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Abstract—The use of information models to share and allow
modification of network element state is one of the best and
most widely adopted ideas in network management. The formal
structure of information models and the controlled manner of
accessing and changing such models brings both flexibility and
control when managing network elements. However, keeping
information models synchronized and consistent across network
elements and management systems is also one of the most
challenging tasks in network management system development.
Today this problem is exasperated with the advent of ephemeral
network functions and elements and also by the need for
distributed scalable cooperating management functions running
in containerized distributed cloud deployments.

In computer science, there have been major advances in
systems that allow seamless distribution of data across distributed
executing entities, and separately in systems that allow highly
granular data access synchronization across distributed entities.
However, such systems do not place importance on “informa-
tion model” concepts, with data usually distributed as largely
unmodeled unstructured data maps.

In this paper, we describe our novel approach for distributed
information models. We describe how information models are
distributed to dispersed network elements and management
systems, how synchronized access to distributed information
models is achieved, how information models are persisted, and
how lookups and changes to information models are logged.

I. INTRODUCTION

With the advent of cloud computing, virtualization, and
hosts with multiple cores and hundreds of GB of memory,
telecommunication networks are becoming increasingly dis-
tributed and virtualized. Technologies such as Software De-
fined Networking (SDN) and Network Function Virtualization
(NFV) enable distributed virtualized “soft” networks, therefore
network management applications must also evolve to manage
such networks. Although specifications for managing NFV
such as the NFV-MANO [1] do not prescribe distributed man-
agement, using a distributed approach in management systems
is an obvious way to leverage the power of today’s cloud
infrastructure with its underlying multi-core and memory rich
hosts. Therefore it is not surprising that modern management
systems such as Ericsson’s ENM [2] are inherently distributed.

Network management has long used information models
to describe information that is being managed [3][4][5] in
network elements and management systems and the value
of having such structured models to constrain the managed
information is widely recognized. Such models provide many
advantages: the modeled information is unambiguously de-
scribed; the model acts as an interface to the managed domain;
the protocol for accessing the model is available, and any
application can use and manipulate the information in the
model once it complies with the protocol; and usage of the
model can be logged. The paradigm of hierarchical models is

Fig. 1: Distributed Management Information Model (D-MIM) Management

ubiquitous in network management [6], with managers in a
given level of management using models published by agents
in the level below. However, current management information
models are defined with the scope of a single Network Element
(NE) or host, so co-ordination of models across multiple hosts
is left as a task for each management application. The lack
of common distributed management of information models
is a serious drawback for distributed management application
development. Not only does each application have to manage
its own distributed information, there is no common way to
coordinate when different distributed management applications
share management information.

A number of interesting technologies have emerged in the
computer science domain that can be used to share information
between distributed processes. Memory Driven Computing [7]
has been proposed as a way of using the large banks of
cheap memory on the hosts of modern distributed systems.
Implementations of Distributed Hash Tables [8] that exchange
unstructured maps of information between processes have
been available for some time [9][10]. In parallel, frameworks
have emerged to support distributed synchronized locks across
processes. Some frameworks take a centralized approach,
where a central server holds a record of all locks and controls
lock access [11] while others take a fully distributed approach,
with lock data being exchanged between processes at run time
[10]. In addition, distributed monitoring technologies such as
syslog [12] and Log4j [13] and persistence such as relational
databases and distributed file systems are mature and are very
suitable for distributed model monitoring.

This paper describes our approach for Distributed Manage-
ment Information Model (D-MIM) Management (Fig. 1). At
design time, a D-MIM author designs D-MIMs using an editor
which stores metadata describing the D-MIMs in a Model
Knowledge Base and creates a D-MIM Object definition for



each concept in each D-MIM, which may be instantiated at run
time. At run time, the D-MIM Deployer distributes D-MIM
Metadata and D-MIM Objects to distributed processes on real
or virtual hosts. The Deployer deploys only the required set of
D-MIMs to a given process, ensures that the D-MIMs on each
host are consistent, upgrades D-MIMs on processes as the D-
MIM definitions change in the knowledge base, and removes
D-MIMs when they are no longer required for a process.
D-MIMs can then be used to share information within an
application instance, across instances of the same or different
applications in a single process, or across application instances
in multiple (possibly distributed) processes.

The D-MIM Manager for a process uses D-MIM Metadata
to build local copies of only those D-MIMs required by the
applications running in that process. It controls reads and
writes to D-MIMs by applications in the process and uses
a distribution mechanism (e.g. Inifinspan[9] or Hazelcast[10])
to transfer updates to the other processes using that same D-
MIM. It also controls D-MIM access by applications; which
applications have read or write access to different parts of a
D-MIM is defined in the D-MIM metadata. If an application
requires synchronized read or write access to a D-MIM con-
cept instance, the D-MIM Manager uses a locking mechanism
(e.g. Apache Curator [11] or Hazelcast Locking [10]) to ensure
that the instance is appropriately locked or unlocked over all
processes using that D-MIM concept instance. Each D-MIM
Manager logs initializations, reads, writes, locks, and unlocks
on D-MIM concept instances and sends those logs to a D-
MIM Usage Collector for storage in the D-MIM Knowledge
base. These logs audit the usage of every D-MIM concept
instance in every D-MIM on every process, allowing the
consistency of each D-MIM concept instance to be verified.
The D-MIM metadata also enables consistent persistence of
information in D-MIMs; it describes what D-MIM concept
instances are persisted, the conditions when they are persisted,
which processes should persist data, and the type of persistent
store that should be used.

In this paper we survey related work in §II and in §III,
we describe our approach for Management Information Model
distribution. §IV shows a usage scenario of our approach and
§V describes our evaluation of the approach.

II. BACKGROUND AND RELATED WORK

There is no existing consistent method for defining, scoping,
and using a distributed management information model with
a scope wider than a single NE. Although hierarchies of
models are very common, each model is a separate standalone
instance with responsibility for managing the information of
the NE in which the information model instance resides.
The problem of information model coordination is magnified
because a different approach to model coordination is taken
in each domain. For example, a given radio network cell C1
is modeled in a base station model as cell C1 and is again
modeled separately in the management system as cell C1.
The models are different, the cell is modeled twice, and the
management system and base station NEs must interact with

each other to keep those models consistent, in this case using
3GPP IRPs [4]. Likewise, a network interface is modeled in
a computer using MIB-II [5] as eth0 and again separately
in an element manager as eth0. Again, the element manager
and host computer must interact with each other to keep their
models consistent, in this case using SNMP.

Information model coordination has been a challenge in
management systems for many years, exasperated by the
advent of Soft Networking. All current solutions rely on a
stable hierarchy being present, with NEs occasionally entering
and leaving the hierarchy in a controlled manner. When
resources are managed across transient (and often virtual) NEs,
where NEs, element managers and even network managers are
transient, spun up and torn down as required, a hierarchical
approach to model coordination makes it very difficult to
maintain a consistent distributed view of those models. The
approach of having independent static hierarchical models
envisaged for telecommunication networks of the 1980s [6]
does not operate well in today’s dynamic networks due to the
overhead and latency introduced by model coordination.

Although Distributed Shared Memory [14], Memory Driven
Computing [7] and distributed cache frameworks [9][10] allow
memory to be shared between systems, the data that is shared
is unstructured and uncontrolled, usually as distributed maps.
These are too unstructured and uncoordinated to be used safely
by management applications. Each process has the freedom to
add, modify, or remove entire distributed maps or the instances
in the maps. For example, process P1 adds an instance named
C1 as an object of type cell with parameters representing
various cell attributes. Process P2 can simply overwrite the
instance C1 with a string value or even delete the instance,
or worse, a process can place a completely incompatible
customer object as a value for C1 in the map.

Data sharing using databases is common, but a central-
ized database for multiple distributed applications can in-
troduce significant latency, even with caching mechanisms
like memcached (https://memcached.org/). There are numer-
ous approaches to use distributed databases for distributed
data access, e.g. CouchBase (http://www.couchbase.com) is
a distributed NoSQL database, but like most other NoSQL
databases data models schemas cannot be enforced. Many
traditional relational databases support replication using either
master-master or master-slave replication strategies, but most
such database replication strategies are only loosely consistent,
i.e. asynchronous with lazy or eventual consistency, violating
ACID properties, or where eager replication with enforced
consistency is used then updates introduce high latency.

The ability to lock a particular element in a model to allow
a management application preform a safe read or write is a
fundamental requirement for any distributed consistent data
approach. Distributed locking mechanisms [11][10] support
synchronized locking of named distributed locks, but they do
not provide a mechanism to associate or bind a named lock to
a particular model concept instance, so controlled distributed
locking of named model concept instances is not supported. A
straightforward locking approach is preferred to a transaction

https://memcached.org/
http://www.couchbase.com


Fig. 2: Distributed Management Information Model (MIM) Architecture

approach because transaction frameworks such as [15] and
[16] introduce a high degree of complexity and coordination
that cannot be hidden from management applications. Explicit
support for starting, joining, committing, and aborting trans-
actions must be provided. Further, transaction approaches do
not scale well, as the number of application instances increase
the speed of transaction execution diminishes rapidly [17][18].

Common monitoring of operations on shared models is diffi-
cult where no common model exists. For example, each change
on cell C1 or interface eth0 must be independently
and separately logged by both the manager and the NE using
their representation of C1 and eth0. These separate logs
must then be aggregated and correlated to provide a complete
view of model concept instance initializations, writes, reads,
and deletions. Similarly, if used, model persistence must also
be done separately. Each separate model is independently
persisted and managed, where the separate models must then
be mapped and joined to provide a common view.

III. DISTRIBUTED MANAGEMENT INFORMATION MODELS

Fig. 2 shows the architecture of Distributed Management
Information Model Management. At design time, D-MIMs are
defined in metadata and stored in the D-MIM Knowledge base
using an editor. The D-MIM Deployer distributes the D-MIMs
to a D-MIM Manager in each process that is using Distributed
MIM management. Each process may host one or more
instances of one or more applications. The D-MIM Manager
manages its local copies of D-MIMs, provides access to the
local MIMs for applications, distributes the MIM contents to
other processes using a distribution mechanism (e.g. [9] or
[10]), as well as managing locking, monitoring, and persisting
of MIM Model concept Instances.

A. Distributed Management Information Model Structure
The Metadata and Object structure for D-MIMs is shown in

Fig. 3. A D-MIM is composed of D-MIM concepts, each of
which has a Concept Type. The Concept Type is represented
by a D-MIM Object, which is instantiated at run time and
holds the MIM concept instance value. For example, the D-
MIM for a certain type of base station has D-MIM concepts
instances of type OwnedCell for each of the cells it owns and

Fig. 3: Metadata and Objects for Distributed MIM Management

Fig. 4: D-MIMs Deployed to Processes on Hosts

have D-MIM concept instances of type NeighbourCell
for each of the cells adjacent to the base station’s cells.
The concept OwnedCell and NeighbourCell are both
represented by the Cell D-MIM Concept type, and their value
will be held in a Cell D-MIM object at runtime.

The name of each D-MIM, D-MIM Concept Type, and
Application is unique in a D-MIM deployment and is used for
referencing their appropriate metadata. Scope defines applica-
tion visibility: Application scope gives visibility only to
explicitly defined applications, Global scope give read and
modify to any application, and External scope is read-only,
but these may be modified by external systems. Other more
selective scopes can also be defined.

A serializable D-MIM Object implements a D-MIM concept
and holds its concrete value. D-MIM Objects can there-
fore be transferred between processes and be persisted. D-
MIM Object definitions contain any property definitions that
is required to implement its domain model, for example
a Cell D-MIM Object may have a Cell_Id property,
and a NetworkInterface D-MIM Object may have an
ifPhysAddress property.

Application Metadata (see Fig. 2) specifies what applica-
tions use D-MIM management and list the D-MIMs used by
each application. Therefore, given a list of applications to be
run in a process, the D-MIM deployer and D-MIM manager
can infer which D-MIMs should be available to that process.

B. D-MIM Deployment
Fig. 4 shows an exploded view of three D-MIM instances

deployed on Process_0 on Host_0. A D-MIM instance
copy is held as a map in a distributed hash table that is shared
across all processes that use that D-MIM. Identical D-MIM
instances to those in Fig. 4 exist in all other processes on all
hosts that use those D-MIMs. Each concept instance in a D-
MIM is instantiated as a map entry whose value is a D-MIM
object instance that holds the value of the D-MIM concept.

The Distributed Model Deployer shown in Fig. 2 distributes
D-MIM metadata and Objects to processes. When a process
starts, the D-MIM Deployer requests a list of the applications
on the process, sends the metadata and D-MIM objects for all
D-MIMs used by those applications to the D-MIM Manager



of the process, and asks the D-MIM Manager on the process
to start Distributed MIM Management. If, during execution,
a new application is installed in a process or an application
is removed from a process, the D-MIM Deployer adds or
removes D-MIM metadata and D-MIM objects as appropriate
and requests the D-MIM Manager for the process to perform
an update. The D-MIM Deployer also ensures consistency of
D-MIM metadata and Object Libraries across processes. If D-
MIM metadata is updated in the Model Knowledge Base, the
Deployer coordinates propagation of that update across the D-
MIM Managers in all processes that use the updated D-MIM.

1) D-MIM Creation in a Process: To create a D-MIM
the distributor in the D-MIM Manager stores the D-MIM
objects to its Object Library. It then checks if the distribution
mechanism already has a map for that D-MIM (i.e. another
process may have already defined the D-MIM distributed
map). If a D-MIM map is already available, the distributor
simply reads that map. Otherwise the distributor creates a
new map, then iterates over each D-MIM concept, using the
D-MIM object definition for the concept from the D-MIM
Object Library to create a D-MIM object instance for the
concept in the distributed map. The distributor then checks
if a current value for the D-MIM Object instance is available
from persistent store, otherwise, a default value is used.

2) D-MIM Deletion on a Process: To delete a D-MIM the
distributor in the D-MIM Manager iterates over each concept
in the D-MIM and deletes the D-MIM Object Instance from
the D-MIM distributed map in the distribution mechanism. If
persistence was active, it first saves the value of the D-MIM
object instance. When all instance are deleted, the distributor
deletes the D-MIM in the distribution mechanism. Finally, the
D-MIM Objects are removed from the Object Library.

3) D-MIM Update Propagation: The deployer requests
the D-MIM Manager on each process using the D-MIM to
lock its copy, thus blocking all access to all D-MIM copies.
Versions updates are compatible if the new version only
specifies additional concepts to D-MIMs and/or only additions
or extensions of D-MIM Objects. If an update is compatible,
the Deployer requests the D-MIM manager in the process to
perform a D-MIM update; otherwise it requests the D-MIM
manager to perform a D-MIM deletion followed by a D-MIM
creation. Once all processes have updated or recreated their
D-MIMs, the Deployer request all relevant D-MIM managers
to release its D-MIM lock.

4) D-MIM Update for a Process: The distributor in the
D-MIM Manager updates the Object Library with any new D-
MIM objects. It then checks if the version of the D-MIM in the
distribution mechanism has changed. If so, the distributor reads
it from the distribution mechanism. Otherwise, the distributor
iterates over each new or updated D-MIM concept, using the
concept’s D-MIM object definition from the D-MIM Object
Library to create or replace the concept’s D-MIM object
instance in the distributed map. The D-MIM object instance
value is set to the value of the replaced object instance, to a
value from persistent storage, or to a default value.

Fig. 5: Distribution of Model Maps for MIMs across Processes

Fig. 6: Locking of D-MIM Concepts across Processes

C. D-MIMs at Run Time
The distributor in each D-MIM Manager (Fig. 5) manages

the D-MIMs for the applications in its process using dis-
tributed hash maps which are shared with other processes
using the underlying distribution mechanism. The (unstruc-
tured) distribution mechanism can be used because directly
the distributor controls both the structure of and access to
distributed D-MIM Maps using the D-MIM metadata. Appli-
cations can read or write D-MIMs using a key-value based
Map API provided by the distributor. For example, when an
application instance changes object instance O on D-MIM map
M on process D6, the distributor on process D6 propagates that
change to the distribution mechanism, which updates object
instance O on D-MIM map M in processes D1-D5 of the
Distributed MIM Management system.

1) D-MIM Locking: Any distributed MIM must have inte-
grated support for synchronized distributed locking for safe
and controlled read and write access to MIM concepts. A
simple approach could use a global exclusive lock. However,
such an unacceptable approach would cause all accesses to
be sequential. Instead a fine-grained lock for each D-MIM
concept is provided.

Fig. 6 shows how an underlying distributed locking mech-
anism such as Curator [11] or Hazelcast Locking [10] is used
to associate a distinct distributed lock with each distributed D-
MIM concept across processes. Because the Lock Manager of
the underlying locking mechanism already provides distributed
locks, only one application in a process can hold a lock at
any one time. Application A on Process P1 can acquire lock
L0 on D-MIM A concept C1 without affecting access to any
other concepts on D-MIM A (e.g. application C on process
P3 can separately acquire lock Ln on concept Cn on D-MIM
A). However, if another application requests a lock on D-MIM
A concept C1 its request is queued while application A holds
the lock. Read and write locks are supported, where read locks
can be shared but a write lock is exclusive.

2) Monitoring Operations on D-MIM Concept instances:
As shown in Fig. 7, D-MIM Management uses an underlying
monitoring mechanism such as Log4j [13] or syslog [12] to
log operations. The distributor logs D-MIM concept instance
initializations, deletions, reads, writes and read and write
lock acquisitions and releases. The D-MIM Usage Collector
receives these logs from the underlying mechanism and stores



Fig. 7: Monitoring Operations on D-MIM concept instances

Fig. 8: Persisting Model Maps for MIMs in Processes

Fig. 9: Examples of Distributed MIM Management Models

them in the Knowledge Base in the format shown in Fig. 7.
Each log entry contains the D-MIM concept instance identity, a
timestamp, the operation performed, the application call-stack,
and the pre- and post-value of the instance. Applications can
also add further context to the call-stack to improve logging.

Because the monitored information gives the usage of every
D-MIM concept instance by every application on every host,
the consistency of each D-MIM individual can be verified.
Consider the case where the Power concept instance of cell
C1 may be changed by separately by two separate applications,
e.g. a coverage optimization application attempts to increase
Power and an energy saving application attempts to decrease
Power. Interference between the two applications (based on
the Power concept instance) can be easily detected and
audited. In addition, because the usage information of all D-
MIM concept instances is available, analytics can be applied to
the usage information to identify less obvious access patterns,
conflicts and side effects.

3) Persisting D-MIMs: Persistence may be activated on
a process using D-MIM. In Fig. 8, persistence is active on
processes PE1 and PE3 but not PE2 and PE4. D-MIM
Management can use the file system for persistence (process
PE1) or use an underlying persistence mechanism such as a
Database or distributed storage system (process PE3) to store
D-MIM information. It is not necessary to activate persistence
on all processes because it is adequate to save a one copy of a
D-MIM to the persistent store (or more for redundancy). When
persistence is activated on a process, the distributor calls the
persistor periodically to persist the D-MIMs.

TABLE I: Distribution Mechanisms
Mechanism Comment
Memory Java Hash Maps, only for use in one JVM (Default)
Infinispan Inifinispan distributed maps [9]
Hazelcast Hazelcast distributed maps [10]

TABLE II: Locking Mechanisms
Mechanism Comment
Java Java Locks, only for locking in one JVM (Default)
Curator Apache Curator locks [11] as used in Zookeeper
Hazelcast Hazelcast distributed locks [10]

IV. D-MIM USAGE SCENARIO

Fig. 9 illustrates a usage scenario for D-MIMs. Multiple
instances of three applications, CP (Cell Power), BSHVAC
(Base Station Heating, Ventilation, and Air Conditioning), and
CQOS (Customer QoS), are running on distributed processes
P1, P2, and P3, with 9 D-MIMs in the system (Fig. 9).
The CELL D-MIM holds information on cells, with Global
scope, and is used by the CP and CQOS applications. The
TRANSPORT D-MIM contains timetable and status infor-
mation for motorways, railways, and airlines, with External
scope. The BASE_STATION D-MIM holds management data
about the base station hardware. Each application also has
its own application D-MIM, (e.g. BSHVAC D-MIM for the
BSHVAC application), which holds internal state information
for use by that application only (Application scope). BSHVAC
application D-MIM instances may hold information that is
specific to just that application such as the current fan speeds
(RPM) in each base station.

Instances of all 3 applications are running in process P1 so
the Distributed Model Deployer (see Fig. 2) sends the metadata
for all D-MIMs to that process and the D-MIM Manager for
P1 instantiates distributed maps for each D-MIM. Process P2
runs 2 instances of the CP application and and 1 instance of
the BSHVAC applications, therefore 6 required D-MIMs are
deployed and initialized. Process P3 is runs 5 instances of
application CQOS only, so only the 5 D-MIMs used by the
CQOS application are deployed and used. At runtime, each
application instance uses the D-MIM distributed maps as if
they were local, and is not aware that the maps are distributed,
with D-MIM Management ensuring that all locks and updates
are distributed correctly. If any application instance writes to
or locks any shared D-MIM map, it is consistently propagated
and made available to all other applications using that instance.

V. EVALUATION

We evaluated our implementation to assess the feasibility
and performance of distribution and locking of D-MIMs. We
used the configurable distribution and locking mechanisms
listed in Tables I and II respectively. The JVM-native Memory
and Java distribution and locking mechanisms work with
processes in a single JVM only and are included for evaluation
and testing purposes, while the other distribution and locking
mechanisms support distributed processes.

In each run, we created a D-MIM of integers. We selected
distribution and locking mechanism pairs and assessed how
well each mechanism pair worked in reading the D-MIM
with and without read locks (since dirty reads are perfectly
acceptable in some applications), and writing the D-MIM with



TABLE III: Evaluation Run Combinations
Combination Values
D-MIM Sizes 1 to 65536
32 Threads 1JVM/32Thread, 2JVM/16Thread, 4JVM/8Thread
D-MIM Usage 1000 Random Reads or Writes per Thread
Dist/Lock Haz/Cur, Haz/Haz, Inf/Cur, Inf/Haz,

Mem/java, Mem/Cur, Mem/Haz

write locks. To measure how each pair performed as D-MIM
size increased, we evaluated them with D-MIM sizes varying
by powers of 2 from 20 to 216. 32 Applications (threads) were
executed in each run; executing in a single JVM (32 thread in
the JVM), in two JVMs (16 threads per JVM), or in four JVMs
(8 threads per JVM). Each mechanism pair was evaluated with
each D-MIM size in all thread configurations. The possible
evaluation run combinations are shown in Table III.

Each thread performing 1000 reads (and writes for write
tests) on random integer entries in the D-MIM. For read lock
tests, threads read the value of the selected D-MIM integer.
For write lock tests, threads read and incremented the value
of the selected D-MIM integer. We executed our evaluation on
a MacBook Pro laptop with at 2.6GHz 8-Core i7 CPU with
16GB of memory running MacOS version 10.12.

We ran 749 tests in our evaluation. No concurrency and
locking errors were observed during test execution or in test
logs. We verified that the sum of the integers in the D-MIM
was 32,000 at the end of each test run. This demonstrated
that the D-MIM approach, and its distribution and locking
mechanisms are stable, consistent, safe, and correct.

The plots on Fig. 10, 11 and 12 show execution times
for non locking and locking reads and locking writes for
distribution/locking mechanism pairs for the three JVM/thread
combinations. In-memory distribution and Java locking is not
included in Fig. 11 and 12 because those mechanisms cannot
be used where applications are deployed in multiple JVMs.

In Fig. 10a, one can see that, except for hazelcast distribu-
tion, all mechanisms perform vey well, as one would expect for
in-memory non-locked reads. The performance of Hazelcast
deteriorates rapidly as D-MIM size increases. Fig. 10b and 10c
demonstrate how performance deteriorates for the fully fledged
mechanisms once locking is introduced. As one would expect,
in-memory distribution and locking is significantly more per-
formant. It is interesting to note that the performance of read
and write locks are similar for all combinations. Performance
of all combinations deteriorates as D-MIM size increases. The
Inifinispan/Hazelcast pair has much better performance than
other fully fledged mechanisms, indeed the performance of
this combination matches the Memory/Java combination.

Fig. 11a and Fig. 12a show that distribution performs very
well when locking is not active, even over multiple JVMs.
However, Hazelcast performance deterioration as D-MIM size
increases is evident. Introducing read locking (Fig. 11b and
Fig. 12b) causes a deterioration in performance, as one would
expect. The overhead for map and lock distribution increases
as D-MIM size increases. The combination of Infinispan distri-
bution and Hazelcast locking is the most robust to D-MIM size
increase, probably because Hazelcast distributed locking is
more scalable than Apache Curator centralised locking, where
every lock operation interacts with the Zookeeper server.

The plots for write lock performance in multi-JVM cases
(Fig. 11c and Fig. 12c) show a U shaped pattern. At very
low D-MIM sizes, high contention for access from 32 threads
to 1, 2, 4, or 8, D-MIM integer instances forces threads to
wait while other threads hold D-MIM locks. As D-MIM size
increases, contention between processes decreases. When the
number of processes equals the number of D-MIM instances,
the curves level off. As with read locking, as D-MIM size
increases, distribution and locking overhead causes a corre-
sponding decrease in performance. As with read locking, the
Infinspan/Hazelcast pair demonstrates the best performance.

The D-MIM approach and its distribution/locking imple-
mentation was stable, error free and correct for all of its 749
test runs. The performance measurements shown in Fig. 10,
11 and 12 were taken on a laptop computer, and no special
efforts were taken to tune or optimise the distribution or
locking mechanisms. Even with these caveats, and given that
the evaluation used an extreme scenario where lock contention
was very high, the performance of all the distribution/locking
combinations in our implementation is very promising.

VI. CONCLUSIONS AND FUTURE WORK

In this paper we have presented Distributed Management
Information Models (D-MIMs). D-MIMs manage the distribu-
tion of formally modeled management information in a way
that allows distributed management applications to use the D-
MIM information in a safe, controlled, and audited manner.
D-MIMs provide a unified view of modeled information
across distributed applications and processes. Access to D-
MIMs is controlled; D-MIMs are distributed only to those
processes and applications that are specified as using them.
The D-MIM distributor in each process enforces controlled
reading, writing, locking, and monitoring of information in
the distributed management information models. Consistency
is inherent in D-MIMs because applications work towards
common distributed MIMs. In addition, each operation on a D-
MIM concept instance is logged by every process that uses the
D-MIM concept instance to allow the consistency of usage to
be verified and interference to be identified. Our evaluation
demonstrated the stability and performance of the D-MIM
approach when deployed using a number of distribution and
locking mechanisms.
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