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Abstract 

Since the website thispersondoesntexist at the latest, generative models are known for 
being able to generate realistic images of a target domain. However, a strong disad-
vantage of these models is the required large amount of data, which is difficult to 
obtain in various domains. For this reason, among others, deep learning algorithms 
have improved over time to make them more efficient in their use of data availability 
and resources. The result has been Few-Shot Learning problems that can adapt from 
just a few examples of a target domain. 
The study of ancient coins is a topic that falls exactly into this problem domain. The 
dataset used here only reaches the critical threshold of 40 for just under 1% of all 
classes, which indicates when a class can be used for the classification system.  
Therefore, the focus of this work is on creating new images of ancient coins using 
already known GitHub repositories and their approaches of Few-Shot-Learning. Dif-
ferent techniques and algorithms are used to generate new images based on the Style-
GAN2 architecture. Numerous experiments show the advantages and disadvantages 
of each model as well as potential improvements. For the analysis, individual metrics 
as well as visual results are used to compare the results of each experiment. The goal 
of the work is to increase the dataset so that each class can be classified using the 
VGG16 model. 
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1 Introduction 

This chapter provides an explanation of the work's essential beginnings. I then briefly 
go through the goal and structure of this thesis. This chapter gives the reader a clear 
and succinct understanding of the thesis's subject. 

1.1 Problem Proposition 

Drawing a dog is harder to recognize than looking at a picture of one. Because of this, 
generative models are regarded as being substantially more challenging than discrim-
inative models. Another issue is that machine learning frequently lacks the data nec-
essary to accomplish a task, especially with the data-intensive tasks connected to a 
GAN. Few-Shot Learning is a popular technique for enhancing performance using a 
dataset with few samples. Few-Shot Learning was initially used with discriminative 
models, but as time has gone on, it has increasingly been used with generative mod-
els. The dataset's domain is another challenge. The projects on GitHub reflect the fact 
that GANs are most frequently applied to portraiture. 

1.2 Project’s goal 

The project's objective is to create new, high-quality coin images while retaining only 
a small number of sample images. The generated updated dataset should allow the 
VGG16 classification model to consider any class. In specifically, two routes are 
investigated for producing new images. In the first step, the latent code is used to alter 
the StyleGAN2 encoder to eliminate both category-relevant and irrelevant features. 
After then, new images can be created by manipulating the category-relevant attrib-
utes of a class with category-irrelevant attributes. The StyleGAN architecture serves 
as the fundamental basis for the second path, just like it did for the first. Only the 
singular values of the decomposition are trained during the training to approximate 
the target domain once the Singular Value Decomposition is applied. 

1.3 Structure of project 

The fundamental theoretical ideas are introduced at the outset, which are important 
to the work. The most significant earlier works that are crucial to this thesis are then 
looked at and analyzed. The core of the thesis is elaborated in chapter 4, where it will 
go into greater depth about the work described in chapter 3 and reveal the precise 
structure of this work. The class diagrams for each of the different repositories are 
displayed in the next section, along with a minor implementation choice. Evaluations 
of numerous significant experiments involving the individual models come next. The 
work's conclusion highlights the issues that were discovered during the studies and 
provides a look ahead. 
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2 Basic Concepts 

The foundational elements of the research' created structure are discussed in this 
chapter. The most significant technologies and algorithms are described, along with 
their interactions. 

2.1 Numismatic 

Numismatics is a broad academic discipline that includes the study of history, archae-
ology, art history, economics, and politics. The phrase derives from the Greek word 
nómisma, which also means "the coin" or "the valid" [1]. Coins, paper money, med-
als, and other related items are the focus of numismatics in general [2]. It discusses 
how coins have been made, distributed, and used in commerce throughout history. 
Exploring the historical environment, including political and social influences, with 
the use of coinage is one of numismatics' primary objectives [3]. Numismatists typi-
cally do this to learn more about the culture by analyzing the writing and symbols on 
the coin or note. Numismatics also deals with the choice of materials or production 
methods, as well as the respective manufacturing processes for the various types of 
payment. The next section is intended for coinage because the majority of this work 
deals with coins. Coins have historically been made from expensive materials like 
gold or silver. Emperor Augustus, who already collected "old royal and foreign 
coins," was one of the first proponents of coinage. Roman coins can be broken down 
into various parts, as seen in Figure 1 [3]. 

 

 

Fig. 1. Image of a coin from the dataset [54] 
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The legend is arguably the most significant part of a coin, but it can be challenging to 
read it on ancient coins because it was inscribed on the very outside of the coin and 
quickly becomes unreadable due to corrosion and wear. The inscription of a coin, 
which includes the circumscription and inscription, is referred to as the legend in 
numismatics. The text on the coin's circumference, which can be found on both the 
obverse and reverse, is referred to as the circumscription. On the other hand, the 
wording in the coin's center is described as the inscription. The goal of the field, often 
referred to as the mint face, is to make the coin themes stand out from the circum-
scription. The field's surface is typically smoothed and flattened to let the mintmark 
stand out properly. The mint marks, which are found adjacent to the images of the 
mint lord, tell us which mint or which mint master struck the coin. The portrait of the 
mint lord, which may show a sovereign or a saint, is found in the center of each coin 
[4].  
Up to the 16th century, coins were minted manually using a hammer and an upper and 
lower die. In this procedure, the upper die with the coin's reverse side is freely guided 
and struck onto the lower die while the lower die bearing the coin's obverse side is 
attached to a wooden anvil. Because of the free guidance, hammer stamping is erratic, 
making it a distinctive feature. 
Because coins are consumable products subject to the whims of nature, coin wear is a 
significant issue in numismatics. For instance, the metal in the coin corrodes and loses 
structure if it is dropped in the ground. But even with regular use, a coin loses its 
shape and color over years [3]. 

2.2 Machine Learning 

A branch of artificial intelligence called ML concentrates on using a lot of data and 
algorithms to mimic human behavior. A computer can examine complete datasets 
using statistical learning and optimization techniques, which is the fundamental idea 
of machine learning [5]. ML can be broken down into three repeated parts, according 
to UC Berkeley [6]. 
Decision process: Predictions and classifications are common uses for ML algo-
rithms. The input for the method is anticipated to be data, either labeled or unlabeled, 
which is then analyzed. A prediction is formed based on the analysis [6]. 
Error function: The function evaluates the prediction and indicates how strong the 
error was. 
Optimization process: The algorithm examines the previously discovered error in 
this step and adjusts the model to make the error better in the following phase. 
The four different learning models that typically present in ML leverage these itera-
tive procedures [6]. 
Supervised Learning. The data needed for supervised learning must have class label. 
Based on classification, the ML algorithm, such as decision trees and Naive Bayes, 
discovers connections and relationships in the data. In the testing step, the model is 
examined once it has acquired sufficient knowledge of the data distribution. During 
this stage, the model must correctly classify any data that lacks labels. The success 
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rate of the model is then determined by comparing this prediction to the accurate la-
bels. The idea can be applied repeatedly until the desired outcome is reached [6]. 
Unsupervised Learning. Unsupervised learning differs from supervised learning in 
that the class memberships of the data are unknown to an ML system. Algorithms 
based on this learning characteristic aim to identify and learn data patterns. This ex-
pertise can be used to classify the data into various groupings. It is crucial to remem-
ber that the clusters must be homogeneous within and heterogeneous between each 
other. The k-means clustering technique is a prominent illustration of this [7]. 
Semi-Supervised Learning. These two main approaches are combined in this learn-
ing behavior. In semi-supervised learning, there are two kinds of data: unlabeled data 
and data that has already been assigned to a label. This approach aims to group the 
unlabeled data points into clusters. The classes of the labeled data determine the name 
of all clusters [8]. There are typically significantly more unlabeled data points in a 
dataset used for semi-supervised learning and very few data that have class member-
ship. 
Reinforcement Learning. The algorithm receives immediate input during reinforce-
ment learning in order to learn from its previous experiences [9]. Robotics is a well-
known application field. In this scenario, agents interact with their surroundings, 
which offer incentives or even penalties in order to boost the algorithm. 
It can be seen in figure 2 that ML is a branch of artificial intelligence and that several 
deep learning techniques are included in it. In the course of this chapter, there are 
again extensive descriptions of some Deep Learning methods. 

 

 

Fig. 2. Intersection of AI 

2.3 Numismatic in ML 

Numismatics has already seen some interesting work with resulting models in the ML 
[10,11,12,13]. The state of coins, particularly their corrosion and wear over time, is a 
major topic in these articles. This issue is precisely one of the many problematics 
associated with numismatics in ML models, which will be explain in the following. 



 

5 
 

Condition of the coin 
There are numerous studies that discuss the condition of ancient coins, and it is evi-
dent that many of the coins that need to be evaluated are in bad condition and hence 
challenging to analyze [10,11,12]. In general, it can be considered that the toughest 
challenge in numismatics is undoubtedly the condition of a coin. The coin's condition 
reveals how much wear and tear it has endured since it was made. Three separate 
classes are offered as part of the data science training. The most significant character-
istics of a coin are represented by a coin in good condition. More fine details can be 
noticed on the coin when it is in a very fine form. When a coin is nearly in the same 
condition as when it was made, it is said to be in extremely fine condition [12]. 

Additionally, if the coin is not centered properly, some details, like the legend, 
might not be present. Nature is another opponent of the coin's state. Chemical reac-
tions that affect the coin's color or even shape can happen when it comes into contact 
with the environment [12]. Additionally, one piece specifically addressed the deterio-
ration and wear of coinage [14]. Thus, a coin's corrosion can be determined by holes, 
incrustations, and exposure to the elements. Another issue is wear, which is represent-
ed by the abrasion value of the coin's relief. 
 
Similarities and differences 
The overwhelming variety of coins, with often negligible variations between coin 
classes, is another issue in numismatics. Frequently, the only difference between two 
sorts of coins is their legend [15]. Additionally, there may occasionally be significant 
variances within a coins class as a result of the manufacture of the coins. Both of 
these arguments relate to the fact that ML algorithms are less effective on coins then 
on other certain datasets. 

Another challenge are the high number of different classes in the domain of nu-
mismatics. Roman Republican coins are classified into more than 1900 classes and 
subclasses in the classic reference work by M. H. Crawford [76]. When compared to 
other datasets, this data collection has a big number of different classes. 

Data availability 
Despite the large number of classes, the major issue with numismatics in the Data 
Science discipline is data availability. Rarely do datasets exist that are qualitatively 
comparable to other datasets from different fields. The issues above mentioned are 
thus also to blame for the possibility that some data instances won't be added to the 
dataset due to poor quality. The unbalanced distribution of data in a dataset can also 
be attributed to the data availability of individual coins, as some coins have a lot of 
images while others only contain few to none examples. However, several specialized 
fields also use few-shot learning because their datasets are limited. For this reason, the 
thesis will also specialize in the method in the following work. 
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2.4 Neural Networks 

Deep learning methods are built on NN, a subset of machine learning. A neural net-
work is organized like the human brain and has three interconnected layers: an input 
layer, at least one hidden layer, and an output layer. The input layer is in charge of 
taking in data and converting it into values that the network can read. While the data 
still undergoing additional processing in the hidden layer, the data will be the output 
of the output layer. Each of these layers has a threshold value and a weight. Data is 
sent to the next layer as soon as the output of the layer exceeds the threshold value. 
No data is sent if the threshold is not reached [16]. 

Types of NN 
The perceptron is the oldest type of neural network. It is referred to as a linear binary 
classifier since it is typically used to split data into two pieces. In a perceptron, each 
input is multiplied by its corresponding weight before being added to the other inputs. 
The strength of each node is reflected in the weights when they are combined togeth-
er. When it reaches the output layer, it examines the buzz of all earlier input layers 
and categorizes as a result. The feed forward neural network is another form. The 
unusual feature of this network is that its information only flows in one direction. 
Even though the data is sometimes transmitted across numerous secret layers, it al-
ways travels in the same direction and never goes backward. These networks are 
made up of sigmoid neurons rather than perceptrons because a lot of real-world situa-
tions are non-linear [17]. 

Convolutional Neural Network 
Another type of neural network is a CNN, although unlike a perceptron, a CNN has a 
multi-layer Deep Learning design. Here, the CNN is intended to resemble human 
visual perception and, like a NN, is made up of neurons with trainable weights. CNNs 
are capable of processing and converting unstructured input, such as images or mov-
ies, into numerical values. With Deep Learning, CNN has advanced to the state of the 
art in computer vision. When given an image as input, the Deep Learning algorithm 
assigns weights and biases to certain parts of the image in order to identify them from 
other parts. The fundamental job of CNN is to change the image into a format that 
makes it simpler to process without losing crucial details [18]. In this scenario, the 
feature extraction, which is in charge of finding the same features on its own, is what 
makes CNNs unique. The unique hidden layers enable feature extraction. It is feasible 
to use the data with preprocessing and handle incredibly big datasets by detecting the 
features on their own, like the color of the coin. 

Convolutional Layer. A CNN includes a convolutional layer in addition to the clas-
sification layer, unlike perceptrons, which only have the classification layer. Im-
portant elements of an image are extracted at the convolutional layer by compressing 
them into a matrix form, so lowering their original shape but retaining crucial infor-
mation. A kernel runs over the input values of the image and extracts the most crucial 
information to produce such a compressed version. A convolutional operation is dis-



 

7 
 

played in Figure 3. Initialized at the top left of the image matrix, a fixed-size filter, or 
kernel, travels progressively to the right until it reaches the bottom of the matrix. The 
above-described convolution is computed at each step. The convolution in this case is 
accomplished via the scalar product between the corresponding marked fields, which 
decreases the input image's dimension [18]. The range of potential values in the filter 
is another feature of a convolutional process. A filter's values differ, forcing the pro-
cess to produce distinct outcomes. 
For instance, the operation with the filter (1,0,-1; 1,0,-1; 1,0,-1) of size 3x3 must be 
applied to highlight the vertical edges in an image. The horizontal borders can be 
highlighted using the filters (1,1,1; 0,0,0; -1,-1,-1). 

 
Fig. 3. Convolutional Operation on a 3x4 Matrix with stride 1 

Two separate factors that can be changed can affect how the convolutional proce-
dures turn out. 

Padding. It is possible that at the conclusion of the iteration there is almost no infor-
mation left about the image because at each convolutional operation the size is low-
ered and we can have an unknown number of iterations. Additionally, in accordance 
with the principle of operations, pixels in the image's corners receive less attention 
than those in its center. Some number of pixels that store the value 0 can be added to 
the edge of the image to get around this issue. This stops the image from getting too 
small [19]. 
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Stride. The step size with which a filter moves over the image can be changed by 
changing this parameter. This method allows for less convolutional processes, which 
result in the creation of a matrix with a bigger final size. The Stride parameter is set to 
one in figure 3. If the figure had a size of two, the third step would actually be the 
second in the example. A reduction in the output matrix is the result of increasing the 
parameter [20].  

Pooling Layer. This layer is in charge of lowering an image's dimensions and corre-
sponding computing expense. The convolutional operation's output serves as this 
layer's input. The input matrix's dimension is reduced using an aggregation function. 
A filter applies to the various input values of the image and reduces the image's di-
mension, much as the convolutional operation. For compression, there are three alter-
native aggregation functions that can be utilized. The average pooling operation, 
which determines the average of all pixel values within the kernel for a kernel size, is 
one option. The maximum and minimum operations, on the other hand, take the high-
est and lowest values in the range, respectively. The resulting value is written to the 
feature map [21].  

Fully connected Layer. The CNN's Fully Connected Layer, which is at the very end, 
is connected to every output. The layer takes the vector from the preceding layer as 
input and sequentially runs a linear function and an activation function to best classify 
the image. A vector with a dimension equal to the number of classes is the outcome of 
the fully connected layer, and each item in the vector denotes the likelihood that a 
picture belongs to a particular class [22].  

 
Fig. 4. Architecture of CNN, in the style of [21], extraction of features in green and classifica-

tion part in red 

2.5 Generative Adversarial Networks 

In recent years, the machine learning technique known as GAN has gained a lot of 
popularity. The GAN is an example of unsupervised learning and allows two AI mod-
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els to compete against one another, hence the term "adversarial." The model is made 
up of two smaller sub-models that keep an eye on one another. The discriminator is a 
discriminative network, whereas the generator is a generative network. The genera-
tor's task is to create fake instances for a target domain, and the discriminator's task is 
to determine if a given example is real or fake by using the generator's fake or a real 
example from the target domain. In other words, by using fake examples, the genera-
tor seeks to deceive the discriminator [23]. 

Discriminator. A CNN-based image classifier called the discriminator makes an 
effort to separate fake images produced by the generator from real data from the tar-
get domain. A discriminator requires data from two independent sources in order to 
be trained. There are two types of examples: first, actual data instances from the rele-
vant target domain that are used as positive examples by it, and second, fake exam-
ples produced by the generator that are used as negative examples. The discriminator 
provides connections between two loss functions, which updated the networks 
weights based on the outcome of the loss functions using backpropagation. The dis-
criminator loss is directly used to improve the discriminator by penalizing it when a 
real data instance is classified as false or a fake instance is classified as real [24]. The 
discriminator is a straightforward CNN made up of numerous convolutional layers, 
which causes the images to get smaller with each additional layer while gaining 
depth. The leaky ReLU activation function, which offers outstanding training stabil-
ity, is employed after each convolutional layer. A sigmoid activation function is uti-
lized after the final activation function to get the classification's deciding probability 
[25]. 

Generator. A Generator is an autoencoder, or CNN, which consists of an encoder 
and a decoder. It gains knowledge from the discriminator's feedback and develops 
fake data that the discriminator should be label as real. Convolutional operations used 
by the encoder to break down the input data are then reconstructed by the decoder 
using internal representations and learning weights. The most crucial meta-
information of the image is retrieved during decomposition, enabling the creation of 
comparable yet diverse images [26]. Given that it is initially unsure of what potential 
data instances might look like, the generator in this process uses a random input, 
much of which is random noise. A uniform distribution, for instance, can be utilized 
as the input as the noise's distribution is not important. The GAN can produce a varie-
ty of data that may also be located at various distances due to the noise that is con-
verted into a data instance by a network [23]. The weights of a neural network are 
modified during training in order to lower the loss function. However, one is not con-
nected to the loss that is supposed to be adjusted in the generator. The discriminator 
network is required for this since it produces the desired outcome. As a result, the 
effects of a generator's weights heavily depend on the discriminator's weights. So the 
backpropagation begins at the discriminator's output rather than at the generator itself. 
The discriminator transmits his output of the classification to the generator [27]. 
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How does a GAN work? In a two-player, zero-sum game, the discriminator and the 
generator of both networks compete to outperform the other. With a lot of data from 
the target domain, the discriminator is initially trained alone. The discriminator gains 
knowledge of the essential traits and characteristics of the instances from the target 
domain during training. When the discriminator is training, the generator is frozen 
and doesn't turn on until the discriminator has finished training. Following the com-
pletion of the discriminator's training, the generator constructs a random input vec-
tor, also known as a noise vector, to produce its own fake samples from the target 
domain. The discriminator then receives the created images and must determine if it is 
a real or fake example. The right result is subsequently communicated to both models, 
who are then modified in accordance with the outcome. The winner of the game 
doesn't change, but the loser has to adjust his model's weights. The objective is for the 
discriminator to lose its ability to discriminate between false and real after a signifi-
cant number of iterations. A GAN's main parts and structure is seen in Figure 5. Both 
sub models are usually implemented as a CNN or a Transformer, since both are excel-
lent at identifying patterns in images [28]. 

 
Fig. 5. Architecture of GANs, based on [23] 

GAN loss-functions. The standard loss function, also called min-max-loss, was first 
introduced by Ian Goodfellow in 2014 [23].  

 Ex[log(D(x))] + Ez[log(1 – D(G(z)))] (1) 
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The min-max loss is so named because the generator seeks to minimize the func-
tion while the discriminator seeks to increase it. The discriminator's assessment that x 
is a real data instance is expressed as D(x). The output of the generator with a random 
vector input z is G(z), and Ex is the expected value across all data instances. D(G(z)) 
is the likelihood that the fake instance z is real. Finally, Ez is the expected value 
across all of the generator's random inputs. There are two additional parts to the con-
ventional GAN loss function [23]. 

Loss of Discriminator. The discriminator distinguishes between actual instances 
and fake examples passed by the generator while it is being taught. By doing this, it 
punishes itself for making wrong classifications, such as judging real photos to be 
fake or evaluating fakes to be real. 

 
Loss of Generator. The generator searches for a random input vector and sends it 

to the discriminator while it is being trained. The discriminator's categorization is then 
used to compute the generator loss. If the discriminator is fooled, the generator is 
rewarded; if not, he is penalized. 

2.6 Singular Value Decomposition 

With the help of their eigenvalues and eigenvectors, quadratic matrices may be com-
pletely defined, and their effects on vectors can be demonstrated. There is a SVD that 
can be used to attain this attribute also for asymmetric matrices. Here, the SVD repre-
sents unsymmetric matrices in their canonical form and contains singular values that 
can be easily interpreted as eigenvalues [31]. 
It is possible to read off the y-axis intercept in a function's canonical form, also 
known as normal form. 
A vector with the same size as the original vector is produced by multiplying a square 
matrix by a vector. By rearranging the equation, the eigenvalue issue shown in formu-
la 2 can be solved to determine the eigenvalues (lambda) and the eigenvector (v). The 
problem is thus solved by looking for a vector that, when multiplied by the symmetric 
matrix, produces the identical vector as a result, just multiplied by a prefactor [31]. 

 A*v = λ*v (2) 

Singular Value Decomposition. An asymmetric matrix is factorized by SVD into three 
unique matrices. The three distinct matrices that emerge from the factorization of A 
are displayed in Figure 6. The orthonormal eigenvectors of the matrix A*AT are 
stored in the matrix U. The singular values of the matrix A are contained in the matrix 
Σ, while the orthonormal eigenvectors of the matrix AT*A are contained in the matrix 
V. The purpose of the SVD is to extract the most crucial data from the matrix by mak-
ing the singular values understandable, much like the eigenvalues in a symmetric 
matrix [31].  
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Fig. 6. Singular Value Decomposition, in the style of [31] 

Singular values. The singular values define the most significant characteristics of 
the matrix, much like the eigenvalues in symmetric matrices. Since only real numbers 
are present in the matrix, they have an advantage over the eigenvalues for that they 
are easier to understand [31]. The square roots of the eigenvalues from A*A are what 
the singular values in this case are. The two Gene Golub techniques produce the sin-
gular value computation. Together with Kahan, the direct technique was created in 
1965 and in 1970 the iterative method with the help from Christian Reinsch was cre-
ated. Both approaches use orthogonal transformations to convert the matrix to the 
bidiagonal form and the QR algorithm to determine the singular values [32]. The 
singular values in the matrix ∑ are sorted in descending order, with the strongest sin-
gular value at the front position. A matrix's singular values have several significant 
characteristics and applications. The principal component analysis, a dimensionality 
reduction method used in machine learning and data analysis, likewise heavily relies 
on them. The directions of maximum variance in the data are identified using the 
singular values of the data matrix in the analysis. These directions can be utilized to 
reduce the dimensionality of the data while retaining as much information as feasible. 

Singular vectors. In the figure 6 you can see the two singular vectors. The major 
axes of stretching or compression applied to the column space of A are represented by 
the columns of the matrix U, which are known as the left singular vectors. The major 
axes of stretching or compression applied to the row space of A are represented by the 
columns of the matrix V, which are known as the right singular vectors. Just like the 
singular values, the singular vectors are also used for the principal component analy-
sis [32]. 

Singular Value Decomposition in Data Science. SVD includes a number of ad-
vantageous features for data scientists. By simply obtaining the most crucial details 
about the solitary values, it first aids in the reduction of datasets with multiple values. 
Additionally, tiny datasets can benefit greatly from the application of SVD [33].  

Dimensionality reduction. Here, SVD can be used to identify a dataset's primary 
components, which show the information that accounts for the most volatility. The 
SVD decomposition is used in this instance to calculate the covariance matrix. The k 
most crucial major features can now be selected in order to decrease the dimensions 
while yet retaining as much data as possible. Costs of computation are significantly 
reduced as a result, and machine learning methods may also benefit [46]. 

Data compression. Another point is the reduction to data of large datasets. By de-
composing the dataset, the k-best singular values and the corresponding singular vec-
tors can be taken to approximate the original matrix while reducing its size. 
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SVD in recommender systems. Products are frequently suggested to the user in 
online applications like Amazon or even music apps based on past searches. To sug-
gest the appropriate products to clients, numerous strategies are employed, including 
SVD. 

Two distinct predictions can be made by an SVD recommendation model. One is 
making product recommendations to users or making predictions about specific items 
for people [34]. Microsoft uses SVD, among other things, for the Evaluate Recom-
mender part of Azure Machine Learning Designer. 

Take Netflix's movie suggestions as an illustration of suggesting things. Here, a 
matrix M includes the customers' individual ratings for each movie in addition to the 
evaluators' ratings for each movie as a row and column, respectively. Thus, the rela-
tionship between the movie and the rater is used by SVD to extract features and corre-
lations. The movie's genre is just one illustration. In order to do this, SVD would pro-
duce factors from the matrix factorization of, say, humor vs. action [35]. 

2.7 Few-Shot Learning 

Few-shot learning is a branch of machine learning that focuses on model training with 
a small amount of data. Typically, highly accurate machine learning models need a 
large amount of data. Few shot learning is designed for the model to learn in the same 
way as the human brain. This is because machines are expected to learn in a similar 
way to humans on the basis of a few examples. Additionally, this implies that trust-
worthy models can be established for specialized domains with little data. Naturally, 
this can also save on data and computational resources since a good model only re-
quires a small amount of data [36]. Robotics and other fields, such as Natural Lan-
guage Processing, use few-shot learning. In general, there are two different approach-
es to solve few-shot learning problems. 

Data-Level-Approach. The data-level technique is the less complicated of the two 
methods. The data-level approach focuses on making the limited training data availa-
ble more meaningful and informative for the actual task. This can be achieved in par-
ticular through data augmentation or the generation of synthetic images using genera-
tive models. The goal is to make the internal representation of the data more under-
standable to algorithms, which use these data. [37]. In order to increase the size of the 
necessary dataset, the strategy that is essential for this work is to generate new images 
using generative models like GANs.  

Parameter-Level-Approach. Another method focuses on the parameter level of 
each individual ML model instead of the input data. The techniques emphasize how 
the model's parameters are more flexible and can fast adjust to new demands since 
they are more general. This method aims to train a model that can adapt to just a few 
samples of a new target domain without requiring a complete retraining of the model. 
Meta-learning, with its well-known algorithm MAML, is a well-known technique 
[38]. 

MAML. The model's parameters are very slightly changed, often just by one gradi-
ent step as soon as a new task needs to be learned. By doing this, the learner's parame-
ters are adjusted depending on the few training datasets for the novel task. The initial-



14 
 

ization of the parameters in this process by MAML is robust and dependable, ena-
bling quick and efficient learning without running the risk of overfitting, which is 
immediately anticipated with sparse data [38]. First-order MAML is a unique varia-
tion of MAML that significantly minimizes the algorithm's enormous memory con-
sumption.  

Few-Shot variants. Four main forms of Few-Shot are typically distinguished. 
Without any prior training, zero-shot learning creates previously undiscovered 

classes. It differs from the other variations in that sample data for each class is not 
required. This makes it possible to use fewer labeled training data. Without examples, 
new classes are acquired by blending knowledge from existing ones. The objective is 
to mirror human learning's capacity for matching unfamiliar items [39]. 

Machine learning models may identify and categorize new classes using just one 
sample in one-shot learning. Face recognition is one example of a traditional applica-
tion field. 

Few-Shot Learning makes it possible to form Machine Learning models more ac-
curately with fewer training data. The other three variations are also included in the 
broader idea of N-Shot Learning. The purpose of all four versions has been to priori-
tize the minimization of the required test data. 

Few-Shot classification. Few-Shot Classification uses a small sample size from a 
dataset to train a classifier to identify previously unidentified classes. There have been 
a variety of intriguing ways to implement Few-Shot Classification in previously pub-
lished work [39]. Metric-based meta-learning and optimization-based meta-learning 
are two of the most widely used algorithms. 

 
The most crucial concepts that are essential for the remaining work were defined in 

this section, and a relationship between them was demonstrated. The concepts and the 
described processes will be clarified once more in the following chapter by using 
examples from other works that are close to our issue. 

3 Related Works 

The topic of few-shot learning has been addressed in a number of articles [40, 41, 42, 
43]. The different approaches to Few-Shot Learning in the papers are analyzed in this 
chapter. 

The paper "A Style-Based Generator Architecture for Generative Adversarial Net-
works" addresses the issue that conventional GANs lack control over specific image-
generation properties. Here, adjustments are performed to the generator, in contrast to 
other methods that alter the GAN's structure at the discriminator. As a result of the 
new generator architecture's separation of an image's style from its content, it is now 
possible to teach the generator to produce images in a specific style while maintaining 
the information about the image's content. A linear affine transformation is used to 
enter the style code into the generator [44].  

The authors suggest a mapping network to enable this separation of the style from 
the content. The network changes this input into another latent space instead of allow-
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ing the initial random noise vector to be put straight into the generator architecture of 
the GAN model. The differences between these two approaches are shown in figure 7. 
In the StyleGAN, the random noise vector serving as the network's input is the same 
size as the processed output at 512x1. One can alter any style without impacting the 
others by separating the various styles from one another. The disentanglement of the 
styles that occurs means that a wide range of images can be produced without losing 
the image's most crucial structural elements [44]. 

The synthesis network creates the final image by combining numerous convolu-
tional and upsampling layers. The synthesis network uses the output of the mapping 
network as its input, and the synthesis network then employs this input to produce an 
image in a multi-scale manner. A low-resolution (4x4) version of the image is first 
created, and this image is progressively improved until the final high-resolution of 
1024x1024 pixel image is created [30]. 

The StyleGAN, which was first shown by Nvidia in 2018, is one of the most well-
known GAN extensions. StyleGAN2, which debuted in 2020 and offers some im-
provements over StyleGAN, is an extension stage of StyleGAN [23]. 

 
Fig. 7. Pre-Generator Architecture of traditional GANs (red) and StyleGAN (green) 

The paper "META-GAN for few-shot image generation" deals with the generation 
of few-shot images for GANs, using the two meta-learning algorithms MAML and 
Reptile. In doing so, the authors attempt to generate new realistic images from only a 
few examples. The work shows that images with high similarity are generated, but 
with little diversity in the output images. The approach was tested on the MNIST 
dataset with both TransGAN and Res-SNGAN networks, among others. At training 
time, digits zero through eight were taken as the dataset and images of the previously 
unknown class nine were generated during testing [45]. 

The authors Robb et al. provide a novel method that deals with singular value de-
composition in order to enhance the issues of data availability and the related general-
ization of GANs as well as to adapt more quickly to a new domain. In this method, 
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the singular vectors are frozen throughout training to take use of SVD's property, and 
the singular values of the pre-trained GAN are only updated after SVD. A substantial-
ly smaller parameter space is produced during training by freezing the singular vec-
tors, enabling the network to quickly adapt to new domains. For this, the authors 
make use of a StyleGAN2 model that has already been trained on portraits (FFHQ). 
With the help of two alternative methods, the algorithm is tested. First, on a target 
domain that is related to the source domain (FFHQ ➔ Celebrity Portraits), and sec-
ondly on a slightly different domain (FFHQ ➔ Art Portraits). Five examples from the 
target domain are more than enough to produce images of high quality, which is an 
excellent outcome for the near-domain adaptation [46]. 

An alternative strategy refers to an issue caused by the StyleGAN architecture. 
Here, the inputs have to be converted into W-space before being embedded in the 
StyleGAN2 generator architecture. Major challenges still exist with the Latent Vector 
Optimization and Encoder-Based Inversion techniques currently being used for the 
process of the inversion. While optimization requires too much time, inversion is 
insufficiently precise. The authors suggest an encoder that may be trained using a pre-
trained StyleGAN to close the gap. The pre-trained StyleGAN's generator architecture 
receives the input code from the trained encoder, which outputs it in the W vector 
space. The most crucial data from an image is extracted by the device's latent code, 
which is the output after receiving an image as input [41]. A CNN network named 
style2map, created especially for StyleGAN architecture, was used for the implemen-
tation in order to output the latent code of the image. To improve the encoder's per-
formance, the two loss functions identity loss and regularization loss are used during 
training. With the aid of this technology, the various StyleGAN pyramid scales will 
be mapped and integrated into the synthesis network. 

The writers employ a face identity loss in their training since they start with por-
traits of real people. Comparing these results to earlier work [42,43], they are incredi-
bly encouraging. The methodology from the pSp encoder can be easily adapted to 
other domains thanks to a study from 2021, in which an implemented MoCo-based 
ResNet was utilized for feature extraction instead of an ArcFace network [47]. 

The restyle encoder is an alternative strategy to the psp encoder. Once more, a 
trained StyleGAN is used to train an encoder to convert an image's latent code into 
the W vector space. This system is an iterative improvement process, unlike the tech-
nology mentioned above. The encoder's output is utilized as the input for the subse-
quent iteration after each step. The iteration process is running until the encoder's 
output resembles the original so that the latent code produces a good outcome [48]. 

The study by Ding et al. utilizes one of the aforementioned encoders to solve the 
issue of few-shot image production while utilizing a novel technique known as AGE. 
AGE is a method for creating images that relies on editing and has very few examples 
of the target area. The authors make the assumption that every image is made up of a 
set of characteristics and that the direction of attributes within a class is common. 
These internal representations are precisely what AGE analyzes to determine the se-
mantic directions of characteristics. As a result, each class has attributes that are rele-
vant to its category and those that are not. Using AGE, images of a class can be creat-
ed by processing the category-irrelevant attributes from the irrelevant attributes of 
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other classes while leaving the category-relevant attributes untouched [49]. Prerequi-
sites for the work are both a well-trained StyleGAN and an encoder architecture, 
which transform latent code in the W-space. The methodology in the field of Few-
Shot Learning is considered to be one of the transformation-based methods. A train-
ing set with a set of M classes that are already known at runtime makes up the struc-
ture of the experiments, while the test set is made up of classes that are still unknown 
at training time and only contains a small number of data. The model simply needs to 
be trained once and doesn't need additional training cycles to provide images for all 
classes from the test set. 

The paper by Liu et al. is about generating higher resolution images for smaller da-
tasets. For this purpose, the authors use a new approach to image synthesis, which 
aims to solve two difficult challenges. The first is the consistency of the training, and 
the second is the quality of the images that are produced. The authors provide two 
new methods for solving these issues. It will be simpler to alter an image with styles 
and content from other images because the generator's Skip-Layer Module skips lay-
ers with smaller scales. In addition the discriminator is nevertheless regularized by a 
self-monitored extra output. Here, a novel loss function balances the contributions of 
the global discriminator and a number of smaller local discriminators. In several 
benchmark datasets, the findings indicate that the developed method is superior to the 
previous state-of-the-art methods. It specifically displays how well it can create imag-
es from a limited set of examples [50]. 

The research by Zhao et al. addresses the scarcity of training data as well. The au-
thors suggest Differentiable Augmentation to increase the data efficiency of GANs by 
preventing the discriminator from remembering the precise dataset. They do this by 
adding various forms of distinguishable augmentations to both actual and fake imag-
es. One of the most popular ways to use overfitting is data augmentation. Examples 
include cropping, rotation, and color jittering. The FFHQ, LSUN-Cat, CIFAR-10, and 
CIFAR-100 datasets were used to test the architecture [51]. 

Two papers even go one step further and train a generative model on only one ex-
ample image. 

The goal of Shaham et al. is to create a novel generative model that can generate 
several images while maintaining the original image's style and structure. The model 
is trained on just one example image. The so called SinGAN model does this by em-
ploying a recursive architecture made up of numerous resolutions, each of which is 
trained using the results of the resolution before that. The algorithm is created so that 
the discriminator does not see the complete image, instead the image is divided into 
several overlapping sections (patches), preventing the discriminator from memorizing 
the sample image.  The discriminator then assigns a real or fake classification to these 
patches. The generator with the least resolution is first fed a random noise vector. 
Either the output from the generator or the sample image that has been downscaled 
serves as the input for this sized discriminator. The generator is trained until the out-
put can fool the discriminator. If so, it is possible to upscale the generator's output so 
that the image has the same resolution as the generator which comes next. This gener-
ator accepts the upscaled image as input just like it would a random noise vector with 
the same resolution. Up until the generator with the highest resolution is found, this 
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process is repeated. It is significant to notice that the discriminator sees a decreasing 
percentage of the patched image as resolution rises. As a result, the generator must 
only produce real patches of the low-resolution image as resolution rises. This archi-
tecture produces realistic images at all possible resolutions [52]. 

A generative model known as the Generative Model One-Shot GAN can be trained 
on a single example and can thereafter produce various new patterns belonging to the 
same class. [53]. They demonstrate how the generated images lack diversity since the 
usual GAN discriminator [23] simply memorizes the image. The objects in the sample 
image are distorted by the patch-based GAN discriminator, which is frequently em-
ployed to prevent overfitting. The authors present a two-branch discriminator to ad-
dress the issues. Here, an ordinary pooling procedure is used to transmit the image 
representation to the content branch. This branch describes the content of the image 
but not its location. The image is condensed to a channel for the Layout Branch using 
a Convolutional Layer. This branch describes the locations of the objects but not 
which ones are mapped. To prevent potential overfitting, the Layout and Content 
Branches each get a scaled-down version of input from the corresponding prior levels. 
The loss function of each branch and the loss function following the image represen-
tation are both used to determine the discriminator loss. Both the generator and the 
discriminator are optimized using the loss functions [53]. 

 
The key concepts and models that are crucial to my work were defined in this 

chapter. The purpose of this chapter was to make the subsequent chapters simpler to 
comprehend and understand. Some prior research that is relevant to my implementa-
tion and theory was described for this purpose. 

4 Core of work 

This chapter describes the problem of my task and explains in detail how the previous 
works described above is used for my thesis. Here, some applied algorithms and mod-
els are shown again in more detail. 

4.1 Cause of work 

As of the current date, 20 October 2022, there are around 11,000 different coins in the 
corpus nummorum database, each with a unique number of images [54]. This data-
base is used to construct a dataset in which each type of coin represents a class. This 
separates each image of a coin into an obverse and a reverse image. A VGG16 net-
work is trained to properly classify the various coins using this dataset as its training 
data. The network's current accuracy figures for the Top-1 are 79% and the Top-5 are 
97%. However, only classes with more than 40 images were eligible to be a part of 
the dataset for the VGG16 classifier. 

As a result, not all classes in the dataset can be used as input for the VGG16 net-
work due to the critical threshold. In order to exceed the barrier, new images must be 
created for about 99% of all classes. 
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4.2 Solution approach 

The goal of this thesis is to expand the dataset by creating new images of the classes 
with fewer than 40 examples using generative models. This is done in order to use 
potentially all classes of the dataset for the VGG16 model. 
It has been established that Few-Shot Learning can be used to build images of a class 
with only a few examples, as discussed in Chapter 4, and that the lack of data in this 
area is not a new problem in the field of data science. 

In this thesis, a few distinct generating models are employed and contrasted in or-
der to have a big variety of generative models and hence be able to guarantee many 
experiments and evaluations. The basic framework for this work is the StyleGAN2 
generator architecture [55]. 

As many classes as in the comparison experiment, 164, are fed into the VGG16 
network in order to examine the quality of the generated images in the classification 
model, and the results of the network with the created images are compared with the 
previous values of Accuracy. 

4.3 Dataset 

Any machine learning algorithm depends heavily on data, and the quality of the da-
taset is a crucial component. This is so that Data Science algorithms can only produce 
findings that are at least as good as the training data. The information for this research 
was obtained from a public database [54] and consists of 69,921 total images divided 
into 11,105 classes. Figure 8 illustrates the dataset's organizational structure, which is 
comprised of subfolders that correspond to the different classes. The images for each 
class are organized into front (obv) and back (rev) images in the subfolders. The size 
of the images is not consistent, but will be limited to 256x256 pixels during this work. 

 
Fig. 8. Structure of our Dataset 
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To get a more detailed overview of the dataset used here, Figure 9 shows the dis-
tribution of images per class. It is notable that almost every class, nearly 99%, have 
less than 40 images stored. The graphic clear demonstrates that to guarantee the 
threshold for each class, new images must be generated for almost every class. Fur-
thermore, the dataset's apparent imbalance is noteworthy. The goal of each dataset 
must be an even distribution of instances across all classes. There are several ways in 
which unbalanced datasets can be fixed. One method is resampling, which can be 
achieved by either over- or undersampling. Undersampling removes as many images 
from the larger classes until they are at the same level of the smaller classes. Over-
sampling, on the other hand, is not as intuitive, because here new data must be gener-
ated from the minority classes so that they end up with as many examples as the ma-
jority classes. The method most commonly used for this is the Synthetic Minority 
Over-sampling technique, which generates data points on the line segment connecting 
a randomly selected data point to one of its K-nearest neighbors. 

 
Fig. 9. Distribution of our Dataset 

4.4 CUDA und cuDNN 

CUDA stands for Compute Unified Device Architecture and was developed by 
NVIDIA and first released in 2007. The Parallel Computing Platform is a program-
ming model that allows developers to use the power of NVIDIA GPUs for general 
computing tasks and only requires a suitable NVIDIA GPU. GPUs actually designed 
for graphics computing are processors that work in parallel, allowing them to perform 
multiple computations simultaneously, making them ideal for complex computational 
tasks such as machine learning. The platform is usable for many programming lan-
guages, including Python and C++, and provides a runtime system with a compiler 
and a set of qualitative libraries. CUDA is popular in both computer vision and natu-
ral language processing [56]. 

The NVIDIA-developed cuDNN is a library for deep learning using neural net-
works. It was created to work in tandem with the CUDA platform to speed up Deep 
Learning training and inference on NVIDIA GPUs. The library provides powerful 
implementations of many deep learning operations, including as pooling, normaliza-
tion, and activation functions, which are crucial building blocks for deep learning 
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architectures like a CNN. TensorFlow and Pytorch can have their performance signif-
icantly increased by an NVIDIA GPU with the help of cuDNN. An important benefit 
of the library is that cuDNN handles GPU performance optimization for the customer, 
saving them time and effort [56]. 

4.5 Methodology and procedures 

In this chapter it will go into great depth regarding each of the used repositories. It 
will be demonstrate both their similarities and connections in this way. In a subse-
quent chapter, the work's structure is displayed in exact detail once more. 
First, the algorithm's foundation, the Nvidia StyleGAN2-ada, is demonstrated. On the 
basis of this, the two pathways of my research are explored, together with their algo-
rithms. 

Nvidia StyleGAN2-ada 
The StyleGAN2-ada repository from Nvidia aims to create a generative model that 

can produce excellent images of the target domain. By doing this, training can pro-
duce pleasing results with as few as a few thousand instances. Because the training 
time is up to 30% faster than the Tensorflow implementation, I decided to utilize the 
Pytorch implementation of StyleGAN2-ada. StyleGAN2 is an upgraded version of 
StyleGAN, particularly in terms of output performance and image quality [55]. 

A StyleGAN2 model's input is a structured dataset that classifies all of the images 
into folders. After finishing the training, you will have access to a generator that can 
produce high quality images for each target domain. 

Functionality. You can quickly and easily produce images with high resolution using 
StyleGAN2. In order to continuously raise its resolution, the StyleGAN2 begins by 
creating images with low resolution. The StyleGAN2 scales up from a resolution of 
4x4 to a dimension of 1024x1024. With the StyleGAN, the generator considers the 
image to be a composite of various styles, where each style influences certain aspects 
of the image. The authors make three distinctions between them [30]. I'll briefly take 
the example of a portrait to demonstrate the styles in greater depth. 

Coarse Styles. The resolutions 4² and 8² both using these styles. High-level aspects of 
the image are analyzed in this style. Here, among other things, the hair or the face's 
contour are examined.  
Middle Styles. The resolutions 16² and 32² assess facial features like the eye and the 
nose. The properties are automatically segregated from a variety of potential noises 
and textures. 
Fine Styles. The entire color schemes are examined in resolutions ranging from 64² to 
1024². 

Latent Space. A latent space is a high-dimensional representation of data that is used 
in artificial intelligence and machine learning, where each point in the space repre-
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sents a particular instance of the data. By expressing the data in a more condensed, 
intelligible, and approachable manner, latent spaces aim to capture the underlying 
structure of the data. 

In our example the data instance is an image, which are pixels, who can be thought 
of as high-dimensional representation of the image. The size of this representation 
makes it challenging to process, thus it is transformed into a latent space with fewer 
dimensions. However, even after change, the image's fundamental structure is still 
there. Thus, using a latent space makes it possible to manipulate the image more easi-
ly and analyze a big volume of data more effectively. 

W-Space. In conventional generators, the synthesis network receives the input, which 
is in latent space R, directly. In contrast to the latent space R, the space W produces a 
vector with a dimension of 512 × 1. This latent space is used by StyleGAN and repre-
sents the distribution of the training data more precisely than the conventional Gauss-
ian latent space. It is possible to separate an image's styles from its content using this 
latent space, allowing for the modification of certain styles without affecting the im-
age's overall structure. Due to the separation, the space also have unbundled proper-
ties that are responsible for extensive image manipulations [30]. 

StyleGAN2 Generator. Figure 10 depicts the two current networks of the generator 
layout. The initial input vector is transformed by the mapping network, preparing it 
for the synthesis network. Each convolutional layer needs the mapping network's 
output as its input. There are exactly two convolutional layers for each resolution in 
our total of 18 layers (4x4 - 1024x1024). The linear affine transformation turns the 
encoded mapping latent vector w into a style-image, which is used as input for the 
Weight Demodulation (Demod). Also the output of the previous convolutional layer 
is an input for the weight demodulation [57]. Modulation and demodulation make up 
the process. 

Two style blocks make up a resolution block, each of which has a modulation, de-
modulation, and convolutional layer. The resolution is doubled as soon as a new block 
is reached. Until to 1024x1024 resolution is reached, this process is repeated. 
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Fig. 10. Architecture of StyleGAN2, in the style of [29] 

StyleGAN2 Discriminator. The discriminator reduces the resolution for every subse-
quent block, in contrast to the generator, where the resolution increases. The image is 
transformed into a feature map with the same resolution by the discriminator. Begin-
ning with the block from the image's resolution, this feature map covers several rows 
of blocks. The resolution is half and the amount of features is doubled with each new 
block that is added. The categorization, actual or fake image, is done at the conclusion 
of the last block, which has a resolution of 2x2 [29]. 

StyleGAN2-ada. The reason that GANs can be trained with little data is due to the 
extension of StyleGAN2. Data augmentation approaches are used to enable training 
without overfitting. The three augmentation methods that are most frequently used in 
generative models are color transformations, random 90 degree rotations, and iso-
tropic image scaling. These three metrics, however, have the feature that the generator 
is unable to later discriminate between images that have been edited and those that are 
in their original state. Because of this, the authors have developed methods for the 
generator to recognize augmentation. Stochastic discriminator augmentation is a tech-
nique that modifies a uniform distribution of probability. An augmentation may be 
given a probability that represents how frequently it is activated. The greater the 
probability of augmentation, which is in the interval [0,1], the more augmentation was 
added to the image [57]. The Adaptive Control Scheme is a different way for avoiding 
overfitting. Here, overfitting in the discriminator is recognized using two methods. 
The size of the augmentation is increased once overfitting is identified [29]. 

Metrics for evaluation. The IS is one of the most often utilized evaluation metrics. IS 
provides a scalar value that measures the generated images' fidelity and diversity in 
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relation to the training set. The loss of the dataset's class distribution is one disad-
vantage of the metric. That means, the generator cannot provide the same number of 
created images per class as is visible from the dataset. A metric known as FID was 
established as a result of IS's shortcomings. FID contrasts the statistics of the training 
data with those of the produced samples in this instance. As a result, the metric is 
significantly more reliable than IS on a variety of synthetic image modifications [58]. 
Other metrics for measuring quality are Feature Distance and Perceptual path length. 

StyleGAN Encoder for Image-to-Image Translation 
Before getting to the actual explanation of the paper, an image’s translation will be 

discussed to gain a better understanding of the image2image translation.                
Image-to-Image. Image-to-image translation is a field of computer vision in which an 
algorithm is trained to translate an image from one domain to the respective target 
domain. The goal is to learn a mapping function that can convert an image from one 
domain to another while retaining important visual features of the original image, 
such as a black-and-white image to a color image or a low-resolution image to a high-
resolution image (super-resolution). Another example is the translation of Sketch 
Faces to normal portraits. After long training, portraits of people can be rendered as 
Sketch Faces or the other way around. Figure 11 shows an example where a sketched 
portrait was transformed into a "real" one. 

 
Fig. 11. Self-painted picture becomes celebrity portrait through psp-encoder 

The latent space W creates an untangling of dimensions in the StyleGAN architec-
ture, allowing for the independent editing of various properties. The input images 
must, however, be encoded in the W latent space in order to employ the StyleGAN 
architecture. There are two well-known algorithms that can be used to carry out this 
embedding process, which is known as GAN inversion. 

Latent Vector Optimization. The latent vector, which is created as a result of train-
ing, is a lower dimensional representation of the input data. The output of the genera-
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tor can be controlled by changing this code. This entails evaluating how well the gen-
erated image matches the actual target image after each iteration. The generated im-
age is either iteratively refined once more or ends up in the StyleGAN generator ar-
chitecture based on the comparison of the two images. This method's disadvantage is 
the duration of the training, which can last for several minutes. Figure 12 shows the 
general flow of this method. 

 
Fig. 12. Architecture of Latent Vector Optimization 

Encoder-based Inversion. This is a technique from computer vision that uses a 
trained neural network to invert the image. It uses an encoder that extracts features 
from the input, which are then fed into a decoder that has been trained to reconstruct 
the image based on the extracted features. It is a useful technique because it can learn 
to reconstruct the original input image even if the input image is degraded or incom-
plete. This is because the encoder network can extract important features from the 
input image, which the decoder network can use to fill in missing information and 
reconstruct the original image. The major drawback to this method is that existing 
models do not have high accuracies. 

 
A StyleGAN encoder for image-to-image translation is presented by the authors of 

the study "Encoding in Style: a StyleGAN Encoder for Image-to-Image Translation" 
to close the gap between the accuracy of the latent vector optimization and the train-
ing time of the encoder-based inversion. The encoder makes it easy to immediately 
embedd the image into the StyleGAN architecture. 

The psp encoder maps the various StyleGAN pyramid scales using a feature pyra-
mid network before encoding the image. The created image's results are compared to 
the original using four carefully chosen loss functions, as opposed to the optimization-
based method's time-consuming operations, which updates the image's latent coding. 

The newly developed psp encoder is connected in front of the trained StyleGAN 
generator and sends the resulting vectors as input to the architecture of the generator 
[41]. The input which you need to train a psp encoder is a pre-trained StyleGAN, as 
well as matching training data from the target domain. The final product is an encoder 
that can embed the latent code of the image in W-space directly into the StyleGAN 
generator architecture. 

 
What happens in the encoder? Using a ResNet backbone, feature maps are re-

trieved from an image using a standard feature pyramid. Based on StyleGAN's idea 
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that they can be divided into three different styles, there are three feature maps, which 
are called coarse, medium and fine. A tiny convolutional network is trained to extract 
the key characteristics from each feature map for each of the 18 styles. The tiny fea-
ture map is represented by styles 0–1, the medium by styles 3–6, and the largest by 
styles 7–18. The psp encoder produces a vector of size 512x1 as an input for all 18 
different styles. The StyleGAN's architecture is then directly incorporated with these 
vectors [41].  
 
Image2Image Framework. This framework was the main emphasis of this effort, but 
it is not necessary for the remaining parts of my thesis. Only the psp-encoder, which 
outputs an image's latent code in W-space, is required for this thesis. Image-to-image 
translations are possible using this framework [41]. Here, the latent code produced by 
the psp-encoder is processed using an image that has a latent code in charge of alter-
ing one or more image dimensions. Here, Figure 11 can be used as an illustration. The 
psp encoder generates a latent code for the self-painted image, which is then com-
bined with the latent code in charge of the image's structural modification [41]. 

Momentum Contract Loss Function. This work primarily consisted of portraits of 
people, hence an identity loss was applied. The MoCo loss was utilized because this 
loss function is useless for solving our issue. The MoCo loss is a replacement for the 
ArcFace network, which is in charge of extracting features, for domains other than 
portraiture. It does this by using a MoCo-based ResNet. The authors of the work "De-
signing an Encoder for StyleGAN Image Manipulation" introduced [47] and imple-
mented [59] this loss function.  

ReStyle: A Residual-Based StyleGAN Encoder via Iterative Refinement 
Like the psp encoder, the objective of this effort was to train an encoder that can 

convert an image into a latent code in W space. Iteratively enhancing the outcome 
should lead to an improvement of the latent code. Figure 13 depicts the algorithm's 
flow. In the initial iteration, a second image in addition to the original image is fed 
into the encoder. The encoder generates a latent code for the original image; however, 
this latent code is concatenated with the latent code of the second image rather than 
being directly embedded into the StyleGAN. This concatenation's output will now be 
generated with the StyleGAN generator. The outcome of the most recent iteration 
then acts as the starting point for the following one. The original image's input never 
changes, and the number of iterations can be increased until the outcome appears 
promising in order to the original image [48]. 
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Fig. 13. Architecture of a Restyle-Encoder, in the style of [48] 

Attribute Group Editing for Reliable Few-Shot Image Generation 
A technique called AGE can create images of classes that have never been seen be-

fore. The model does not need to be retrained for each class from which images are to 
be created, which is a significant benefit for our work. The AGE learns category-
relevant and category-irrelevant features of a class via the internal representation to 
produce new images of that class. The basic assumption behind the model is that an 
image is a combination of features and the editing direction of attributes is similar 
across all classes and new images can be created via editing some specific attributes, 
which are not relevant for the main content. As input for the AGE model, both a well-
trained psp encoder and a StyleGAN generator with good quality training data are 
used. The result is a dictionary that stores the attributes that are be able to edit images. 
Thus, the AGE method's architecture is split into two components [49]. 

Image Embedding. The images to be produced must be embedded in the Style-
GAN's W latent space because the AGE technique also uses the StyleGAN generator 
architecture. The psp encoder mentioned above is used by the authors to do this em-
bedding. The second component of the design depends on the encoder's output, which 
represents the latent coding of an image [49]. 

Attribute Factorization. Attribute factorization attempts to identify and extract cat-
egory-relevant and category-irrelevant properties from an image's latent code once it 
has been established in W space. Category-relevant attributes on the one hand are 
features that are important for the basic structure and the main content of the image.  
On the other hand category-irrelevant attributes storing features, which can be edited 
without loosing the main structure of the image. Here, for instance, a face expression 
or the eye direction of a creature is a possible example [49]. 

Category-relevant Features. An image can be classified by collecting features that 
are relevant to the specific class. Each class has a vector that keeps the average of all 
category-relevant attributes included in the class in order to correctly assign the im-
age. The vectors for all categories are kept in the dictionary M. The image is assigned 
to the class that it is most similar to and has the smallest distance across. The average 
latent code of a class is calculated using the formula 3, where N represents the total 
number of images in the class and w(i) is the latent code of the current example image 
[49]. 
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Category-irrelevant Features. Category-irrelevant features are essential for creat-
ing new images, by editing these specific features. By freezing the category-relevant 
qualities and modifying them with category-irrelevant attributes, a new representation 
of a class is produced. The authors make the assumption that the category-irrelevant 
properties are spread uniformly across all classes, which are finally stored in a dic-
tionary. This dictionary also includes a sparse representation that uses an encoder-
decoder architecture to guarantee that each element in the dictionary also has a se-
mantic meaning. The relevant qualities of the image must remain the same in order to 
guarantee that only the irrelevant attributes have been altered [49]. 

 
Directions of Attributes. There are various groups that can be created from the di-

rections of the qualities. The middle layer regulates the surface features, such as the 
color and expressions, while the bottom layer determines the structure and geometry 
of the image, such as the zoom. The background and the entire color scheme are both 
described on the top layer. The Singular Value Decomposition technique is applied to 
dictionary A in order to identify attributes that are in several layers. The following 
values are found in dictionary A and 

 Af = UΣV*  (4) 

saves all the common directions utilized by several layers in the final matrix U 
[49]. 

Inference. With the help of the two dictionaries mentioned above, which are created 
during the training, new images with a variety can now be generated quite easily. This 
architecture has the significant benefit of eliminating the need for additional model 
training for each class or target domain.  

Few-Shot Adaption of Generative Adversarial Networks 
The goal of Robb et al researchs was to address GANs' lack of generalization. This 

could make it possible for GANs to learn new domains with training datasets, which 
stores less images, more quickly. In their study, the authors suggest a novel approach 
that only needs a well-trained and effective StyleGAN generator. The methodology 
was built on the premise that earlier research [60, 61] had demonstrated that GANs 
perform better when the space of trainable parameters is constrained. The authors do 
this by using Singular Value Decomposition on the StyleGAN pre-trained weights. 
By doing this, they demonstrate that adjustments to the resulting singular values pro-
duce positive outcomes. There is a decrease in the trainable parameters and a signifi-
cant improvement because just the singular values are trained rather than all network 
weights [46]. A combination of meta-learning and fine-tuning build the foundation of 
the approach. Through the use of a meta-learning network, meta-learning enables the 
prediction of the generator's optimal parameter settings for the new target domain. 
The pre-trained generator network is updated by fine tuning using a limited sample of 
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images from the target domain. The meta-learning network's projected parameters 
serve as a guide for fine adjustment. The approach takes a StyleGAN2 generator that 
has already been trained as input and produces one that has been optimized to the 
target domain. 

 
Functionality. Both the discriminator and the generator are applied to SVD. The 

two networks' weight matrices are directly affected by the decomposition, which is 
used individually on each layer of each network. The singular vectors U0 (left singular 
vector) and V0

T (right singular vector) are reflected in the SVD decomposition's out-
come, which is shown in the formula 5 [46]. 

 W0
L = (U0*Σ0*V0

T)L  (5) 

Following decomposition, a domain adaptation is carried out to shift the weights in 
the direction of the intended domain. Only the singular values Σ=λ*Σ0 are updated 
during this procedure, and the two singular vectors are frozen. The training is termi-
nated early in order to prevent overfitting. 

 
Fig. 14. Singular Value Decomposition, in the style of [46], σ1 to σs are the optimized singular 

values 

Working with various datasets allows for an analysis of the method. There are two 
distinct methods. The first is the near-domain technique, which transforms images 
from one domain into a different but related domain. Here, the authors decided to 
change the datasets from FFHQ to CelebA. On the other hand, the far-domain strategy 
involves transforming images into a domain that is located far away. Here, the authors 
decided to change the FFHQ images into self-painted portraits [46]. 

Issue. The end result of the training is a generator that can produce high-quality 
images and has been trained on the target domain. Many different images can be pro-
duced using this generator. The biggest disadvantage is that we have to train a model 
for each class to get labeled images, because the output of a model don’t have any 
class memberships. Because of this the strategy proves to be very expensive and so-
phisticated, with over 11,000 different classes. Therefore, this strategy can only be 
contrasted with the first path's generated images using various metrics. 
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VGG16 Classifier 
One of the most well-liked and frequently employed CNN architectures for image 

classification is the VGG16 model. 
There are 13 convolutional layers and 3 fully connected layers in the network's to-

tal of 16 layers. While fully connected layers are used for classification, convolutional 
layers are utilized to learn the key elements of an image. To learn extremely fine as-
pects of the image, the architecture combines small convolutional filters (3x3) and 
small step sizes (1 pixel) [77]. 

The VGG16 architecture was trained on the large ImageNet dataset, which in-
cludes millions of labeled data and 1,000 different classes, to serve as a fundamental 
framework for other domains. The network can be employed as a classifier for new 
images once it has been trained. The network processes the input image, and the out-
put of the last fully connected layer is then used to forecast the category of the image 
[77]. 

Transfer Learning. A lengthy training period is the result of training a detailed and 
sophisticated model, especially when there are little or insufficient resources are 
available. In particular, the filters from the convolutional layers are obtained from the 
computed weights of the model trained on ImageNet as a result. Only the three newly 
added layers of the model need to be trained in order to transfer to a new domain. The 
knowledge gained is used to solve the previous problem. The trained model is very 
easy to retrieve via the Python library keras and to perform the specific changes. 

Work architecture 
Figure 15 displays the main structure of the practical of my work. Two paths make 

up the work, which will be compared at the conclusion to determine who produced 
the best images. The StyleGAN2-ada repository serves as the fundamental structure 
for both routes. The dataset must be provided as input in a folder containing all of the 
images. This repository has produced a generator that can generate images of coins 
that are of a high quality. The first route merely passes through the work of Robb et 
al., which calls for the input of a trained and effective StyleGAN2 generator. The 
singular vectors are frozen during training as the model's singular values are modified 
to the new target domain. The benefit of this approach is that by training the singular 
values, a lot of irrelevant data is left out and only the most crucial data is used for 
training, drastically shrinking the area for trainable parameters. Based on the pro-
duced model, new images of the target domain can be created. The StyleGAN2-ada 
repository is where the second path also begins. An encoder is trained to provide the 
images to the StyleGAN generator via the W latent space using the pixel-to-pixel 
approach. The result is a 512x1-dimensional vector representing the latent code of the 
image calculated using a convolutional mesh. The dataset is required for this task in 
the form of training and test datasets, the modified Dataset 2. The images are kept in 
the corresponding subfolders without being assigned to a class. This latent code of an 
image from the trained encoder is used in the paper with the topic Attribute Group 
Editing. The category relevant as well as irrelevant attributes are extracted based on 
the average value of the latent code of a class. It is now possible to create new images 
by dividing the two categories. The irrelevant attributes are processed while the cate-
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gory-relevant attributes are frozen in this procedure. It is feasible to repeat this in-
struction for the classes where images are still lacking. For this, the algorithm requires 
data in a different format. As in p2p, the images are kept in the subfolders test and 
train, but here the images must be renamed in order to capture the class membership 
of the images. The following structure must be present in the images: 

classId_exampleID.jpg 
To compare the generated images with each other, meaningful loss functions are 

applied to the generated images. Since only the path via the psp encoder can generate 
labeled images, the best results from this path are input to the VGG16 model. 

 

 
Fig. 15. Base Structure of the thesis, blue ➔ Datasets, orange ➔ Repositories, rot ➔ classifier, 

arrows in red and green ➔ two paths 

5 Implementation 

This chapter will demonstrate how to use the design in Figure 15 and list the re-
sources and setting used for this. Readers will learn how to develop the above-
described task using some class diagrams. My GitHub repository contains all the 
models and datasets for the best results. 

Development environment 
The Python programming language and IntelliJ development environment from 

JetBrains were used to create the implementations. With a computational capability of 
8.6, an NVIDIA GeForce RTX 3060 graphics card was used to create and train the 
multiple neural networks. The operating system used was Ubuntu 22.04, which is also 
highly suggested for rebuilding. The implementation need the use of a number of 
libraries. 

Tensorflow 1.15. Deep Learning is the primary emphasis of TensorFlow, an open-
source machine learning library. It has a lot of instructions that let users create ML-
powered applications very fast and simple. The library's open-source nature enables 
users to keep pushing the boundaries of machine learning research [62]. TensorFlow 
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1.15 is utilized for the task of the SVD model. TensorFlow must be installed using 
nvidia-wheel [63] in order for this version to work with NVIDIA's new graphics cards 
(RTX 30 GPUs), as this version cannot be installed using pip or anaconda. 

Pytorch. Tensor computations may be carried out much more quickly with 
Pytorch's help and robust GPU acceleration. Additionally, Pytorch enables the con-
struction of deep neural networks. A simple method to get started with Pytorch is the 
NGC container. Since this container includes all dependencies and it provides a sim-
ple starting point for creating typical applications.  

Numpy. When working with arrays, Travis Oliphant's Python library is frequently 
used. Numpy and its source code are openly accessible and working with matrices in 
linear algebra. 

Scikit-learn. Numerous classification, regression, and clustering techniques are of-
fered in this free Python machine learning software package. Examples of algorithms 
are K-Nearest Neighbor and Random Forest. The library is built on the libraries 
NumPy, SciPy, and matplotlib and includes effective tools for data analysis. 

OpenCV. An open source library for computer vision and machine learning is the 
Open Source Computer Vision Library. This library's objective is to offer a standard 
framework for computer vision applications. More than 2500 efficient algorithms in 
OpenCV are used, among other things, to identify objects or recognize faces. 

 
To execute the repositories, there is a need of a few environments. Environments 

are recommended, which are also available in the original repositories, but with my 
computer under Ubuntu they partly do not work though. To get the repositories work-
ing, new conda development environments had to be built, which can be found in my 
GitHub repository as .yml files. ‘Conda env create -f environment.yml’ must be run in 
order to establish a Conda environment with the libraries specified in the .yml file. 

Repository changes 
In general, it can be said that not many things in the individual repositories needed 

to be changed. The most important thing is that the inputs have the right formats and 
the development environment is built to match the repository, but also my own re-
sources. There were always additional issues on Windows and Ubuntu that may be 
fixed by switching the libraries used in the development environment. Each repository 
has a file that correctly formats the specific dataset. 

The encoder ResNetGradualStyleEncoder must be included to the file psp encod-
ers.py in order to have an encoder that was not trained on face images. Additionally, 
an attempt was made to optimize training for parallel processing across many GPUs 
[64]. 

The channel multiplier has to be set to one since the reshaped data [65] had a dif-
ferent dimension than what the p2p encoder was expecting. 

The StyleGAN in Tensorflow is trained on grayscale images due to the significant 
time savings. This means that the run generator.py file, which is used to create new 
images, needs to have one line updated. The following two lines must be added in 
place of line 36 in the repository of StyleGAN2. 

reshape_image = np.reshape(images[0], (256, 256)) 
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PIL.Image.fromarray(reshape_image, 
'L').save(dnnlib.make_run_dir_path('seed%04d.png' % seed)) 

Transform Datasets 
The dataset needs to be transformed into various formats in order to be correctly 

used with the repositories. For the job, a total of three updated datasets are required. 
Modified Dataset 1. The first adjusted dataset is required for the StyleGAN2-ada, 

which serves as the foundation of our research. For this, the data is kept in a folder 
without regard to any class. Two passing parameters are required for the script, which 
are stored in the GitHub Repository, to run so that the computer knows where the 
data's source and where the intended storage location is. The path of the dataset indi-
cates the folder in which the subfolders of the individual classes are stored. The first 
For loop iterates over the various classes, and the second nested loop copies the imag-
es in the corresponding subfolders in the target path. 

Modified Dataset 2. To obtain the classical distribution of a dataset in machine 
learning, 80% of all images are used as training data and 20% as test data. In this 
dataset, the names of the individual images can be taken from the original dataset. 

Modified Dataset 3. Also for the AGE repository we need the images in a folder 
structure of 80% training and 20% test data. However, the difference is that for this 
work we need a class membership of the images. To do this, we rename the images 
according to the following structure:  

CategoryID_SampleID.format 
The CategoryID represents the class of the image and the SampleID represents the 

number of the image within the class. For example, the fifth image of class 1000 
would have the following name ⇒ 1000_4.jpg. The format of the image can be saved 
as .jpg as well as .png. 

 
Two further transformed datasets are needed in the connection of the two paths for 

the generation of new images as well as the later VGG16 classifier. So that the later 
Inference model knows from which class new images must be generated, a dataset 
must develop, which contains all classes, from which new images are to be generated. 
Within the classes the images to be generated are stored.  

Finally, a further dataset is needed, which concatenates the dataset just described 
with the results of the Inference models. For this purpose, both the front and the back 
side of an image are copied from the generated images and stored in the resulting 
dataset. This process is repeated until each class intended for the VGG16 model has 
the same number of images. Very important in this procedure is that for each front 
side there is a matching back side since they are concatenated horizontally for the 
VGG16 model. 

Class structure of individual code passages 
This subsection will go into more detail about individual important parts of the 

code and describe their implementations. Since not much has been changed in the 
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repositories from my side, this chapter is relatively short and is intended to clarify a 
few basic ideas of the implementations of the repositories. 

Augmentation. The processing of the images and possibly overfitting are handled 
by the AugmentPipe class. Figure 16 displays a few potential kinds of image pro-
cessing augmentation. If an augmentation is to be activated, a value greater than zero 
must be set. The value for an augmentation specifies how strongly it is to be taken 
into account for the training of the model. 

 
Fig. 16. Class Augmentation, based on the code from [74] 

p2p-Encoder. The basic structure of a psp encoder can be seen in Figure 17. The 
encoder parameter is responsible for extracting features in the form of the StyleGAN 
pyramid scheme. There are a few options for this, such as the GradualStyleEncoder, 
which was trained by an ArcFace network for portrait recognition. The used ResNet-
GradualStyleEncoder was also added here. The decoder is a generator that has the 
size of the resolution of the images. After the encoder and decoder have been set, the 
load_weights function is called. In this function it is checked whether a model should 
be trained further or a new one has to be built from scratch. If a model should be 
trained further, the already trained weights are set as initial value for the encoder and 
decoder. 

AGE. With a few exceptions, the structure of the AGE method is reminiscent of the 
psp encoder. The function "get_code" is needed for the distribution of the images. By 
means of this function the Gaussian distribution of all sample images is calculated and 
used for the later generation of new images. With the help of the method 
"get_test_code" the latent code of an image can be returned. Both with the computa-
tion of the average latent code for each class, and for the generation of new images 
this function is needed. 
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Fig. 17. Structure of models pSp and AGE, based on the code from [64, 75] 

What made me select these repositories? 
 Numerous diverse repositories were examined and compared in the search for ap-
propriate ones that satisfy the needs of this masterthesis. There are numerous works 
that appear intriguing and promising. I was forced to limit my options to a few reposi-
tories because of the limited computational and time resources available. The Style-
GAN2-ada architecture is a key part of this work. This repository was selected since it 
has an architecture that prevents overfitting when training on the little dataset being 
used here. Additionally, Pytorch promises superior results and a training time that is 
around 30% faster than the Tensorflow implementation. A Fréchet inception distance 
record of 2.42 was achieved using the CIFAR-10 dataset, breaking the previous 
score of 5.59. Because the psp encoder is simple to use and appropriate for the dataset 
being used here, I choose to build this on the StyleGAN2-ada. Furthermore, the 
GitHub repository is very well maintained, and some concerns about error messages 
have already been addressed. A psp encoder was also necessary for the final reposito-
ry, named AGE. Over other works, the AGE repository and the psp encoder have a 
significant advantage.  
Because the model is already trained for the target domain, it is not necessary to train 
the model from scratch for each class, in this case the classes that are relevant for the 
future VGG16 model. In other studies, the model needs to be trained again for every 
class, which would have led to a runtime that is far too long if there are more than 
11,000 classes. Once the AGE model is complete, a for loop can be used to quickly 
apply the model to all classes. The SVD Repository was still used to get comparative 
results for the individual image quality. 
This work has the minor problem of not using the trained StyleGAN2 generator 
like the first path because the SVD-Repository is written in TensorFlow. Because of 
this another StyleGAN generator needs to be train in TensorFlow. The creation of the 
unclassified images that were just discussed, which would need to be manually la-
beled in order to be taken into consideration for categorization, is another weakness in 
this approach. 
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Difficulties in the implementation. 
 During the work there were some problems regarding the implemented reposito-
ries. The start of this master thesis was on a MacBook-Pro with a M1 chip. It quickly 
became clear that the resources available there were not enough for the required com-
puting power. The RAM of the MacBook was filled up very fast and resulted in per-
manent crashes of the program. For the same reasons, an implementation via Google 
Colab could not be done either. In addition, support for TensorFlow 1.x, which is 
needed for the SVD model, has not been there on Colab since last year. For this rea-
son, I had to use my computer with an RTX3060 graphics card from NVIDIA. How-
ever, Linux had to be installed on my PC since the repositories do not provide support 
for Windows. After Ubuntu was installed, most repositories ran after changes in the 
respective Conda environment. Only the path via the SVD model required an addi-
tional installation, as the range of RTX30 graphics cards only work with the latest 
drivers from CUDA and these do not provide native support for TensorFlow 1.x. Af-
ter some research, I came across a tutorial that solves exactly this problem [66]. Via 
this, it was finally manageable to make the right development environment for the 
path. 
There were also always problems with the execution of the repositories, which even 
led to the fact that when training a net, unfortunately the results of the previous net 
were overwritten.  In addition, there were always problems with the operating system 
Ubuntu, such as updates or even new drivers for my GPU. 
Furthermore, after three months of work I found out that the StyleGAN2-ada genera-
tor was trained with different configurations than recommended in later works. There-
fore, after three months I started again to train the generator, which is the basis of my 
work, with other configurations. 

 

6 Experiments 

The outcomes of the implementation are presented in this chapter. Each repository is 
looked at in further detail, and useful evaluations are provided with particular metrics 
and visual examples. 
Due to time constraints and limited hardware, the goal for even greater variety of tests 
and outcomes had to be rejected. This made it impossible to properly test the selection 
of all hyperparameters for the specific repositories. To prevent a long training period, 
the size of the images to be trained was decreased to 256x256 for the same reason. 
With a few exceptions, the initial hyperparameter selection was the same as in the 
original repository. 

6.1 StyleGAN2-ada 

The tests begin with the StyleGAN2 model, which enables the development of a 
generator that can produce images of an ancient coin in high quality. GANs are diffi-
cult to analyze since they are typically challenging to train and unstable training can 
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cause a variety of issues. Due to instability, it can definitely be time-consuming and 
error prone. The FID statistic is used to evaluate the effectiveness of the result-
ing StyleGAN2-ada generator. FID is a metric used in this case to compare the feature 
vectors from real images and the fake images produced by the generator. It should be 
noted that the objective is to decrease the metric's score because a lower score indi-
cates greater image quality and, thus, a closer similarity to the original images. The 
resulting graph can be seen in Figure 18. The graph rapidly declines after the initial 
iterations and epochs, but after around 5000 kimg, it begins to asymptotically reach 
the value of 7.5. 

5000 kimgs took on average 82 hours on my NVIDIA 3060 GPU. The generator is 
already so good by this point that it can keep serving as the foundation for new re-
positories. The outcomes of the two StyleGAN2-ada implementation strategies on 
Pytorch and Tensorflow are displayed in Table 1. The tensorflow-based GAN had to 
be abandoned after nearly 5000 kimg because the resources were not good enough 
and had to be used for other, more crucial tasks. The tensorflow-based generator was 
trained with grayscale images because training the entire dataset caused permanent 
RAM overruns. The dataset's size is decreased from 19.5GB to 6.1GB after the trans-
formation. The Pytorch model did not considerably improve from this value, and it 
can therefore be inferred that this model would not increase further as well. This in-
formation can be used to justify the model's early termination. The Pytorch version is 
clearly noticeably faster than the Tensorflow version by approximately a factor of 
three. The reason for this is because Pytorch is still being updated while Tensorflow 
has been replaced by Pytorch from the authors of the repository and do not get any 
further updates. 

 
 Resolution CPU 5.000 kimg 20.000 kimg sec/kimg 
Pytorch auto 256x256 1 80-82 h 13-14 d 58-60 
Pytorch stylegan 256x256 1 200-232 h 30-33 d 150-165 
TensorFlow  256x256 1 180-190 h 27–29 d 137-145 

Table 1. Runtime for all StyleGAN2-ada models  
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Fig. 18. Time course of the Pytorch StyleGAN2 auto model 

It can contrast the findings with those from the original paper to get an understand-
ing of how good the trained generator is. The most significant values of a few evalua-
tion measures are displayed in the table 2. The model, which trained here in this the-
sis, has an almost 20% higher FID score than the model from the original publication. 
This is due to the fact that the FFHQ dataset used there does not contain as many 
significant variations as the dataset utilized here. Additionally, compared to the Coin-
dataset, the overall quality of the images from the FFHQ dataset is much higher. 

Using the KID metric, the qualities were further evaluated. With the help of KID, 
better predictions can be made about smaller datasets because the metric is unbiased 
from the outset and can therefore analyze smaller datasets faster [57]. Table 2 com-
pares the models that were trained here with those that were provided in the study. 

An image of each model was created in the figure 19 so that more than just statis-
tics could be used to evaluate the quality of the outcome. Here, the difference in da-
taset quality that has been previously mentioned numerous times is clear. The genera-
tors trained in this paper return images with lower quality, however the FFHQ model 
can produce images that are extremely sharp. Despite this, all the essential details that 
should be present in an image of a coin are represented in the generated images. There 
is a portrait that includes all the features of a human face, including a mouth, nose, 
and eyes, in both images. The StyleGAN model already has more issues with complex 
objects, as can be seen in the figure 19. While the Pytorch-written generator makes 
the object clearly visible, the quality of the tensorflow-based generator must be re-
duced because some features on the coin are missing. However, the illustration shows 
clearly the coin's most crucial features. 
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Therefore, the fundamental structure of this work with the trained generators seems 
to remain promise despite the slightly poorer values of the evaluation measures. 

 
 FID-Score KID-Score 
SG2-ada FFHQ 6.3 0.002342 
SG2-ada Coins 7.59 0.00315 
SG2 TensorFlow 8.78 0.00512 
SG2-ada Class 20203 132.9 0.12 

Table 2. Scores for different StyleGAN2 models 

 
Fig. 19. Visual results for StyleGAN2 models 

Types of Augmentations 
In order to avoid potential overfitting, the image is processed using a variety of 

techniques so that the fundamental features remain the same but other attributes, 
which are not important, are modified. Individual techniques are described and briefly 
displayed in the parts that follow. 

Pixel blitting. Augmentation pixel blitting consists of three primary techniques. All 
of the approaches rotate the images, and doing so significantly improves the efficien-
cy of a CNN. This is due to the fact that machine learning models learn what pixel 
combinations and relationships exist between each pixel of an object in an image and 
how to classify them. The model is given extra information to learn from without 
needing more images of the object by having the ability to rotate an image in different 
angles to build several copies of it. A common technique is to rotate an image by 90 
degrees. 

General geometric transformations. The isotropic and anisotropic scaling are two 
techniques for geometric transformations. Anisotropic scaling involves at least one 
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dimension being multiplied by a different factor than isotropic scaling, which multi-
plies all dimensions by the same scaling factor. The shape of the image changes as a 
consequence of this modification. Arbitrary rotation is another geometric transfor-
mation. This technique rotates the image by a random number of degrees. 

Color transformations. For instance, the image's contrast, brightness, or color satu-
ration can be changed during the color transformation. It might be feasible to change 
these values so that the model can see the coin's fonts or even smaller characteristics 
better. 

Image-space filtering. This technique is used to highlight or change specific as-
pects of the image. The adjustments should result in an improvement in image quality. 
Similar to color changes, this technique can enhance the visibility of minor details. 

Unfortunately, it was not was not possible to test all of the augmentations' hyperpa-
rameters and determine which parameter setting produces the best results due to lim-
ited resources and the upcoming models and experiments. In this experiment, all 
augmentations are activated and the model was trained up to epoch 1,000 to observe 
the effects of augmentation adjustments. Table 3 shows that even though only a few 
augmentations are triggered during normal training, the outcome barely changes, 
when all augmentations are on. Based on this outcome, it is presumed that the model 
and the images that are produced are not significantly affected by changes in the pa-
rameters of the augmentations. When a model is initialised, the augmentations are set 
with a value between 0 and 1. A number greater than zero indicates how likely it is 
that the specific augmentation will be employed, with zero meaning that it won't be 
used. 
 
 FID KID 
Normal Training 14.76 0.00512 
Training with all Augmentations 14.63 0.0054 

Table 3. Training results for different activated Augmentations 

Create generator for only one class. 
This experiment demonstrates how quickly a generator that belongs to one class 

can adapt. The dataset is therefore restricted to one class, whose images are once 
more split into test and training data. A class with enough images is used to stop the 
model from overfitting so quickly. The class 20203, which has 30 images, was used 
for the experiment. 

Neither the visual results in figure 20 nor the values of the loss functions in table 2 
are on the same level as the prior experiment after 400 kimg, which is equal to nearly 
7 hours. The experiment was terminated because even after 7 hours the results from 
the generator were not good enough in comparison to the first experiments and it 
would have taken 3175 days to train all generators for each class, which is by far to 
too long fir this thesis. 
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Fig. 20. Visual results from generator trained on one class after 7 hours 

6.2 StyleGAN Encoder for Image-to-Image Translation 

There are several metrics for the evaluation of the psp encoder, which are briefly ex-
plained next. 

L2 Loss Function. The L2 loss function stands for Least Square Errors and is also 
shortened to LS. The loss function is the squared difference between a prediction and 
the actual value, in this instance the created image with the original images. The cre-
ated images' color outputs are compared to the original images' color outputs pixel-
by-pixel, and an effort is made to keep the difference between the two as small as 
possible [67]. The training GAN determines which color to output based on the feed-
back in order to produce coins that are as similar to the original as possible. This loss 
function has the advantage that the error is penalized more severely, leading to a big-
ger correction, which can prevent early model stagnation. 

LPIPS. LPIPS is used to evaluate the generated images' quality. For the assess-
ment, LPIPS employs pre-trained networks, and the results are extremely accurate 
[68]. In this instance, the loss function is based on the pre-trained AlexNet. 

MoCo Loss. MoCo is a statistic used to update the network's parameters while it is 
being trained. A regular encoder and a momentum encoder are both used by MoCo. 
The update of the parameters is what distinguishes these various encoder types from 
one another. The momentum encoder uses linear interpolation, whereas the standard 
encoder uses backpropagation. 

ID-lamda Loss. This loss function is used to preserve the identity of the face from 
the portrait. For this purpose, the cosine similarity of the generated images with their 
original is calculated. The calculation is based on an ArcFace network [41]. 

Finding the perfect hyperparameters. 
It is not possible to change every parameter and analyse the results due to a lack of 

resources. I have so restricted myself to a few variables. The frequency of testing was 
the first parameter, which was changed. Here we want to compare whether a more 
frequent number of validation steps improves the model. For comparison, 50 and 500 
steps will be taken. After 1000 steps, the models were compared to obtain a meaning-
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ful result. In the table 4, it is evident that performing more tests does not improve 
results and actually lengthens the process because each evaluation takes roughly 7 
minutes. For this reason, the 500 steps were utilized as the evaluation stage in subse-
quent tests. The second parameter, the loss functions that are being employed, exam-
ines which application of the loss function appears to be most promising. Here, the id-
lambda loss defined in the repository is used initially, followed by the MoCo loss in 
place of the id-lambda loss, and then neither of them are used. The loss functions 
LPIPS and L2 are used as comparison values to compare the experiments. 

The last three models' visual results are displayed in the figure 21 and shown the 
differences between them impressively. Because the visual impression demonstrates 
that the MoCo loss function produces images that are by far the highest quality. When 
the MoCo loss is turned on, the coin's legend and the shape of the person may both be 
seen more clearly. The visual findings can be confirmed by Table 4, which makes it 
clear that the model with the MoCo loss also performs the best in the loss functions. 
So for the following tests, the MoCo Loss and the evaluation step at 500 steps are 
utilized. 
 
 Overall loss LPIPS loss L2 loss time 
Tests every 500 
steps 

0.2415 0.22 ± 0.02 0.054 ± 0.001 6h 

Tests every 5000 
steps 

0.2476 0.21 ± 0.02 0.052 ± 0.001 10h 

ID-lambda loss 0.233 0.25 ± 0.02 0.058 ± 0.001 6h 
MoCo loss 0.2195 0.14 ± 0.01 0.023 ± 0.00 6h 
None of the loss-
es 

0.2531 0.18 ± 0.01 0.035 ± 0.01 6h 

Table 4. Results from models with other parameters  

 
Fig. 21. Generated images for both models 
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Quality Generator 
The testing can now be extended out longer once the ideal parameters have been 

identified. The loss functions are applied across 100,000 epochs in order to evaluate 
and compare the qualities of each model. The wandb tool was used to create the 
graphs, which are seen in figures 22 and 23. A table matching the values of the loss 
functions used here for each experiment of the psp encoder and the AGE model has 
been established in Appendix A to allow comparison of all the outcomes of the ongo-
ing experiments. 

The generation and processing of portrait-related images served as the basis for 
Alaluf et al. work's.  Due to this, the encoder utilized was developed using the Flickr-
Faces-HQ (FFHQ) dataset. I investigate if the data obtained from the encoder is also 
beneficial for the dataset being utilized here because many coins contain portraits of 
emperors or other human-like faces. The usability of the portrait information is there-
fore tested in this experiment. To demonstrate this, an encoder trained on the 
ImageNet dataset is compared with a GradualStyleEncoder trained on Portraits. The 
file containing the list of suitable encoders now includes the newly needed ResNet-
GradualStyleEncoder. 

Comparisons are made with the loss functions mentioned above as well as optical 
results in the form of images. 

The loss functions for the two encoder types asymptotically approach the same 
values. However, the ResNetGradualStyleEncoder reaches this value earlier, allowing 
for a shorter training period and correspondingly significant resource reductions. I am 
using iteration 500 as a validation point, where the ResNetGradualStyleEncoder is 
already at a value of 0.2 and the GradualStyleEncoder is stuck at about 0.23. Further-
more, the swings of the graph are much smaller with the ResNet-based encoder, so 
less variation within the model can also be expected. The ResNetGradualStyleEncod-
er is employed for the subsequent experiments considering these two observations. 

 
Fig. 22. Time course of the gradual encoder. While the shadows reflect the respective maxi-

mum and minimum values, the drawn lines show the average values. 
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Fig. 23. Time course of the ResNet encoder. While the shadows reflect the respective maxi-

mum and minimum values, the drawn lines show the average values. 

The visual outcomes and the loss function scores are both identical for the two 
trained models. The actual generated images of the two models in the figure 24 show 
a disappointing result, despite the values of the loss functions in the table 5 still indi-
cating good generated images. The contours of the original image are identifiable, but 
only extremely tiny details allow for the identification of features like the mouth, 
eyes, and nose. You can see that the ResNetGradualStyleEncoder adds a little more 
detail to the image in addition to the advantage mentioned before. More structures 
may be seen in the person's hair than in any other created image. 
 
 LPIPS loss L2 loss MoCo loss Time per 

1000 
steps 

GradualStyleEncoder 0.26 ± 0.06 0.05 ± 
0.004 

0.09 ± 
0.008 

6h 

ResNetGradualStyleEncoder 0.235 ± 
0.05 

0.04 ± 
0.003 

0.08 ± 
0.006 

6h 

Table 5. Results from both encoder types 
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Fig. 24. Visual outcomes of both encoder types 

Capacity utilization 
The study of the results must take into consideration how the resources are being 

used. Figure 25 displays the GPU RAM allocated during training together with the 
CPU and GPU utilization. Since just the GPU is operating for the entire training, this 
indicates that the development environment is correctly set up on the one hand, but 
also that a greater performance is not possible with my used resources. The applica-
tion only uses somewhat less than 30% of the GPU's capacity when building the 
checkpoints, which are generated every two hours. The usual operation of the used PC 
explains for the 10% CPU utilization. 

 

 
Fig. 25. Capacity utilization during training the psp encoder 

Transfer Learning 
In this chapter, I try to use knowledge the model already learned from another do-

main to generate faster and, more importantly, better outcomes for the psp encoder 
from my target domain. I do this by using both the StyleGAN-FFHQ that the authors 
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have released and the psp encoder that was trained on the same dataset. The two mod-
els indicated above were trained on this resolution, so in order to conduct the experi-
ment, I had to increase the resolution to 1024x1024. Sadly, this method quickly 
proved to be ineffective because a frontal image of a human was still visible in the 
images. Unfortunately, after approximately 20,000 iterations, nothing had changed, 
and the experiment had to be abandoned. 

Train psp Encoder with less classes 
Four separate experiments are included in this area, each of which aims to deter-

mine whether the dataset can be transformed to improve the performance of the psp 
encoder. In the first experiment, the psp encoder is trained using just one class and 30 
images as the dataset. In the second trial the dataset is increase with five classes with 
a total of 112 images and in the final experiments I choose every class that contains 
more than the threshold of 40 images. In the last the balanced dataset is chosen, so the 
dataset only take exactly 40 images per class from the previous experiment. These 
tests are intended to show that there are too many classes and resulting variations of 
images for the network to be trained. 

Additionally, it must be demonstrated that the chosen parameters were actually set 
correctly and are not to blame for the poor quality of the images that are produced. All 
experiments up to iteration 20,000 are trained in this case, and the model produced by 
each experiment's preceding iteration is used as the starting point. Table 6 contains all 
of the experiment scores. 

The results that were anticipated from the other trials were produced in the first ex-
periment with just 30 images from one class. Figure 26 illustrates how, despite the 
images' high extend of similarity to the original, there are slight variations in the 
stored individual characteristics. The technique does function on a dataset of coins 
since the encoder performs the best across all values of the loss function. Similar 
curves for the loss functions are obtained by training the model just on images with a 
resolution of 1024x1024, but the generated images perform slightly better. 

The output images in the model that was trained on the dataset with five classes are 
pretty similar, despite the fact that the values for the loss functions are not nearly as 
high. The model already has worse issues once the number of images in the following 
model reaches roughly the number of 10,000. The quality of the generated images 
degrades as the loss function values rise. However, the image's output is still attrac-
tive and still conveys the majority of its essential characteristics. By taking only 40 
images per class from the previous dataset modify this result to be much better. This 
is done to avoid a batch of an iteration being entirely made up of images from a big 
class, because it would be useless to iterate where a batch only contains images from 
a single class.  

There are still 132 classes once the dataset has been changed, but there are now on-
ly 5280 images over the experiment. Although the image quality is comparable to the 
previous experiment, the loss function values are better, and the training process was 
roughly 15% quicker. 
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 LPIPS loss L2 loss MoCo loss Time per 
1000 steps 

One class 0.075 ± 0.02 0.022 ± 0.002 0.014 ± 0.002 4h 
Five classes 0.098 ± 0.03 0.025 ± 0.002 0.0165 ± 0.002 4.3h 
Classes more 40 0.17 ± 0.04 0.037 ± 0.003 0.048 ± 0.004 5.4h 
Balanced dataset 0.14 ± 0.03 0.034 ± 0.003 0.041 ± 0.004 4.7h 

Table 6. Results of different datasets 

 

 
Fig. 26. Visual results of different datasets 

6.3 Restyle-Encoder 

After the psp encoder produced inconsistent results, GitHub was once more 
searched for alternatives. After some research, a repository that operates on a similar 
basis as the psp encoder was discovered. At the conclusion of training for an image, 
both models output their latent code in W-space. 

The intermediate results are improved iteratively with the restyle encoder as op-
posed to the psp encoder. This is accomplished by using the inversion's outcome as 
the input for the next iteration. Up until the latent code appears to be similar to the 
original image, this process is repeated. 
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However, a modified setup of the StyleGAN2 generator is necessary to execute 
this repository. For this repository, eight mapping layers are required rather than the 
normal configuration of two. The model was trained up to a FID score of nine in order 
to make it competitive. 

Due to time restrictions, the restyle encoder was only able to train up to 50,000 it-
erations before comparing the results to those from the psp encoder after spending the 
same amount of time. This process took me more than 13 hours for 10,000 iterations. 
In order to find the correct setting, the output of the psp encoder was used as a guide, 
which is why the same parameters and the same data set were used. The last state 
from the psp encoder can be utilized instead of starting from scratch because this 
repository is related to the psp encoder. 

Unfortunately, the results were no better than the actual psp encoder after around 
50,000 more repetitions. The scores constantly decreased by 10% for each evaluation 
metric. In addition to the adverse outcomes, the training time was extended by nearly 
700%. In order to these two results, the further work is done for the AGE model with 
the psp encoder trained on the balanced dataset.  

6.4 Attribute Group Editing for Reliable Few-Shot Image Generation 

We may examine the visual outcomes and the values of the loss functions, on the 
one hand, as well as which attributes are essential and which are not for the model, in 
order to study the outcomes of this repository. 

It is first necessary to determine which properties on the coin image are significant 
to humans and which are irrelevant in order to better understand the model's results. 
To do this, 10 participants are asked to evaluate how two different coin images from 
the dataset represent the divide. As an example of a coin, consider below an illustrat-
ed object of “other” class and a portrait of an emperor or empress, which can be seen 
in Figure 27. 
 

 
Fig. 27. Two coins from the used dataset 
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The fact that all responders tended to concentrate primarily on the human traits in 
the portrait was remarkable. For all participants, the nose, eye, and mouth were the 
main focus and the point of immediate reference for category-relevant characteristics. 
Only four out of a total of ten respondents indicated that they thought the human gaze 
direction was significant. Regarding the relevant characteristics of the other coin from 
the illustration, we had very different opinions. One half of the respondents tended to 
concentrate on the object being shown, while the other respondents were more fo-
cused on the image's legend. This phenomenon unquestionably demonstrates how 
difficult and diverse it can be for certain people to separate things into attribute-
relevant and irrelevant categories. Rarely people have responded totally in agreement. 
As a CNN, the foundation upon which all repositories are built, is trained to think like 
a human, one can only understand the difficulty of the task the AGE model confronts. 
So, this tendency must be considered while interpreting experimentation results. 

Just like the psp encoder, both the GradualStyleEncoder and the ResNetGradu-
alStyleEncoder can be used. The ResNet-based encoder will be used in all of the sub-
sequent experiments because the results from the above experiment suggest that nei-
ther type of encoder offers a significant advantage in terms of the score of the loss 
functions. However, this encoder does approach the score asymptotically faster. 

Similar to the experiments in the previous chapter, the images are analyzed using 
the LPIPS and L2 loss functions. The fundamental idea behind the work is that clas-
ses, in this case coin types with fewer than 40 images, can be used to generate images. 
Due to this, the fundamentally same balanced dataset used for the last experiment of 
the psp encoder was chosen. The only part of each image that needed changing was 
its name, as explained in the chapter 5. The model was trained for 100,000 iterations. 

In order to be able to classify the results, one must assess the model in a differenti-
ated manner. On the one hand, there are coins with portraits on them, and on the oth-
er, there are coins with different figures on them. Two of these coins are seen in the 
illustration 28. The created images are of an entirely different quality. While the gen-
erated image of a portrait can be of decent quality, the quality of the other object is 
not satisfactory. The existence of a portrait on this coin becomes apparent with closer 
study. This is because the model separates the category-relevant and irrelevant quali-
ties, and the portrait is given the most weighting because it appears on the majority of 
coins. 

Splitting the dataset 
The dataset has to be divided as a result of the preceding experiment's results being 

verified. The path is ran through the psp encoder and the AGE model with a different 
dataset in each case to produce a better outcome. With all of the front sides of the 
images on the one hand, and all of the back sides on the other. This is based on the 
observation that numerous coins have portraits of Roman emperors on their obverse 
sides and entire human figures or other items on their reverse sides. As a result, a 
model's images should to appear more similar, and the AGE model need to provide 
clearer distinctions between features that are relevant for a given category and those 
that aren't. 
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I start with the balanced dataset from the prior findings in order to achieve the 
greatest performance, with the exception that one dataset excludes the front images 
and the other excludes the back images. 

The original dataset must first be changed before the two models can be trained. 
While the partial dataset that saves the rear sides receives the images that have the 
substring "rev" in their names, the partial data that stores the front sides receives the 
remaining images. The training and test datasets for both the psp encoder and the 
AGE model can be produced using these two new datasets. 

The models degrade in each of the different evaluation metrics, as seen by the val-
ues of the loss functions for the two resulting psp encoders in table 7. However, the 
MoCo loss performance is particularly notable, with a drop of around 35% from the 
typical balanced dataset. Unfortunately, the resulting images also show the primary 
negative effects of the loss functions. Figure 28 actually replicates the results of the 
earlier experiments and doesn't demonstrate any significant improvements in either 
image. The fact that many coin backs also feature portraits while some fronts do not is 
the determining factor in the outcome. Because of this, the AGE model continues to 
keep a variety of the category-relevant features from both pictures and other objects. 

 
 LPIPS loss L2 loss MoCo loss Time 1000 steps 
AGE 0.47 ± 0.03 0.046 ± 0.002 - 8h 
psp obv 0.17 ± 0.01 0.045 ± 0.003 0.028 ± .003 5.5h 
psp rev 0.2 ± 0.02 0.047 ± 0.004 0.032 ± .003 5.5h 
AGE obv 0.41 ± 0.03 0.041 ± 0.003 - 7h 
AGE rev 0.45 ± 0.04 0.037 ± 0.003 - 7h 

Table 7. Results of splitted Datasets in Obv and Rev 

 
Fig. 28. Results of splitted Datasets in Obv and Rev 
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Object-detection model 
To finally separate the classes portrait and others, the use of an object recognition 

model that can differentiate these two different classes will be applied. 200 images 
from each class were labeled and used to train the classifier in order to effectively 
train the model. Three subsets of the dataset were created for training. To evaluate the 
final model, a test dataset made up of 20% of all images was used. The validation 
dataset stores 20% of the remaining images, while the training dataset holds 80% of 
the remaining 80% images. 

After completing the training, which took around 3 hours and involved 10 epochs, 
the model have an accuracy score of about 86%. The entire original dataset may now 
be divided into the two classes using this model. This is accomplished by running 
through each individual class and predicting whether or not each image is a portrait. 

With a success rate of 86% and a total of just under 70,000 images to be identified, 
there are about 10,000 incorrect classifications, which is a far more encouraging result 
than in the last trial. Two distinct models are utilized with the generated dataset. One 
model only creates portraits, whereas the other attempts to produce images of other 
items. 

When the entire dataset had been classified, the Portrait class had a total of 38,203 
images, whereas the other class had 31,955 images. 

Since the psp encoder for the front sides has previously seen many portraits and 
may therefore shorten training time, the decision was made to start the training from 
this last checkpoint. 

On the other hand, because it has already encountered many classes like them, it 
was decided to start with the psp encoder of the backs for the class “others”. 

However, because our classes now have a different appearance and a different 
class embedding file as an output, we must train a new model for the AGE model 
from start. 

The loss functions with the psp encoder only slightly improve and show no signifi-
cant impact. However, since the seperation between portraits and other objects makes 
it easier to distinguish between features that are pertinent to a certain category and 
those that are not, the AGE model must nonetheless be the primary focus of the 
change from this dataset. 

The images in figure 28 and the values of the loss functions from table 7, still do 
not demonstrate any appreciable advancements. This is due to the fact that there are 
still too many classes for the AGE model to handle (over 10,000). 

The datasets can also be reduced here because the values of the VGG16 model un-
der comparison were only trained with 164 classes. The dataset's size must be de-
creased, but it must also be taken into account that it would be unbalanced without 
additional restrictions. This results from the fact that some classes only keep one Por-
trait section image, while some classes store multiple. Of course, the "others" class is 
also the same in this way. As a result, the model once more finds it difficult to learn 
all classes equally and once more uses a class with plenty of images as the fundamen-
tal building block for producing new images. 

In other words, it is s requirement to find classes that present both a large number 
of images on the one hand and a balanced distribution between the classes "portrait" 
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and "others" on the other. This is the only way to really guarantee that the result is a 
balanced dataset for the two new generative models. 

As a lower bound, the threshold was set to 7, so that a balanced dataset with suffi-
cient data is available for training and subsequent classification by the VGG16 net-
work. 

In order to create such a dataset, it is required to repeatedly go through each class 
in the initial dataset and determine which classes have more than 7 images, both in the 
dataset for the class "others" and in the dataset for “portraits”. 

The dataset was iterated over, and it was found that exactly 168 different coin 
types contain exactly or more than 7 images from the "portrait" and "others" class. As 
a result, each dataset for training the generative models contains a total of 1176 imag-
es.  

While the values for the AGE model do not further increase, the loss function find-
ings from Table 8 demonstrate considerable improvements for the psp encoder. The 
values of the loss functions cannot be kept up with by the psp encoder's visual output, 
particularly that of the AGE model. Because portraits are still shown on isolated 
coins, the psp encoder is still unable to accurately represent the class "others." 

The dataset employed here cannot handle the amount of information needed by the 
AGE model. When comparing the experiments from the original paper, we find that 
while the number of classes, roughly 130, is nearly identical to that in this experiment, 
their experiment contains almost 1,000 images per class, which is a factor of 100 
more than the number of images per class in this transformed dataset. 

The images from Figure 29 clearly demonstrate how difficult it is for the AGE 
model to identify a class's category-relevant features. 

As a result, even after a significant dataset reduction, the results are still lower to 
those of the psp encoder. Because of this, figure 29 also displays the images that the 
psp encoder generated. It is obvious that the images not only perform far better than 
the loss functions but also outperform them in terms of visual impact. The AGE mod-
el cannot be utilized to create new images, and instead, we take the psp encoder to 
creates new images as a result of the experiment's findings. 

 
Even though the optical results and the values of the loss functions with the psp 

encoder are superior to those with the AGE model, they are still not good enough. For 
this reason, a step back in the path is taken in this final experiment. So far, the trans-
formed datasets have been applied exclusively to the psp encoder and the AGE mod-
el, but still with the same basic framework, StyleGAN2, which trained on all images. 
For this reason, two new generators are created here, one trained only on "portraits" 
and the other trained only on the class "others". The transfer learning variation is used 
for the training in order to significantly reduce training time. This indicates that the 
StyleGAN model trained previously is used as the starting point for both models, 
rather than both being trained from scratch. Up to iteration 500, both trained Style-
GAN models got extra training. 

The loss function values are by far the best that the psp encoder has yet to produce. 
We have a significant improvement across every value, but unfortunately the figure 
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29 cannot support the finding results. The generated images are essentially identical to 
the results of the earlier studies and don't differ much from them. 

However, the loss function values indicate that the dataset utilized in this study 
produces the best results, so the model generated is used to generate new images. 

The visual findings and the loss function results diverge because the average gen-
erated images perform better across the entire dataset. 

A significant disadvantage of the psp encoder is the lack of diversity in the images 
produced by him. The encoder is unable to provide each generated image with a 
unique look or set of different features. 

  

 
Fig. 29. Results of splitted dataset in classes “portrait” and “others” 

The goal is to expand the dataset of 168 coin types after training the two models so 
that each class contains exactly 42 images, with 21 images displaying the obverse and 
21 images displaying the reverse. This is crucial for the later VGG16 model since the 
corresponding obverse images and reverse images must be concatenated. The dataset 
will have 7056 images altogether once the generated images have been included. 
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 LPIPS loss L2 loss MoCo loss Time per 
1000 steps 

psp portrait 0.17 ± 0.02 0.04 ± 0.003 0.028 ± 0.003 5.7h 
psp others  0.19 ± 0.03 0.05 ± 0.003 0.03 ± 0.003 5.2h 
AGE portrait 0.42 ± 0.04 0.049 ± 0.003 - 7.2h 
AGE others 0.46 ± 0.04 0.052 ± 0.004 - 6.9 
psp portrait 
168 classes 
same SG2 

 
0.13 ± 0.01 

 
0.029 ± 0.002 

 
0.02 ± 0.001 

 
4.7h 

psp others 168 
classes same 
SG2 

 
0.15 ± 0.02 

 
0.031 ± 0.002 

 
0.025 ± 0.002 

 
4.7h 

AGE portrait 
168 classes 
same SG2 

 
0.28 ± 0.04 

 
0.042 ± 0.003 

 
- 

 
6.6h 

AGE others 
168 classes 
same SG2 

 
0.33 ± 0.02 

 
0.05 ± 0.003 

 
- 

 
6.6h 

psp portrait 
seperate SG2 

0.0985 ± 0.01 0.025 ± 0.002 0.017 ± 0.001 4.7h 

psp others 
seperate SG2 

0.106 ± 0.01 0.028 ± 0.002 0.021 ± 0.002 4.7h 

SVD 0.009 ± 0.00 0.01 ± 0.001 - 24h 

Table 8. Results of the dataset split based on the classifier 

6.5 Few-Shot Adaption of Generative Adversarial Networks 

The generator, which was trained using grayscale images and TensorFlow, is required 
for this task. 
This repository was only be chosen to compare the quality of the images produced 
here with the models trained above because the model would have to be retrained for 
each class and would be outside the scope of this work to be as an input for the 
VGG16 model. 

The same loss functions are also used for this experiment to reveal the differences 
in quality between the repositories. Before we get to the experiments of this reposito-
ry, I noticed throughout the training that my GPU was not running at full power. 
While in the repositories described above the GPU was running at just under 100% 
power, here it was always between 30 and 40% power during the training. This may 
well be related to the implemented development environment, which had to be built 
via extra instructions from the Internet as described in Chapter 5 [66]. 

The same configurations, config-f, used for StyleGAN were chosen in order to 
train the SVD model on the complete dataset with around 48 hours for the complete 
dataset. After training, the model's results reveal a significant improvement over the 
first path. The images are quite identical to their originals, with the crucially minor 
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differences in the image's component elements. The loss function values from table 8 
confirm the successful results.  

Sadly, because the images are not labeled, they cannot be used with the VGG16 
model. Making a model for each class and generate images would be the only way to 
produce labeled output images. To demonstrate how much work, it would be to train a 
new model for each class, I choose one class and train the SVD model exclusively on 
this class. This enables to examine how many hours are required to train a model for 
each class in addition to how long it takes the SVD model to adapt to only one class. 

It took 50 kimg to train one class, which is close to 10 hours given my resources. If 
a model were to be trained for each class, the runtime would be close to 13 years. If 
only 168 classes should produce new images as in the trials mentioned above, it will 
take about 70 days. This time may undoubtedly be decreased with greater resources or 
even a fully employed GPU, which could make this repository even more exciting in 
the future. 

Figures 30 and Table 8 both show the excellent results of the SVD model, which 
was trained on the complete data set and took almost precisely 24 hours to complete. 
Both results are significantly better than the other models and the model used is able 
to make minor adjustments using SVD while preserving the essential features of the 
original image. 

Nevertheless, the major drawback of this repository remains the output of unla-
beled images. 

 

 
Fig. 30. Results of the SVD model 

6.6 VGG16 Classifier 

The data set resulting from the inference model of the psp encoder must be converted 
into a format, which can be seen in Figure 31, to be used for the VGG16 model. An 
image must be created by horizontally concatenating the front and back sides. The 
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training dataset receives 80% of the concatenated images, whereas the test dataset 
receives 20%. 

 
Fig. 31. Structure of dataset used for VGG16 model 

The VGG16 model can be trained after the dataset has been transformed. As a 
starting point, the VGG16 model, which is pretrained on the ImageNet dataset is em-
ployed. The model is trained over 10 epochs, with x, in our case 441, steps per epoch. 
The formula 6 is used to determine how many steps there are in each epoch. 

 x = #𝑖𝑚𝑎𝑔𝑒𝑠
#𝑏𝑎𝑡𝑐ℎ𝑒𝑠

 = 7056
64

 = 441 (6) 

For one epoch of the classification model you need about 1 hour in Google Colab. 
As a comparison value, the result of the VGG16 classifier is compared with the da-
taset by taking only classes that contain more than 40 images. Here, with exactly 164 
classes, the VGG16 model achieved a top-1 value of 79% and a top-5 value of 97%.  

To test the classifier, three different experiments were executed. In the first exper-
iment, the dataset taken from the last psp experiment, with the following conditions. 
Only coin types that store more than 7 images each from both classes "portrait" and 
"others" are taken. To make the dataset balanced, also only exactly 7 images of a coin 
type are taken per class. In the end we have the above resulting dataset of 168 classes 
with exactly 14 images per coin type with a total of 2,352 images. This also means 
that there are still no generated images in the dataset here. At the end of the training, 
the VGG16 model has a Top1 value of 16.3% and a Top5 value of 41.6%. This result 
should provide a better comparison value for the following experiments. 
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Now, to see if there is an improvement in performance by expanding the dataset 
with generated images, each image from the dataset is generated twice, which means 
we now store a total of 7056 images. The results from this experiment are surprisingly 
much better than the results from previous experiment and also from the original clas-
sifier. However, this is not related to the quality of the generated images, but to the 
ratio of generated to original images as well as the lack of diversity from the inference 
model of the psp encoder described above. Figure 32 shows two generated images of 
an example image and illustrates the low diversity in the output. Because the dataset 
now consists of ⅔ generated images, fewer original images fall into the test dataset, 
which means that the model must classify generated images. Since there are many 
images in a class in the training data that are almost the same, it is very easy for the 
VGG16 model to classify the image correctly. Only in the unlikely outcome that an 
original image is included in the test set, the classifier has difficulties. 

For exactly this reason of the distribution in the dataset, another experiment was 
performed in which the distribution is 50-50. That means that for each image we gen-
erate only one output image, resulting in a dataset with a total of 4704 images. 

The result clearly indicates that the suspicion just expressed is quite true. Due to 
the redistribution of the dataset, the test set is also balanced and thus also contains 
more original images that have to be classified, resulting in more errors which can be 
seen in the values in table 9. 

Despite the slightly worse values of the individual score, the results of the classifier 
show, despite the weaker generated outputs, that the generated images contribute to 
significantly outperform the results from the first experiment. With better quality, the 
model can be improved much further and become an excellent alternative for the fu-
ture. 

 
 Top-1 Top-5 Time 
Original VGG16 model 79% 97% - 
VGG16 model 42 images per class 92.9% 98.6% 10h 
VGG16 model 14 images per class 16.3% 41.6% 3h 
VGG16 model 28 images per class 61% 83.3% 5h 

Table 9. Results of all VGG16 models 
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Fig. 32. Two generated images from the same example 

7 Discussion and Conclusion 

I discuss possible problems and how they might affect the outcomes in this subsec-
tion. Additionally, I go over ideas for improving the trained models. 
Unfortunately, the outcomes fell short of what was hoped for and expected qualita-
tively. There are numerous causes for the models' bad performance, which will be 
covered in greater detail in this chapter. 
 
Quality of Dataset 
 The quality of the data source is by far the biggest issue for generative models. 
When first seeing the dataset, the dataset's great diversity of classifications is immedi-
ately noticeable. Since only one binary dataset was frequently utilized, this dataset has 
more than 11,000 distinct classes, making it substantially larger in terms of class size 
than the individual repositories used. The AGE model is particularly affected by the 
partially significant discrepancy within a class and the occurring large similarities 
under the classes since it finds it so challenging to draw a distinction between the 
classes. The results decrease as a result of the difficulty in separating category-
relevant attributes from irrelevant ones. 

A model cannot deliver good results if it is fed with suboptimal inputs [69]. The 
findings of the experiments also support this trend. The quality of the individual im-
ages has a significant negative impact on both the values of the loss functions and the 
visual outcomes. The detection of object recognition can be quite challenging when 
there is a noticeable corrosion or heavy wear. Loss of substance, particularly in the 
coin's relief, is a sign of wear and coins have a history of being used as currency, thus 
because of this use, they frequently have significant wear. Corrosion is another issue, 
which manifests itself in the relief as holes. Additionally, the handling of the coin in 
nature, where it interacts chemically with numerous things, might cause corrosion. 
For instance, oxidation may result in a coin's color changing [15]. The figure 33 pro-
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vides an illustration of the points being made here. This figure shows the wear, corro-
sion, and the differences between these images that go along with it. 

The fundamental goal of a CNN, upon which all repositories are built, is to accu-
rately imitate the human brain. If persons find it difficult to understand and analyze 
the differences within a class that was just mentioned, how should such a model not 
experience difficulty? 

The involves reducing of the unbalanced dataset might be shown by certain tests. 
While some classes only have one image on each coin, others have more than one 
hundred images on each type. The model then spends a lot of time in just those clas-
ses and does not learn the classes with less examples. If the batch size were to be so 
small that each batch contained just images from a single class, the gradient of the 
iteration would not be as useful. I had to accept batch sizes of 4 in some circumstanc-
es because I had such a large dataset and didn't want to go over my resource limit. 

 
Fig. 33. Different images from the same class 

Image resolution 
The resolution of the images to be processed was a key factor in the analysis of the 

results. I intentionally went with a slightly lower resolution because raising it would 
have resulted in immediate execution aborts. Unfortunately, Google Colab's resources 
were insufficient for a higher resolution as well. The outcomes of the work by Karras 
et al. show that substantially better outcomes can be obtained with a greater resolu-
tion. The authors obtained a value of 6.3 with Frechet Inception Distance at a resolu-
tion of 256x256 and the result of 1.5 at a resolution of 1024x1024 [57]. One potential 
would be the ability to validate these experiments using better or just more available 
resources. 

 
Portraits 

There is a close relationship between portrait collaboration and all elaborated re-
positories. In several of them, additional loss functions have also been included to 
improve portrait editing. For this reason, portraits are more likely to include details 
that are important to the subject of the image. Here, features such the lips, nose, eyes, 
and hair, among others, determine which person is represented. These characteristics 
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also make it simple to edit and modify the images. Due to the lack of a specific prop-
erty that the model may use for all images, these features are missing from the dataset 
used in this study. 

7.1 Future Outlook 

In this subsection, I will address some issues that may have a positive effect on the 
outcome of the models. 
Optimization of the classifier. Already several experiments that have helped the 
generative model were mentioned in this work. Despite this, the classification per-
formed by a classifier can still be improved since it currently has an accuracy rating of 
86%. If this value could be increased further, it would improve the distribution of the 
dataset. Thus, the individual models would have fewer conflicts across the classes and 
could concentrate more on a specific class. 
StyleGAN-Model. The division of the dataset was used in the final stages of the work 
for both the foundation and the construction of the two paths. There was a generator 
that was trained using portraits, and another that was trained using the "others" class. 
Due to time constraints, it was not possible to train the model entirely from scratch, 
instead, it was continued via transfer learning. As a result, some images from the oth-
er class are sometimes included in each model. The model has to be completely re-
trained in order to be able to solve the issue and another improvement would be to use 
the upgraded classification system mentioned above here to divide the datasets even 
more. 
Oversampling instead of Undersampling. The current use case for creating balance 
in the dataset being used here is undersampling. This process involves deleting as 
many images from each class as necessary to leave each class with the same number 
of images saved. Another strategy would be what is known as oversampling. In this 
method, pictures from classes with fewer examples are copied in order to bring them 
up to parity with the other classes. Thus, in order to achieve a balanced dataset, no 
significant information is deleted and as a result, the model has more data from which 
to extract knowledge gained. 
Viewing angle for portraits. Another issue is depicted in the illustration 34. There 
are some portraits in the dataset that look to the left, some that are frontal, and still 
others that look to the right. In the generated images, it appears that almost every 
depicted person is looking to the right. This is due to the fact that there are significant-
ly more portraits looking to the right than to the left, causing the model to recognize 
these particular images as the standard and produce them as a result. This issue might 
be resolved if the above model had to recognize and differentiate between more clas-
ses. In this case, we would have had more than two classes and would have expanded 
the class for portraits to include every possible viewing angle. 
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Fig. 34. Generated image from portrait with left viewing angle 

Multidisciplinary images by Kaiser. There are several well-known kings and other 
illustrations that appear in just more than one class and can be used to retrain the ob-
ject recognition model. In this case, rather of the look directions of the portraits, the 
class portrait, and all other objects, we would have all kings as a different class. This 
could be the most challenging option for improving results but consequently, the qual-
ity of generated images, could be the best over all experiments. 
Quantencomputer. A QC uses quantum mechanics to operate and replaces tradition-
al bits with so-called quantum bits, Qubits. One method of combining ML and QC is 
to have the QC run multiple solution paths at once, saving time. Another strategy is to 
optimize the parameters because QC could help identify the optimal parameters for 
the model quickly and easily. In general, it can be said that quantum machine learning 
will have a significant impact on the future and will revolutionize the training of 
models [70]. This work can also benefit from it because it became clear throughout 
the work that choosing the right configuration and parameters for the model is crucial. 
Meta Learning.  Meta Learning aims to assist the computer in the learning process in 
the same way that humans do. In this case, an algorithm receives a variety of tasks 
and generates a learner that can generalize the model using a limited number of ex-
amples. Discriminative models were the initial use cases, but in recent years, genera-
tive models have been used more frequently. For instance, the few-shot learning prob-
lem is a common meta-learning issue. MAML and Reptile are examples of meta 
learning algorithms. MAML is an algorithm that trains its parameters in a way that 
just a small number of gradient steps are required to learn a new task in a different 
domain [38]. For this reason, the dataset might be divided between classes with more 
than 40 images and classes with fewer than 40. The larger classes would make up the 
training set, and the algorithm would be modified to fit the smaller classes with fewer 
than 40 images. 
Similar to MAML, the Algorithm Reptile seeks a general initialization of the parame-
ters, although it uses far less processing power and memory during calculation than 
MAML does. 
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Many studies on deep networks have already used MAML and Reptile but only with 
discriminative models [38]. It would be interesting to see if this approach yielded 
better results if these algorithms are more available in the domain for generative mod-
els. 
Many-Classes Few-Shots Learning. The majority of datasets used to solve few-shot 
learning problems have only a few examples, often just one single image. In the da-
taset used here, things are slightly different because we have more than 70.000 images 
total across the dataset. For this reason, this alternative of Few-Shot learning would be 
a potentially better approach. Unlike the usual many-class many-shots or few-class 
few-shot models, this approach focuses on a dataset with many classes, each contain-
ing only a few examples. During my research, however, I did not come across any 
implemented models that focused on generative models. Only implementations of 
discriminative models were found [71, 72]. 
Few-Shot Classification. Another strategy to achieve the goals of this work would be 
to focus more on the classification model. As was already mentioned in the previous 
subsection, the VGG16 model can be replaced with a Many-Classes Few-Shots mod-
el. With this approach, it may be tested to see if the classification system can be im-
proved without the need of newly created images. These results can then be compared 
to those from a dataset with artificially generated images. 
Optimization of parameter selection.  As was already mentioned with regard to the 
topic of quantum computing, choosing the parameters is a good way to enhance ma-
chine learning models. Due to time and resource constraints, not all parameters could 
be optimized and their effects on the model could be examined. 
The difficulty in determining the ideal parameters is that one does not know in ad-
vance which learning rate will produce the greatest results for the various loss func-
tions. After each iteration, the output must be checked and the accuracy compared in 
order to analyze the parameter selection and, if necessary, make parameter changes. 
The Brute-Force approach is an algorithm for parameter selection that enables exten-
sive exploration of all possible options. This algorithm is simple to use and perhaps 
the most logical approach, but it takes a very long time to process a large number of 
options. 
The evolutional algorithm is another method for parameter optimization. We have a 
number of models with predefined hyperparameters and are examining the results of 
each model individually. We only include the models that have the best results in the 
following. The choice of new models with comparable hyperparameters will depend 
on the models that were kept. This process will be repeated until the desired outcome 
has been achieved [78]. 
Transformer-Based Models. Transformers were first introduced in 2017 [73] and 
have grown in popularity over the past few years in the field of deep neural networks. 
Especially when using Natural Language Processing (NLP) in challenging applica-
tions, like the Google search engine. This architecture is now being used more and 
more for computer vision programs, slowly replacing the CNNs for more difficult 
tasks. 
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A transformer model is a neural network that can learn the context and significance of 
connections in sequential data. Transformer models consist of an encoder and a de-
coder that process data, similar to most neural networks [73]. 
Although there are several significant similarities between Transformers and CNN, 
the difference is primarily in the architecture. Changing the architecture of each mod-
el from CNNs to transformers could have a positive impact on the generated images. 
Technological development.  The technological advancement and the subsequent 
increase in better resources is a very important factor. In the near future, it's possible 
that better and more speedy results will be produced by raising the quality of the re-
sources available. Additionally, by increasing the batch sizes for training, the chance 
that a batch may contain only images from a single class will be reduced. A signifi-
cant milestone for ML would undoubtedly be the inclusion of QC during model train-
ing. Additionally, the resolution of the images might be increased with increased re-
source capabilities, giving the images used for training a higher quality. Additionally, 
the above improvement suggestions could be implemented more quickly and effec-
tively with the aid of high-quality resources. 

7.2 Conclusion 

In this work, Few-Shot Learning was used to try to generate new high-quality im-
ages from a non-optimal in order to expand the usable dataset for a classification sys-
tem. To do this, several approaches were taken based on the StyleGAN2 architecture. 
One approach was to use latent code to edit the image using category-irrelevant at-
tributes so that all the elementary characteristics of the class could still be recognized. 
Here, it was quickly determined that the AGE model had difficulty with this dataset. 
For this reason, images were ultimately generated from this path using the psp encod-
er. 

In the second approach, the singular vectors of the singular value decomposition of 
an image were frozen during training and only the singular values were continuously 
updated to result in a model to generate high quality images. Only the SVD model 
was able to meet the high expectations and generate satisfactory images from the 
dataset. Since this model cannot generate classified images and each image would 
have to be classified manually, the generated images could not be used for the classi-
fication system. The other approach provided images with class membership but 
could not generate high-quality images. Consequently, the VGG16 model trained on 
the generated dataset could not keep up with the given values of another model. Only 
when two new examples are generated for each image, the VGG16 model performs 
better than the original results. However, as described above, the generated images are 
too similar, causing the classifier to memorize the image. 

Despite the unsatisfactory results, this work has shown what approaches exist for 
generating ancient coins and where their strengths and weaknesses are.  

What was visible across all experiments is that the generative model has less diffi-
culty generating coins with portraits but has even more difficulty with images depict-
ing other objects on the coin. Neither splitting the dataset by obverse and reverse nor 
using the VGG19 classifier helped improve the generative model. The only appealing 
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results always occurred when the dataset was reduced to a few hundred images. The 
way of splitting portraits and all others, limiting the number of classes to 168 classes, 
gave the best results. However, even this model could not match the values of the 
current accuracy of the VGG16 classifier.  

One finding of this work shows how dependent ML models are on a qualitative da-
taset. As described in the last chapter, the dataset used here has clear disadvantages 
compared to the usual datasets used by each repository. 

To this end, it was shown that generative models require a lot of computation time 
to learn to the dataset used here. The resulting training time is strongly dependent on 
the resources, the number of data and the choice of parameters.  

When choosing the parameters, a middle ground between computational power and 
quality gain must be taken. 

It has been demonstrated through some experiments that high quality images can 
be produced, but only for a subset of the dataset. The potential future implications 
discussed above may help to increase the working subset of the dataset. 
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8 Appendix 

8.1 Appendix A 

 
 LPIPS loss L2 loss MoCo loss Time per 

1000 steps 
One class 0.075 ± 

0.02 
0.022 ± 0.002 0.014 ± 0.002 4h 

Five classes 0.098 ± 
0.03 

0.025 ± 0.002 0.0165 ± 0.002 4.3h 

Classes more 40 0.17 ± 0.04 0.037 ± 0.003 0.048 ± 0.004 5.4h 
Balanced dataset 0.14 ± 0.03 0.034 ± 0.003 0.041 ± 0.004 4.7h 
AGE 0.47 ± 0.03 0.046 ± 0.002 - 8h 
psp obv 0.17 ± 0.01 0.045 ± 0.003 0.028 ± .003 5.5h 
psp rev 0.2 ± 0.02 0.047 ± 0.004 0.032 ± .003 5.5h 
AGE obv 0.41 ± 0.03 0.041 ± 0.003 - 7h 
AGE rev 0.45 ± 0.04 0.037 ± 0.003 - 7h 
psp portrait 0.17 ± 0.02 0.04 ± 0.003 0.028 ± 0.003 5.7h 
psp others 0.19 ± 0.03 0.05 ± 0.003 0.03 ± 0.003 5.2h 
AGE portrait 0.42 ± 0.04 0.049 ± 0.003 - 7.2h 
AGE others 0.46 ± 0.04 0.052 ± 0.004 - 6.9 
psp portrait 168 
classes same SG2 

 
0.13 ± 0.01 

 
0.029 ± 0.002 

 
0.02 ± 0.001 

 
4.7h 

psp others 168 
classes same SG2 

 
0.15 ± 0.02 

 
0.031 ± 0.002 

 
0.025 ± 0.002 

 
4.7h 

AGE portrait 168 
classes same SG2 

 
0.28 ± 0.04 

 
0.042 ± 0.003 

 
- 

 
6.6h 

AGE others 168 
classes same SG2 

 
0.33 ± 0.02 

 
0.05 ± 0.003 

 
- 

 
6.6h 

psp portrait seper-
ate SG2 

0.0985 ± 
0.01 

0.025 ± 0.002 0.017 ± 0.001 4.7h 

psp others seperate 
SG2 

0.106 ± 
0.01 

0.028 ± 0.002 0.021 ± 0.002 4.7h 

SVD 0.009 ± 
0.00 

0.01 ± 0.001 - 24h 

Table 10. All results for the psp encoder and AGE model 

8.2 Appendix B 

To download the individual trained models from the work, they have been uploaded 
to the Goethe University Hessenbox cloud storage service. The link to the models, as 
well as the corresponding scripts for the transformation of the datasets and the Conda 
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environments are located in my GitHub repository. To keep the number of models in 
a manageable range, only the models that gave the best results are uploaded. For the 
StyleGAN2 generator, the models can be found for the SVD model and also the con-
figuration with two mapping layers implemented in Pytorch for each of the class “por-
trait” and “others”. For the psp encoder as well as for the AGE model, the models and 
datasets are uploaded from the experiment with the classes Portrait and others sepa-
rated from the classifier with 168 classes. The only difference between the models is 
that the psp encoder was trained on the separated StyleGAN models and the AGE 
models were trained on the non-separated StyleGAN. Due to the weak results of the 
restyle encoder, neither the StyleGAN model used for this purpose nor the restyle 
encoder is uploaded. For the SVD model, on the other hand, the best SVD model in 
terms of results is also uploaded with the StyleGAN. 
 
QR-Code: 

 
 

Bitly-Link: https://bit.ly/JannikHockMasterthesis 
 
The GitHub repository is set to private, if you are interested in taking a closer look 

at the repository, feel free to send me an email: jannikhock30@googlemail.com 
 
 

8.3 Deutsche Zusammenfassung 

Spätestens seit der Website thispersondoesntexist sind generative Modelle bekannt 
dafür, realistische Bilder einer Zieldomäne generieren zu können. Ein starker Nachteil 
dieser Modelle ist jedoch die benötigte große Menge an Daten, die in diversen Domä-
nen allerdings schwer zu holen sind. Unter anderem aus diesem Grund haben sich 
Deep-Learning Algorithmen im Laufe der Zeit immer weiter verbessert, um sie effizi-
enter im Umgang mit Daten und Ressourcen zu nutzen. Das Resultat waren Few-Shot 
Learning Probleme, die sich aus nur wenigen Beispielen einer Zieldomäne anpassen 
können. 
Die Erforschung antiker Münzen ist ein Themengebiet, das genau in diese Problem-
stellung reinfällt. Der hier benutzte Datensatz erreicht nur bei knapp 1% aller Klassen 
den kritischen Schwellenwert von 40, welcher angibt, ab wann eine Klasse für das 
Klassifizierungssystem verwendet werden kann.  

https://bit.ly/JannikHockMasterthesis
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Daher liegt der Schwerpunkt dieser Arbeit auf der Erstellung neuer Bilder von antiken 
Münzen unter Verwendung bereits bekannter GitHub-Repositories und deren Ansätze 
des Few-Shot-Learnings. Es werden verschiedene Techniken und Algorithmen ver-
wendet, um neue Bilder auf der Grundlage der StyleGAN2-Architektur zu erzeugen. 
Zahlreiche Experimente zeigen die Vor- und Nachteile der einzelnen Modelle sowie 
Verbesserungspotenziale auf. Für die Analyse werden individuelle Metriken sowie 
visuelle Resultate herangezogen, um die Ergebnisse der einzelnen Experimente zu 
vergleichen. Ziel der Arbeit ist es, den Datensatz so zu vergrößern, dass jede Klasse 
mit dem VGG16-Modell klassifiziert werden kann. 
 


