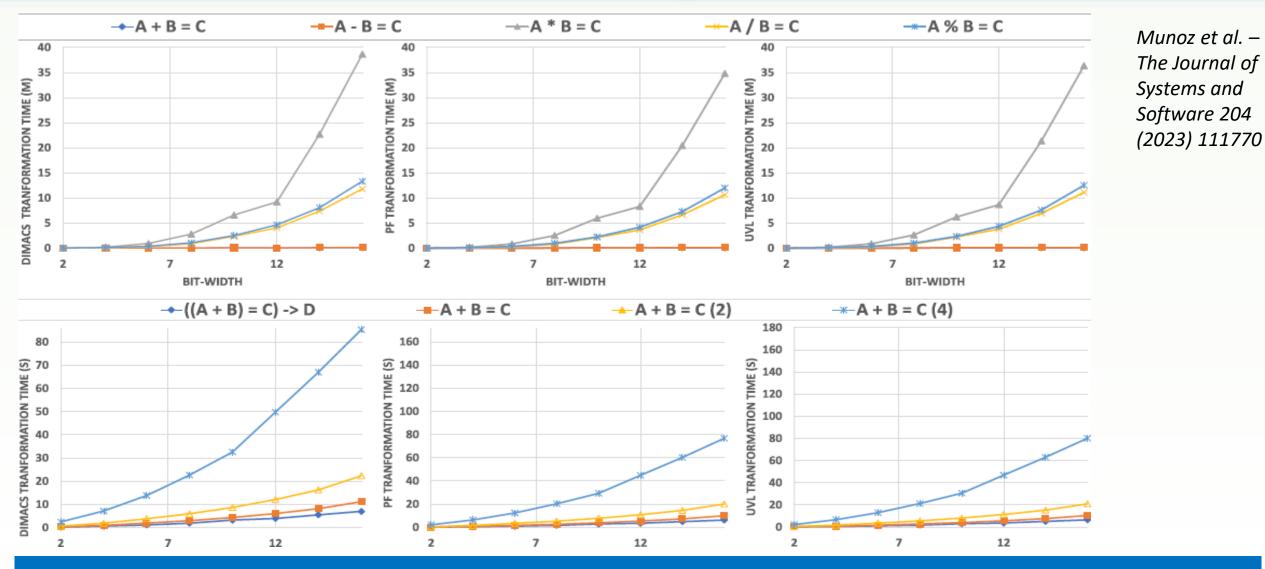
Operation	Bit-Blasted model	Propositional formula
$(\mathtt{NF}_{\mathtt{a}}\neq \mathtt{NF}_{\mathtt{b}})$	$(\mathbf{a}_1 \neq \mathbf{b}_1) \lor (\mathbf{a}_2 \neq \mathbf{b}_2) \lor (\mathbf{a}_3 \neq \mathbf{b}_3)$	$(\mathbf{a}_1 \oplus \mathbf{b}_1) \vee (\mathbf{a}_2 \oplus \mathbf{b}_2) \vee (\mathbf{a}_3 \oplus \mathbf{b}_3)$
$(NF_a > NF_b)$	$(a_1 < b_1) \lor ((a_1 == b_1) \land (a_2 > b_2)) \lor ((a_1 == b_1) \land (a_2 == b_2) \land (a_3 > b_3))$	$ \begin{array}{c} (\neg \mathbf{a}_1 \wedge \mathbf{b}_1) \vee ((\mathbf{a}_1 \Leftrightarrow \mathbf{b}_1) \wedge (\mathbf{a}_2 \wedge \neg \mathbf{b}_2)) \vee \\ ((\mathbf{a}_1 \Leftrightarrow \mathbf{b}_1) \wedge (\mathbf{a}_2 \Leftrightarrow \mathbf{b}_2) \wedge (\mathbf{a}_3 \wedge \neg \mathbf{b}_3)) \end{array} $

Munoz et al. – The Journal of Systems and Software 204 (2023) 111770

RQ1 Contribution 2


Definition of our own NFM language and support of the **fastest reasoning tools** formats: FMs in Universal Variability Language (UVL), DIMACS and PF.

Munoz et al. – The Journal of Systems and Software 204 (2023) 111770 Nermo2 UVL output for: $A \in [-1,0]$; $B \in [-1,1]$ C Boolean in "C requires (A != B)"


RQ1 Tool Support: Nemo₂ - <u>https://github.com/danieljmg/Nemo2_tool</u>

Un

RQ1. Benchmarking Nemo₂ Scalability

CAOSD

Nemo₂ can <u>bit-blast</u> up to 12 bit-widths arithmetic operations in seconds

RQ1. Models Evaluated

NFM	Description	#F	#INFS	#Configs
Dune	Multi-grid solver	11	3	2,304
HSMGP	Stencil-grid solver	14	3	3,456
HiPAcc	Image processing	33	2	13,485
Trimesh	Triangle mesh library	13	4	239,360
MOTIV	Mobile Video Sequence	8	13	3.52×10^{30}
WeaFQAs	Quality Attributes Weaver	240	5	1.38×10^{40}
Fiasco	Real-time microkernel	234	5	3.06×10^{12}
axTLS	Client-server library	94	9	4.96×10^{38}
uClibc-ng	C Language library	269	6	8.20×10^{45}
Busybox 1.18.5	Embedded Linux	631	12	1.34×10^{191}
Busybox 1.28	Embedded Linux	1100	12	1.53×10^{248}
Linux 2.6.33.3	Operating System Kernel	6467	55	$\sim 5.66 \times 10^{1953}$

Munoz et al. – The Journal of Systems and Software 204 (2023) 111770

RQ1. Results and Answers

Model counting	g time				Sampling time	
Counting time	Glucose3	sharpSAT	Flamapy BDD	BDDSampler	Flamapy BDD	BDDSampler
Dune	0.37 s	0.01 s	0.03 s	0.44 s	2.79 s	3 s
HSMGP	69.43 s	0.01 s	0.03 s	0.51 s	2.41 s	3 s
HiPAcc	37.08 s	0.01 s	0.05 s	0.6 s	5.5 s	3 s
Trimesh	180.98 s	0.01 s	0.05 s	0.71 s	5.57 s	3.1 s
MOTIV	Time-out	0.01 s	Time-out	3.15 s	Time-out	4.61 s
WeaFQAs	Time-out	0.01 s	Time-out	2.9 s	Time-out	3.68 s
Fiasco	Time-out	0.01 s	Time-out	1.11 s	Time-out	3.2 s
axTLS	Time-out	0.01 s	Time-out	2.45 s	Time-out	8.13 s
uClibc-ng	Time-out	0.01 s	Time-out	4.95 s	Time-out	9.73 s
Busybox 1.1	Time-out	4.3 h	Time-out	Time-out	Time-out	Time-out
Busybox 1.2	Time-out	5 h	Time-out	Time-out	Time-out	Time-out
Linux 2.6	Time-out	Time-out	Time-out	Time-out	Time-out	Time-out

Munoz et al. – The Journal of Systems and Software 204 (2023) 111770

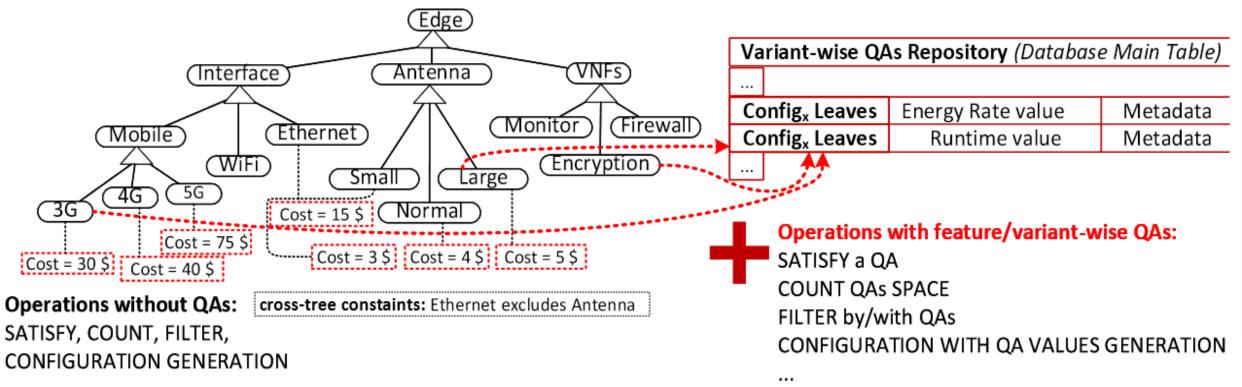
With $Nemo_2$, classical solvers can <u>count</u> and <u>sample</u> real-world NFMs configuration spaces of sizes of $< 10^{248}$ and $< 10^{45}$ respectively

RQ1. Results and Answers

Near-Optimal: Uniform Random Sampling (URS) / Statistical Recursive Search (SRS) + Mann-Whitney U (MWU)								
NFM	N	rSRS	rURS	rTest	pSRS	pURS	pTest	rBetter
Dune	71.32	0.007	0.016	Pass	0.039	0.042	Pass	93%
HSMGP	66.42	0.008	0.017	Pass	0.005	0.011	Pass	91%
HiPAcc	65.82	0.010	0.017	Pass	0.002	0.004	Pass	82%
Trimesh	129.21	0.003	0.009	Pass	0.003	0.013	Pass	91%

Finding Near-Optimal Configurations for FSE2015 Systems

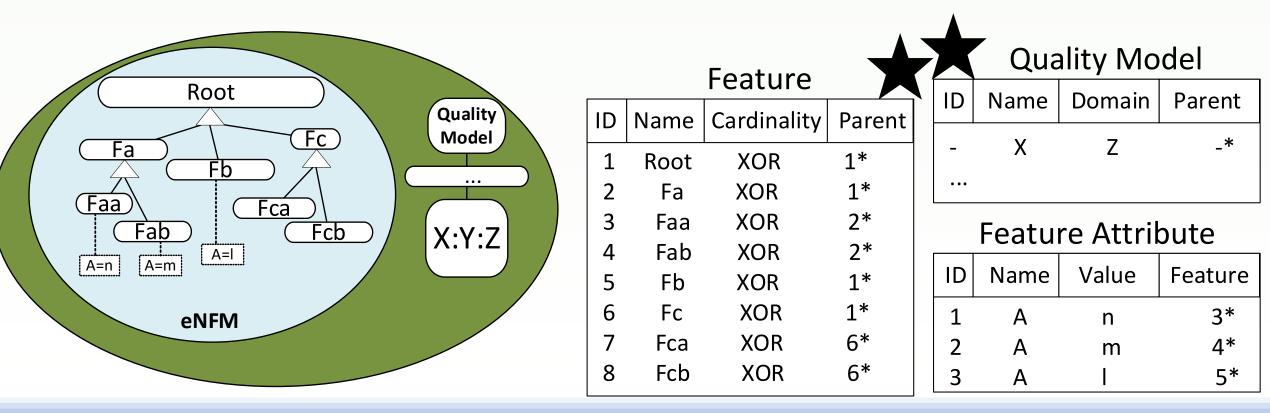
Munoz et al. – Proceedings of the 23th ACM International Systems and Software Product Line Conference

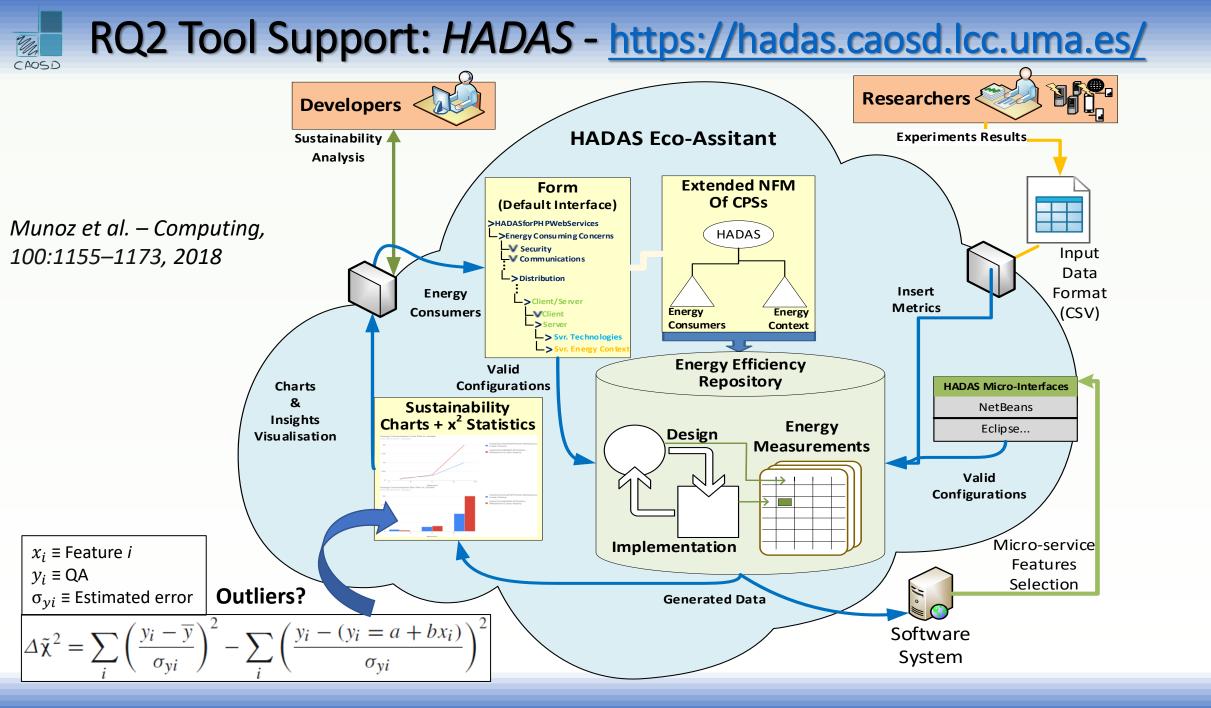

With Nemo₂ and URS, we find optimals near 1.4% of the absolute optimal. With SRS we assure an optimal configuration near the 0.8%.

RQ2 Approach Eco-Assistant Hybrid Reasoning

RQ2 Main Focus: Variant-wise QAs

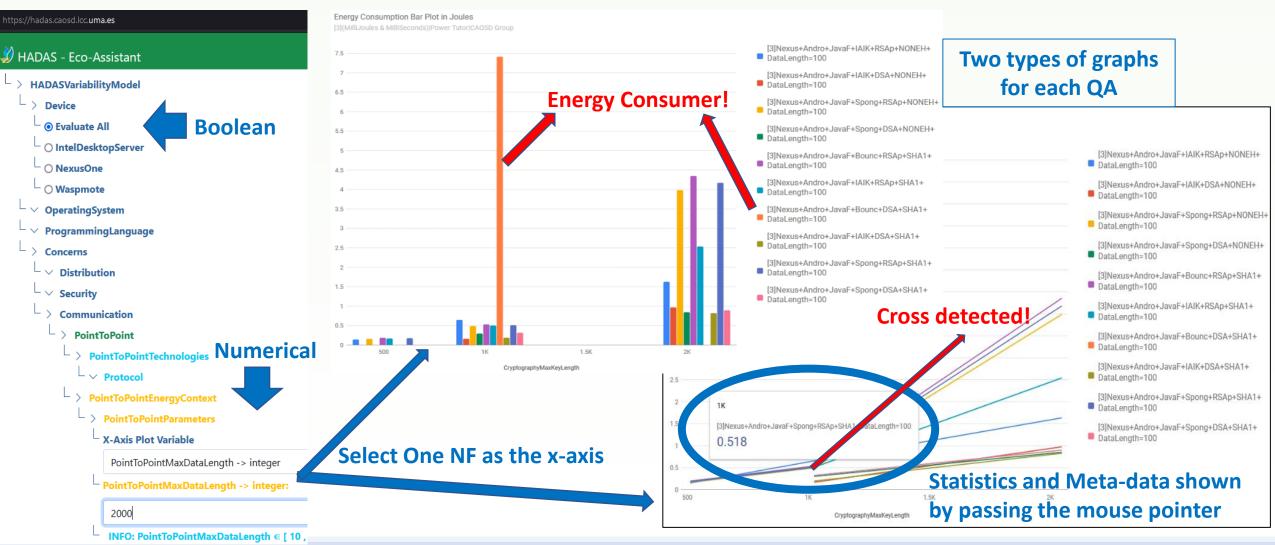
- Variant-wise: Valued QAs of sets of features that form complete configurations.
- The QA values are too heterogeneous to define an accurate aggregation formula.
- Consequently, they cannot be modelled in a extended NFM.




Munoz et al. – Proceedings of the 26th ACM International Systems and Software Product Line Conference

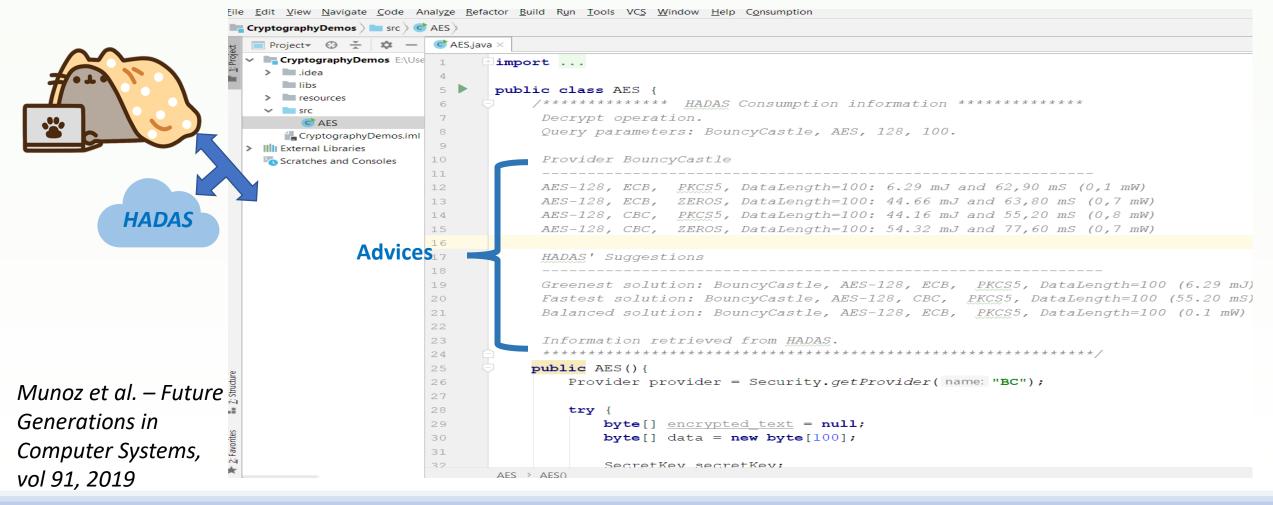
RQ2: Contributions 1 and 2

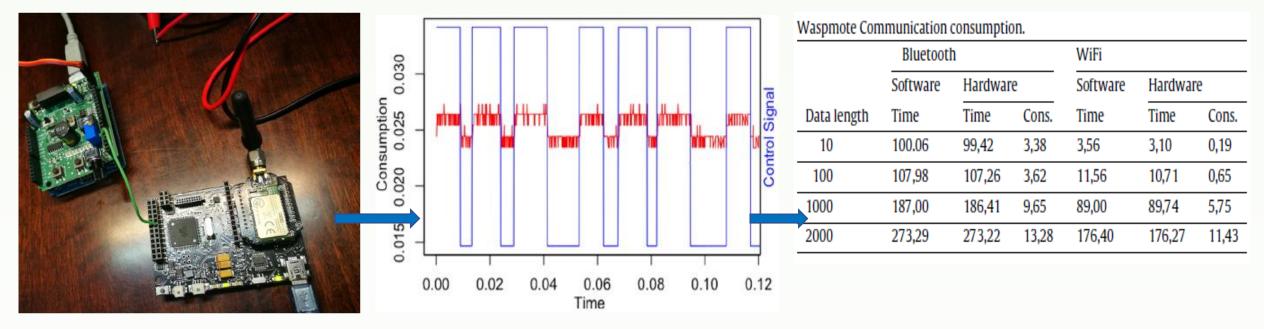
- 1. Define a database schema to store QMs with valued **variant-wise QAs** in **collaborative** relational **database**.
- 2. Develop a **PHP algorithm** that soft-links extended NFMs and Energy values by indexing configuration leaves IDs. Technically: Clafer↔<u>PHP Query</u>↔MariaDB.



RQ2: Contribution 3 CAOSI

M


Interactive user interface for energy and runtime statistical reasoning


RQ2: Contribution 4

CAOSI

IDE Plugin that **dynamically** parses the code as features, and connects to HADAS microservice to suggest **energy/time/trade-off** efficient alternatives

RQ2: Third-party and Own Energy Measurements

Munoz et al. – Future Generations in Computer Systems, vol 91, 2019

- Green-Miner, Green Scaler and Green Oracle energy measurements CSV of Java collection classes and Android applications.
- PHP benchmarks provided by the Phoronix Test Suite.
- Low level C-compiler energy readings with the MAGEEC measurement board from the University of Bristol provided in a research stay in the micro-controllers group.

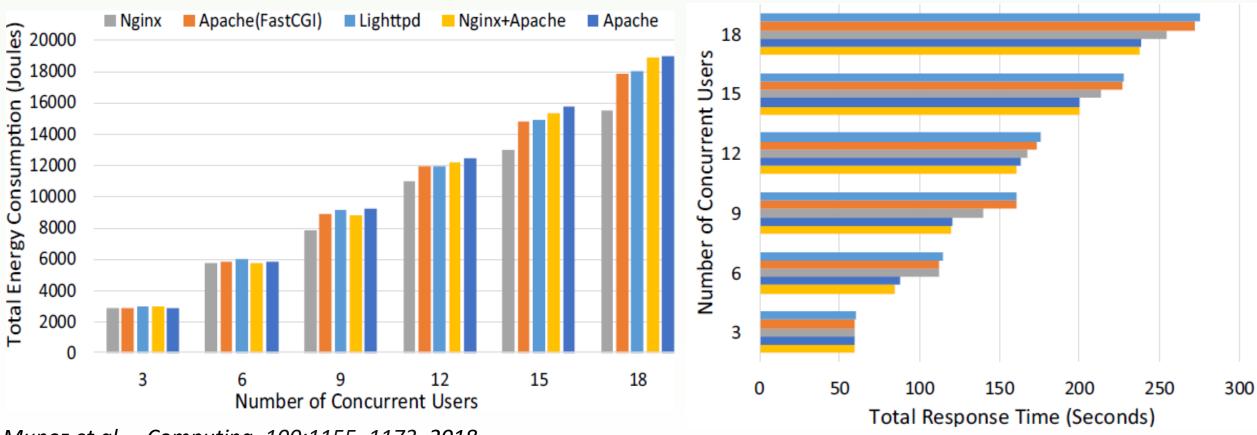
RQ2: Evaluation with a Survey to Experienced Developers

• 17 participants with different expertise evaluated *HADAS* with a Likert scale.

Likert-scale question	Average
1. The developers have considered a similar solution before	0.4
2. The plugin is user-friendly	3.6
3. The information provided by the plugin is understandable	3.9
4. The plugin interface is consistent with the IDE	3.9
5. The prompt to constraint the variability is clear	3.9
6. The plugin is complex	4.1
The developers will recommend the plugin	3.8
8. The developers will make use of the plugin	3.8

Munoz et al. – Future Generations in Computer Systems, vol 91, 2019

Professional programmers recommend HADAS usage 3.9/5


RQ2: Benchmarking HADAS Scalability

Configuration Size	# Configurations	Milliseconds
5	10	4
5	50	6
10	10	10
10	200	16
20	10	32
20	800	54

Munoz et al. – Tool Proceedings of the 23th ACM International Systems and Software Product Line Conference

HADAS processing is in the ms region for common CPSs analyses The number of features affects more than the configuration space

RQ2: HADAS Results and Answers

Munoz et al. – Computing, 100:1155–1173, 2018

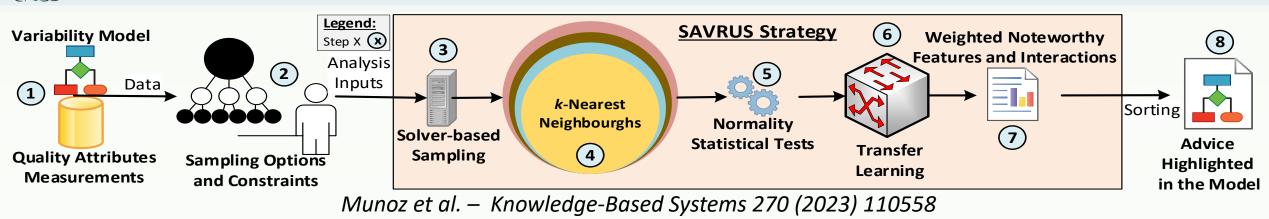
HADAS reduced the <u>energy consumption</u> of CPSs up to 70% and of web servers running PHP services up to 25%

RQ2: Partially Measured Colossal Configuration Spaces

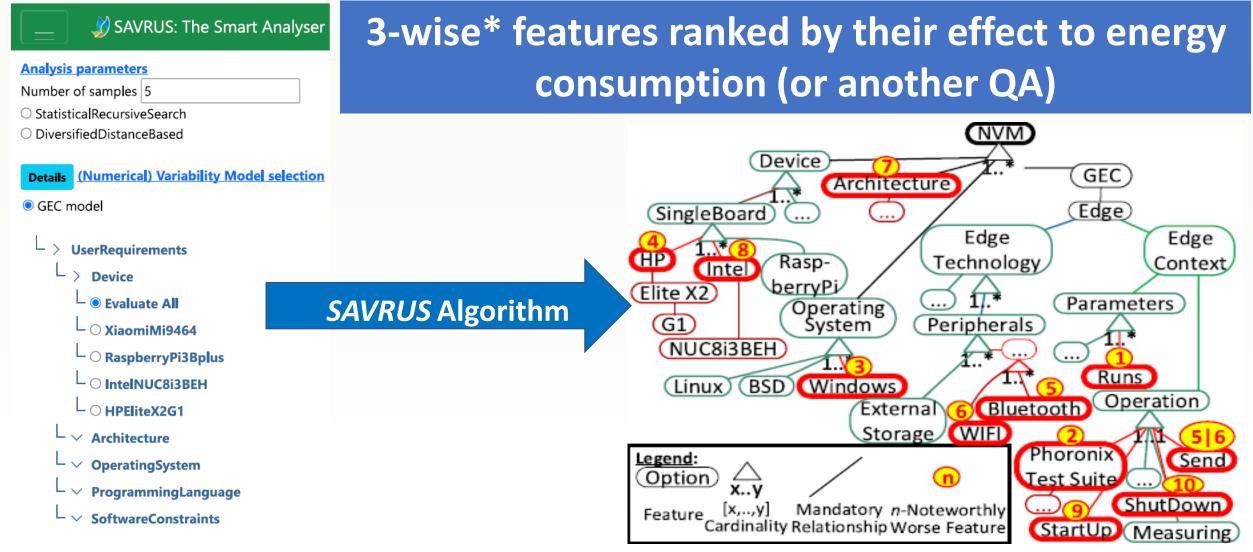
Who wants to manually measure the energy consumption of 10²⁰⁰ different configurations?

What will happen if the Configuration Space is Partially Measured?

- Measure the energy consumption of large spaces is unfeasible.
- Automatise the measuring of heterogenous systems is unfeasible.
- Build energy models is computationally complex and they are inaccurate.
- We need some **advices** and **in short times** developers are not patience.


What can we do?

It is unsolvable and here finish this RQ

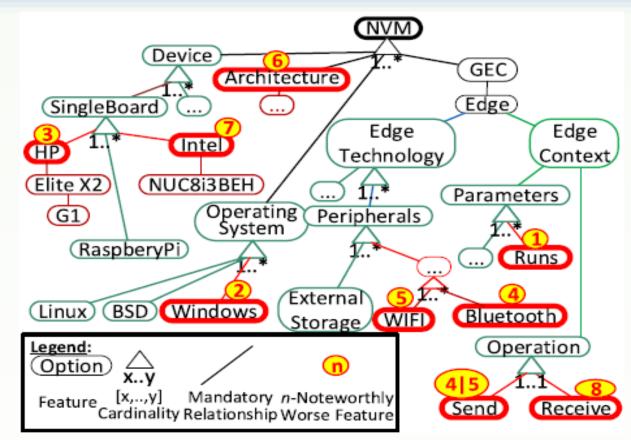

RQ2 Contribution 5: SAVRUS - https://hadas.caosd.lcc.uma.es/savrus.php

Modular algorithm based in machine and transfer learning:

- Re-work HADAS for partially measured spaces.
- Step 3 Sampling: SRS or Diversified Distance-Based Sampling (DDbS) to generate a subspace.
- Step 4 Regression **approximation**:
 - **kNN** to approximate unmeasured samples.
 - N-dimensions Manhattan distance: $|X_1 Y_1| + |X_2 Y_2| + ... + |X_n Y_n|$
- Step 5 **Statistic**al noteworthiness test:
 - Detect interactive features to the energy consumption up to **3-Wise***.
 - MWU to assured a 95% of interaction confidence.
- Step 6 Transfer learning* from previous SAVRUS executions: Scores of Local Outlier Factor [0,1].

RQ2: Contribution 5 and SAVRUS Tool Result

Munoz et al. – Knowledge-Based Systems 270 (2023) 110558


RQ2: Real-World Models Evaluated in SAVRUS

NVM	Description	#Booleans	#Numericals	Space	#Measurements
Dune	Multi-grid solver	11	3	2,304	2,304
HSMGP	Stencil-grid solver	14	3	3,456	3,456
HiPAcc	Image analysis framework	33	2	13,485	13,485
Trimesh	Triangle mesh library	13	4	239,360	239,360
GEC	Generic edge computing	552	2	$\sim \! 5.3 * 10^8$	132,500

Munoz et al. – Knowledge-Based Systems 270 (2023) 110558

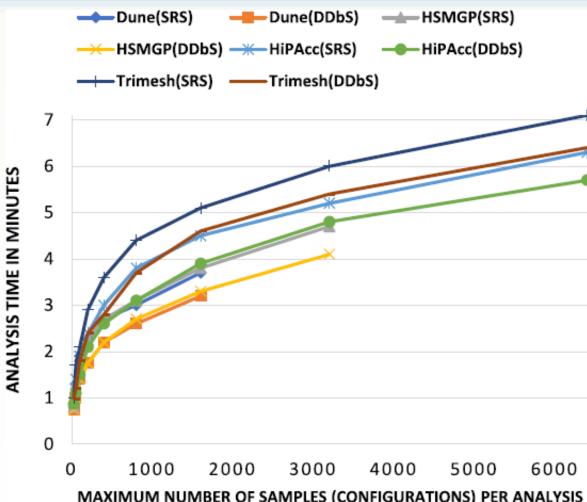
- We need a large and partially measured space to test the results of SAVRUS.
- We need **completely measured spaces** to test coverage and accuracy of *SAVRUS*. In each execution we **degrade** differently their measured space.

RQ2: SAVRUS Results and Answers

Munoz et al. – Knowledge-Based Systems 270 (2023) 110558

GEC up to 90% energy consumption reduction by performing a sequence of SAVRUS analyses with just 3% samples of the 0.25% measurements of the total space

RQ2: SAVRUS Results and Answers


SAVRUS time, coverage and accuracy for SRS/DDbS querying 3% samples of the	3
incompletely measured space of four real-world systems.	

Sampling		SRS			DDbS	
Model						
	Time	Coverage	Accuracy	Time	Coverage	Accuracy
Dune	1.5 m	73.2%	86.7%	1.3 m	76.9%	83.9%
HSMGP	1.9 m	72.4%	85.4%	1.4 m	75.7%	83.5%
HiPAcc	3.7 m	70.5%	84.1%	2.8 m	73%	83.3%
Trimesh	7.3 m	65.2%	83%	6.6 m	68.7%	82.8%
Mean:	3.6 m	70.3%	84.8%	3 m	73.6%	83.4%

Munoz et al. – Knowledge-Based Systems 270 (2023) 110558

 SAVRUS generates a correct ranking of noteworthy features and interactions in average ~80% of the times with a similar coverage
 SRS is more accurate but slower than DDbS

RQ2: Benchmarking SAVRUS Scalability

Munoz et al. – Knowledge-Based Systems 270 (2023) 110558

SAVRUS has base runtime of ~ 1 minute, taking less than 3 minutes for comprehensible executions and ~ 7 minutes in the worst cases.

RQ3: Unify Variability and Quality Modelling

Do I really need to maintain an extended FM and a Database? How can I define that an aggegated feature-wise QA is interacting with a variant-wise one?

- CPSs require quality-aware and advance reasoning:
 - Classical operations: SAT, compute configurations, model counting, etc.
 - <u>Quality-aware operations</u>: QAs SAT, generate/count measured spaces, etc.
 - Interactions between QAs: Constraints between Feature-wise and Variant-wise QA values.
 - <u>Optimisation</u>: Multi-objective, valued trade-offs, etc.

Formally define a unified extended NFM and valued QM standard

RQ3 BACKGROUND

Why Are You Using the Exotic Category Theory? – Reviewer X

	$ \rightarrow Model \\ \downarrow Entity $	NVM	Category Theory	Set Theory	FODA	Codd Algebra	HOL	Arith- metic
Just focus on	Structured Model	Labelled NVM	Category	Finite Set	Labelled FM	Data Schema	Logic Formula	Plane
the reddish boxes	Entities	Sub- tree, Feature, Solution	Sub- Category , Object, Instance	Sub-Set, Element	Sub-tree, Feature, Configu -ration	Table ,Cell	Partial Formula, Variable	Sub- System, Equation ,Variable
	Boolean Type	B Feature	B	B	Feature	B	B	Pseudo- B: [0,1]
	Numerical Type	$\mathbb{N}, \mathbb{Z}, \mathbb{R}$ Feature	$\mathbb{N}, \mathbb{Z}, \mathbb{R}$	\mathbb{N}, \mathbb{Z} Finite Sets	Un- supported	$\mathbb{N}, \mathbb{Z}, \mathbb{R}$	Un- supported	$\mathbb{N}, \mathbb{Z}, \mathbb{R}$

CAOSE

Category Theory supports everything natively

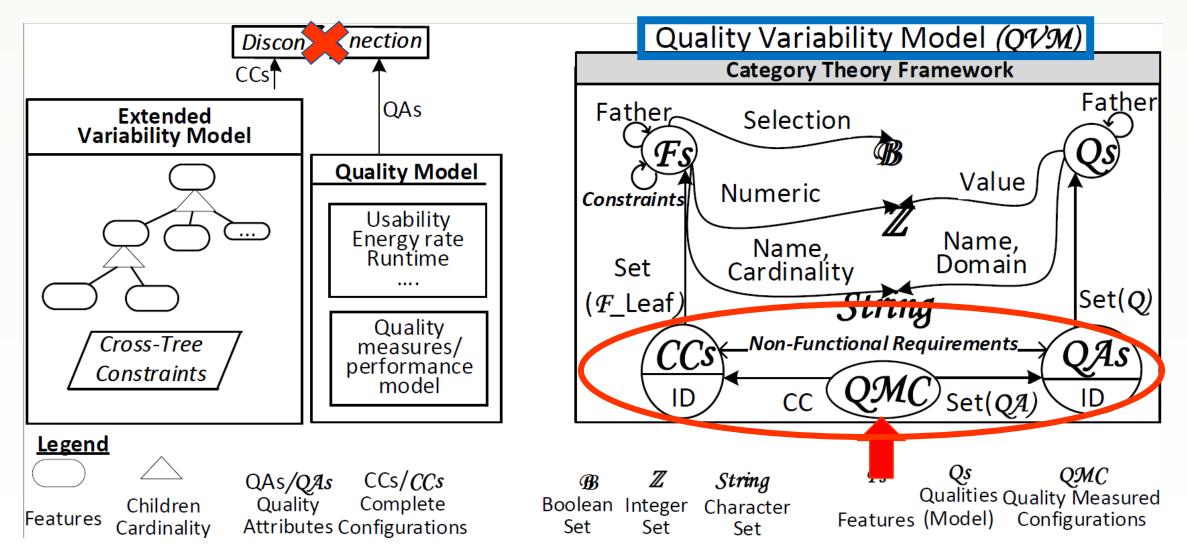
Selection	Assert	Δ	∈	Require	$\pi_{[m Column]}$	True	=	
Exclusion	Not	$-\Delta$	⊈	Exclude	$-\pi_{\rm [Column]}$	False	¥	
Con- nectives	&&, , [xy], ⇒, ≡	$\sum_{[Functor]} \prod_{[Functor]}$, X	$\begin{array}{l} \wedge,\vee,\oplus,\\ \mathrm{If},\Rightarrow,\equiv\end{array}$	And, Or, xOR, \Rightarrow , \equiv	Foreign Key, \bigcap , \bigcup , \biguplus , Joins _[X]	$\begin{array}{l} \wedge,\vee,\oplus,\\ \mathrm{If},\Rightarrow,\equiv\\ \forall,\exists,! \end{array}$	Equation Systems	
Equalities	$\begin{array}{l} =,\neq,>,\\ \geq,<,\leq\end{array}$	$\begin{array}{l} =,\neq,>,\\ \geq,<,\leq\end{array}$	=, ≠	=, ≠	$=,\neq,>,\\\geq,<,\leq$	=, ≠	$= , \neq , >, \\ \geq , <, \leq$	
Mathe-	+, -, *,	+, -, *,	Pre/Suc	Un-	Un-	Un-	+, -, *,	
matics	÷, %	÷, %	-cessor	supported	supported	supported	÷, %	

Munoz et al. – Proceedings of the 33rd International Conference on Advanced Information Systems Engineering CAISE

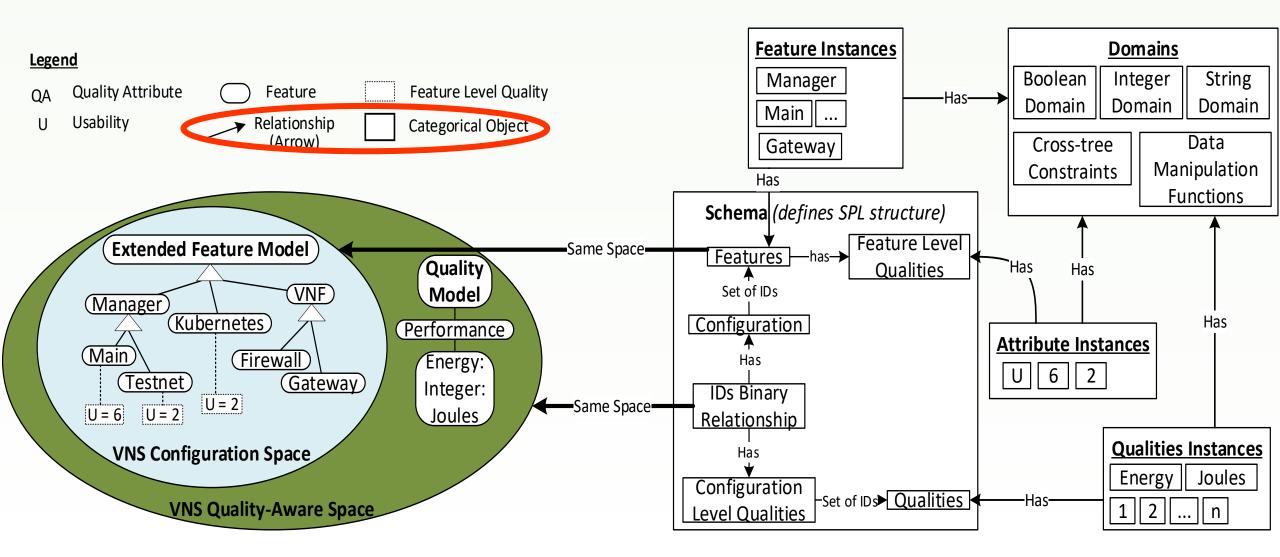
Fundamentals of Category Theory

Algebraic theory of mathematical structures to capture and relate similar aspects of structures while abstracting from the individual specifics.

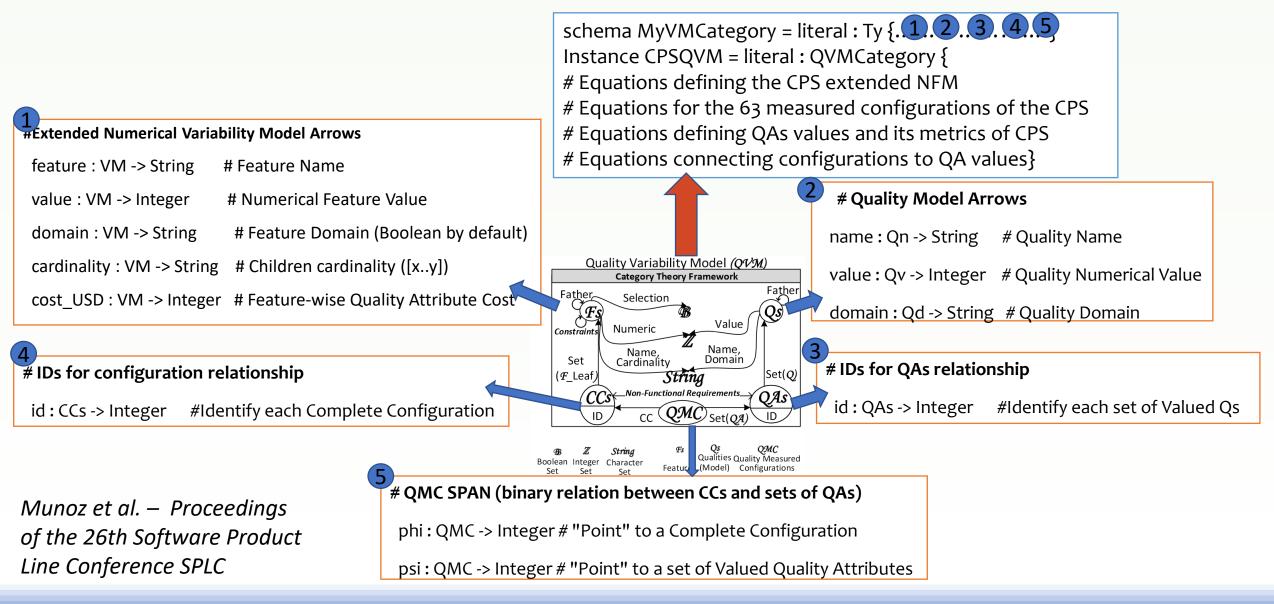
- Category: A set of <u>Objects</u> and <u>Arrows</u> in a labelled directed graph.
- **Objects**: A structured template $X \in Ob(C)$, graphically depicted as a node •^X.
- Arrows: A structure-preserving function $a \in Arr(C)$ with source and target objects and identity and composition properties depicted $\bullet^X \rightarrow a \bullet^Y$.
- (Generalised) Element: Arrows to data domains.
 - E.g., $\bullet^{X_{e_1}} \rightarrow^{Name} String$
- Functor: A process F between categories depicted $\bullet^{c_1} \rightarrow^{F} \bullet^{c_2}$.
- Instance: Set-valued functor that assigns values to elements.
 - E.g., $\bullet^{X_{e_1}} \rightarrow^{Name}$ "Java", and $\bullet^{X_{e_2}} \rightarrow^{Value}$ True



RQ3 Approach Quality-Aware Unified Reasoning


RQ3: Contribution 1 – The Categorical QVMCAOSE

M



Munoz et al. – Proceedings of the 33rd International Conference on Advanced Information Systems Engineering CAISE

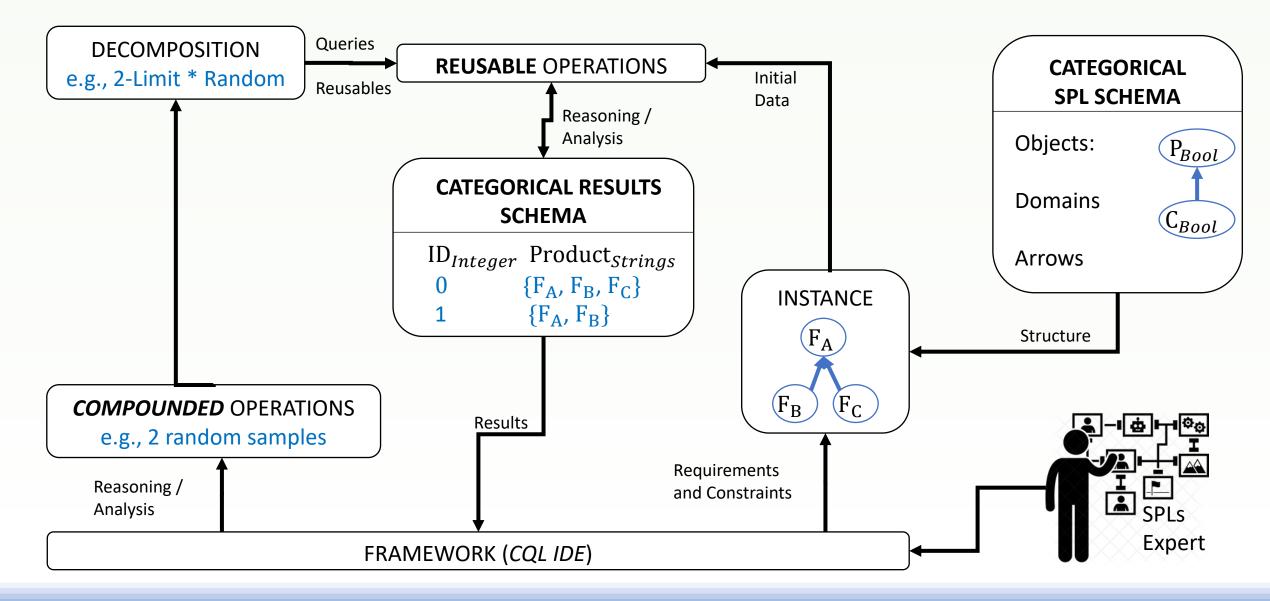
RQ3: Instantiating a QVM

RQ3: Modelling a CPS QVM in CQL IDE

CAOSD

RQ3: Contribution 2 | The QVM Framework - <u>https://www.categoricaldata.net/</u>

Algorithm 1: Categorical Model Report


Input: Populated Fs, CCs, QMC, QAs (bool, num, logic, arithm, confs, measured[]) = $[0, \ldots, 0]$; bool = Add($\lambda(x \in \mathcal{F}s \mid !: .num) : 1$); Optimal, as we only query the required objects num = Add($\lambda(x \in \mathcal{F}s \mid x.uum) : 1$); logic = Add($\lambda(x \notin \mathcal{F}s.where \mid x.ops \notin [=, +, ..., \%]$) : 1); arithm = Add($\lambda(x \in \mathcal{F}s | where | x.ops \in [=, +, ..., \%]$) : 1); confs = Add($\lambda(CCs.id)$: 1); measured[QA]=Add($\lambda(CC.f.att \lor CC.id \in QMC)$: 1); (FQAs, CCQAs) = ['', '']; FQAs = ConcatIfNew($\lambda(x \in \mathcal{F}s.att)$): [x.name, x.val, x.dom, x.AggregationFunction]); CCQAs = ConcatIfNew($\lambda(x \in QAs)$: [x.name, x.val, x.dom]); Result: bool, num, logic, arithm, confs, measured, FQAS, CCQAs Munoz et al. – Proceedings of the 26th Software Product Line Conference SPLC

Algorithm 2: Categorical Aggregation of Attributes Input: Populated *CCs* AggregatedQAs = [][]; forall $cc \in CCs$ do Func = []; Func = Push($\lambda(x \in cc.feature.att) : x.function);$ AggregatedQAs[cc.id] = Push($\lambda(x \in cc.feature.att, f \in Func|f = x.function) : f(x));$ end Result: AggregatedQAs

Algorithm 3: Categorical Quality Optimisation Input: Populated QMC, CCs, Objectives $eQMC = [QMC.cc, (QMC.qa \cup Aggregation(CCs))];$ Result: $(\lambda x \in eQMC \mid Objectives(x.qas) :$ [x.cc.features, x.qas])

Formal and algorithmic definition of the $Q \lor M$ Quality-Aware Operations

RQ3: Usage of the QVM Framework - URS

RQ3: CPS Filter Reasoning in CQL IDE CAOSD

	🏂 pizza.cql - 16:31:04		- 0	×
	Summary typeside Ty	Tables TyAlg Hom-sets DP Graph Text Expression		
	schema PizzaCategory	CONFS (36)		
	instance PizzaData : Pi	QA FILTER Reasoning	qas	
	schema RESSATISFY	0 & Interface>(XOR) VirtualNetworkFunctions>(XOR) Monitor & & EnergyRate = 14 Watts &	Runtime = 2 Sec	onds
ſ	query SATISFY : PizzaC instance SATSolver : RI	1 & Interface>(XOR) VirtualNetworkFunctions>(XOR) Monitor & & EnergyRate = 13 Watts &		
	schema RESCOUNT	2 & Interface>(XOR) VirtualNetworkFunctions>(XOR) Monitor & & EnergyRate = 13 Watts &	Runtime = 2 Sec	onds
	query COUNT : PizzaCa	3 & Interface>(XOR) VirtualNetworkFunctions>(XOR) Monitor & & EnergyRate = 13 Watts &	Runtime = 2 Sec	onds
	instance COUNTSolver	4 & Interface>(XOR) VirtualNetworkFunctions>(XOR) Monitor & & EnergyRate = 14 Watts &	Runtime = 2 Sec	onds
We	schema RES	5 & Interface>(XOR) VirtualNetworkFunctions>(XOR) Monitor & & EnergyRate = 13 Watts &	Runtime = 2 Sec	onds
implemented	query FILTER : PizzaCa	6 & Interface>(XOR) VirtualNetworkFunctions>(XOR) Monitor & & EnergyRate = 13 Watts &		
	instance FILTERSolver:	7 & Interface>(XOR) VirtualNetworkFunctions>(XOR) Monitor & & EnergyRate = 13 Watts &		
in CQL IDE	query BOUND : PizzaC instance BOUNDSolver	8 & Interface>(XOR) VirtualNetworkFunctions>(XOR) Monitor & & EnergyRate = 14 Watts &	Runtime = 1 Sec	onds
the Quality-	query RANDOM : Pizza	9 & Interface>(XOR) VirtualNetworkFunctions>(XOR) Monitor & & EnergyRate = 13 Watts &	Runtime = 1 Sec	onds
Aware	instance PizzaDataRan	& Interface>(XOR) VirtualNetworkFunctions>(XOR) Monitor & & EnergyRate = 13 Watts &	Runtime = 1 Sec	onds
	instance RANDOMSolv	& Interface>(XOR) VirtualNetworkFunctions>(XOR) Monitor & & EnergyRate = 13 Watts &	Runtime = 1 Sec	onds
Reasoning	schema RESAGGREGA	& Interface>(XOR) VirtualNetworkFunctions>(XOR) Firewall & & EnergyRate = 18 Watts &	Runtime = 6 Sec	onds
Operations	query AGGREGATE : Pi	& Interface>(XOR) VirtualNetworkFunctions>(XOR) Firewall & & EnergyRate = 17 Watts &	Runtime = 5 Sec	onds
	instance AGGREGATES	& Interface>(XOR) VirtualNetworkFunctions>(XOR) Firewall & & EnergyRate = 16 Watts &	Runtime = 4 Sec	onds
	query FILTERAGGREGA	& Interface>(XOR) VirtualNetworkFunctions>(XOR) Firewall & & EnergyRate = 15 Watts &	Runtime = 3 Sec	onds
	instance FILTERAGGRE	& Interface>(XOR) VirtualNetworkFunctions>(XOR) Firewall & & EnergyRate = 18 Watts &	Runtime = 6 Sec	onds
		& Interface>(XOR) VirtualNetworkFunctions>(XOR) Firewall & & EnergyRate = 17 Watts &	Runtime = 5 Sec	onds
Energy=<18 8	k Runtime =<10	& Interface>(XOR) VirtualNetworkFunctions>(XOR) Firewall & & EnergyRate = 16 Watts &	Runtime = 4 Sec	onds
(36 out of 63	configurations)	& Interface>(XOR) VirtualNetworkFunctions>(XOR) Firewall & & EnergyRate = 15 Watts &	Runtime = 3 Sec	onds
		& Interface>(XOR) VirtualNetworkFunctions>(XOR) Firewall & & EnergyRate = 18 Watts &	Runtime = 6 Sec	onds
		36 IDs. 6 nulls. 0.658 seconds. Provenance: Row limit:		

Provenance:

RQ3: Real-world QVMs Evaluated

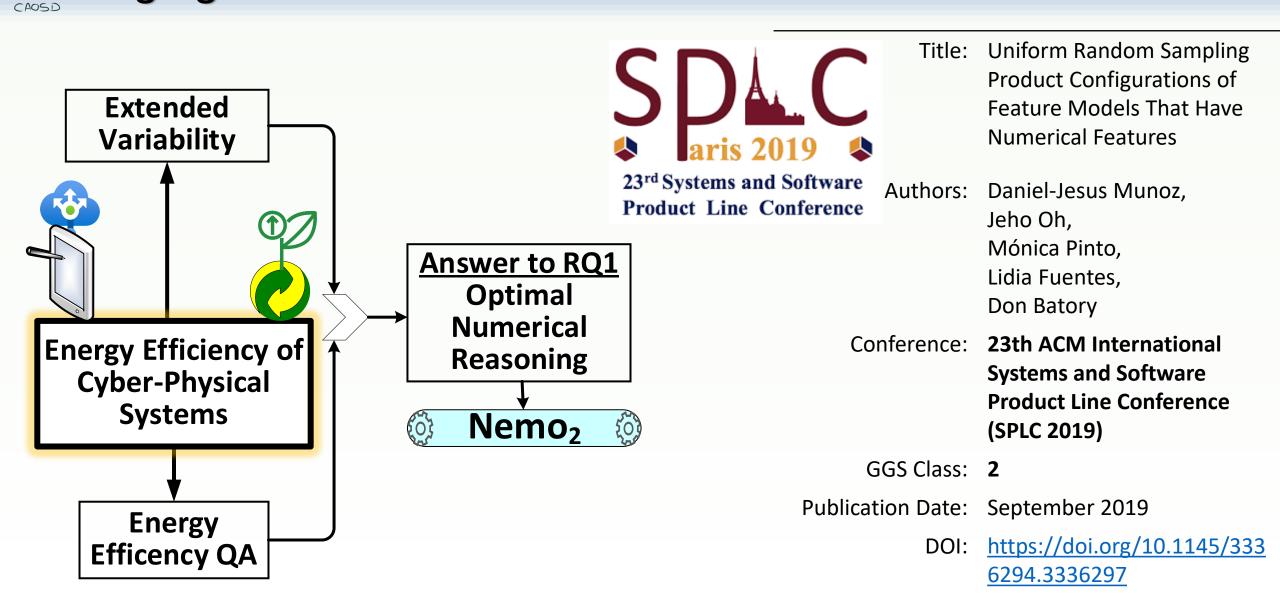
SPL	Description	Features	Constraints	Configurations	Quality Attributes
Pizza	Italian vendor machine [28]	Boolean: 12Numerical: 1	Empty	Total SAT: 42Measured: 84	 Feature level: (1) Cost ∈ (5,25) \$: Function: Addition Configuration level: (2) Time ∈ (1,10³) seconds
Truck	Truck factory [45]	• Boolean: 33	• Logic: 10	Total SAT: 234Measured: 234	 Feature level: (1) Size ∈ [0,10) metres²: Function: Product
JHipster	Software generator [24]	• Boolean: 45	• Logic: 13	 Total SAT: 26,256 Measured: 105,024 	 Feature level: (1) Usability ∈ (0, 10): Function: Addition (2) Battery ∈ (0, 20): Function: Addition (3) Footprint ∈ (0, 10): Function: Addition Configuration level: (4) Compileable ∈ [true, false]
(1) VNS and (2) FullVNS	Virtual Network System	Figure 1 version: • Boolean: 18 • Numerical: 1 Full version: • Boolean: 40 • Numerical: 3	Figure 1 version: • Logic: 1 • Arithmetic: 1 Full version: • Logic: 63 • Arithmetic: 4	Figure 1 version: • Total SAT: 63 • Measured: 315 Full version: • Total SAT: 2,130,000 • Measured: 10,650,000	 Feature level: Dependency ∈ [L, M, H]: Function: Maximum Usability ∈ (1, 10): Function: Mean Security ∈ [L, M, H]: Function: Minimum Configuration level: Time ∈ (1,10³) seconds Energy ∈ (1,10³) joules

Munoz et al. – Proceedings of the 26th Software Product Line Conference SPLC

RQ3: Results

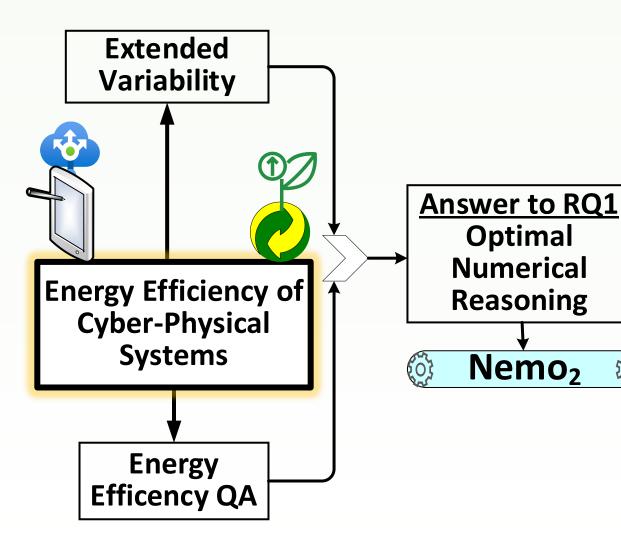
Reasoner:	ClaferMoo				AAFM Python Framework				CQL IDE				
SPLs:	Pizza (VNS Full	Truck S	JHipster	Pizza	VNS Full	l Truck	JHipster	Pizza	VNS Full	Truck	JHipster	
Features	0.2 s	0.2 2.7 s	0.2 s	0.3 s	0.02 s	0.02 0.39 s	0.03 s	0.05 s	0.04 s	0.05 0.55 s	0.06 s	0.07 s	
Constraints	0.2 s	0.2 2.73 s	0.2 s	0.3 s	0.02 s	0.02 0.39 s	0.03 s	0.05 s	0.04 s	0.05 0.55 s	0.06 s	0.07 s	
Configurations	*0.5 s	*1.05 213 s	*1.4 s	*2.7 s	*0.15 s	*0.2 60 s	*0.24 s	*5.03 s	0.17 s	0.19 156.4 s	6 0.22 s	1.98 s	
QAs	*0.9 s	*1.7 4.3 s	*2.1 s	*2.9 s	Unsupported	d Unsupported	Unsupported	Unsupported	0.06 s	0.11 3.4 s	0.14 s	0.19 s	
Mean:	*0.45 s *	0.79 55.6 s	*0.98 s	*1.55 s	*0.06 s	*0.09 20.2	s *0.1 s	*1.71 s	0.08 s	0.1 40.3 s	0.12 s	0.58 s	
Reasoner:	: ClaferMoo					SATL	BEA			CQL	IDE		
SPLs:	Pizza (VNS Full	Truck J	Hipster	Pizza	VNS Full	Truck .	JHipster	Pizza	VNS Full	Truck	JHipster	
Unconstrained	0.95 s	*1,8 236 s	2.15 s	2.99 s	1.67 s	*1.79 2.33 s	*1.85 s	1.78 s	0.27 s	0.39 211 s	0.42 s	2.68 s	
Constrained	0.97 s	*1.89 237 s	2.17 s	3.01 s	Unsupported	Unsupported	Unsupported	Unsupported	0.27 s	0.4 212 s	0.42 s	2.69 s	
Range	0.95 s	*1.8 232 s	2.15 s	2.94 s	Unsupported	Unsupported	Unsupported	Unsupported	0.27 s	0.41 212 s	0.43 s	2.69 s	
Mean:	0.957 s *	1.83 235 s	2.16 s	2.98 s	1.67 s	*1.79 2.33 s	*1.85 s	1.78 s	0.27 s	0.4 212 s	0.423 s	2.69 s	
Reasoner:		Claf	erMoo		SATIBEA					CQL IDE			
SPLs:	Pizza	VNS Ful	l Truc	k JHips	ster Pizz	a VNS Fa	ull Truck	JHipster	Pizza	VNS Full	Truck,	JHipster	
Min/Maximise	*0.98 s	*1.87 344	s 2.23 s			s *1.79 2	s 1.85 s	*1.78 s	0.38 s	0.52 274 s	0.68 s	3.48 s	
Multiobjective	*1.02 s	*1.97 355	s 2.38 s	\$ *4.5	s *1.85	s *2.01 2,1	s 2.03 s	*1.95 s	0.42 s	0.67 312 s	0.78 s	3.95 s	
Weighted	Jnsupporte	ed Unsupported	d Unsuppor	rted Unsuppo	rted Unsuppo	orted Unsupport	ed Unsupporte	d Unsupported	0.42 s	0.68 317 s	0.82 s	4.02 s	
New Domain	Jnsupporte	ed Unsupported	l Unsuppor	rted Unsuppo	rted Unsuppo	orted Unsupport	ed Unsupporte	d Unsupported	0.41 s	0.63 274 s	0.73 s	3.47 s	
Mean:	*1 s	*1.92 349	s 2.31	s *4.43	s *1.76	5 s *1.9 2,05	5 s 1.94 s	*1.87 s	0.41 s	0.63 294 s	0.75 s	3.73 s	

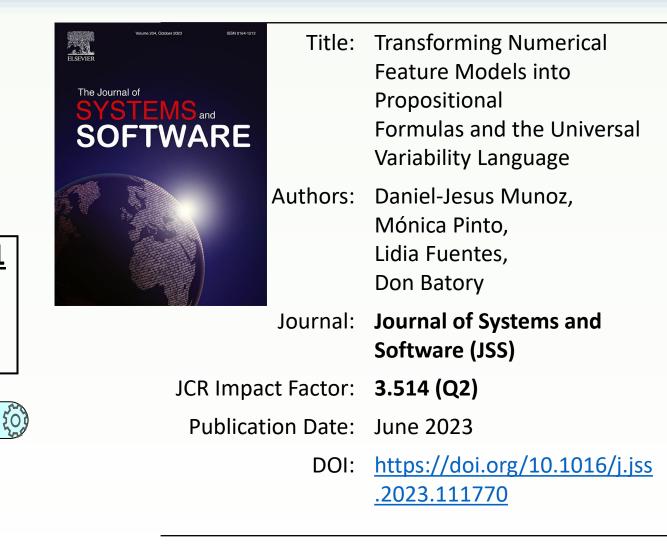
Munoz et al. – Proceedings of the 26th Software Product Line Conference SPLC

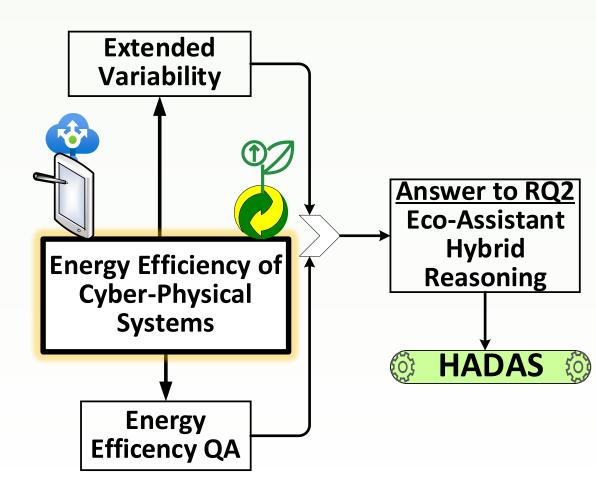


- QVM is a category that formally integrates into a unifying model the variability and quality information, **natively** supporting any feature, QA, and constraints among them.
- The QVM framework defines QAs lambda operations for quality-aware reasoning supported by the categorical solver CQL IDE.
- The evaluation reached a total of 11 different operations, and on average, this framework was the fastest in 5 different real-world SPLs compared to popular reasoners.

Thesis Publications, Awards, Research Stays and Projects


- A total of 18 Publications:
 - 4 JCR Indexed Journals, divided in two Deciles 1, and two Quartiles 2.
 - 5 GGS Indexed Conferences, divided in four GGS 2 and one GGS 3.
 - 1 HADAS Tool Demonstration paper and poster in a GGS 2 Conference.
 - 2 Workshop papers in a GGS 2 Conferences.
 - 1 Doctoral Symposium paper in a GGS 2 Conference.
 - 1 International IEEE Conference.
 - 4 National Conferences.
- A total of 3 Awards:
 - Best Student Paper Award in the International Conference ES2DE 2017.
 - Top 2 Excellence Young Scientist 2018 award of Sevilla and Málaga by the Fundación IMFAHE.
 - Top 22 thesis in progress of Universidad de Málaga in 2022.
- 3 Competitive International Research Stays.
 - 3 Months at the University of Texas in Austin, USA. Supervised by Prof. Don Batory (Mención).
 - 4 Months at the University of Bristol, UK. Supervised by Prof. Kerstin Eder.
 - 6 Months at the KTH, Sweden. Supervised by Prof. Dilian Gurov
- 8 Research Projects, being 1 International H2020 funded and acting as Task Leader:
 - Codenames: HADAS, MAGIC, TASOVA, **DAEMON**, MEDEA, LEIA, RHEA, and IRIS.


Highlighted Thesis Publication 1:

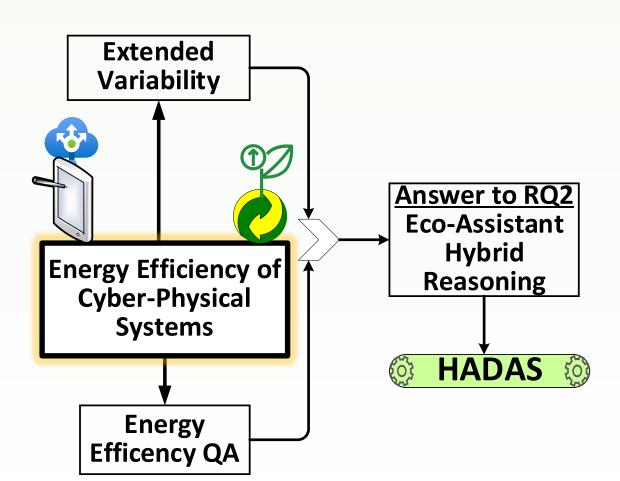


Highlighted Thesis Publication 2:

Highlighted Thesis Publication 3:

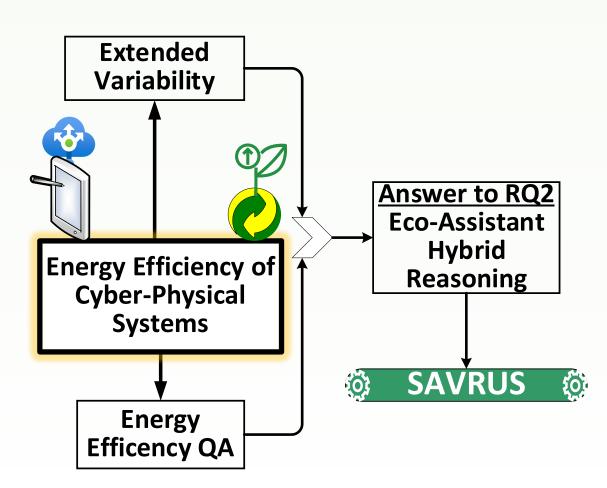
Title: Finding Correlations of Features Affecting Energy Consumption and Performance of Web Servers Using the HADAS Eco-Assistant

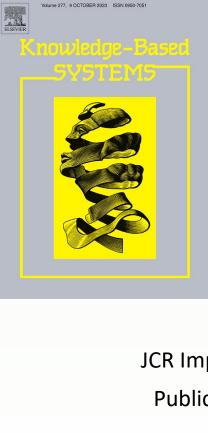
Authors: Daniel-Jesus Munoz, Mónica Pinto, Lidia Fuentes


Journal: Computing

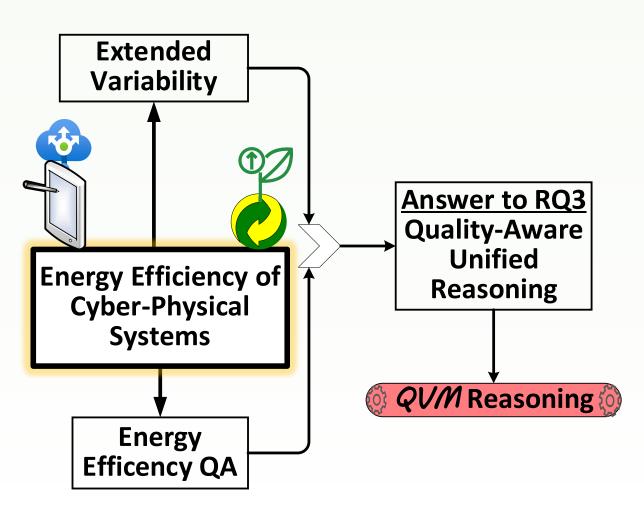
JCR Impact Factor: 2.063 (Q2)

Publication Date: June 2018


DOI: <u>https://doi.org/10.1007/s00</u> 607-018-0632-7

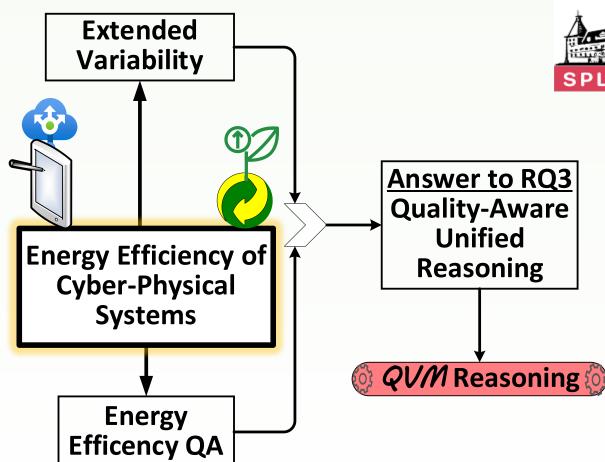

Highlighted Thesis Publication 4:

Highlighted Thesis Publication 5:



- Title: Detecting Feature Influences to Quality Attributes in Large and Partially Measured Spaces Using Smart Sampling and Dynamic Learning
 Authors: Daniel-Jesus Munoz, Mónica Pinto, Lidia Fuentes
 Journal: Knowledge-Based Systems
- JCR Impact Factor: 8.139 (Q1)

Publication Date: April 2023


DOI: <u>https://doi.org/10.1016/j.kn</u> osys.2023.110558

Highlighted Thesis Publication 6:

Highlighted Thesis Publication 7:

- Title: Quality-aware Analysis and Optimisation of Virtual Network Functions
- Authors: Daniel-Jesus Munoz, Mónica Pinto, Lidia Fuentes
- Conference: 26th ACM International Systems and Software Product Line Conference (SPLC 2022)
 - GGS Class: 2

Publication Date: September 2022

DOI: <u>https://doi.org/10.1145/354</u> 6932.3547007

- 1. We can **encode NFs and arithmetic constraints** into bitvectors and PFs to perform efficient optimal configuration search with a minimum performance degradation (e.g., seconds).
- 2. We can connect the variability with **databases of energy consumption** information with index-based processes. This creates the measured space.
- 3. If the measured space is colossal, incomplete, and biased, we can follow a **modular sequence** with competitive runtime, coverage and accuracy: solver based sampling, lazy learning, statistical tests, transfer learning and weighted sorting.
- 4. Category theory can unify the extended NFM and QM as a category, as well as define quality-aware operations for categorical solvers like CQL IDE.

- Integrate machine and transfer learning techniques into our QVM framework.
- Improve some *SAVRUS* modules:
 - Learning by self-trained Neural Networks.
 - *k*NN by Approximate Nearest Neighbourgs.
- Replace the relational database by alternatives like non-relational.
- Test other algebras techniques taken from Geometry and Topology.
- Test other algebraic tools like Coq and Agda.
- Formalise calculus for Quality-Aware reasoning like Newton to count.
- Represent and solve variability and quality as systems of equations.
- Migrate our tools and techniques to other areas like distributed systems.

Acknowledgments:

- Supervisors Lidia Fuentes and Mónica Pinto.
- Research stay supervisors Don Batory, Kerstin Eder and Dilian Gurov.
- PhD Thesis Court.
- European Project H2020 DAEMON 101017109
- Spanish Projects :
 - HADAS TIN2015-64841-R
 - MAGIC P12-TIC1814
 - TASOVA MCIU-AEI TIN2017-90644-REDT
 - MEDEA RTI2018-099213-B-I00
 - RHEA P18-FR-1081
 - IRIS PID2021-122812OB-I00
 - PRE2019-087496 (FPI contract)
 - LEIA UMA18-FEDERJA-15

- Daniel-Jesus Munoz <u>dm@luma.es</u>
- CAOSD Group (<u>http://caosd.lcc.uma.es/</u>) Universidad de Málaga ETS Ingeniería Informática. Laboratory 3.3.3.

