
Jean-Philippe Pellet · Gabriel Parriaux
Editors

Informatics in Schools

ISSEP 2023 Local Proceedings

16th International Conference on Informatics in Schools:
Situation, Evolution, and Perspectives, ISSEP 2023
Lausanne, Switzerland, October 23–25, 2023

Preface

These local proceedings contains full and short papers as well as poster descrip-
tions and titles of workshops presented at the 16th International Conference
on Informatics in Schools: Situation, Evolution and Perspectives (ISSEP 2023),
which was held at the University of Teacher Education (HEP Vaud) in Lau-
sanne, Switzerland, from October 23 to 25, 2023. They complement the pro-
ceedings published by Springer (Lecture Notes in Computer Science, vol. 14296,
doi:10.1007/978-3-031-44900-0), which contain other full papers also presented at
the conference. This preface, and the following Organization section, are largely
identical to the one published in the Springer proceedings.

The ISSEP conference series is a forum for researchers and practitioners in
the area of informatics education, in both primary and secondary schools. The
conference provides an opportunity for educators and researchers to reflect upon
the goals and objectives of this subject matter, its curricula, various teaching
and learning paradigms and topics, as well as the connections to everyday life
— including the various ways of developing informatics education in schools.

The conference series started in 2005 in Klagenfurt, Austria. Initially planned
as a one-time event, interest was such that subsequent editions were organized
in thirteen different countries to this day: in Vilnius, Lithuania (2006); Torun,
Poland (2008); Zürich, Switzerland (2010); Bratislava, Slovakia (2011); Old-
enburg, Germany (2013); Istanbul, Turkey (2014); Ljubljana, Slovenia (2015);
Münster, Germany (2016); Helsinki, Finland (2017); St. Petersburg, Russia (2018);
Larnaca, Cyprus (2019); Tallinn, Estonia (2020); Nijmegen, the Netherlands
(2021); and Vienna, Austria (2022).

As with the previous edition in Vienna, a doctoral consortium was orga-
nized for ISSEP 2023, which received 12 applications from Ph.D. students. The
doctoral consortium is a place for Ph.D. students to present and discuss their
research ideas, meet each other as well as other senior researchers, and get con-
structive feedback from peers and researchers prior to the conference itself. This
year’s doctoral consortium was held on October 22, 2023, and was chaired by
Engin Bumbacher from HEP Vaud.

On the first day of the conference, local teachers were also invited to attend.
Practical workshops were organized on that day in addition to presentations.
These workshops are listed at the end of this volume. We believe closer interac-
tions between teachers and researchers are important, on the one hand, in order
to ensure that research is relevant to the classroom, and, on the other hand,
to provide teachers with a view on the latest developments in the field. The
Swiss Society for Informatics in Education (SVIA-SSIE-SSII), mainly composed
of computer science teachers, supported the event and also organized its annual
general assembly on the first day of the conference in Lausanne.

The ISSEP 2023 program committee received 73 submissions in total (includ-
ing poster and workshop proposals), out of which 47 were paper submissions.

https://doi.org/10.1007/978-3-031-44900-0

iv Preface

Each of these was reviewed by between 3 and 5 members of the program commit-
tee. In total, 171 double-blind reviews were provided. We are extremely thankful
for the dedicated and timely work of the reviewers! Based on the ratings and com-
ments, 14 full papers were selected for publications in the Springer proceedings,
and 15 more were selected for these local proceedings. The submission, review,
and selection process was managed using the EasyChair conference management
system.

Once again, we would like to thank the members of the Program Committee
for the work they have done in reviewing the submissions and providing feedback
to the authors. We thank the authors for their numerous, high-quality submis-
sions. We are also very grateful to the members of ISSEP’s steering committee
for their advice and support. Andreas Bollin and Gerald Futschek, as organiz-
ers of the previous edition of ISSEP, provided particularly helpful guidance on a
whole range of organizational matters and deserve special thanks. We also thank
our colleagues and members of the local organizing committee for their work in
the concrete organization of the physical conference, as well as our institution’s
Grants Office, which helped us look for funding and provided support for the
publication of these proceedings.

Finally, we would like to thank our partners and sponsors for their generous
contributions, without which ISSEP 2023 would not have been what it was:
the Swiss National Science Foundation, Google, the Hasler Stiftung, the SVIA-
SSIE-SSII association, and the Centre de Compétences romand de Didactique
Disciplinaire.

October 2023 Jean-Philippe Pellet
Gabriel Parriaux

Organization

Conference Chairs

Gabriel Parriaux Univ. of Teacher Education, Lausanne, Switzerland
Jean-Philippe Pellet Univ. of Teacher Education, Lausanne, Switzerland

Steering Committee

Erik Barendsen Radboud University and Open University, The
Netherlands

Andreas Bollin University of Klagenfurt, Austria
Valentina Dagienė Vilnius University, Lithuania
Gerald Futschek TU Wien, Austria
Yasemin Gülbahar Ankara University, Turkey
Juraj Hromkovič ETH Zurich, Switzerland
Ivan Kalaš Comenius University, Slovakia
Mart Laanpere Tallinn University, Estonia
Sergei Pozdniakov St. Petersburg Electrotechnical University, Russia

Program Committee

Andreas Bollin University of Klagenfurt, Austria
Andrej Brodnik University of Ljubljana, Slovenia
Julien Bugmann Univ. of Teacher Education, Lausanne, Switzerland
Engin Bumbacher Univ. of Teacher Education, Lausanne, Switzerland
Špela Cerar University of Ljubljana, Slovenia
Morgane Chevalier Univ. of Teacher Education, Lausanne, Switzerland
Christian Datzko Wirtschaftsgymnasium und Wirtschaftsmittelschule

Basel, Switzerland
Monica Divitini Norwegian Univ. of Science and Technology, Norway
Gerald Futschek TU Wien, Austria
Micha Hersch Univ. of Teacher Education, Lausanne, Switzerland
Ivan Kalaš Comenius University, Slovakia
Kaido Kikkas Tallinn University of Technology, Estonia
Dennis Komm ETH Zurich, Switzerland
Mart Laanpere Tallinn University, Estonia
Martina Landman TU Wien, Austria
Peter Larsson University of Turku, Finland
Olivier Lévêque Swiss Institute of Technology, Lausanne, Switzerland
Nina Lobnig University of Klagenfurt, Austria
Birgy Lorenz Tallinn University of Technology, Estonia

vi Organization

Maia Lust Tallinn University, Estonia
Kati Mäkitalo University of Oulu, Finland
Tilman Michaeli TU Munich, Germany
Mattia Monga Università degli Studi di Milano, Italy
Stefan Pasterk University of Klagenfurt, Austria
Biljana Petreska von RitterUniv. of Teacher Education, Lausanne, Switzerland
Hans Põldoja Tallinn University, Estonia
Sergei Pozdniakov St. Petersburg Electrotechnical University, Russia
Ralf Romeike Freie Universität Berlin, Germany
Giovanni Serafini ETH Zurich, Switzerland
Eva Schmidthaler Johannes Kepler Universität Linz, Austria
Vipul Shah ACM India Pathshala Initiative
Gabrielė Stupurienė Vilnius University, Lithuania
Reelika Suviste University of Tartu, Estonia
Maciej Sysło Warsaw School of Computer Science, Poland
Svetlana Unković TU Wien, Austria
Patrick Wang Univ. of Teacher Education, Lausanne, Switzerland
Michael Weigend University of Münster, Germany
Markus Wieser University of Klagenfurt, Austria

Additional Reviewers

Walter Gander ETH Zurich, Switzerland
Tobias Kohn TU Wien, Austria
Alexandra Maximova ETH Zurich, Switzerland

Doctoral Consortium Committee

Engin Bumbacher Univ. of Teacher Education, Lausanne, Switzerland
Andreas Bollin University of Klagenfurt, Austria
Valentina Dagienė Vilnius University, Lithuania
< Gerald Futschek TU Wien, Austria
Violetta Lonati Università degli Studi di Milano, Italy
Tilman Michaeli TU Munich, Germany
Jean-Philippe Pellet Univ. of Teacher Education, Lausanne, Switzerland

Organization vii

Local Organizing Committee

Gabriel Parriaux Univ. of Teacher Education, Lausanne, Switzerland
Jean-Philippe Pellet Univ. of Teacher Education, Lausanne, Switzerland
Engin Bumbacher Univ. of Teacher Education, Lausanne, Switzerland
Biljana Petreska von RitterUniv. of Teacher Education, Lausanne, Switzerland
Morgane Chevalier Univ. of Teacher Education, Lausanne, Switzerland
Julien Bugmann Univ. of Teacher Education, Lausanne, Switzerland
Patrick Wang Univ. of Teacher Education, Lausanne, Switzerland
Claire Matti Univ. of Teacher Education, Lausanne, Switzerland
Catherine Audrin Univ. of Teacher Education, Lausanne, Switzerland
Giovanni Serafini ETH Zurich, Switzerland

Table of Contents

Papers

Artificial Intelligence in Primary and Secondary Education: a Review of
Educational Activities Development . 3

Sébastien Combéfis

Breaking Gender Barriers in Computer Science: Exploring the Impact
of Digital Fabrication Workshops in Smart Environments 15

Nadine Dittert, Mareike Daeglau, Nils Pancratz, and Ira Diethelm

Easy Coding in Biology: Combining Block-Based Programming Tasks
with Biological Education to Encourage Computational Thinking in Girls 27

Eva Schmidthaler, Corinna Hörmann, David Hornsby, Anneliese Fraser,
Martin Cápay, and Barbara Sabitzer

Supporting Gender Equality in Computer Science Through Pre-Introductory
Programming Courses . 37

András Margitay-Becht and Udayan Das

Investigating Code Smells in K-12 Students’ Programming Projects:
Impact on Comprehensibility and Modifiability 49

Verena Gutmann, Elena Starke, and Tilman Michaeli

Supporting Non-CS Teachers with Programming Lessons 61
Svetlana Unkovic and Martina Landman

MazeMastery – A Python Framework for Teaching Maze-Traversal in
High School . 75

Raphaël Baur, Jens Hartmann, and Jacqueline Staub

Computer Science Education with a Computer in the Background 89
Maciej M. Sysło

Effects of the Use of Robots on Algorithmization, Decentration and
Locating in the Plane Skills . 103

Emma Schenkenberg van Mierop, Acsa-Loriane Schmidt, and
Morgane Chevalier

x Table of Contents

Teaching Quantum Informatics at School: Computer Science Principles
and Standards . 117

Giulia Paparo, Regina Finsterhoelzl, Bettina Waldvogel, and
Mareen Grillenberger

Measuring Didactical Competencies for Informatics Education among
Prospective Primary School Teachers . 129

Christin Nenner and Nadine Bergner

Computational Thinking from Preschool to University: The Versatility
of UML Modeling in Education . 139

Nina Lobnig and Corinna Mößlacher

Identifying Computational Thinking Behaviors in the Robotics
Programming Activity . 151

Megumi Iwata, Kateryna Zabolotna, Kati Mäkitalo, Jari Laru, and
Jonna Malmberg

Computational Thinking Readiness of Incoming High School Students
in Taiwan . 167

Greg C. Lee, Jia-Yi Chen, and Yu-Wen Yang

Insights and Conclusions from Analyzing the Hungarian Bebras Initiative
in 2021-2022 . 175

Zsuzsa Pluhár and Bence Gaál

Table of Contents xi

Poster Descriptions

Integrating Computational Thinking with Mathematical Problem Solving 189
Arnold Pears, Javier Bilbao, Valentina Dagienė, Yasemin Gulbahar,
András Margitay-Becht, Marika Parviainen, Zsuzsa Pluhar, and
Pál György Sarmasági

A Constructionist Approach for Transitioning to College-Level Mathematics
Education . 193

András Margitay-Becht

Enhancing Teacher Education Through STEAM Integration in Informatics 197
Anita Juškevičienė

GeNIUS: Conditions for Successfully Teaching Computer Science Infused
Natural Science Classes in Schools . 203

Elena Yanakieva, Annette Bieniusa, Christoph Thyssen,
Thomas Becka, Julia Albicker, Niklas Westermann, Barbara Pampel,
and Johannes Huwer

From Wooden Blocks to Whimsical Robots: The “Programmieren spielend
entdecken” Series to Nurture our Future Innovators 207

Fatmir Racipi, Stephanie Eugster, and Mathias Kirf

Finding Patterns in Productive Failure Steps? An Explorative Case
Study in a Teaching Learning Lab for Computer Science 211

Frauke Ritter and Nadine Schlomske-Bodenstein

Gender Differences in Problem Solving Observed in Logo Novices 215
Jacqueline Staub and Angélica Herrera Loyo

Teaching the Von-Neumann Model with a Simulator 221
Martin Weinert, Jan Hendrik Krone, and Johannes Fischer

An Approach to Introduce High-School Students to the P-vs-NP Question 225
Jisoo Song, Seoyeon Oh, Soyeon Jeong, and Seongbin Park

Promoting Artificial Intelligence and Data Literacy within
Teacher Education . 229

Valentina Dagienė, Martin Kandlhofer, Vaida Masiulionytė-Dagienė,
Viktoriya Olari, and Ralf Romeike

xii Table of Contents

Exploring Students’ Preinstructional Mental Models of Machine Learning:
Preliminary Findings . 233

Erik Marx, Thiemo Leonhardt, Nadine Bergner, and Clemens Witt

Teachers’ Experience Regarding Digital Threats for Children and Teenagers 237
Julian Taupe, Verena Knapp, and Andreas Bollin

Exploring the Relationship between Digital Competences and Understanding
of Informatics Education: A Study on Primary School Teachers 241

Gabrielė Stupurienė

Teaching an Elective Course about Quantum Computing 247
Jihyun Kim, Chaeyeon Lee, Jisoo Song, Chaeyoung Sim, and
Seongbin Park

Teaching Quantum Computing at a Middle School 251
Sunrim Lee, Yuri Kim, Soyeon Jeong, and Seongbin Park

From Verbalization in Problem Solving on Computational Thinking Tasks
to the Abstraction of Block Programming Concept under Scratch 255

Karima Sayeh

From Tree to Forest: Determining the Probability of Scoring a Goal in
Football Games . 259

Jan Hendrik Krone and Johannes Fischer

Workshops

List of Workshops . 265

Papers

Artificial Intelligence in Primary and Secondary
Education: a Review of Educational Activities

Development

Sébastien Combéfis1,2[0000−0002−8987−9589]

1 Computer Science and IT in Education ASBL, 1348 Louvain-la-Neuve, Belgium
2 AEI Consulting, 1348 Louvain-la-Neuve, Belgium

sebastien@combefis.be
https://sebastien.combefis.be

Abstract. Intelligent systems are widespread in everyday life. Today,
more than ever, artificial intelligence (AI) is being applied to many do-
mains and its societal relevance is growing rather rapidly. It is therefore
important to include AI early in education, as a subject for pupils to
apprehend and learn. Future citizens must be capable to understand the
technology behind intelligent systems, at least globally. This paper re-
views the activities and tools that are being developed to teach AI to
young pupils in primary and secondary schools. Its goal is to identify
the various kinds of activities designed by researchers, like games, un-
plugged activities, workshops, etc. It also aims at analysing what are the
subfields of AI covered by developed activities. To conclude, this paper
draws up perspectives on future development the research community
may investigate further, to better educate young pupils to AI.

Keywords: Artificial intelligence · Education · School.

1 Introduction

Intelligent systems are an integral part of the society and widespread in everyday
life [23]. With the rise of cyber-physical systems, intelligent machines equipped
with artificial intelligence (AI) are spreading [28]. A direct consequence is the
need for current and future citizens to have some knowledge on these subjects.

Artificial intelligence has been established as an academic discipline in the
1950s [17]. It was only recently it left the scientific obscurity to reach the business
world and the public at large. Text generation, image recognition, self-driving
vehicles, intelligent household appliances, smartphones and smart speakers with
embedded assistants are just a few examples of concrete applications of AI that
can be used by anyone today [2]. On the one hand, many people know about
the existence of devices and services based on AI but, on the other hand, only a
few individuals understand the technology behind them. The underlying process
used by artificial intelligence, and more specifically machine learning (ML), is a
black box for many users [18]. Since AI and ML concepts are not trivial, there
is a justified reason to “black box” them in consumer products.

CC BY 4.0, S. Combéfis
J.-P. Pellet and G. Parriaux (Eds.): ISSEP 2023 Local Proceedings, pp. 3–13, 2023.
https://doi.org/10.5281/zenodo.8431870

https://doi.org/10.5281/zenodo.8431870

As a direct consequence of this invasion of “hidden” AI, everyone needs the
competencies to better understand it. More precisely, people should be able to
be aware of the impact, opportunities, and limits of AI on their personal lives
and our society [27]. This also results in a big challenge for education, starting
with younger pupils [20, 38]. Ever-younger children have indeed become active
users of online services, like YouTube, WhatsApp, Instagram, Spotify, Snapchat
and TikTok, which are using user data and machine learning for privacy-intrusive
purposes. As AI-based services become more ubiquitous, it is increasingly urgent
to build familiarity with AI technologies to all people, including children, since
they will be interacting more and more often with them in the near future [41].

Learners should both be able to explain AI-related phenomena that they
observe in their lives and, in some extent, to use AI-based tools to actively and
creatively shape the so-called digital world in which they are living. However,
learners should not be overwhelmed because of the complexity of an unknown
subject [18, 24]. This is especially true for young learners, who do not have
enough backgrounds nor prerequisites to be able to understand all the complexity
of artificial intelligence. For early stage pupils, the need is therefore to introduce
them to AI concepts without burdening them with inner complex details.

1.1 Related Work and Motivations

This paper is focused on teaching artificial intelligence to young pupils. Research
on how to introduce AI concepts to them started in the eighties, with the focus
mainly put on expert systems [33]. Later, in the nineties, the tic-tac-toe game
was used, again with expert systems [31] or with artificial neural networks [14], to
introduce AI to middle and high school pupils. Since then, AI has been developing
rapidly, and it is crucial that its inclusion in education as a subject follows at
least the same rhythm. There has been a growing interest in research proposing
curricula to teach AI in schools. This paper is not focused on curricula, but
on the design of activities to teach young pupils AI-related concepts. However,
explaining these concepts to K-12 through traditional methodologies such as
lectures and books is challenging [45]. Many researchers are developing numerous
kinds of activities to overcome this challenge. However, what to teach learners,
at what age, and how, are some of the open questions being explored.

The motivation of this paper is to offer researchers a global overview of the
kinds of activities currently being developed to teach AI to young pupils. As
detailed in [7], existing tools and resources to teach and learn computer science
are not easy to find nor well advertised. The same observation applies for ar-
tificial intelligence, even if several reviews have been written. These latter are
usually research-oriented and focused on a specific angle, missing the opportu-
nity to bring a broader and more pragmatic vision. Several reviews and survey
papers have already been realised by various researchers. Six pieces of research,
published between 2020 and 2023, have been identified as roughly covering a
similar goal as the present paper [26, 25, 34, 46, 10, 40]. The main differences are
that the latter are either focused on a particular region of the world, or on a
specific subfield of AI such as machine learning, or on a given age group.

4 S. Combéfis

1.2 Methodology

To fulfil the objectives of this paper, an extensive literature review has been
conducted, following similar strategies to those used in [4]. Papers have been
found on Google Scholar and on various widespread publishers, including ACM,
IEEE, Springer and MDPI, using the following keywords on their search engine:
“artificial intelligence K-12”, “machine learning K-12”, “children teaching artificial
intelligence”, “activity to learn artificial intelligence children.” Relevant references
of the papers found with those keywords have also been examined. Papers from
the initial set have then been filtered out. Only those in English and published
from the year 2000 have been kept. All the kinds of papers have been considered,
whether they have been peer-reviewed or not and whatever type they are (full
and short paper, poster, extended abstract, etc.). Then, only those related to
the development of activities for children (up to 18 years old) have been used for
this review. Some papers about the development of curricula have been filtered
out, only those also containing propositions of activities have been kept.

After this introduction, the remainder of the paper is as follows. Section 2
presents the subfields of AI covered by the developed activities discovered by
this review. Section 3 categorises them according to their kinds. Section 4 then
summarises and discusses the findings. Finally, Section 5 concludes the paper.

2 Artificial intelligence subfields

The analysed papers reveal that many subfields of artificial intelligence (AI) are
covered by activities to teach them. This section goes through them.

2.1 Data structure

Many AI algorithms are relying on specific data structures, like trees, graphs,
forests and matrices. Going deep in their understanding is perhaps unsuitable for
young children. However, it is worth teaching them about elementary AI algo-
rithms since the explanations can be very visual thanks to the simple underlying
data structure. For example, getting how some simple decision tree learning al-
gorithms work is easy for people understanding the notion of tree. Not many
pieces of research analysed for this review are focusing on the data structures
used in AI. In [21], the authors present the development of unplugged activities
to teach AI. The first one can be used to introduce the tree data structure, in
the specific context of decision tree learning.

2.2 Learning

Nowadays, machine learning (ML) has become the new engine that revolu-
tionises the practices of knowledge discovery [34]. As a consequence, it is im-
portant for everyone, in particular children, to be able to cope with the central
paradigms of ML. The majority of recent research on activities to teach AI is

Artificial Intelligence in Primary and Secondary Education: a Review 5

about ML. Some developed activities are trying to explain the core concepts
and intuitions, while others are focused on describing the technical parts. It has
also been shown that making children involved in the training of accessible ML
systems support them to better understand basic ML processes [19]. Several
activities related to ML are therefore focusing on the training part.

Decision tree learning It is important for K-12 pupils to learn about the
core ideas and principles of ML. However, it is an enormous challenge for this
age group to directly delve into the complexity of ML. Focusing of decision tree
learning (DTL) provides a more suitable entry point. More precisely, it can be
used to exemplify the idea of supervised learning. In [27], the authors propose
a teaching concept starting with the understanding of decision tree learning,
combining several activities and tools.

Supervised learning Many of the developed activities do include content to
teach about supervised learning techniques or applications. This is likely due to
the fact that the training process can be easily transposed into interactive ac-
tivities. In [32], the authors present a game they developed to teach supervised
learning, gradient descent and k-nearest neighbour classification. Their approach
is limited to teaching the definition and core concepts, without inner details like
underlying mathematics or jargon. In [29], the authors report on the design of an
activity using block-based programming to control educational robots to intro-
duce supervised, unsupervised and reinforcement learning. In [43], the authors
are focused on teaching the insights of image recognition and supervised learning
to very young pupils, with direct demonstration of how a classifier can identify
objects they drew. Finally, in [16], the activity presented by the authors is the
development of a scavenger hunt game run on a smartphone. The application
relies on machine learning to perform image recognition to identify whether the
correct object has been detected or not.

Neural network learning Activities specifically dedicated to neural network
(NN) learning are also being developed by researchers. The interest about NN
is that explaining them can easily be done visually, which makes it more suit-
able for younger. In [36], the authors propose a three-part learning module for
pupils to be taught about artificial neural networks. A constructionist approach
is followed, leading pupils to first use neural networks, then modify predefined
ones and finally construct their own. This module is carried on a programmable
learning environment based on Scratch programming.

2.3 Data mining

Since the rise of big data, it is interesting for people to grasp how algorithms can
extract valuable knowledge from them. Data mining (DM) is another subfield
of AI that can be taught to young pupils. Other subjects like privacy issues can

6 S. Combéfis

also be discussed in relation with DM. In [11], the authors develop a learning
module based on the RapidMiner tool to provide an introduction to DM to young
pupils. Their module includes a Hollywood Movie Recommendation activity to
make learners understand how to collect, analyse and use data.

2.4 Data science

Analysing data to make decisions with data analytics and machine learning is
becoming a widespread activity in the industry. It is therefore also important
to teach pupils about what is data science and decisions that can be made
based on the results of data analyses. Understanding data-driven intelligence is
consequently an interesting competency for today’s youth to acquire. In [37],
the authors present a half-day camp tutorial in which they expose pupils to the
full cycle of a typical supervised learning approach used for data analyses. They
designed the tutorial as an exciting hands-on introduction to data science.

3 Activities and tools

A second analysis that has been performed on the analysed papers made it pos-
sible to highlights the kinds of activities that have been or are being developed,
and in which context they are organised.

3.1 Activities

Various kinds of activities are being developed to teach pupils AI-related con-
cepts. Some of them rely on software systems, others on tangible devices, and
still others only on pen and paper.

Programming AI concepts can be taught through programming. Several ac-
tivities have been developed where pupils have to experiment by themselves,
creating or configuring an AI model. In [29], the authors develop activities for
pupils to learn ML concepts by writing programs with a block-based program-
ming tool. Following constructionism ideas, making them programming helps
them to experience the concepts in practice. In [16], the authors explain how
they designed an activity where pupils are asked to develop a smartphone-based
game with AppInventor. In [13], the authors present a workshop using Scratch
programming to teach pupils data clustering and artificial NN learning. Their
idea is to get learners to partially code AI algorithms to make them aware of
how intelligent systems work through construction and experimentation.

Game Games have been used for educational purposes for decades, as they
contribute to increase their players’ motivation to learn [30, 5]. In particular,
they are a good mean to have pupils learn about programming, but it is also true
for AI. There are various kinds of games that can be used, including tangible,

Artificial Intelligence in Primary and Secondary Education: a Review 7

computer and video games. Teaching concepts through them makes learning
fun without overwhelming learners with inner details of the concept In [35],
the authors present a prototype tangible toy pupils can play with to understand
some basic concepts on ML and on the internet of things. The toy consists of two
cubes, one being a sensor and the other one an actuator, both communicating the
MQTT protocol. Computer and video games are also being used. For example,
ML-Quest is a 3D video game with a quest theme designed to teach the definition
and working of three concepts of ML [32]. Each level of the game ends with the
definition of a concept and a mapping of it with the task performed by the player
in the level. The authors tested the game with higher-secondary pupils, the
majority considering that playing it contributed to enhance their understanding
of machine learning. Programming can be learned on online game platforms,
such as Leek Wars, which is focused on writing an IA to win a fight [5].

Robotics As it is the case with programming, programmable robots are being
used to teach AI, should they be physical or virtual. In [47], the authors reports
on an activity where pupils are taught about reinforcement learning by building
controllers for both physical and virtual robots. The physical robot comes from
the LEGO SPIKE Prime robotics kit, and the virtual one was from a web-based
platform developed by the authors. In [29], pupils are writing programs to control
virtual educational robots in the Open Roberta Lab.

Device AI is being embedded in many devices of everyday life, or at least
accessible to the public at large. Therefore, it is relevant to develop activities
manipulating similar intelligent devices. Direct experience with physical objects
can facilitate the understanding of abstract concepts [48]. In [19], the authors
present an activity based on the manipulation of a digital stick-like device. Pupils
are asked to produce gestures and label them, to train an ML model. Thanks
to this activity, pupils learn the two core concepts of ML that are data labelling
and evaluation. Other approaches based on sticks are being developed [1].

Unplugged Activities not requiring any technology to be run, referred to as
unplugged activities, are a common way to teach computer science. They have be-
come valuable for many reasons: low cost, ease of implementation, possibly play-
ful, possibly relying on physical interaction, easily deployable, etc. Unplugged
activities served as a low-barrier entry to the topic [32]. In the context of AI,
they can be used to broaden the access for educators to AI-related learning expe-
riences at a lower cost. Such activities are also usually more engaging for novice
audiences, which is often the case for AI in schools. For example, in [22], the au-
thors present two unplugged assignments to broadly understand AI on the one
hand and to be introduced to knowledge representation and reasoning on the
other hand. In [44], the author presents an activity where pupils are physically
acting out different generative adversarial networks. The goal of the activity is
to lead their participants to sketch realistic-looking fake images. Until now, ap-
proaches to make AI tangible for students without actually programming an AI

8 S. Combéfis

system have been rare. AI Unplugged provides unplugged activities presenting
AI ideas and concepts without using computers [21].

3.2 Tools

Researchers are implementing tools based on which activities can be developed
to teach AI. For example, Google Teachable Machine is used to design workshops
where pupils are creating their own ML application [42, 12]. Teachable machine
refers to interfaces that do not require programming but makes it possible for
its users to train and test an algorithm iteratively [12]. In [39], the authors
test an approach using several tools to teach machine learning through design
fiction. They used Scroobly (an AR tool), Teachable Machine and Adacraft (a
Scratch-based coding environment compatible with ML extension blocks).

3.3 Contexts

The aforementioned activities can be organised in diverse contexts where pupils
are learning, which can either be in schools or outside of them. This section
presents various contexts where the presented activities can be organised.

Course One possible approach to teach artificial intelligence is to develop a
teaching unit that includes both theoretical and hands-on components. For ex-
ample, in [3], the authors present an AI course called IRobot and that covers
major topics of artificial intelligence. Their goal is to have this seven weekly
teaching units of two hours course integrated in secondary science education.

Competition Competitions are a motivating and challenging way to teach con-
cepts, in particular to young people [9]. They are often used to learn program-
ming skills, for example as online game platforms [5]. One example of a challenge
targeted to young pupils and through which AI concepts can be taught is the Be-
bras Challenge [8, 15]. Other competitions include games such as Leek Wars [5],
where players have to implement an intelligent behaviour for their leeks.

Event Organising workshops is also an interested way to teach AI. They can
either be organised with pupils in the classroom or at events external to the
school context, depending on the workshop total duration. For example, in [42]
the authors propose a workshop based on Google Teachable Machine to teach
machine learning principle to primary school pupils with three 2.5 hours-session
workshop spread over three days. In [43], the authors report on a workshop they
designed and held in SciFest, the largest science fair for children, in Finland. This
15-minute workshop was open to any visitor, without needing to book a time
slot nor a seat. It consists of an activity where children were drawing animals
and then presented them to an image recognition system to identify the drawn
animal. The goal of the workshop is to teach basic concepts related to image
recognition and supervised learning. Other kinds of event can be thought of to
teach AI, like escape games or rooms, for example [6].

Artificial Intelligence in Primary and Secondary Education: a Review 9

4 Discussion

The conducted review shows many different kinds of activities have been or
are being developed to teach artificial intelligence (AI) to young pupils, cov-
ering several subfields of AI. Without surprise, machine learning (ML) is the
most popular subfield. It is probably due to the fact that ML is a large part of
modern AI. This popularity is also probably related to the fact that ML is the
most used subfield in broad applications available to the public at large, and in
particular young people. Data structure is not of direct interest for pupils as a
broad subject, but it is an easy and possibly visual way to introduce AI-related
concepts. Data mining and data science related activities are not very common,
possibly because they may require basic AI knowledge beforehand.

Regarding the activities, the most common ones are related to programming,
either with physical objects or in virtual simulation environments. Programming
simple AIs to control agents in games is also quite popular. Unplugged activities
are also developed, more specifically for younger pupils. The main advantage is
that they can be more easily organised, without specific equipments. Competi-
tions and games to teach AI are also quite popular, as they are very motivating
ways to learn. All these activities can be organised in several contexts, courses
offering the longest training time. Short workshops are also interesting since they
can put pupils into action during a small amount of time, keeping them focused
on the activity. Of course, other contexts may be explored, such as summer
camps and other trainings outside of schools.

5 Conclusions

To conclude, the review presented in this paper covers recent pieces of research
related to the development of activities to teach artificial intelligence (AI) to
young pupils. This paper reveals both the subfields of AI that can be taught and
the different kinds of activities used to teach them.

Future work includes refining the analysis of the existing activities to take
into account their targeted age groups. Further research should also be conducted
to identify whether some activities are best-suited for a given subfield of AI, or
a given age group, when used in a specific context.

References

1. Agassi, A., Erel, H., Wald, I.Y., Zuckerman, O.: Scratch nodes ML: A
playful system for children to create gesture recognition classifiers. In:
2019 CHI Conference on Human Factors in Computing Systems (2019).
https://doi.org/10.1145/3290607.3312894

2. Broering, A., Niedermeier, C., Olaru, I., Schopp, U., Telschig, K., Villnow, M.:
Toward embodied intelligence: Smart things on the rise. Computer 54, 57–68 (Jul
2021). https://doi.org/10.1109/MC.2021.3074749

10 S. Combéfis

3. Burgsteiner, H., Kandlhofer, M., Steinbauer, G.: IRobot: Teaching the basics of
artificial intelligence in high schools. Proceedings of the AAAI Conference on Ar-
tificial Intelligence 30(1) (2016). https://doi.org/10.1609/aaai.v30i1.9864

4. Combéfis, S.: Automated code assessment for education: Review, classifica-
tion and perspectives on techniques and tools. Software 1, 1–28 (2022).
https://doi.org/10.3390/software1010002

5. Combéfis, S., Beresnevičius, G., Dagienė, V.: Learning programming through
games and contests: Overview, characterisation and discussion. Olympiads in In-
formatics 10, 39–60 (2016). https://doi.org/10.15388/ioi.2016.03

6. Combéfis, S., de Moffarts, G.: Learning computer science at a fair with an es-
cape game. In: 12th International Conference on Informatics in Schools: Situation,
Evolution and Perspectives. pp. 93–95 (2019)

7. Combéfis, S., de Moffarts, G., Jovanov, M.: TLCS: A digital library with resources
to teach and learn computer science. Olympiads in Informatics 13, 3–20 (2019).
https://doi.org/10.15388/ioi.2019.01

8. Combéfis, S., Stupurienė, G.: Bebras based activities for computer science
education: Review and perspectives. In: 13th International Conference on
Informatics in School: Situation, Evaluation, Problems. pp. 15–29 (2020).
https://doi.org/10.1007/978-3-030-63212-0_2

9. Combéfis, S., Wautelet, J.: Programming trainings and informatics teaching
through online contests. Olympiads in Informatics 8, 21–34 (2014)

10. Druga, S., Otero, N., Ko, A.J.: The landscape of teaching resources for ai education.
In: 27th ACM Conference on on Innovation and Technology in Computer Science
Education. pp. 96–102 (2022). https://doi.org/10.1145/3502718.3524782

11. Dryer, A., Walia, N., Chattopadhyay, A.: A middle-school module for introducing
data-mining, big-data, ethics and privacy using rapidminer and a hollywood theme.
In: 49th ACM Technical Symposium on Computer Science Education. pp. 753–758
(2018). https://doi.org/10.1145/3159450.3159553

12. Dwivedi, U.: Introducing children to machine learning through ma-
chine teaching. In: Interaction Design and Children. pp. 641–643 (2021).
https://doi.org/10.1145/3459990.3463394

13. Estevez, J., Garate, G., Graña, Jr., M.: Gentle introduction to artificial intelli-
gence for high-school students using scratch. IEEE Access 7, 179027–179036 (2019).
https://doi.org/10.1109/ACCESS.2019.2956136

14. Fok, S.C., Ong, E.K.: A high school project on artificial intelligence
in robotics. Artificial Intelligence in Engineering 10(1), 61–70 (1996).
https://doi.org/10.1016/0954-1810(95)00016-X

15. Futschek, G., Dagienė, V.: A contest on informatics and computer fluency attracts
school students to learn basic technology concepts. In: 9th World Conference on
Computers in Education (2009)

16. Guerreiro-Santalla, S., Mallo, A., Baamonde, T., Bellas, F.: Smartphone-based
game development to introduce K12 students in applied artificial intelligence. Pro-
ceedings of the AAAI Conference on Artificial Intelligence 36(11), 12758–12765
(2022). https://doi.org/10.1609/aaai.v36i11.21554

17. Haenlein, M., Kaplan, A.: A brief history of artificial intelligence: On the past,
present, and future of artificial intelligence. California Management Review 61(4),
5–14 (2019)

18. Hitron, T., Orlev, Y., Wald, I., Shamir, A., Erel, H., Zuckerman, O.: Can children
understand machine learning concepts?: The effect of uncovering black boxes. In:
2019 CHI Conference on Human Factors in Computing Systems. pp. 1–11 (2019).
https://doi.org/10.1145/3290605.3300645

Artificial Intelligence in Primary and Secondary Education: a Review 11

19. Hitron, T., Wald, I., Erel, H., Zuckerman, O.: Introducing children to
machine learning concepts through hands-on experience. In: 17th ACM
Conference on Interaction Design and Children. pp. 563–568 (2018).
https://doi.org/10.1145/3202185.3210776

20. Kandlhofer, M., Steinbauer, G., Hirschmugl-Gaisch, S., Huber, P.: Arti-
ficial intelligence and computer science in education: From kindergarten
to university. In: 2016 IEEE Frontiers in Education Conference (2022).
https://doi.org/10.1109/FIE.2016.7757570

21. Lindner, A., Seegerer, S., Romeike, R.: Unplugged activities in the context of AI. In:
12th International Conference on Informatics in Schools: Situation, Evolution, and
Perspectives. pp. 123–135 (2019). https://doi.org/10.1007/978-3-030-33759-9_10

22. Long, D., Moon, J., Magerko, B.: Unplugged assignments for K-12 AI education.
AI Matters 7(1), 10–12 (2021). https://doi.org/10.1145/3465074.3465078

23. Makridakis, S.: The forthcoming artificial intelligence (AI) revolu-
tion: Its impact on society and firms. Futures 90, 46–60 (Jun 2017).
https://doi.org/10.1016/j.futures.2017.03.006

24. Mariescu-Istodor, R., Jormanainen, I.: Machine learning for high school students.
In: 19th Koli Calling International Conference on Computing Education Research
(2019)

25. Marques, L.S., Gresse Von Wangenheim, C., Hauck, J.C.R.: Teaching machine
learning in school: A systematic mapping of the state of the art. Informatics in
Education 19(2), 283–321 (2020)

26. Martins, R.M., Gresse Von Wangenheim, C.: Findings on teaching machine learning
in high school: A ten-year systematic literature review. Informatics in Education
(2023)

27. Michaeli, T., Seegerer, S., Kerber, L., Romeike, R.: Data, trees, and forests – deci-
sion tree learning in K-12 education. In: 3rd Teaching Machine Learning Workshop
(2022)

28. Müller, H.A.: The rise of intelligent cyber-physical systems. Computer 50, 7–9
(Dec 2017). https://doi.org/10.1109/MC.2017.4451221

29. Olari, V., Cvejoski, K., Eide, O.: Introduction to machine learning with robots
and playful learning. Proceedings of the AAAI Conference on Artificial Intelligence
35(17), 15630–15639 (2021). https://doi.org/10.1609/aaai.v35i17.17841

30. Overmars, M.: Teaching computer science through game design. Computer 37(4),
81–83 (2004)

31. Pilgrim, R.A.: TIC-TAC-TOE: Introducing expert systems to mid-
dle school students. ACM SIGCSE Bulletin 27(1), 340–344 (1995).
https://doi.org/10.1145/199691.199853

32. Priya, S., Bhadra, S., Chimalakonda, S., Venigalla, A.S.M.: ML-Quest: a game
for introducing machine learning concepts to K-12 students. Interactive Learning
Environments (2022). https://doi.org/10.1080/10494820.2022.2084115

33. Reynolds, C.F.: Introducing expert systems to pupils. Journal of Com-
puter Assisted Learning 4(2), 79–92 (1988). https://doi.org/10.1111/j.1365-
2729.1988.tb00268.x

34. Sanusi, I.T., Oyelere, S.S., Vartiainen, H., Suhonen, J., Tukiainen, M.: A systematic
review of teaching and learning machine learning in K-12 education. Education and
Information Technologies (2022)

35. Scheidt, A., Pulver, T.: Any-cubes: A children’s toy for learning AI: Enhanced
play with deep learning and MQTT. In: Mensch und Computer 2019. pp. 893–895
(2019). https://doi.org/10.1145/3340764.3345375

12 S. Combéfis

36. Shamir, G., Levin, I.: Neural network construction practices in elementary school.
KI-Künstliche Intelligenz 35, 181–189 (2021). https://doi.org/10.1007/s13218-021-
00729-3

37. Srikant, S., Aggarwal, V.: Introducing data science to school kids. In: 2017 ACM
SIGCSE Technical Symposium on Computer Science Education. pp. 561–566
(2017). https://doi.org/10.1145/3017680.3017717

38. Su, J., Zhong, Y.: Artificial intelligence (ai) in early childhood education: Curricu-
lum design and future directions. Computers and Education: Artificial Intelligence
3 (2022). https://doi.org/10.1016/j.caeai.2022.100072

39. Tamashiro, M.A., Van Mechelen, M., Schaper, M.M., Iversen, O.S.: In-
troducing teenagers to machine learning through design fiction: An ex-
ploratory case study. In: Interaction Design and Children. pp. 471–475 (2021).
https://doi.org/10.1145/3459990.3465193

40. Tedre, M., Toivonen, T., Kahila, J., Vartiainen, H., Valtonen, T., Jormanainen, I.,
Pears, A.: Teaching machine learning in K–12 classroom: Pedagogical and techno-
logical trajectories for artificial intelligence education. IEEE Access 9, 2169–3536
(2021). https://doi.org/10.1109/ACCESS.2021.3097962

41. The Royal Society: Machine Learning: the Power and Promise of Computers that
Learn by Example. The Royal Society, Great Britain (2017)

42. Toivonen, T., Jormanainen, I., Kahila, J., Tedre, M., Valtonen, T., Vartiainen,
H.: Co-designing machine learning apps in K-12 with primary school children. In:
2020 IEEE 20th International Conference on Advanced Learning Technologies. pp.
308–310 (2020). https://doi.org/10.1109/ICALT49669.2020.00099

43. Toivonen, T., Jormanainen, I., Tedre, M., Mariescu-Istodor, R., Valtonen, T., Var-
tiainen, H., Kahila, J.: Interacting by drawing: Introducing machine learning ideas
to children at a K-9 science fair. In: 2022 CHI Conference on Human Factors in
Computing Systems. pp. 1–5 (2022). https://doi.org/10.1145/3491101.3503574

44. Virtue, P.: GANs unplugged. Proceedings of the AAAI Conference on Artificial In-
telligence 35(17), 15664–15668 (2021). https://doi.org/10.1609/aaai.v35i17.17845

45. Yang, W.: Artificial intelligence education for young children: Why, what, and how
in curriculum design and implementation. Computers and Education: Artificial
Intelligence 3 (2022). https://doi.org/10.1016/j.caeai.2022.100061

46. Yue, M., Jong, M.S.Y., Dai, Y.: Pedagogical design of K-12 artificial
intelligence education: A systematic review. Sustainability 14(23) (2022).
https://doi.org/10.3390/su142315620

47. Zhang, Z., Willner-Giwerc, S., Sinapov, J., Cross, J., Rogers, C.: An interac-
tive robot platform for introducing reinforcement learning to K-12 students.
In: International Conference on Robotics in Education. pp. 288–301 (2022).
https://doi.org/10.1007/978-3-030-82544-7_27

48. Zuckerman, O.: Designing digital objects for learning: Lessons from froebel and
montessori. International Journal of Arts and Technology 3(1), 124–135 (2009).
https://doi.org/10.1504/IJART.2010.030497

Artificial Intelligence in Primary and Secondary Education: a Review 13

Breaking Gender Barriers in Computer Science:
Exploring the Impact of Digital Fabrication

Workshops in Smart Environments

Nadine Dittert1[0000−0001−7735−7823] Mareike Daeglau2[0009−0007−4599−698X],
Nils Pancratz3[0000−0001−7358−4148], and Ira Diethelm1[0000−0002−5586−8566]

1 Carl von Ossietzky Universität, Abt. Didaktik der Informatik, 26111 Oldenburg
2 Carl von Ossietzky Universität, Neuropsychology Lab, 26111 Oldenburg

firstname.lastname@uol.de
3 University of Hildesheim, Universitätspl. 1, 31141 Hildesheim,

pancratz@imai.uni-hildesheim.de

Abstract. Gender barriers in Computer Science (CS) are undeniable.
The lack of girls and (young) women participating in CS is unacceptable
in several ways. Reasons to explain this gap are given in the literature:
First, CS has a reputation as a heavily technology-focused subject with
no particular social or practical application references. But in particular,
also computer scientists are highly stereotyped and these clichés often
are at odds with girls’ and young women’s self-concepts. These causes
yield targets for interventions through extracurricular activities that are
presented in this paper.
In total, 90 digital fabrication workshops were evaluated through pre-
post-questionnaires to develop a richer understanding of the effect of
digital fabrication workshops in smart environments designed to reduce
biases and attract girls and young women aged 9 to 18 to CS. In par-
ticular, the change of the participants’ image of CS in general, their
self-efficacy in dealing with technology, the perceived social relevance of
CS, and the perceived relevance of CS for later professional life were in-
vestigated. Our results indicate that digital fabrication workshops can
indeed contribute both to a richer understanding of what CS is and to
a small increase in technic related self-efficacy. The findings also provide
a basis for deriving implications for the realization of Informatics or CS
as a subject matter in primary and secondary education.

Keywords: Computer Science Education · Participation · Gender · Dig-
ital Fabrication · Smart Environments

1 Introduction

Computer Science Education (CSE) in schools is handled as diverse as possible
in Germany: it ranges from compulsory subject to elective subject to no subject.
Initiatives like the Informatics for All Coalition claim for informatics as a founda-
tional discipline in schools across Europe4 and also various German committees
4 https://www.informaticsforall.org/, retrieved June 6th, 2023

CC BY 4.0, N. Dittert et al.
J.-P. Pellet and G. Parriaux (Eds.): ISSEP 2023 Local Proceedings, pp. 15–26, 2023.
https://doi.org/10.5281/zenodo.8431891

https://doi.org/10.5281/zenodo.8431891

are eager to promote CS as a compulsory subject throughout the country5. A
very strong argument why CS should be a compulsory subject in schools is to
empower everyone to actively participate in today’s digitalized world [10, 17].
Moreover, it has been stated that this point is crucial for female participation
which addresses a very important aspect in today’s society [5].

Today’s western world is widely driven by technology in almost every area
of life: traffic, policies, journalism, culture, and also personal life that includes
well-being, security or organizing. Hence, it is important to give women and girls
a voice in technology development. Past product developments have shown that
if women are not involved in designing them, products risk to fail at addressing
women’s needs. This can be annoying, derogatory, or even dangerous for women
and diverse other people [18, 26]. It is when a homogeneous group of people is
delegated to design for the future that diverse needs risk being ignored.

Accordingly, a compulsory subject could be an important step to more female
participation in CS. Nevertheless, it can be taught in diverse ways. Our ideas
of modern CSE include digital fabrication activities as they offer the possibility
to ‘do’ CS while relating to the discipline and its applications in a hands-on
activity. In our project, we focused on digital fabrication activities for girls to
find out what aspects might contribute to more female participation in CS.

In this paper we present reasons for the lack of female participation in CS and
how digital fabrication might address them. We then describe workshop activities
that were designed, conducted and evaluated with respect to attract girls to
CS. Results regarding the image of CS, girl’s self-efficacy, and the perceived
relevance of CS are presented and discussed. We conclude with arguments for
digital fabrication as part of compulsory CSE at schools.

2 Background

In Europe we face the problem that only about 20% of all undergraduate CS
students are female [27]. These numbers vary depending on the level of education
(bachelor or master) and also on the European country. In German senior classes
in CS only 16% of school students are female [11]. Regarding the question of why
there are so few women in CS there are many different explanations that cannot
be regarded separately but as a combination of many aspects. Vainionpää et
al. present aspects that affect girls’ career choices regarding IT that include
influences by people in the girls’ environment as well as historical issues such
as stereotypes and images of the field [28]. Further studies confirmed that it
is partly the girls’ personal environment that prevents girls from choosing a
career in IT or that it is more the image of people than doing CS that hampers
more diversity in the field [12, 29]. Another important aspect when it comes
to girls and their perception of CS is self-efficacy [2, 8]. While boys tend to
overestimate themselves, girls undervalue their abilities which results in girls
being less confident in their skills and enjoying CS activities less than boys [24].

5 https://www.shetransformsit.org/, retrieved June 6th, 2023

16 N. Dittert et al.

However, studies reveal that girls perform better in computer and information
literacy tasks and also that they show higher CS abstraction abilities after a CS
introductory course than boys [9, 23]. Nevertheless, another study shows that
there is a significant difference in abilities between boys and girls when there is
no compulsory CSE in schools [25].

Hence, the question arises how to create a CS environment that is more
appealing to girls than it has been so far. Therefore, in diverse projects digital
fabrication activities have been used to raise more interest in STEM, especially
technology, in a creative and informal way. Here, we refer to digital fabrication
as creative interdisciplinary construction activity with physical computing kits
that comprise the design, building (constructing) and programming of smart
objects using hardware (controllers, sensors, actuators), desktop programming
environments and crafting materials including 3D-printers and laser-cutters and
that allow for creativity and personally meaningful projects.

Digital fabrication activities, such as creating personally meaningful smart
textile artifacts show potentials to raise girls’ self-efficacy in dealing with technol-
ogy [16]. Further, learning activities with e-textiles combine traditional crafting
practices with CS and show potential to broaden participation in IT [13, 4]. Gen-
erally, physical computing toolkits have been utilized to introduce CS concepts
in a meaningful, hands-on way for a long time [3]. Relating computing activities
to participants’ everyday life is another crucial point that can be implemented in
digital fabrication activities [17]. Furthermore, physical computing adds state-
of-the-art topics to the CS curriculum, such as sensing and control or ubiquitous
and embedded systems [20].

3 Breaking gender barriers in CS: The SMILE project

The SMILE project aimed at enhancing female participation in CS by cultivat-
ing a positive image of CS through digital fabrication workshops. By means of
the innovative topic of smart environments and a coordinated didactic concept,
in digital fabrication workshops girls and young women from the age of nine
to 18 were encouraged to create their own intelligent environmental artifacts,
such as smart pillows, lights, closets, plants, or magical rooms and houses. The
project was conducted over three years in three cities in Germany, namely Ham-
burg, Bremen, and Oldenburg. Construction of artifacts included programming
microcontrollers, i.e. Arduino (Lily Pad), Calliope mini, ESP8266, connection
of sensors and actuators if necessary, and integration into objects such as pil-
lows or plants. In most of the workshops, additional digital fabrication tools were
used, e.g. to 3D-print artificial flowers [19] or to create personally designed smart
pillows using vinyl-cutters [6].

Topics that are appealing to girls within the scope of smart environments were
worked out in pre-workshops [14] and chosen according to age, previous knowl-
edge, and lab facilities. Each workshop involved 12-15 girls or young women,
comprised up to 20 hours, and was accompanied by two to three facilitators.
Workshops took place in university settings in living labs, university FabLabs,

Breaking Gender Barriers in Computer Science 17

or alike and were conducted by seven different partners. Drawing from previous
studies and research, the overall workshop concept incorporated the highlighting
of specific aspects of CS during the interventions, including an introduction to
the fundamentals of CS as well as the practical relevance of CS in our everyday
lives. If possible and suitable, research labs (mostly ambient assisted living labs
or living places) were visited to better illustrate what CS research is about and
how it relates to real life.

Preliminary findings indicated a positive impact of digital fabrication work-
shops on girls’ attitudes of CS in terms of stereotypes, scope, and its presence.
In particular, participating in a digital fabrication workshop made the field ap-
pear more female and more ubiquitous than before [15] and resulted in higher
confidence regarding programming skills [22]. In the present study, data from
all 90 workshops carried out over the project period of three years is analyzed,
providing a comprehensive overview compared to previous partial studies.

For the evaluation of the project, participants completed computer-based
questionnaires at the beginning and the end of each workshop. Since answering
questions was optional, the number of included participants in the pre-/post-
comparison differs between these items. Additionally, the data evaluated fulfilled
the following two conditions: the participants were taking part in the workshop
for the first time and the specific questions were answered at both measuring
points.

To test for pre-/post-changes in the items image of CS in general, self-efficacy
in dealing with technology, social relevance of CS and relevance of CS for later
professional life, paired sample t-tests were conducted. Effect sizes were cal-
culated according to Cohen’s d as implemented in the R-package “effsize”. To
test whether changes between pre- and post-measurement points were related
to the participants age, attendance of CS classes in school or parental back-
ground, Spearman correlations were conducted between those ratings and pre-
/post-changes in the respective variables of interest. Sample sizes differ from 262
to 500 between the tests, because only complete cases were included into the
analyses.

4 Results

Within the scope of this paper, we focus on the following concepts and questions,
which were surveyed in the pre- and post-questionnaire: image of CS in general,
self efficacy in dealing with technology, social relevance of CS, and relevance of
CS for later professional life.

4.1 Image of CS in general

The following visual analog scale6 statements have been combined to assess the
image of CS in general:
6 As with the following items (cf. Sec. 4.3 and 4.4), the values of the sliders were

mapped to a scale of 1-100 to ensure comparability.

18 N. Dittert et al.

Computer Science is ...
... difficult/easy
... narrowly focused/just about anywhere
... boring/exciting
... uninteresting/interesting
... illogical/logical
... monotonous/diversified

Higher values indicate a more positive image of CS.
To test whether the rating of the image of CS in general was higher in the

post- compared to the pre-testing we performed a paired t-test. We found a
significant effect (CS-image-pre: M = 68.67, SD = 13.71, CS-image-post: M =
73.48, SD = 13.62; t1,261 = 7.15, p < .001, d = 0.4). This indicates that the par-
ticipant’s image of CS in general was more positive in the post- compared to the
pre-testing. Participant’s views changed most on the statement that CS is just
about anywhere (from 55.5/100 to 65.5/100). Moderate changes occurred on the
questions on CS being exciting, interesting, and diversified, whereas the initial
values were rather high (70/100 to 82/100) and increased by 3.8 to 5.9 points.
Almost no change was registered on the question of CS being difficult or easy,
whereas values pointed slightly more towards difficult (45.8/100 to 46.5/100).

A Spearman correlation did not reveal any significant association between
pre-post changes of the image of CS in general and age (ρ364 = 0.05, p = .78).

To test whether participants’ change of the image of CS in general from
pre- to post-measurements was related to whether the girls attend CS classes
at school, we performed a Spearman correlation, no significant association was
obtained (ρ365 = 0.02, p = .78).

4.2 Self-efficacy in dealing with technology

To determine the girls’ self-efficacy in dealing with technology, we used the ques-
tionnaire “Control beliefs in dealing with technology” (KUT) [1], which was
adapted to the age of the girls and newer technologies (e.g. tablet instead of
video recorder in the description; modified KUT). The following questions were
queried to rate on a 5-point Likert scale and polarity reversed if necessary:

1. I can solve quite a few of the technical problems I face on my own.
2. Technical devices are often complicated to operate and understand.
3. I really enjoy facing technical challenges.
4. Because I have never had problems with technology, this will also be the case

in the future.
5. I feel so helpless in dealing with technical equipment that I don’t even try it

alone.
6. Even if I do not manage to operate a technical device immediately, I do not

give up.
7. When I solve a technical task on my own, it is usually by chance.
8. Most technical tasks are so complicated that it makes no sense for me to deal

with them on my own.

Breaking Gender Barriers in Computer Science 19

Higher values indicate higher self-efficacy while 8 represents the lowest and 40
the highest possible scoring.

To test whether the self-efficacy in dealing with technology (modified KUT)
scoring was higher in the post- compared to the pre-testing, we performed a
paired t-test. We found a significant effect (KUT-pre: M = 28.02, SD = 4.8,
KUT-post: M = 28.42, SD = 5.03; t1,499 = 2.22, p = .03, d = 0.1). In other
words, our data provide evidence that the participant’s self-efficacy in dealing
with technology were slightly higher in the post- compared to the pre-testing.

A Spearman correlation revealed a significant positive association between
pre-post changes of self-efficacy in dealing with technology and age (ρ498 = 0.12,
p = .009). That is, our data indicate that a stronger positive gain in self-efficacy
from pre- to post-measurement can be found in older participants compared to
the younger ones.

A Spearman correlation showed a significant positive association between
pre-post changes of self-efficacy in dealing with technology and whether the girls
attend CS classes at school (ρ498 = 0.13, p = .009). That is, our data indicate
that participants who state to attend CS classes in school have a stronger positive
gain in self-efficacy from pre- to post-measurement.

A significant negative association between pre-post changes of self-efficacy
in dealing with technology and pre-scores regarding parental technology com-
munication and encouragement (ρ495 = -0.10, p = .009) was indicated by a
Spearman correlation. That is, our data indicate that participants who hardly
communicate about technical related topics with their parents and experience
little encouragement to occupy oneself with technology have a stronger positive
gain in self-efficacy from pre- to post-measurement.

4.3 Perceived social relevance of CS

To investigate how relevant girls consider CS for society, we asked them to rate
the following statement on a visual analog scale with higher values indicating
higher relevance:

Computer Science is ...
... unimportant for society/important for society

To test whether participants rated CS as more socially relevant in the post-
compared to the pre-testing, we performed a paired t-test. No significant effect
was obtained (soci-relevance-pre: M = 76.67, SD = 22.10, soci-relevance-post:
M = 75.74, SD = 26.50; t1,432 = 0.71, p = .50, d = 0.03).

To test whether participants’ change of the social relevance of CS from pre-
to post-measurements was related to the girls’ age, we performed a Spearman
correlation, no significant association was obtained (ρ431 = 0.02, p = .72).

A Spearman correlation did not reveal any significant association between
pre-post changes of the social relevance of CS and whether the girls attend CS
classes at school (ρ431 = 0.02, p = .67).

20 N. Dittert et al.

4.4 Perceived relevance of CS for later professional life

To assess how relevant girls consider CS for their later professional life, we asked
them to rate the following statement on a visual analog scale:

Computer Science is ...
... important for my future professional life/unimportant for my future pro-

fessional life

Higher values indicate higher relevance.
To test whether participants rated CS as more relevant for their later profes-

sional life in the post- compared to the pre-testing, we performed a paired t-test.
No significant effect was obtained (prof-relevance-pre: M = 62.01, SD = 26.89,
prof-relevance-post: M = 62.01, SD = 29.13; t1,405 = 0.02, p = .85, d < 0.001).

A Spearman correlation was conducted between pre-post changes in ratings
of relevance of CS for later professional life and the participant’s age. We did
not find a significant association (ρ404 = 0.05, p = 0.29).

To test whether participants’ pre-post changes in ratings of relevance of CS
for later professional life was related to whether the girls attend CS classes
at school, we performed a Spearman correlation, no significant association was
obtained (ρ403 = 0.08, p = .11).

A significant negative association between pre-post changes of rating rele-
vance of CS for their later professional life and pre-scores regarding parental
technology communication and encouragement (ρ380 = -0.15, p = .003) was
indicated by a Spearman correlation. That is, our data indicate that partici-
pants who hardly communicate about technical related topics with their parents
and experience little encouragement to occupy oneself with technology have a
stronger positive gain regarding rating relevance of CS for their later professional
life from pre- to post-measurement compared to the ones who communicate more
with their parents at home.

5 Discussion

In the present study, we aimed to develop a richer understanding of the effect
of digital fabrication workshops in smart environments designed to attract girls
and young women aged 9 to 18 to CS. Specifically, we expected a change from
pre- to post-measurement towards a more positive image of CS in general, higher
self-efficacy scorings, and a higher assessment of the social relevance of CS as
well as the relevance for their own later professional life. Results show a sig-
nificant positive change for the image of CS in general and technology related
self-efficacy but neither for the social relevance of CS nor for the relevance of CS
for later professional life in general. Nevertheless, we argue for digital fabrication
workshops as part of regular CS education as ways of engaging more girls into
CS because of these findings which we will discuss here.

Breaking Gender Barriers in Computer Science 21

5.1 Discussion of Results

The positive change regarding the image of CS among the participating girls is
in line with our previous research in this field and in this project [7, 15]. At this
point, we can infer that the topic of smart environments is as convenient to get
an insight into CS as topics from former studies that use other scenarios. We
should keep in mind though that during the workshops it was further discussed
what CS is and who is working in this field. Hence, we cannot say that it is
merely creating smart environment objects that leads to a more positive image
of CS. We argue that the whole workshop process needs to be related to CS
processes, such as designing a new IT product as a solution for a specific kind
of problem. Further, diverse people in the field should be mentioned including
women, people of color, etc.

A closer look on the separate questions regarding the image of the field
supports the general idea that digital fabrication workshops are a way to show
the prevalence of CS in today’s (western) world and its diversity. Further, it
seems to be a way to highlight appealing aspects of CS. Anyhow, it also indicates
that CS does (almost) not appear easier than before, which might be a realistic
estimation of CS contents.

Self-efficacy among girls also raised after they participated in a digital fabri-
cation workshop. This effect has been shown in previous research before (e.g. [7,
16, 21]) and has been proved here to be valid for smart environment settings as
well. Self-efficacy is an important issue when it comes to girls and CS because
research has also revealed that girls and women tend to underestimate them-
selves which is regarded as one of the reasons why they do not aim for a career
in STEM related fields [28, 2]. Hence, we argue for CS activities that raise girls’
self-efficacy in dealing with technology as much as possible and see clear benefits
in digital fabrication workshops where girls are empowered to create their own
smart object.

Most interestingly, in this study, we found correlations between self-efficacy
and girls’ family surroundings and whether they attend CS classes at school or
not. First, our results indicate that self-efficacy raises more among girls from
families that do not communicate about technology at home than their peers
who do. One reason might be that the ones with parents who communicate
about technology already have a better understanding about technology and
their own relation to it than the ones who do not have the opportunity to talk
about technology at home. Therefore, we argue that it would be advisable to run
digital fabrication workshops (extensively) in schools so that every girl has the
possibility to relate herself to technology and to raise her self-efficacy in dealing
with technology. This could be a step towards more equal opportunities. Further,
the ones who attend CS classes at school benefited more regarding their increase
of self-efficacy than the ones without CS classes at schools. This effect might be
rooted in the current style of CS classes which some of the girls reported as less
interesting or only learning how to use IT instead of solving problems or creating
new artifacts. Hence, we would suggest integrating digital fabrication into CS
classes at school where possible.

22 N. Dittert et al.

Against our expectations, we did not find significant improvements regarding
the social relevance of CS. We ascribe this to the rather high initial values
(77/100) and that the participants were mostly aware of the relevance of CS
in people’s everyday life before participating in one of our digital fabrication
workshops.

Finally, there were no general improvements regarding the relevance of CS
for their own later professional life, but a small negative correlation to parents’
communication and encouragement. Again, as a step towards more equal oppor-
tunities in terms of creating communication opportunities for girls who do not
talk to their parents about technology, we argue for digital fabrication workshops
in schools.

One reason for not finding general improvements regarding the relevance of
CS for participant’s own later professional life might be that the professional
career of our participants is still rather far away (age M: 12.7, SD: 1.9). An-
other explanation might be that many of the objects that were built during
the workshops did not have the character of a real-life technology or a serious
functionality like the talking plants or the smart pillows. Although some of the
objects targeted a real-life purpose such as smart bookshelves or book recom-
mendation systems, the workshops might have been regarded more as “play”
than as serious work. At this point, more research is needed on how to make use
of digital fabrication workshops for opening up minds for possible career paths,
especially for girls.

5.2 Limitations

Our study is limited in several aspects. First of all, we cannot clearly say that
all our findings are only related to the workshops. Other impacts might have
come from their surroundings during the runtime of the workshop as well, such
as influences by their peers, parents or others, or even by extremely hot weather,
which might have led to a loss or gain of motivation, etc. Further, the workshops
were all short-term interventions and changes were measured between the be-
ginning and the end of the workshop. We cannot say anything about long term
effects of workshops on girls’ mindsets and future behaviors. More research is
needed here.

The survey was implemented as a pre-post-online-test, whereas girls started
their workshop experience by filling out the first questionnaire. Tutors were
aside for helping with rather technical questions, but they were instructed not
to talk about contents in order to avoid influencing the participants. This way,
some questions were skipped and we cannot assure that the girls understood all
details of questions appropriately.

Further, all of the workshops that were conducted differ in their details.
Generally, they all follow the same concept, but tutors, locations, technology,
lab visits and topics differed within the workshops. Also, acquisition of the par-
ticipating girls differed which leads to diverse motivational aspects. That is, we
cannot say which detail exactly led to a specific change and which did not. Our

Breaking Gender Barriers in Computer Science 23

results rely on the wholistic concept of engaging girls in creating smart envi-
ronment objects including relating it to CS. Impacts of specific details remain
unknown.

6 Conclusion

Summing up, these mostly extracurricular digital fabrication activities have
shown different positive effects for girls, that are interesting for CSE in general.
First, it was shown that the activities led to a more positive attitude regarding
the image of CS, which is very important when it comes to participation and
learning. Therefore, we see potential of digital fabrication activities as part of
CSE in schools, especially when the subject is perceived as abstract and boring
by school students.

Second, it was confirmed that attending a digital fabrication workshop can
lead to a higher self-efficacy. As self-efficacy increases even more with a higher
age of the participants and in some states of Germany CS lessons start at an
older age, again it might be beneficial to implement such activities at school,
because even at an older age, self-efficacy can be addressed appropriately. Fur-
ther, a higher increase was measured when participants attended CS lessons in
schools. Hence, we argue for digital fabrication activities as part of CSE because
it seems to be a reasonable methodological supplement to what has been part
of participants’ school lessons before.

Finally, from our results we infer that digital fabrication activities in a com-
pulsory school subject contribute to more equal opportunities for girls and all
school students. The ones who do not speak with their parents about technology
show a higher increase of self-efficacy regarding technology and also the perceived
relevance of computer skills for later professional life increase only in this case.
That is, the activities offer valuable opportunities for later life, which would be
less available for students whose parents do not speak about technology with
them.

Overall, we argue that the compulsory school subject CS should contain
digital fabrication activities in means of contemporary CSE. This ’doing’ CS
conveys an appropriate image of what CS is and allows for equal opportunities
for all when it comes to participating in a digitally networked world.

References

1. Beier, G.: Kontrollüberzeugungen im Umgang mit Technik. Report Psychologie
24(9), 684–693 (1999)

2. Beyer, S.: Why are women underrepresented in Computer Science? Gender differ-
ences in stereotypes, self-efficacy, values, and interests and predictors of future CS
course-taking and grades. Computer Science Education 24(2-3), 153–192 (2014).
https://doi.org/10.1080/08993408.2014.963363

3. Blikstein, P.: Computationally Enhanced Toolkits for Children: Historical Re-
view and a Framework for Future Design. Foundations and Trends® in Hu-
man–Computer Interaction 9(1), 1–68 (2015). https://doi.org/10.1561/1100000057

24 N. Dittert et al.

4. Buechley, L., Eisenberg, M., Catchen, J., Crockett, A.: The LilyPad Arduino: Using
Computational Textiles to Investigate Engagement, Aesthetics, and Diversity in
Computer Science Education. In: CHI ’08: Proceedings of the SIGCHI Conference
on Human Factors in Computing Systems. p. 423–432. CHI ’08, ACM, New York
(2008). https://doi.org/10.1145/1357054.1357123

5. Commission, E.: Informatics education at school in Europe. Publications Office of
the European Union (2022). https://doi.org/doi/10.2797/268406

6. Dittert, N., Katterfeldt, E.S.: Diversity in Digital Fabrication: Program-
ming Personally Meaningful Textile Imprints. In: Proceedings of the Con-
ference on Creativity and Making in Education. p. 112–113. FabLearn
Europe’18, Association for Computing Machinery, New York (2018).
https://doi.org/10.1145/3213818.3219812

7. Dittert, N., Wajda, K., Schelhowe, H.: Kreative Zugänge zur Informatik: Praxis
und Evaluation von Technologie-Workshops für junge Menschen. Staats- und Uni-
versitätsbibliothek Bremen, Bremen (2016), http://nbn-resolving.de/urn:nbn:
de:gbv:46-00105551-11

8. Doubé, W., Lang, C.: Gender and stereotypes in motivation to study computer
programming for careers in multimedia. Computer Science Education 22(1), 63–
78 (2012). https://doi.org/10.1080/08993408.2012.666038

9. Fraillon, J., Ainley, J., Schulz, W., Friedman, T., Duckworth, D.: Preparing
for Life in a Digital World - IEA International Computer and Information
Literacy Study 2018 International Report. Springer Nature, Singapore (2020).
https://doi.org/10.1007/978-3-030-38781-5

10. Gallenbacher, J.: Ohne Informatik keine Allgemeinbildung. Informatik Spektrum
42(2), 88–96 (2019)

11. de Groot, M., Riemann, V., Schwarze, B., Struwe, U.: Mädchen und Frauen in die
Informatik: Aktivierungspotenziale und Erfolgsfaktoren Handlungsempfehlungen
Bildung. Kompetenzzentrum Technik-Diversity-Chancengleichheit e. V., Bielefeld
(2023)

12. von Hellens, L., Clayton, K., Beekhuyzen, J.P., Nielsen, S.H.: Perceptions of ICT
Careers in German Schools: An Exploratory Study. Journal of Information Tech-
nology Education 8, 211–228 (2009). https://doi.org/10.28945/168

13. Kafai, Y.B., Lee, E., Searle, K., Fields, D., Kaplan, E., Lui, D.: A Crafts-Oriented
Approach to Computing in High School: Introducing Computational Concepts,
Practices, and Perspectives with Electronic Textiles. ACM Trans. Comput. Educ.
14(1) (3 2014). https://doi.org/10.1145/2576874

14. Katterfeldt, E.S., Dittert, N.: Co-Designing Smart Home Maker Workshops with
Girls. In: Proceedings of the Conference on Creativity and Making in Education.
p. 100–101. FabLearn Europe’18, Association for Computing Machinery, New York
(2018). https://doi.org/10.1145/3213818.3213833

15. Katterfeldt, E.S., Dittert, N., Ghose, S., Bernin, A., Daeglau, M.: Ef-
fects of Physical Computing Workshops on Girls’ Attitudes towards Com-
puter Science. In: Proceedings of the FabLearn Europe 2019 Conference. Fa-
bLearn Europe ’19, Association for Computing Machinery, New York (2019).
https://doi.org/10.1145/3335055.3335066

16. Katterfeldt, E.S., Dittert, N., Schelhowe, H.: EduWear: Smart Textiles as Ways
of Relating Computing Technology to Everyday Life. In: IDC ’09: Proceed-
ings of the 8th International Conference on Interaction Design and Children.
p. 9–17. IDC ’09, Association for Computing Machinery, New York (2009).
https://doi.org/10.1145/1551788.1551791

Breaking Gender Barriers in Computer Science 25

17. Katterfeldt, E.S., Dittert, N., Schelhowe, H.: Designing digital fabrication learn-
ing environments for Bildung: Implications from ten years of physical computing
workshops. International Journal of Child-Computer Interaction 5, 3–10 (2015).
https://doi.org/10.1016/j.ijcci.2015.08.001, digital Fabrication in Education

18. Nicol, A., Casey, C., MacFarlane, S.: Children are ready for speech technology –
but is the technology ready for them. In: Bekker, M., Markopoulos, P., Kersten-
Tsikalkina, M. (eds.) Interaction design and children: Proceedings of the Interna-
tional Workshop "Interaction design and children", August 28-29, 2002, Eindhoven,
The Netherlands. Shaker-Verlag, Maastricht (2002)

19. Pancratz, N., Fandrich, A., Chytas, C., Daeglau, M., Diethelm, I.: Blöcke,
Blumen, Mikrocontroller und das Internet of Things. In: Pasternak, A. (ed.)
Informatik für alle. pp. 295–304. Gesellschaft für Informatik, Bonn (2019).
https://doi.org/10.18420/infos2019-c15

20. Przybylla, M., Romeike, R.: Physical Computing and its Scope - Towards a Con-
structionist Computer Science Curriculum with Physical Computing. Informatics
in Education 13(2), 225–240 (2014). https://doi.org/10.15388/infedu.2014.14

21. Qiu, K., Buechley, L., Baafi, E., Dubow, W.: A Curriculum for Teaching
Computer Science through Computational Textiles. In: Proceedings of the
12th International Conference on Interaction Design and Children. p. 20–27.
IDC ’13, Association for Computing Machinery, New York, NY, USA (2013).
https://doi.org/10.1145/2485760.2485787

22. Seraj, M., Katterfeldt, E.S., Autexier, S., Drechsler, R.: Impacts of Creating
Smart Everyday Objects on Young Female Students’ Programming Skills and At-
titudes, p. 1234–1240. Association for Computing Machinery, New York (2020).
https://doi.org/10.1145/3328778.3366841

23. Statter, D., Armoni, M.: Learning Abstraction in Computer Science: A Gender
Perspective. In: Proceedings of the 12th Workshop on Primary and Secondary
Computing Education. p. 5–14. WiPSCE ’17, Association for Computing Machin-
ery, New York, NY, USA (2017). https://doi.org/10.1145/3137065.3137081

24. Stoet, G., Geary, D.C.: The Gender-Equality Paradox in Science, Technology, Engi-
neering, and Mathematics Education. Psychological Science 29(4), 581–593 (2018).
https://doi.org/10.1177/0956797617741719

25. Suessenbach, F., Schröder, E., Winde, M.: Informatik für alle! Stifterverband für
die Deutsche Wissenschaft e.V., Essen (2022)

26. Tatman, R.: Gender and Dialect Bias in YouTube’s Automatic Captions. In:
Proceedings of the First ACL Workshop on Ethics in Natural Language Pro-
cessing. pp. 53–59. Association for Computational Linguistics, Valencia (2017).
https://doi.org/10.18653/v1/W17-1606

27. Tikhonenko, S., Pereira, C.: Informatics Education in Europe: Institutions,
Degrees, Students, Positions, Salaries. Key Data 2012-2017. An Informatics
Europe Report. Tech. rep., Informatics Europe, Zurich (2018), https://www.
informatics-europe.org/component/phocadownload/category/10-reports.
html?download=78:informatics-education-europe-data-2012-2017

28. Vainionpää, F., Kinnula, M., Iivari, N., Molin-Juustila, T.: Girls’ Choice – Why
won’t they pick IT? In: Proceedings of the 27th European Conference on In-
formation Systems (ECIS), Stockholm & Uppsala, Sweden, June 8-14, 2019.
Association for Information Systems eLibrary, St. Petersburg, FL, US (2019),
https://aisel.aisnet.org/ecis2019_rp/31

29. Wong, B.: ‘I’m good, but not that good’: digitally-skilled young people’s
identity in computing. Computer Science Education 26(4), 299–317 (2016).
https://doi.org/10.1080/08993408.2017.1292604

26 N. Dittert et al.

Easy Coding in Biology: Combining Block-Based
Programming Tasks with Biological Education
to Encourage Computational Thinking in Girls

Eva Schmidthaler1[0000−0001−9633−8855],
Corinna Hörmann1[0000−0002−4770−6217], David Hornsby1[0000−0003−2080−5706],
Anneliese Fraser2[0009−0000−9400−0666], Martin Cápay3[0000−0002−8352−0612], and

Barbara Sabitzer1[0000−0002−1304−6863]

1 Johannes Kepler University Linz, Altenbergerstraße 69, 4040 Linz, Austria
eva.schmidthaler@jku.at, corinna.hoermann@jku.at, david.hornsby@jku.at,

barbara.sabitzer@jku.at
2 University of Passau, Innstraße 41, 94032 Passau, Germany

anneliese.fraser@uni-passau.de
3 Constantine Philosopher University, Trieda Andreja Hlinku 1, 949 74

Nitra-Chrenová, Slovakia mcapay@ukf.sk

Abstract. This mixed-method research aims to address the gender gap
in the Computer Science (CS) field by developing an interdisciplinary
STEAM workshop combining practical elements with block-based pro-
gramming (BBP) tasks on biological topics. The study presents two ex-
ploratory workshops called “Easy Coding in Biology” conducted with
secondary school students in Slovakia and Austria. The workshops uti-
lized a learning environment called <colette/>, which incorporates block-
based coding and augmented reality (AR) features. Forty-seven (female
= 23) 11-19-year-old students completed an evaluation questionnaire and
observations were made during the workshops to improve the workshop
content and process. Preliminary results indicate the potential of com-
bining BBP with biological topics to promote computational thinking
(CT) and CS skills in secondary school girls. Some participants faced
challenges with the learning environment and programming language,
especially younger students, and the use of loops. Adaptations are be-
ing made to cater to younger students in science education and include
additional CT tasks and experiments. Future courses of the workshop
series “Easy Coding in Science” (Physics, Chemistry, and Biology) will
be conducted in other countries and with different BBP programs (e.g.,
MakeyMakey, OzoBlockly, and Micro:bit) in 2023 and 2024.

Keywords: Block-Based Programming · Biology · Coding · Education · Com-
putational Thinking · STEAM

1 Introduction

In 20th-century Europe, women filled roles in mechanics, armament factories,
and handicraft businesses due to men’s absence during WWII. However, they

CC BY 4.0, E. Schmidthaler et al.
J.-P. Pellet and G. Parriaux (Eds.): ISSEP 2023 Local Proceedings, pp. 27–36, 2023.
https://doi.org/10.5281/zenodo.8431893

https://doi.org/10.5281/zenodo.8431893

were later relegated to traditional social positions in the 1950s and 1960s. Inter-
estingly, women predominantly worked as mathematicians for NASA and IBM
before computers were developed. The construction of the first calculating ma-
chine “ENIAC” in 1946 shifted the focus to male operators. It wasn’t until
the 1970s that the lack of women in IT became a concern [14]. When look-
ing at female scientists and engineers across EU members, the highest numbers
were found in Lithuania (52%) and Bulgaria, Latvia, and Portugal (each 51%),
whereas the lowest were discovered in Hungary (33%) and Finland (31%) [7].
In 2021, more than half (54%) of individuals and women (52%) in the EU pos-
sessed basic or above basic overall digital skills: proficiency in information and
data literacy, communication and collaboration, digital content creation, safety,
and problem-solving [7]. Among girls aged 16-19, this percentage significantly
increased to 70% [6]. The “Digital Compass” aims for citizens to gain at least
80% basic digital skills by the year 2030. By now, the highest scores of females
with basic or above basic digital skills have been found in Malta (98%), Croatia,
and Finland (each 93%9, the Czech Republic (89%), and Austria (87%), Slovakia
(65%), whereas the lowest shares were registered in Luxembourg (60%), Italy
(59%), Bulgaria (51%), and Romania & Germany (each 47%) [6]. In Germany,
there are 6.5% fewer first-year students in STEM subjects compared to the last
year. But if you take a closer look at the gender distribution and the individual
subjects, in the year 2014 over 300,000 German students studied mathematics
or natural sciences with 40% female students. Since 2015 the number of stu-
dents dropped but mathematics and natural sciences students increased to 50%
in 2021 [20]; a similar trend can also be observed in Austria, especially in the
teaching degree “Biology” [22]. Taking a closer look at Austria, there is still a
major difference between male and female STEM students at public universities.
In the winter term of 2020/21 there were 143,251 enrolled male students in total
at public Austrian universities. Of those, 63,064 (44%) were studying STEM
subjects, whereas in contrast only 23,787 (17%) were enrolled in liberal arts. In
contrast, the winter term 2020/21 counted 166,815 female students – only 45,987
(28%) were enrolled in STEM majors, while 55,096 (33%) studied liberal arts.
Especially when picking out the field of “Computer Science and Communication
Technology”, there were 18,974 (79%) male and 4,953 (21%) female students in
all Austrian public universities. We can even find lower numbers when looking
at graduations in 2019/20 in the field of “Computer Science and Communication
Technology” (2,203 male, 504 female) [19]. Since girls are still not strongly rep-
resented in the STEM field in many European countries [22], [20], there is a high
need for teachers and scientists to develop new creative approaches to specifi-
cally support young women. Therefore, this work-in-progress aims to show new
teaching possibilities to combine BBP and scientific topics from the subject of
biology (“Easy Coding in Biology” [17]) in order to promote both disciplines
(biology and CS) and to arouse and increase interest in both subjects.

28 E. Schmidthaler et al.

2 Computational Thinking in Science Education

By incorporating CT and CS into biology, students can deepen their under-
standing of scientific concepts while developing important CT skills applicable
across various fields, innovatively and creatively [26], [12]. CT can be taught
interdisciplinary in science education through multiple approaches: (1) scientific
modeling, where students engage with models to grasp conceptual understand-
ing of phenomena; but still, most teachers teach about models, rather with them,
which includes memorizing models to show conceptual understanding of a cer-
tain phenomenon [4] [11] [18]. Another approach is (2) integrating technology by
using programming languages, AR/VR applications, educational apps, and data
analysis software in science lessons [23], [17]. Additionally, (3) project work and
(4) interdisciplinary collaboration, including experiments with STEAM (Science,
Technology, Engineering, Arts, Mathematics) teachers, offer further avenues for
incorporating CS concepts and supporting CT skills [26], [12].

3 Programming and Science Education

CS and CT are usually not associated with science subjects but student and
teacher studies have already demonstrated how to teach and implement CS and
CT concepts through workshops and courses in science education in an un-
plugged or plugged way [13], [3], [9]. Educational applications using BBP, such
as MakeyMakey, <colette/>, Scratch, OzoBlockly, or Micro:bit, are promising
and possible ways to teach CS skills such as programming. BBP offers shows ad-
vantages over text-based programming, making it easier for novice programmers
to understand and memorize commands, and reducing syntax errors [28], [27].
In a study comparing block-based and text-based coding, high school students
improved their results after attending a coding workshop, with better outcomes
and increased interest seen in the BBP group [25]. In 2011, a first attempt was
to correct the absence of CT and CS in biological education by introducing a
“Computational Biology” course to advanced biology classes, aiming to show
high school students how CS is used in the subject of biology and why basic
digital skills are necessary for research in many fields of biology [8]. Recent K12
courses have combined text-based programming with biology, such as “Program-
ming in Biology” in 2018 [29] and “Biology Meets Programming: Bio-informatics
for Beginners” in 2023 [21]. Block-based coding has been successfully integrated
into biology education with tools like “BioBlocks” [10], allowing the program-
ming of biological protocols using visual tools based on Google Blockly and
Scratch. Furthermore, the “BioCode” bio-informatics program combines CS and
biology by introducing students to CT and programming concepts in the context
of biological problems, aiming to enhance students’ understanding of biological
concepts while developing their programming skills in Python [2]. Another re-
search also showed the successful integration of BBP into STEM subjects like
Biology [1]. In a 2020 study, teachers emphasized the importance of BBP in
science classes but struggled to design authentic coding activities [23].

Easy Coding in Biology 29

4 Methodology

The tasks described in this paper are based on a newly developed mobile Aug-
mented Reality application (mAR) <colette/> (Computational Learning Envi-
ronment for Teacher in Europe) (available on Android and iOS).

4.1 Research Aim

Women are underrepresented in STEM fields, but the number in natural sci-
ences such as biology is still much higher than in informatics. The “Easy Coding
in Biology” workshop series aims to bridge the CS gender gap by blending CS
concepts like block-based programming (BBP) with biology education. The par-
ticipating students are introduced to fundamental concepts such as monocots
and dicots, seed germination, and plant biology. This project develops compu-
tational thinking (CT) skills among female students while teaching fundamental
biology concepts. Through BBP activities, students engage with both subjects,
fostering a comprehensive learning experience. Incorporating creativity and in-
terdisciplinary methods, the broader “Easy Coding in Science” initiative ad-
dresses various science topics, integrating CS concepts into chemistry, physics,
and biology lessons. This ongoing mixed-method pilot study utilizes participa-
tory observation [15], descriptive statistics [24], and Davis’ Technology Accep-
tance Model (TAM)-inspired questionnaires [5]. The goal is to deliver life science
content and CT education, focusing on CS competency and gender gap reduc-
tion. This report showcases findings from the workshop tasks. The coding ex-
ercises were meticulously designed for three-dimensional observation, combining
cubes to create biological structures. Each task allowed singular block placement
with constant values or sequence assembly via loops and variables. The work-
shop targets programming skills, CT, and biology understanding. For instance,
the pyramid’s structure reveals layers, squares, and columns. This systematic
analysis led to optimized algorithms through loops and variables, spotlighting
advanced solutions as a vital research avenue.

4.2 Experimental Design, Data Collection, and Processing

The first pilot workshop (WB1) “Easy Coding in Biology” from the coding se-
ries “Easy Coding in Science” took place in February 2023 in Slovakia [17], at
the Constantine Philosopher School in Nitra/Slovakia, and the second work-
shop (WB2) took place in March 2023 at the Johannes Kepler University in
Linz/Austria. In WB1, only the BBP tasks were tested - in Austria also the
biological ones. The students were observed by the authors [15], and students’
progress, performance, suggestions, and end results were documented. Data col-
lection and processing took place from February-April 2023. The final codes,
the answers to the questionnaire, and the log data (number of trials, success
rate, use of loops) of the BBP <colette/> learning environment were also ana-
lyzed. For the evaluation, a questionnaire (Appendix; Duration=15min) based
on Davis’ Technology Acceptance Model (TAM) was employed [5]. Descriptive

30 E. Schmidthaler et al.

statistics were used to gather and process quantitative data (e.g., opinions on
entertainment, difficulty, and interest) [24]. During the workshops, one or two
instructors supervised the participants. For assessment, the students used the
BBP <colette/> application and its AR feature on their mobile devices. The
workshop is divided into four phases: Introduction, Task Assessment, Discussion,
and Evaluation (Appendix). The didactic approach, based on Sabitzer’s COOL
informatics concept, combines hands-on Biology and CS activities, individual-
ity, discovery, cooperation, group discussions, and CT and problem-solving tasks
[16]. The project’s success is measured by the student’s ability to grasp the biol-
ogy and CS concepts covered during the workshop, achieving this by employing
formative assessments via the app (correctness of the code), guided exploration,
and application-oriented tasks, which are designed to ensure students’ active
engagement and attainment of the learning goals.

4.3 Sampling

The study included 47 students from Austria and Slovakia with prior program-
ming experience in Scratch and Python. In February 2023, 37 Slovak secondary
school students (19 females), aged 16-19, completed Workshop 1 (WB1) and the
15-minute evaluation questionnaire. Workshop 1 lasted 45 minutes. In Austria,
Workshop 2 (WB2) took place in March 2023 with ten gifted students aged 11-12
(four females) from diverse secondary schools. WB2 lasted 35 minutes, followed
by a 15-minute evaluation and a 30-minute craft session.

5 Preliminary Results

According to the log data, it took one pair or one student working alone 3.6
trials to successfully complete one of the tasks. Furthermore, the majority of
the students in Slovakia and Austria successfully completed the tasks (75%),
whereas 50% were using loops. Quantitative data showed that the majority of
the participants stated neutral, agreed, or strongly agreed that they liked to
collaborate in their regular biology class and in the coding workshop with bio-
logical tasks. Around 48% of the female students stated, that they collaborated
even more in the coding workshop than in their regular biology class. Twenty-
six percent of the girls found the workshop and tasks motivating, and over 56%
interesting and/or entertaining because the app is “fun to use”. The female
participants also stated that 60% had no issues with the BBP app and tasks,
while 74% had no problems with the task introduction because they were “easy
to understand” (Figures and Preliminary Results, Appendix). Regarding the
observations, according to the instructor during WB1, students demonstrated
proficiency in completing individual biologic BBP tasks and enjoyed collabora-
tive coding workshops. However, the size of AR markers on the CT scans caused
difficulty in task three (Tree), as students had to hold the scan far from their de-
vices to utilize the AR view. Frustration arose when codes were unintentionally
deleted due to app switches or crashes. Students were observed debugging their

Easy Coding in Biology 31

code and incorporating patterns or loops from other codes. Spatial orientation
and variable placement posed challenges in using loops. The instructor noted
that students felt stressed and required more time for task assessment [17]. In
WB2, participants were engaged in tasks despite initial technical difficulties. QR
code reading and AR scan issues caused frustration and disappointment again.
Still, participants displayed motivation and familiarity with the programming
interface. No notable gender differences were observed in BBP, performance, or
workshop design. Loop usage varied, with some students mentioning them but
not utilizing them unless prompted. The advanced task (Egg) proved challeng-
ing for younger students, even those with programming experience. Technical
issues persisted with the learning environment (app) and AR feature. The eval-
uation questionnaire was completed immediately after programming, not after
the crafting session.

6 Discussion

In February 2023, during the pilot phase, distinct URLs were assigned to tasks
for description access. However, from July 2023, the mobile <colette/> app
brought a significant change to task-solving. It offers structured task progression
with specific path codes for accessing tasks. The app also allows direct compar-
ison of student solutions with the apps’ sample solutions, enhancing students’
engagement. It now accommodates various task formats like Parsons puzzles and
error identification. Educators can establish digital classroom sessions to moni-
tor student attempts and submissions, refining pedagogical strategies. Findings
suggest comparing higher and lower-gifted students may not be appropriate due
to their varied abilities. Individual skills and capabilities should be considered
when evaluating task performance. After the first workshop, tasks were modified
for younger students, with haptic elements for spatial imagination and creativity.
Bias potential exists due to the timing of the questionnaire in Austria, warranting
adjusted testing for more accurate insights. BBP introduction via Scratch and
prior coding experience could lead to coding difficulties due to language tran-
sition. Encouraging loop use and emphasizing their significance could mitigate
this. Future studies might explore technical alternatives for smoother learning
and clearer loop instruction. Time management adjustments were made based
on participants’ struggles during the workshop. These findings underscore the
need to consider individual abilities, address biases, and refine instruction for
effective BBP workshop outcomes.

7 Conclusion and Outlook

Important insights were gained from the two workshops, informing the future
implementation of “Easy Coding in Biology” workshops across Europe, as for
example the time management and task assessment were modified. Tasks were

32 E. Schmidthaler et al.

further developed to cater to younger students, and haptic task parts were in-
troduced to enhance spatial imagination and creativity. Overall, the interdisci-
plinary tasks using the BBP app <colette/> proved interesting for secondary
school students. However, technical issues with the learning environment, such as
AR markers and scans, need further improvement. Despite these challenges, the
majority of participants were able to complete the tasks, use loops and engage
with the process. Collaboration in regular biology classes did not show significant
changes compared to the workshop. The students in the Austrian and Slovakian
pilot study had fun, worked together, and were interested and motivated during
the workshop, especially in combination with the creative craft part. Based on
the first two workshops, webinars for the teachers will be offered in advance to
standardize the timing (evaluation after the workshop). In addition, the teachers
involved are interviewed during the online training and the interview is recorded.
For the introduction to BBP, the commands of the program were printed out and
set up like a puzzle system to facilitate the introduction of the blocks. Further
workshops in the subjects of physics and chemistry will follow in 2023 and 2024.
More than 200 pupils are expected to take part in the “Easy Coding in Science”
workshop series in Germany, Austria, and Slovakia. Consideration is also being
given to extending the series to text-based programming.

8 Acknowledgement

This research was partially funded by Slovak Research and Development Agency,
grant number APVV-20-0599, by the Ministry of Education, Science, Research
and Sport of the Slovak Republic, grant number 015UKF-4/2021.

A Appendix

A.1 Preliminary Results and Course of the Workshop

The workshop “Easy Coding in Biology” is divided into four phases:

1. Introduction: Discussion and introduction of the biological content, task
design, the app, and the BBP languages; What is the difference between
monocots and dicots (examples of representatives); What does it take to
germinate seeds, and how fast do cress seeds germinate? What ingredients
does cress have? How to build a plant bed with block-based programming?
What commands are required and how can you cleverly shorten the code
and incorporate loops?

2. Task Assessment 1 and 2: Solving biological (WB2), crafting (WB2), and
CS tasks of the biological items (WB1-2)

3. Discussion: Discussing the issues, benefits, final approaches, problems with
the tasks, BBP, and app (WB1-2)

4. Evaluation: Filling out the questionnaire (WB1-2)

Easy Coding in Biology 33

Fig. 1. Number of tasks attempted by
students (upper left), students’ percep-
tions on the entertainment factor (up-
per right), usability (bottom left), and
task introduction (bottom right)

Fig. 2. Students’ perceptions on col-
laboration in regular biology class and
in the workshop (above), and on the ef-
fects regarding interest and motivation
(below)

A.2 Questionnaire

1. Age (open-ended question)
2. Gender (Select one: female, male, non-binary, no gender, no answer)
3. Which task(s) did you work on? Please tick the appropriate answer(s)

– Create an Algorithm for an Egg
– Create an Algorithm for a L-Shaped
– Create an Algorithm for a Conifer

4. It is enjoyable to collaborate in my regular Biology (Science) classes
– Strongly disagree - Disagree - Neutral - Agree - Strongly agree

5. It was enjoyable to collaborate in this Biology coding workshop
– Strongly disagree - Disagree - Neutral - Agree - Strongly agree

6. The biological tasks were very interesting
– Strongly disagree - Disagree - Neutral - Agree - Strongly agree

7. It was easy to understand the instructions
– Strongly disagree - Disagree - Neutral - Agree - Strongly agree

8. It took a long time to learn to use the app
– Strongly disagree - Disagree - Neutral - Agree - Strongly agree

9. This app is difficult to use
– Strongly disagree - Disagree - Neutral - Agree - Strongly agree

10. The app is clear
– Strongly disagree - Disagree - Neutral - Agree - Strongly agree

11. This app is fun to use
– Strongly disagree - Disagree - Neutral - Agree - Strongly agree

12. The app easily does what I want
– Strongly disagree - Disagree - Neutral - Agree - Strongly agree

13. I would like to use this app in school

34 E. Schmidthaler et al.

– Strongly disagree - Disagree - Neutral - Agree - Strongly agree
14. I would like to use this app outside of school

– Strongly disagree - Disagree - Neutral - Agree - Strongly agree
15. The app has apparent faults

– Strongly disagree - Disagree - Neutral - Agree - Strongly agree
16. If so, please explain why (open-ended question)

References

1. Andersen, R., Mørch, A.I., Litherland, K.T.: Learning domain knowledge using
block-based programming: Design-based collaborative learning. In: Fogli, D., Tet-
teroo, D., Barricelli, B.R., Borsci, S., Markopoulos, P., Papadopoulos, G.A. (eds.)
End-User Development. pp. 119–135. Springer International Publishing, Cham
(2021)

2. BioCode: Learn bioinformatics, https://www.biocode.ltd/
3. Blum, L., Cortina, T.J.: Cs4hs: An outreach program for high school cs teachers.

In: Proceedings of the 38th SIGCSE Technical Symposium on Computer Science
Education. p. 19–23. SIGCSE ’07, Association for Computing Machinery, New
York, NY, USA (2007). https://doi.org/10.1145/1227310.1227320

4. Buckley, B.C.: Model-based learning. Encyclopedia of the sciences of learning 5,
2300–2303 (2012)

5. Davis, F.D.: A technology acceptance model for empirically testing new end-user
information systems: Theory and results. Doctoral dissertation, Massachusetts In-
stitute of Technology (1985), https://dspace.mit.edu/handle/1721.1/15192

6. Eurostat: 70% of EU girls had basic or above basic digital skills, https://ec.

europa.eu/eurostat/en/web/products-eurostat-news/w/edn-20230427-1

7. Eurostat: Eu had almost 7 million female scientists in 2021, https://ec.europa.
eu/eurostat/web/products-eurostat-news/w/ddn-20230210-1

8. Gallagher, S.R., Coon, W., Donley, K., Scott, A., Goldberg, D.S.: A first attempt
to bring computational biology into advanced high school biology classrooms. PLoS
Computational Biology 7, 1–7 (2011), 10.1371/journal.pcbi.1002244

9. Goldberg, D.S., Grunwald, D., Lewis, C., Feld, J.A., Hug, S.: Engaging computer
science in traditional education: The ecsite project. In: Proceedings of the 17th
ACM Annual Conference on Innovation and Technology in Computer Science Ed-
ucation. p. 351–356. ITiCSE ’12, Association for Computing Machinery, New York,
NY, USA (2012). https://doi.org/10.1145/2325296.2325377

10. Gupta, V., Irimia, J., Pau, I., Rodŕıguez-Patón, A.: Bioblocks: Programming
protocols in biology made easier. ACS synthetic Biology 6, 1230–1232 (2017),
https://doi.org/10.1021/acssynbio.6b00304

11. Harrison, A.G., Treagust, D.F.: A typology of school science models. International
journal of science education 22(9), 1011–1026 (2000)

12. auf der Heide, F.M., Curzon, P., McOwan, P.W.: Computational Think-
ing; Die Welt des algorithmischen Denkens – in Spielen, Zaubertricks und
Rätseln. Mathematische Semesterberichte 2019 66:2 66, 259–260 (2 2019).
https://doi.org/10.1007/S00591-019-00249-0

13. Lockwood, J., Mooney, A.: Computational thinking in education: Where does it
fit? a systematic literary review (2017)

14. Maier-Rabler, U.: Frauen als Nicht-(Mit-)Gestalterinnen der digitalen Transforma-
tion. Die digitale Transformation der Medien pp. 95–116 (2022)

Easy Coding in Biology 35

15. Musante, K., DeWalt, B.: Participant Observation: A Guide for Fieldworkers. Al-
taMira Press (2010), https://books.google.at/books?id=ymJJUkR7s3UC

16. Sabitzer, B.: A neurodidactial approach to cross-curicual open learning. cool infor-
matics. Habilitation (2013)

17. Schmidthaler, E., Stäter, R., Cápay, M., Ludwig, M., Lavicza, Z.: Easy
coding in biology: Pilot workshop design and experiences from block-based
programming with colette in secondary education. Journal of Research in
Science, Mathematics and Technology Education 6(SI), 177–206 (2023).
https://doi.org/https://doi.org/10.31756/jrsmte.619SI

18. Schwarz, C.V., Reiser, B.J., Davis, E.A., Kenyon, L., Achér, A., Fortus, D.,
Shwartz, Y., Hug, B., Krajcik, J.: Developing a learning progression for scien-
tific modeling: Making scientific modeling accessible and meaningful for learners.
Journal of Research in Science Teaching: The Official Journal of the National As-
sociation for Research in Science Teaching 46(6), 632–654 (2009)

19. Statistik Austria: Bildung in Zahlen – Tabellenband, https://www.statistik.at/
fileadmin/pages/325/Bildung_in_Zahlen_20_21_Tabellenband.pdf

20. Statistisches Bundesamt: Studienverlaufsstatistik 2022, https://www.destatis.

de/

21. University, C.S.D.: Biology meets programming. bioinformatics for beginners,
https://www.coursera.org/learn/bioinformatics

22. University of Vienna: Zahlen, Daten und Fakten zur Universität
Wien. Gender im Fokus, https://personalwesen.univie.ac.at/

organisationskultur-gleichstellung/publikationen/#c486668

23. Vasconcelos, L., Kim, C.: Preparing preservice teachers to use block-based coding
in scientific modeling lessons. Instructional Science 48, 765–797 (2020), https:

//doi.org/10.1007/s11251-020-09527-0

24. Vetter, T.R.: Descriptive statistics: Reporting the answers to the 5 basic questions
of who, what, why, when, where, and a sixth, so what? Anesthesia & Analgesia
125, 1797–1802 (2017)

25. Weintrop, D., Wilensky, U.: Comparing block-based and text-based programming
in high school computer science classrooms. ACM Trans. Comput. Educ. 18(1)
(oct 2017). https://doi.org/10.1145/3089799, https://doi.org/10.1145/3089799

26. Wing, J.M.: Computational thinking. Communications of the ACM 49, 33–35
(2006). https://doi.org/10.1145/1118178.1118215

27. Xu, Z., Ritzhaupt, A.D., Tian, F., Umapathy, K.: Block-based ver-
sus text-based programming environments on novice student learn-
ing outcomes: a meta-analysis study. Routledge 29, 177–204 (7 2019).
https://doi.org/10.1080/08993408.2019.1565233

28. Yamashita, S., Tsunoda, M., Yokogawa, T.: Visual programming language for
model checkers based on google blockly. Lecture Notes in Computer Science (in-
cluding subseries Lecture Notes in Artificial Intelligence and Lecture Notes in
Bioinformatics) 10611 LNCS, 597–601 (2017)

29. Zurich University: Programming in biology, https://mnf.openedx.uzh.ch/

courses/

36 E. Schmidthaler et al.

Supporting Gender Equality in Computer Science
Through Pre-Introductory Programming Courses

András Margitay-Becht1,2 and Udayan Das1

1 Saint Mary’s College of California, 1928 St. Mary’s Road, Moraga, CA 94575, USA
2 Eötvös Lóránd University, Pázmány Péter sétány. 1/C, 1117, Budapest, Hungary

abecht@inf.elte.hu

Abstract. The past thirty years have seen an exponential growth in the
presence of computers in everyday life. However, some studies find that
introductory programming courses in university curricula might reduce
students’ willingness to engage with the material further. To complicate
matters, despite extensive efforts of the past decades, there are still cor-
ners of the computer science landscape that are unwelcoming to female
practitioners, implicitly or explicitly discouraging female students from
the profession.
This paper discusses an experimental university-level pre-introductory
course targeting non-computer science students with limited or no back-
ground in programming. The explicitly stated goal of the course was to
reduce trepidation regarding programming. The course saw equal partici-
pation from male and female students. The results were positive: students
reported a reduced perception of difficulty regarding programming and
an increase in the subjective importance of the area. Even more encour-
agingly more female students experienced a reduction in the perception
of programming difficulty than male students.
The paper will discuss the structure of the course, the unique set of
approaches that led to success, the lessons learned, and the new iteration
of the class we are going to offer the upcoming year.

Keywords: Gender equality · Programming education · Computational
thinking.

1 Introduction

There is a global shortage of programmers and computer science professionals,
in spite of the relatively high salary. There are many reasons for this, but a
contributor is the low and decreasing engagement of females with the discipline.
In the mid 80-s, 37% of computer science students were female [1]. This shrank
to 27% by 1997, then to 20.7% by 2006, and hit 18.7% in 2016 [2]. The total
number nearly doubled be-tween 1997 and 2016, from 6900 to 12,200, but this
growth is significantly lower than the growth experienced among male students.

This paper will discuss why this discrepancy might exist, and what are some
possible ways of reducing this effect. We will also introduce our approach that
targeted the fear of computer science in general, but ended up also empowering
female students in the pursuit of computer science knowledge.

CC BY 4.0, A. Margitay-Becht and U. Das
J.-P. Pellet and G. Parriaux (Eds.): ISSEP 2023 Local Proceedings, pp. 37–48, 2023.
https://doi.org/10.5281/zenodo.8431898

https://doi.org/10.5281/zenodo.8431898

2 The Problem with Introductory Classes

One of the problems of teaching computer science, whether for male or female
students, is the fact that the topic is generally considered scary (for a few ex-
amples see [3–5]). Of particular interest is the research done by Alford et al in
2017[6]. The original purpose of their research was to investigate the gender gap,
but they found that students in general, irrespective of gender start out intim-
idated by programming. The student population they investigated were mostly
engineering students who had to take an introductory programming class (so
many of them were there because they had to and not because they wanted to).
The total number of students investigated were close to 2000, of whom about
35% were female. Importantly, they found no real difference between the interest
of male and female students before taking the class. When asked what grade they
were expecting, male and female students again responded similarly, but to a
question regarding how confident they were that they can successfully complete
the course, the male students responded more positively, in alignment with previ-
ous findings. Interestingly, when asked how confident the stu-dents were in their
ability to succeed in the course, the pre-test results showed greater confidence
for men than women, but the post-test saw men drop in their self-assessment
more than women (indeed, in some samples women increased their con-fidence
throughout the course). The greatest takeaway for us was hidden in the phrasing
of the previous sentence: men and women both left the introductory classes less
interested and confident and more intimidated than at entry time. This is in
agreement with LaBouliere’s findings from 2015: middle school girls increased in
their programming understanding and confidence, but greatly decreased in their
inter-est in programming[7]. Similarly, Rubio reports a loss of interest for female
students as well[1].

It appears that introductory courses might not be the best places to provide
an in-spiring experience for students. These classes have to discuss a significant
curriculum of complex topics, covering those usually takes up the whole course,
and there is little time to slow down and spend some time working on an inter-
esting project or real life problem. Introductory classes are excellent for students
who are already interested in the subject and determined to follow through. In-
deed, they are designed to serve this audience, so the speed of the classes and
the amount of material they cover are scaled to support these students. But this
leads to the above situation where students who are not already positively pre-
disposed towards the discipline might be further turned off by the introductory
classes.

A solution is to start with a pre-introductory experience, like the one dis-
cussed in [8]. As Schindler and Muller state: “The first contact with programming
is crucial to keep students in the long run”, so if the curriculum design or ed-
ucational system allows for it, creating a “first contact” experience might be
valuable.

Our approach [9] is similar: we are trying to provide an educational experi-
ence that is primarily focusing on showcasing the value, and indeed the joy of
programming, while covering some basic concepts of coding. We have created

38 A. Margitay-Becht and U. Das

our class, “Coding is Fun”, not as a replacement for introductory classes, but
as a place for curious students to explore their curiosity, see if they find value
and joy in programming, in order to provide them with the mindset that will set
them up for success in the introductory programming class. Our approach differs
from the above cited Schindler and Müller approach by utilizing the advantage
presented by the fact that we are teaching at a small liberal arts university with
class sizes around 20, allowing us to give control of a large portion of our class
over to our students. Instead of teachers, we became guides, and as we guided
them throughout the basics of programming along their own interests, pivot-
ing as they wanted, we succeeded in increasing their interest and reducing their
apprehension. It also allowed us to use the approachable Scratch programming
environment, something that would have been unsuitable for an introductory
class at university level. Our course also serves as an optional course unattached
to any program, so it is accessible not only to computer science students, but
for anyone interested in general.

We have designed this experience for all students, irrespective of gender. We
have found, however, that our female students seem to have benefitted more
than our male students from this approach. In this paper we will quickly discuss
some of the issues and prejudices affecting female students of computer science,
then discuss our course and the outcomes of the pre-introductory experience.

3 Key Issues for Female Students

3.1 Skills

First and foremost it is important to discuss whether there is a capability gap
between male and female computer science students. Murphy et. al., investigat-
ing the gender differences among male and female students at a computer science
program in 2006 found that women in general started the program knowing less
than men did, but as they progressed through the program, both their knowl-
edge and academic performance (GPA) caught up to that of the male students.
In 2015 Akinola completed an empirical study of programming skills between
male and female groups of two and four, finding no statistically relevant differ-
ence between the genders based on either efficiency or accuracy [10]. Akinola
concluded that the underrepresentation might come from different interests or
fear, lack of confidence.

In a 2018 study Kallia and Sentance compared mostly 11th grade students
from 7 different UK schools, finding that boys and girls performed roughly the
same [11]. A 2019 study at the Graz University of Technology found similar
results: freshmen female computer science students performed just as well as
males did[8].

Study after study confirms our personal experiences, that female students
are not worse at programming and computer science related tasks and courses
than their male counterparts. The underrepresentation must come from another
source.

Supporting Gender Equality Through Pre-Introductory Courses 39

3.2 Interest

A frequent component of research projects focusing on the gender gap is the
apparent lower interest of female students in the field. Pau et. al. reports on the
generally held preconception that bad experiences with programming classes
can alienate female students from pursuing the discipline [12]. They found that
with proper support and structure, programming courses can be empowering to
female students.

Funke et. al. surveyed 63 Bavarian computer science teachers [13]. Most of
them reported no dissimilarities between boys and girls, only three categories
showed meaningful differences: girls were perceived as more structured but less
confident and interested. Master et. al. report on an experiment enriching the
computer science experience of 6-year-old students with the use of robotics[14].
Like Funke, they also found that boys had greater intrinsic interest than girls,
but the introduction of robotics increased girls’ interest significantly more than
boys’, drastically reducing the interest gap between the two groups. Braga and
Motti explored a similar age group, 7-10 year olds [15]. The children were in-
vited to participate in programming exercises inspired by the worlds of Frozen,
Minecraft and Angry Birds. They found that if the environment is engaging
enough, both girls and boys are equally likely to participate. Moreover, “girly”
themed experiences – as the article calls them – were not a major motivational
factor for the girls.

3.3 Confidence

Female students, overall, tend to be less confident than their male counterparts,
often undervaluing their own capabilities. This was the central question of Kallia
and Sentence’s research, finding that despite similar performance, girls regularly
underestimate themselves [11]. More worryingly, girls also scored lower on self-
efficacy than boys, indicating need of better support. Similar results were found
in [8, 13] as well: female students matching the performance of male students,
but rate themselves worse than males do.

3.4 Possible Solutions

If lower confidence and motivation keep highly competent girls and women from
pursuing computer science, it is important to address these issues directly. Rubio
et. al. suggested creating separate introductory tracks for people with different
back-grounds, enabling easier transition into the discipline [1]. Alternatively,
they suggested more contextualized classes like Media computation, robotics,
or animation, where the utility of the field is easier to experience. Their own
approach focused on using physical computing, which led to a reduced failure
rate for females in the class, although it still caused a reduction in interest in
computing among female students, like the alternative programming approach
did.

Pau et. al. discuss the key issues they found that can increase the positive
experience of an introductory programming class for female students [12]:

40 A. Margitay-Becht and U. Das

1. Programming tasks that are connected to real-life issues and actual problem
solving are a lot more engaging, similar to Rubio’s recommendations above

2. When time pressure is removed and students are allowed to work from home,
they find the class a lot more beneficial

3. Parental support from home
4. Higher mathematics performance helps transitioning into programming

We have incorporated some of these findings into our course design to make our
class more appealing – to female and male students alike.

4 Pre-Introductory Programming: a Combined Solution

4.1 Goals of the Course

The primary purpose of our course, called “Coding is FUN” was to show that,
as the title describes, coding can be fun. At our university, we offer a mandatory
January Term experience for the students. The instructors are encouraged to
create unusual and experimental courses, and we designed this class to provide
an opportunity for students who have not yet tried their hands at programming
to explore the area a little bit. The course description itself that was available
to the students before enrol-ling explicitly stated this.

4.2 Recruiting and Student Population

The course was originally intended for freshmen students just entering college,
to help them learn about potential major opportunities like Computer Science
(CS) or Data Science (DS). In the end, we ended up with a significantly more
diverse group spanning from freshmen to seniors. The recruitment of students
for the course was largely based on word-of-mouth. The university’s Tech Club
overseen by one of the instructors held two short super-introductory program-
ming workshops. The upcoming course was announced at these workshops. Two
of the students involved in these workshops also ended up becoming peer tutors.
Instructors also shared the course information with peers in other departments.
Many students in the CS program and DS programs shared this upcoming course
with roommates and friends. One CS senior for example had 2 roommates at-
tending the course.

Since our university is a small liberal arts college, class sizes are traditionally
be-tween 15 and 25 students. We were initially worried that there might not be
enough interest for the course, but in the end we ended up with 23, close to the
maximum class size allowed.

A point of pride is the diversity of students we managed to address, both by
gender and by major of study. We had 7 students of Business-adjacent majors, 4
students of varied STEM majors, 4 Psychology majors and 4 liberal arts majors
in the class, in addition to the 4 freshmen who did not yet have declared a
major. The gender breakdown ended up being 9 female and 14 male students
completing the class.

Supporting Gender Equality Through Pre-Introductory Courses 41

4.3 Structure of the Class

The course was offered every Wednesday, 2.5 hours per meeting, during the
January of 2023. The class was delivered in a synchronous online format, allowing
students the ability to work from home. To reduce the impact of time pressure
further, the course required the students to create only a single program as
their final project; no tests, quizzes or homeworks were assigned. They were also
allowed to work on their project whenever they wanted, with ample support
being provided for them both online and offline.

The intended layout of the course was a session introducing Scratch program-
ming, then a session of more advanced programming topics based on student
choice, then a session on design and computational thinking and a final session
for the students to showcase their content. Due to great student interest, this
plan expanded by 50% to provide them with the extra opportunities they asked
for.

We decided to use Scratch as the initial introductory language as it is ex-
tremely approachable even for 5-year-olds, and it all but removes any concern
about syntax in programming. It is also complex enough that the basics of imper-
ative programming can be found in it: variables, conditional statements, loops,
functions/methods and lists, all in an approachable, graphical environment. It
is also built around events, so students also learn event-based control. Since
the class aimed to be a pre-introductory course to be followed up by a tradi-
tional introductory course, the short-comings of the programming language were
considered less important than the immense ease-of-access benefit the language
provided. This was a popular choice among students, and most of them stuck to
using Scratch throughout the class.

During the first class session we set up a Slack channel to improve commu-
nication with the students. After the first class, a poll was posted there, asking
if they want more Scratch practice during the second class, or want to see the
basics of Spread-sheet programming or Python. To our surprise, while Visual-
Basic based spreadsheet programming was entirely unpopular, many students
showed interest in both more Scratch and learning some Python, so we decided
to pivot the course plan: during the normal class time a Scratch session took
place, and an optional Python period was added in the afternoon. Highlighting
student interest, this optional period was well attended, just like a second op-
tional Python session, that provided further details on the language. This was
great feedback for us, as students seemed to have wanted to engage with the ma-
terial significantly more than we expected – an insight that will be incorporated
into the next iteration of the class.

During the third and fourth weeks additional scaffolding was provided to
the students in the form of consultation periods both synchronously and asyn-
chronously over Slack or e-mail. The third class period focused on how the design
and computational thinking principles can be utilized to come up with a final
project, and iteratively design, implement and test it. During the final class pe-
riod the students showcased projects far more complicated than we expected
or imagined, demonstrating that they have spent a significant amount of time

42 A. Margitay-Becht and U. Das

outside the classroom learning additional techniques just for the amusement of
themselves.

4.4 Scaffoding and Support

Student support is a critical element for bridging-the-gap for students who may
not have as much exposure to programming or programming-adjacent materials
in the past. Students need to know that programming is not a magical thing that
some people just get and others cannot, but that programming is a skill that
can be learned and honed. As with many other human endeavors and activities,
some people are naturally more adept at programming, but that does not mean
that others are incapable of learning this skill. The presence of in-class support
provides students with the opportunity to talk through some difficulties, partic-
ularly for those students who are hesitant to talk to the class as a whole. Peer
tutoring programs have demonstrated success, particularly in Computer Science
learning contexts and can improve retention and student achievement [16].

There were 3 students who served as peer tutors for the course. They were
selected such that they would be from different levels of proficiency. One student
had recently completed Programming I (Programming with Python), one stu-
dent had recently completed Programming II (Data Structures and Algorithms
with Python), and the other student would be graduating with a Bachelor’s De-
gree in Computer Science in 6 months. Thus, one student was at a first year
level, the second student was 2nd year level, and the final student was at a se-
nior (4th) year level. The different levels are beneficial in peer tutors to express
to participants that learning programming is a journey and people at all lev-
els have something to share. Peer tutors at different levels also bring different
benefits with those fresh out of an introductory programming course having had
recently experienced their own journey from insecure to self-reliant confident
when it comes to programming, at the other end the senior level student brings
the benefit of having more experience and knowledge yet being closer to the
students than the instructors. Peer tutors always have the benefit of allowing
more informal exchanges between students and peer tutors. The tutors for this
class were also relatively diverse with 1 woman and 2 individuals from minority
groups.

Support in this course involved both during class session support (peer tutors
in groups) as well as peer-tutor led sessions during the project phase. About 8
students took advantage of sessions to work on the project during an open lab
session with a peer tutor. In the week preceding the final presentations (week
3 of the course) these sessions were held. Instructors also held support sessions
during this period with an additional 2 students attending. Altogether a total
of 10 students used the support sessions. The availability of multiple sessions at
different times of day and with dif-ferent individuals surely contributed to many
students taking advantage of the ses-sions. Slack was also used as an online forum
space for communication, community, and support and students took advantage
of Slack to troubleshoot code snippets, and importantly, share their work with all
other students at the end. Further along in the CS program students commonly

Supporting Gender Equality Through Pre-Introductory Courses 43

submit work to GitHub and so this kind of shar-ing is possible. But starting this
kind of sharing enables students to learn from each other, and in the instructors’
experience get impressed and inspired by each other. No amount of code samples
provided by the instructors can match the value of seeing peer work.

5 Methodology and Results

Grading and assessment were done completely separately in this course. For
grading, we used a growth mentality. As this course was an elective class that did
not count for any major field of study or the core curriculum of the university, and
only carried a minuscule credit value (less than 0.7% of the total credits required
for graduation), we felt comfortable assigning grades based on the improvements
our students made in the small amount of time available in the class. Our key
assessment focused on the student experience in the course and the change of
attitude we were hoping to achieve. To measure this, we created a pre-class and
a post-class questionnaire for the students, focusing on their experience with
and attitudes towards programming. Two key questions are worth discussing in
more detail: the perception of difficulty and the perceived utility of programming.
The following tables will show information from the 15 of the 23 students who
filled out both surveys. It is interesting to note, that close to 90% of the female
students filled out both the pre- and post-class questionnaires, while only 50%
of male students did so.

5.1 Perceptions of Difficulty

To test the perceptions of difficulty of programming, in the pre-test we asked the
students how hard the class will be for them. Not surprisingly, none of them said
they expected the course to be too hard for them, as it was an elective course
working with a positively biased audience. Most of the students, however, chose
the tentative “I can probably do it” option, with only 3 (2 males and 1 female)
selecting the assertive “I can for sure do it”.

At the end of the class, we were happy to find that close to half of the respon-
dents found programming at least somewhat easier than they expected. Most of
the rest found that programming was about as hard as they were expecting, with
2 students (a male and a female) feeling that programming was a bit harder than
they thought initially.

While the above results are already exciting, they become even more so if we
look at the gender breakdown of the responders. Table 1 shows the breakdown of
the responses: the rows contain the questions from the pre-class questionnaire,
while the columns the options from the post-class questionnaire. In the cells the
values are in the form of [male : female] students giving that combination of
answers. In alignment with the established literature, we found that six of the
eight students who found programming to be easier than expected were females,
while only four of the six who found it as hard as they expected were males. This
means that the majority of the perception gain happened to the female students
in the class, empowering and encouraging them to pursue programming further.

44 A. Margitay-Becht and U. Das

Table 1. Perceptions of programming difficulty before and after the course. Rows
contain the post-course feedback, columns the pre-course feedback. Results are reported
as [males : females]

Too hard for me I can probably do it I can for sure do it
A bit harder than expected 0:0 1:1 0:0
About as hard as I expected 0:0 3:2 1:0
Easier than expected 0:0 1:4 0:1
A lot easier than expected 0:0 0:0 1:0

5.2 Perceived Utility

While it is exciting to see that the class increased the confidence and reduced the
worry of female students, that alone is not going to improve participation if they
find programming to be unimportant. To measure the perceived importance of
programming, the pre-class questionnaire asked the students’ estimation of the
likelihood that programming will be useful for them personally. We had two
students (both female) say that they did not expect to use programming at all,
five students (4 males, 1 female) say that they will definitely use programming,
the rest fell into the more tentative maybe category.

After the class, we were excited to find that six out of the eight females
thought that programming will be more useful to them than they thought before
the class, and one of the remaining two already thought it was going to be useful
and found confirmation in her experience. The male students had a lot more
varied journey: one student said that programming will be less useful than they
initially expected, and all three of the students who were expecting programming
to be a lot more useful to them were also males. It was also exciting to us that the
class seems to have rein-forced initial positive expectations: all 5 students who
were certain of the usefulness of programming experienced increased valuation
of it.

Similar to above, Table 2 showcases the breakdown of [male:female] respon-
dents based on their preclass and post-class responses.

Table 2. Perceptions of the utility of programming before and after the course. Rows
contain the post-course feedback, columns the pre-course feedback. Results are reported
as [males : females]

I won’t use it I might use it I will use it
Less useful than expected 0:0 1:0 0:0
About as useful as expected 0:1 0:1 0:0
Somewhat more useful than expected 0:1 1:4 2:1
A lot more useful than expected 0:0 1:0 2:0

Supporting Gender Equality Through Pre-Introductory Courses 45

5.3 Overall Results

Like the above cited literature, we have found no difference in the quality of
work done by male and female students. Indeed, the most complex project was
created by a female student, and every female student turned in a project that
greatly exceeded the expectations – and the material covered in the class. This is
an excellent indicator of increased self-efficacy, that was demonstrated by nearly
all students. We hope that this skill will prove to be transferable to other areas
as well.

Computational thinking, especially decomposition, was clearly demonstrated
in most projects. This will reinforce and expand the students’ critical thinking
skills. We have seen both explicit and implicit use of design thinking. The most
impressive ex-ample was one student who worked together with her younger
brother to create a game with him for him to enjoy. This was both a touch-
ing moment – siblings using a class exercise to socialize remotely over Zoom
– and also a great application of design thinking principles, working with and
for a “client” to create a desired product. A final indicator of the success of the
class, that out of the 15 responders, 13 re-ported desire to continue learning
programming, either on their own, or in some kind of structured manner.

6 Next Steps

Due to the great success of the class, it will live on in the January of 2024,
with some modifications. The greatest one of these will be an expansion to a
full class, increasing the meeting times from four to 15. The increase in contact
hours can provide an opportunity for introducing pair programming in the class.
Pair programming and peer programming are also known to be effective learn-
ing techniques within software engineering and are a significant element of Agile
Software Development practices. Talking through the thought process behind
code development greatly strengthens students’ overall programming skills. Pair
programming has been demonstrated to improve retention and student confi-
dence [17].

A change in recruiting efforts will attempt to address the needs of incom-
ing fresh-men. The class will continue to target students with no programming
background, but it could serve as an ideal first experience not only for students
who are programming curious, but also for those who know they want to pur-
sue a career in computer or data science and want a more gradual on-ramp to
programming prior to taking their introductory course.

The course will also aim for a more layered outcome regarding further study
for the students: aside from continuing to study on their own or just taking an
introductory class, they might be able to pursue a certificate in programming
or website development, a minor in programming or data science, or even a
major in computer science or/and data science. The majors and minors at our
institutions are created in a way that they scale easily. We consider computer
and programming abilities necessary for the enlightened citizens of 2023, and this

46 A. Margitay-Becht and U. Das

course might provide a gateway for students of all backgrounds and interests to
expand their education with some 21st century skills.

7 Conclusion

Optional pre-introductory experiences implement separate introductory tracks
for students with different backgrounds. Those who enter university with some
back-ground in programming can enroll directly into an introductory program-
ming class. Those, however, who are worried about their own skills or even
underestimate their own abilities, as many female students seem to, can partic-
ipate in a pre-introductory course to alleviate their concerns and improve their
self-confidence. A student-centric, real-life grounded pre-introductory class can
showcase the usefulness and fun of programming, creating and reinforcing inter-
est. For example, a student who enjoys drawing can use programming to create
animations. A student interested in child psychology can use programming to cre-
ate research tools to engage children – or analyze the results of the engagement.
A biochemist can use programming to model molecules or analyze experimental
data, an economist can model the success of a product or the trajectory of a
nation. By being able to focus on inspiring students, these classes can serve as
the affective counterparts to the cognitive focused introductory courses[18]. And
by focusing on increasing student interest, breaking down barriers, improving
self-efficacy and confidence, pre-introductory courses can help support female
students exactly in the ways they need support to be able to start a career in
the IT field – or to expand their interest with technology.

References

1. Rubio, M.A., Romero-Zaliz, R., Mañoso, C., de Madrid, A.P.: Closing the gender
gap in an introductory programming course. Computers & Education. 82, 409–420
(2015). https://doi.org/https://doi.org/10.1016/j.compedu.2014.12.003

2. NSF - National Science Foundation: Women, Minorities, and Persons with Disabili-
ties in Science and Engineering: 2019, https://ncses.nsf.gov/pubs/nsf19304/digest.
Last accessed 2023/06/02.

3. Connolly, C., Murphy, E., Moore, S.: Programming Anxiety Amongst Computing
Stu-dents—A Key in the Retention Debate? IEEE Trans. Educ. 52, 52–56 (2009).
https://doi.org/https://doi.org/10.1109/TE.2008.917193.

4. Höök, L.J., Eckerdal, A.: On the Bimodality in an Introductory Programming
Course: An Analysis of Student Performance Factors. In: 2015 International Con-
ference on Learning and Teaching in Computing and Engineering (2015).

5. Wyeld, T., Nakayama, M.: Visualising the Code-in-Action Helps
Students Learn Programming Skills. In: 2018 22nd International
Conference Information Visualisation (IV). pp. 182–187 (2018).
https://doi.org/https://doi.org/10.1109/iV.2018.00040.

6. Alford, L., Dorf, M.L., Bertacco, V.: Student Perceptions of Their Abilities and
Learning En-vironment in Large Introductory Computer Programming Courses.
In: 2017 ASEE Annual Conference & Exposition Proceedings. p. 28867. ASEE

Supporting Gender Equality Through Pre-Introductory Courses 47

Conferences, Columbus, Ohio (2017). https://doi.org/https://doi.org/10.18260/1-
2–28867.

7. LaBouliere, J.J., Pelloth, A., Lu, C.-L., Ng, J.: An exploration of
the attitudes of young girls toward the field of computer science. In:
2015 IEEE Frontiers in Education Conference (FIE). pp. 1–6 (2015).
https://doi.org/https://doi.org/10.1109/FIE.2015.7344265.

8. Schindler, C., Müller, M.: Gender gap? a snapshot of a bachelor com-
puter science course at Graz University of Technology. In: Proceedings of
the 13th European Conference on Soft-ware Architecture - Volume 2. pp.
100–104. Association for Computing Machinery, New York, NY, USA (2019).
https://doi.org/https://doi.org/10.1145/3344948.3344969.

9. Margitay-Becht, A., Das, U.: Enhancing student learning through hidden motiva-
tional learn-ing outcomes. In: Enomoto, K., Wagner, R., and Nygaard, C. (eds.)
Enhancing student learn-ing outcomes in higher education. Libri Publishing Ltd.
(2023).

10. Akinola, S.O.: Computer programming skill and gender difference: An empirical
study. American journal of scientific and industrial research 7(1), 1–9 (2015).

11. Kallia, M., Sentance, S.: Are boys more confident than girls? the role of calibra-
tion and students’ self-efficacy in programming tasks and computer science. In:
Proceedings of the 13th Workshop in Primary and Secondary Computing Educa-
tion. pp. 1–4. Association for Computing Machinery, New York, NY, USA (2018).
https://doi.org/https://doi.org/10.1145/3265757.3265773.

12. Pau, R., Hall, W., Grace, M., Woollard, J.: Female students’ experiences
of programming: it’s not all bad! In: Proceedings of the 16th annual joint
conference on Innovation and technology in computer science education. pp.
323–327. Association for Computing Machinery, New York, NY, USA (2011).
https://doi.org/https://doi.org/10.1145/1999747.1999837.

13. Funke, A., Berges, M., Mühling, A., Hubwieser, P.: Gender differences in
programming: re-search results and teachers’ perception. In: Proceedings of
the 15th Koli Calling Conference on Computing Education Research. pp.
161–162. Association for Computing Machinery, New York, NY, USA (2015).
https://doi.org/https://doi.org/10.1145/2828959.2828982.

14. Master, A., Cheryan, S., Moscatelli, A., Meltzoff, A.N.: Program-
ming experience promotes higher STEM motivation among first-grade
girls. Journal of Experimental Child Psychology. 160, 92–106 (2017).
https://doi.org/https://doi.org/10.1016/j.jecp.2017.03.013.

15. Braga, C., Mochetti, K.: Programming teaching tools and the gender gap in the
Information Technology field. In: Anais do Workshop de Informática na Escola.
pp. 70–79. SBC (2018). https://doi.org/https://doi.org/10.5753/cbie.wie.2018.70.

16. Servin, C., Pagel, M., Webb, E.: An Authentic Peer-Led Team Learning
Program for Community Colleges: A Recruitment, Retention, and Comple-
tion Instrument for Face-to-Face and Online Modality. In: Proceedings of the
54th ACM Technical Symposium on Computer Science Education V. 1. pp.
736–742. Association for Computing Machinery, New York, NY, USA (2023).
https://doi.org/https://doi.org/10.1145/3545945.3569851.

17. McDowell, C., Werner, L., Bullock, H.E., Fernald, J.: Pair programming improves
student retention, confidence, and program quality. Commun. ACM. 49, 90–95
(2006). https://doi.org/https://doi.org/10.1145/1145287.1145293.

18. Bloom, B.S., Krathwohl, D.R.: Taxonomy of educational objectives: The classifi-
cation of educational goals. Book 1, Cognitive domain. longman (1956).

48 A. Margitay-Becht and U. Das

Investigating Code Smells in K-12 Students’
Programming Projects: Impact on

Comprehensibility and Modifiability

Verena Gutmann[0009−0007−2892−9160], Elena Starke[0009−0004−5100−368X], and
Tilman Michaeli[0000−0002−5453−8581]

Technical University of Munich, Arcisstraße 21, 80333 Munich, Germany
{verena.gutmann,elena.starke,tilman.michaeli}@tum.com

Abstract. Teaching students to code goes beyond focusing on the cor-
rect implementation of features. It is also about emphasizing the im-
portance of comprehensible and modifiable code. Addressing these char-
acteristics is already crucial for novice programmers in K-12 computing
education, as fostering code quality can support their learning process es-
pecially when working collaboratively in group projects. This study aims
to investigate the extent to which code smells are problematic in K-12
students’ code and understand the impact of different code smells on
comprehensibility and modifiability. We initially selected relevant code
smells to address this research objective and then conducted a qualita-
tive analysis of 12 student projects. The results show a differentiated pic-
ture for different types of code smells. While Duplicated Code and Class
Data Should Be Private may not be critical issues. However, in our data,
Long Functions, Speculative Generality, Comments, Mysterious Names,
and bad Code Formatting negatively affected the comprehensibility and
modifiability.

Keywords: novices · K-12 · computing education · code smells

1 Introduction

Learning to program is one major challenge in the K-12 computing education
classroom. While teaching novices the fundamentals of programming syntax and
implementing desired functionality is essential, it is equally crucial to recognize
the significance of fostering code quality to enhance the learning process, partic-
ularly in group work projects.

Looking into professional software development, besides correct functionality,
it is equally important to consider other quality aspects, such as maintainability,
testability, comprehensibility, or modifiability. These factors are crucial in facil-
itating collaboration among developers and ensuring code’s long-term viability
and maintainability throughout the development process [15].

One key factor that can harm code quality is the presence of code smells [4].
Code smells are not related to functionality or syntax but serve as indicators of
potential issues within the code. They act as warning signs, highlighting areas

CC BY 4.0, V. Gutmann et al.
J.-P. Pellet and G. Parriaux (Eds.): ISSEP 2023 Local Proceedings, pp. 49–60, 2023.
https://doi.org/10.5281/zenodo.8431914

https://doi.org/10.5281/zenodo.8431914

of code that may require improvement. Comprehensibility and modifiability are
particularly susceptible to the harmful effects of code smells and are consequently
relevant to consider in collaborative work.

Preparing students to become future professional developers is no goal of
K-12 programming education. Nevertheless, it remains crucial to emphasize the
significance of writing comprehensible and modifiable code, particularly in col-
laborative settings. Code smells, which impact comprehensibility and modifiabil-
ity, can challenge effective collaboration among students. Therefore, addressing
code quality and mitigating the presence of code smells can enhance the col-
laborative learning experience in K-12 programming education. Furthermore,
however, it is crucial to enable students to understand how and why a program
works or does not work and to be able to comprehend their code. Additionally,
students often need help to solve issues independently and sometimes even make
it more complicated than it has to be [7].

While existing research has extensively explored code smells in various pro-
gramming contexts, the specific domain of K-12 students’ programming projects
still needs to be explored. Therefore, in this paper, we investigate the impact of
code smells on comprehensibility and modifiability to address them adequately
in the classroom setting.

2 Theoretical background and related work

It is challenging to define comprehensibility in the context of source code due to
its subjective nature. Code comprehensibility is closely related to code readabil-
ity – “a human judgment of how easy a text is to understand” – which can be
considered a prerequisite for comprehension [3]. The aim of comprehensibility
should be to make it as effortless as possible for readers and future editors to
familiarize themselves with the code. A clear structure that includes a meaning-
ful arrangement of instructions and method calls, and uniform code formatting
can be helpful [8]. Additionally, self-explaining variable names, simple control
structures, and good documentation can support code maintenance, resulting in
improved modifiability [3].

In contrast, code smells are recognized patterns in source code that indi-
cate potential areas for improvement rather than bugs or errors. They act as
indicators within object-oriented code, drawing attention to areas of weakness
that could benefit from closer examination and refactoring. By identifying code
smells, developers can proactively address issues and enhance the overall quality
of their code. Various taxonomies have been proposed to classify these smells,
including inappropriate comments, excessively long functions, or an over-reliance
on primitive data types [4]. In addition to code smells, Stegeman et al. propose a
rubric for educational settings to assess code quality and promote effective cod-
ing practices in novice programming courses. Considering aspects relevant for
beginners, this rubric encompasses ten categories grouped into four overarching
categories: Documentation, Presentation, Algorithms, and Structure [19, 20].

50 V. Gutmann et al.

Previous research on quality issues in K-12 education has predominantly
focused on block-based programming and tools such as Scratch [6]. In contrast,
text-based programming has mainly been studied in university settings.

Looking into block-based programming, there are various findings regarding
common issues. The source code of Scratch programs created by high school stu-
dents is frequently characterized by multiple code smells, such as problematic
variable names and duplicated code, which can negatively affect both correctness
and readability [5]. Furthermore, students often acquire certain programming
habits that can result in code smells. The prevalence of extensive bottom-up
programming and extremely fine-grained programming approaches can result in
code smells like dead code and an overwhelming number of scripts. Consequently,
students may face significant challenges when debugging and maintaining their
projects, as the complexity and scale make these tasks practically impossible
[14]. Even when the students’ projects were not particularly complex, those code
smells arise [1]. Additionally, code smells such as too-long methods and code du-
plications impacted students’ performance negatively. The long method smell
hindered their understanding, while duplication decreased the modifiability of
their code [9]. Even if comprehensibility and modifiability seem rather abstract,
K-12 students can understand aspects of software quality just as well as general
programming concepts [10]. In addition to examining poor programming habits,
there is a potential approach to address code quality in K-12 classrooms by
emphasizing “code perfumes” that represent good programming practices. Spe-
cific structures like parallelism, nested loops, and nested conditional checks are
identified as beneficial patterns that are often found in functionally correct code
[17].

Considering text-based programming in university settings, evaluating stu-
dent projects led to identifying several quality issues. Using Java, the most com-
mon code smells were missing blank lines and a quirky usage or omission of
parentheses. Considering Python programs, spaces were often omitted after the
comment character or lines contained too many characters [11]. Overall, the cor-
rection rate for quality issues among students is low, with many topics going
unnoticed or unaddressed even when using tools designed to detect them [12].
The comparison of static quality properties between first and second-year college
students revealed that second-year students exhibited improvements in certain
aspects, such as using shorter functions and fewer very short variable names,
compared to their first-year counterparts. However, they also tended to write
more complex code and incorporate a higher level of statement nesting within
methods. Despite these differences, there was no significant improvement in the
overall code quality of second-year students compared to first-year students. This
indicates that code quality skills only improve by explicitly addressing them [2].

In summary, considerable research has been conducted on code quality in
novice programming education, primarily focusing on university-level settings.
Considering K-12, existing research in this domain predominantly centers around
block-based programming languages such as Scratch. As a result, there is a need

Investigating Code Smells in K-12 Students’ Programming Projects 51

for further investigation and exploration of code quality aspects, specifically in
text-based programming within K-12 educational contexts.

3 Methodology

To address the research gap described above, we aim to investigate the source
code of upper secondary students in this study. To gain a comprehensive un-
derstanding of the issues posed by code smells in schools, our approach diverges
from a mere examination of their frequency. Rather, we strive to delve deeper,
investigating the extent of the impact caused by these code smells. To this end,
we address the following research question: How do code smells impact the com-
prehensibility and modifiability of source code of programming novices in upper
secondary school?

3.1 Sample

To answer our research question, we analyzed a total of N = 12 source codes
created by students as part of group work projects towards the end of the school
year. The projects were collected from different German High Schools: four were
created by year 11 students (P1 to P4) and eight by year 10 students (P5 to
P12). At this point, students have one or two years respectively of program-
ming experience in a text-based language. All projects implement small games
programmed in Java using BlueJ, a widely utilized development environment
designed for novices. The source codes from the 11th-grade class represent inter-
mediate versions of their respective projects. However, it is noteworthy that all
projects can be executed without errors. The length of the source code ranges
from 161 to 735 non-empty lines. The mean is 325.5 lines of code, with a median
of 292 lines.

3.2 Data Analysis

We conducted a structured qualitative content analysis according to [13] to an-
alyze the data. We used a deductive category system based on various catalogs
for code smells. However, due to the relatively small and less intricate nature of
projects at this level, it is worth noting that several of the defined code smells
aimed at professional development are not applicable in the school context. Based
on these considerations as well as findings in related work, we have chosen the
following set of code smells from [4]: Long Function, Duplicated Code, Com-
ments, Mysterious Name and Speculative Generality. Furthermore, we included
the code smells Class Data Should Be Private [18] and Code Formatting [20] in
our analysis. Table 1 lists the complete category system.

To detect these code smells, we have established specific thresholds that we
consider meaningful for school projects with limited scope and complexity. A
function, therefore, is a Long Function if it exceeds 20 lines of code. In the case

52 V. Gutmann et al.

of Duplicated Code, at least three lines must be duplicated, even if the vari-
able names differ. Regarding Comments, they are flagged as code smells if they
merely describe the code without providing any additional information, in line
with the definition by [4]. However, commented-out lines of code are not consid-
ered code smells. The evaluation of the Mysterious Name code smell is based on
the Oracle Naming Conventions1. However, the distinction between uppercase
and lowercase letters is not taken into account, as it does not significantly im-
pact the code’s comprehensibility or modifiability. Some analyzed projects are
incomplete, so the code smell Speculative Generality refers only to unused at-
tributes, variables, and parameters. Guidance on capturing the code smell Code
Formatting is provided by the criteria for Java from Checkstyle2.

Table 1. Final Category System

name description
Long Function (LF) A method has huge size.
Duplicated Code (DC) A code section is included multiple times.
Comments (C) A comment is superfluous.
Mysterious Name (MN) The name of a variable, class, or method is not

self-explanatory.
Speculative Generality (SG) A part of the code is not called.
Class Data Should Be Private (CDSP) A class exposes its attributes.
Code Formatting (CF) The formatting of the code is not clear.

The detection of code smells was automatically done using the IDE Intel-
liJ3. This involved using the integrated code inspection and analysis, as well
as the Checkstyle4 and Statistic5 plugins. If necessary, manual evaluation was
performed when automated detection was not feasible. For all individual code
smells, we evaluated their actual impact on the modifiability and comprehen-
sibility of the source code individually based on a qualitative interpretation in
the context of the related project. Given the difficulty and subjective nature of
measuring these aspects, in the following, we describe in detail our interpretation
and reasoning resulting from discussions in our research group.

4 Results

To first of all provide an overview of the smells in all projects, see Table 2.
We employed two metrics to measure the number of detected code smells. For
1 https://www.oracle.com/java/technologies/javase/codeconventions-

namingconventions.html
2 https://checkstyle.sourceforge.io/checks.html
3 https://www.jetbrains.com/de-de/idea/
4 https://plugins.jetbrains.com/plugin/1065-checkstyle-idea
5 https://plugins.jetbrains.com/plugin/4509-statistic

Investigating Code Smells in K-12 Students’ Programming Projects 53

code smells that tend to increase with code length, we express the frequency as
occurrences per 100 lines (1). For code smells specific to a particular program
element, we present the proportion of code smell occurrences relative to the total
number of program elements of the corresponding type (2) [21].

Table 2. Frequencies of code smells by projects studied. “–” marks that no comments
exist in the code, while 0 means that none of the dedicated program elements is con-
sidered a code smell.

metric P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12
LF (1) 18 9 27 23 41 17 11 41 0 24 35 40
DC (1) 0 3 3 2 5 22 3 0 0 8 23 0
C (2) 72% 82% 30% 90% - 100% - 100% 100% - 100% 100%
MN (2) 8% 30% 23% 13% 29% 41% 3% 50% 28% 8% 29% 36%
SG (1) 8 10 5 8 22 5 7 3 8 10 5 0
CDSP (2) 40% 75% 40% 33% 0% 58% 10% 72% 100% 0% 0% 0%
CF (1) 60 54 72 76 40 189 21 11 25 42 47 40

Long Function 22 methods were identified as Long Function. Half are slightly
above the threshold and, therefore, less critical concerning comprehensibility and
modifiability than the others. However, one method in particular (P8) spans
120 lines, accounting for 34% of the total code. This code lacks structure and
clarity, making it prone to complications during modification. Notably, many
very long functions are responsible for updating the user interface. Particularly
conspicuous is such an expansion of functions in the projects of year ten students.
Additionally, constructors (P2, P4, P10, P11) are particularly susceptible to
becoming lengthy. Another factor contributing to long functions is the presence
of if-statements (P11) which have empty branches. Furthermore, extensive if-
statements with multiple cases can also contribute to the length of functions,
but they remain readable due to their structured nature (P7).

Finding: Functions only slightly above the threshold do not pose signifi-
cant limitations on comprehensibility and modifiability. However, in our data,
some other functions lack a clear structure due to their excessive length and
consequently impact comprehensibility and modifiability.

Duplicated Code Overall, a relatively low number of Duplicated Code instances
was detected. The longest duplicate consists of only 11 lines (P11), and many
duplicates are slightly above the threshold (P3, P4, P7, P10), indicating no sig-
nificant issue regarding comprehensibility. The duplicates could be easily refac-
tored in several cases by extracting them into separate functions (P3, P4, P5,
P6, P11) to enhance the code’s comprehensibility and structure. Additionally,
adding parameters could combine some methods (P2, P6). In one outstanding
example, three functions perform the same task but have different names (P6).
Modifying one function requires changing the other two as well. Another critical

54 V. Gutmann et al.

instance of duplication arises from identical function calls within an if-statement
under different conditions (P10), with the only difference being the passed ar-
gument (in this case, the color of an object as a String). Changing the method
name would force multiple changes in the condition branches. One Duplicated
Code smell requires advanced knowledge for refactoring. It involves code sections
in four different classes (P6), where the constructors share identical code and
contain another method with the same code. As already mentioned above, one
change would entail several modifications.

Finding: Duplicated Code is relatively scarce overall, and when it is, it only
slightly complicates comprehensibility. Concerning modifiability, only some crit-
ical code smells could mostly be addressed by simple refactoring.

Comments In projects P5 to P11, only a few comments are used. The existing
comments are obviously from code templates that have not been customized
and, therefore, cannot be considered beneficial and thus count as a code smell.
However, it is worth appreciating the inclusion of author information and the
providing short and concise descriptions of classes and functions, which helps in
collaboration (P3). Comments that solely describe the functionality of a method,
such as “closes the database connection” preceding a function named Connec-
tionClose (P1), do not offer significant additional support for comprehension
and are consequently considered as a code smell. In some projects, every line
of code was provided with a comment explaining the corresponding line (P2).
This leads to a rather unattractive and difficult-to-survey picture of the code.
Another issue that could be observed is that Comment code smells were also
apparently created in the comments by copying them, causing incorrect and
useless information (P2). Furthermore, in an if-statement, comments repeating
the conditions were identified (P4). This information is redundant for the reader
and makes it difficult to read.

Finding: Comment usage among students varies greatly. While some stu-
dents refrain from using comments, others use them excessively without adding
much value for comprehensibility.

Mysterious Name This code smell is present in every project. Generally, a mix-
ture of German and English is commonly used, which only somewhat impacts
comprehensibility. However, poor naming can negatively affect comprehensibil-
ity, even though its impact on modifiability is not crucial. Overall, the methods
are mainly named understandably. It should be noted that we have not exten-
sively investigated the functionality of the methods, and therefore may be dis-
crepancies between the naming and the actual functionality. However, method
names niceMethod (P10) and addtt (P2) do not provide any indication of their
functionality. Regarding class names, the only related smells found in the data
are the designations LE and MyKeyAdapter (P2). The variable naming reveals
a contrasting scenario as it often lacks meaningful names. Despite being short,
these names only sometimes convey the variable’s functionality effectively to ob-
servers. Frequent usage of single-letter designations can lead to confusion, mainly

Investigating Code Smells in K-12 Students’ Programming Projects 55

when numbering is utilized for differentiation (P1, P2, P3). Numbering is pre-
dominantly done for naming user interface objects (P5, P8, P11, P12) obscuring
the association between specific objects and their corresponding graphical task.
Additionally, certain abbreviations, which should ideally be avoided according
to naming conventions, are frequently employed in numerous projects. Some of
them, such as koord (P3), min (P6), or xpos (P2), can be derived by a reader
and can be considered less critical. In contrast, there are also less comprehensible
namings such as sadpicm, sadpicq (P6), tt (P2), or LHor (P9).

Finding: Most functions and classes have expressive names, enhancing code
comprehensibility. However, variables often need more precise naming, relying
on abbreviations or numbering that hinder code comprehensibility and impair
collaboration. Nevertheless, this does not directly impact modifiability.

Speculative Generality In general, it is worth mentioning that the projects ex-
amined had relatively few unused components. As a result, these unused compo-
nents only have a minor impact on the code comprehensibility and modifiability.
Among these, unused parameters and attributes are the least critical, as they
do not disrupt the overall flow of the program. However, they can introduce
confusion when unused attributes result from the presence of local variables of
the same type within class methods (P2, P6). Likewise, initializing unused local
variables (P3, P6, P9, P10) can hinder comprehensibility. In one project (P10),
an integer variable is declared before a for-loop, seemingly meant to serve as a
constraint for the loop’s iteration. However, the hard-coded value is used within
the loop instead of the variable. This particular example may not be of utmost
importance, but it has the potential to cause some irritation.

Finding: The code smell Speculative Generality is generally a minor issue
that has a limited impact on code comprehensibility and modifiability. Solely,
unused local variables are more likely to affect code comprehensibility negatively.

Class Data Should Be Private Four of the examined source codes do not exhibit
inappropriate data encapsulation. However, in other projects (P1, P6, P8, P9),
more than half of the attributes raised concerns as code smells. Some classes
contain either only public attributes (P8) or do not include any attributes marked
with the private access modifier (P9). In most cases, the attributes lacked an
explicit access modifier, making them accessible to other classes within the same
package. It is important to note that the investigated projects did not utilize
packages, resulting in all classes having access to these attributes. The code
smell Class Data Should Be Private does not directly contribute to poor code
comprehensibility or pose challenges for modifiability.

Finding: The improper usage of access modifiers is typically a minor and
isolated issue that does not significantly impact the comprehensibility or modi-
fiability of the code itself.

Code Formatting Significant instances of poor Code Formatting were detected
in all the analyzed source codes. Remarkably, in one particular project, there
were approximately 189 violations of Checkstyle rules per 100 lines of code. The

56 V. Gutmann et al.

most common violations in all projects involve missing spaces around operators,
although these have a relatively minor impact on the overall code comprehensi-
bility. Violations such as missing spaces after a comma or between the method
name and parameter list are also relatively unproblematic. However, instances of
curly braces placed on the wrong line are more significant for maintaining a clear
code structure, frequently occurring in the analyzed source codes. Although con-
sistent misplacement may not severely impact comprehensibility, it can lead to
challenges when making modifications. Similarly, the absence of optional curly
braces, although less frequent, is critical for code modification. Omissions and
misplacement of braces can result in errors when inserting code in the wrong
location, consuming substantial time to identify.

Finding: Cluttered and inconsistent code formatting reduces comprehensi-
bility and poses a risk for future modifications.

5 Discussion

In this study, we qualitatively analyzed students’ source code to investigate how
selected code smells influence the comprehensibility and modifiability of code
written by novice programmers. To this end, we used a selection of typical code
smells from professional software development. Although we have great differ-
ences in the scope and aims of programming projects in K-12, using those pro-
fessional patterns is a typical approach for analyzing students’ projects. In line
with this, our results indicate that certain smells, such as Mysterious Name and
Code Formatting, are severe issues in the students’ code. However, others, such
as Class Data Should Be Private, do not seriously affect the comprehensibility
and modifiability of the high-school students’ projects.

Consequently, we consider addressing the problem of Mysterious Names in
the classroom as highly relevant, mainly when students work collaboratively
in teams. Notably, the prevalence of poorly named variables is not limited to
specific programming languages, as similar problems can be observed in Scratch
projects [16].

Comments can help in keeping an overview, especially when working on a
project over a longer period of time. In addition, in team settings, good com-
ments are crucial for collaboration. Interestingly, our analysis revealed that sev-
eral comments in the code lack meaningful or new information, appearing to be
included solely so that the code contains comments, possibly to comply with
specifications. Following the agile principle using code as documentation, exces-
sive comments could be reduced, thus well-chosen variable and method names,
thereby addressing the Mysterious Name code smell.

We were surprised to find a high occurrence of cluttered Code Formatting in
all the projects because a Checkstyle-plugin for BlueJ is available. BlueJ also
provides automatic formatting features for consistent and clean code. Although
missing blank lines and parentheses were frequently observed in other studies
[11], we found missing parentheses were less common in our results. Instead,

Investigating Code Smells in K-12 Students’ Programming Projects 57

missing spaces and the position of curly braces were more prominent issues
affecting code quality.

Concerning the code smell Speculative Generality, we hypothesize that in
many cases, it can be attributed to oversight or carelessness, where elements were
not removed when they became unnecessary. Interestingly, contrary to findings
in Scratch projects [1], the results of this study suggest that unused code may
be considered less problematic.

Our findings regarding the code smell Duplicated Code also differ from pre-
vious results, specifically with studies focusing on frequently occurring code du-
plication in Scratch projects [1, 16]. Several factors, including the age of the
students, the distinction between text-based and block-based languages, and the
presence of an online repository for Scratch projects, could potentially account
for these disparities. However, despite the ease of resolving the detected dupli-
cates and their minimal impact on comprehensibility and modifiability within
our data, addressing the issue of redundant code in school can still be valuable,
particularly in collaborative group projects. Looking at the individual smells, it
becomes apparent that the sense of certain smells, such as Speculative Gener-
ality and Duplicated Code, might be difficult for students to grasp, particularly
in understanding their impact on code modifiability. This difficulty can be at-
tributed to the relatively short and limited scope of school projects, which may
not provide a broad context for students to grasp the significance of modifiability.

We want to emphasize that a high frequency of a code smell does not always
indicate a high impact in our specific context. For example, the occurrence of
Mysterious Names is less frequent than misplaced Comments, but it has a higher
impact on comprehensibility. However, the effect of inappropriate comments may
vary depending on the specific case.

5.1 Limitations

We used a qualitative approach to gain deep insights into selected code smells
and assessed their impact individually. Consequently, our data and results are
not necessarily representative for the target group. Additionally, it is worth not-
ing that assessing the impact on comprehensibility and modifiability is inherently
subjective. Furthermore, we lack direct insight into the programming classes and
have no access to information regarding the guidance teachers provide. There-
fore, we have limited information regarding conventions and evaluation principles
presented to the students, making it challenging to draw conclusions about the
reasons for occurring code smells.

6 Conclusion

In this study, we investigated code quality in novice programmers’ projects,
specifically focusing on how code smells impact code comprehensibility and
modifiability. To this end, we conducted a qualitative content analysis of group
projects of novice programmers. Our results show that several code smells occur

58 V. Gutmann et al.

in students’ source code. For example, Mysterious Name and Code Formatting
are regarded as severe issues in the students’ code, especially when working to-
gether on group projects. In our data, other code smells, like Class Data Should
Be Private and Duplicated Code, do not seriously affect comprehensibility and
modifiability.

The findings of this study contribute to our understanding of the impact of
code smells on collaborative programming projects in K-12 computing education
classes. To broaden our subjective view in further research, it could be interesting
to evaluate the students’ perspective on the code quality of their projects and in-
vestigate whether and how code quality depends on the group size. Furthermore,
our results raise questions about how to effectively address them in the classroom
and communicate their importance to K-12 students. One approach might be
to incorporate activities that promote code quality, such as refactoring, using a
linter, or employing an appropriate code-evaluation rubric. By integrating such
activities into teaching, e.g., a specific phase for refactoring within project-based
learning, students can gain hands-on experience in improving code quality that
supports them, particularly in collaborative settings. Additionally, these activ-
ities might provide a valuable opportunity for novice programmers to enhance
their programming competencies as they delve into the code and actively work
towards improving its quality.

References

1. Aivaloglou, E., Hermans, F.: How kids code and how we know: An exploratory
study on the scratch repository. In: Proceedings of the 2016 ACM conference on
international computing education research. pp. 53–61 (2016)

2. Breuker, D.M., Derriks, J., Brunekreef, J.: Measuring static quality of student code.
In: Proceedings of the 16th annual joint conference on Innovation and technology
in computer science education. pp. 13–17 (2011)

3. Buse, R.P., Weimer, W.R.: Learning a metric for code readability. IEEE Transac-
tions on software engineering 36(4), 546–558 (2009)

4. Fowler, M.: Refactoring, Improving the Design of Existing Code. Addison-Wesley,
2 edn. (2019)

5. Frädrich, C., Obermüller, F., Körber, N., Heuer, U., Fraser, G.: Common Bugs in
Scratch Programs. In: Giannakos, M., Sindre, G., Luxton-Reilly, A., Divitini, M.
(eds.) Proceedings of the 2020 ACM Conference on Innovation and Technology in
Computer Science Education. pp. 89–95. ACM, New York, NY, USA (2020)

6. Fraser, G., Heuer, U., Körber, N., Obermüller, F., Wasmeier, E.: Litterbox: A
linter for scratch programs. In: 2021 IEEE/ACM 43rd International Conference
on Software Engineering: Software Engineering Education and Training (ICSE-
SEET). pp. 183–188. IEEE (2021)

7. Gugerty, L., Olson, G.: Debugging by skilled and novice programmers. SIGCHI
Bulletin 17(4), 171–174 (apr 1986)

8. Hansen, M., Goldstone, R.L., Lumsdaine, A.: What makes code hard to under-
stand? arXiv preprint arXiv:1304.5257 (2013)

9. Hermans, F., Aivaloglou, E.: Do code smells hamper novice programming? a con-
trolled experiment on scratch programs. In: 2016 IEEE 24th International Confer-
ence on Program Comprehension (ICPC). pp. 1–10. IEEE (2016)

Investigating Code Smells in K-12 Students’ Programming Projects 59

10. Hermans, F., Aivaloglou, E.: Teaching software engineering principles to k-12 stu-
dents: a mooc on scratch. In: 2017 IEEE/ACM 39th International Conference on
Software Engineering: Software Engineering Education and Training Track (ICSE-
SEET). pp. 13–22. IEEE (2017)

11. Karnalim, O., Chivers, W., et al.: Work-in-progress: Code quality issues of com-
puting undergraduates. In: 2022 IEEE Global Engineering Education Conference
(EDUCON). pp. 1734–1736. IEEE (2022)

12. Keuning, H., Heeren, B., Jeuring, J.: Code quality issues in student programs.
In: Proceedings of the 2017 ACM Conference on Innovation and Technology in
Computer Science Education. pp. 110–115 (2017)

13. Mayring, P.: Qualitative content analysis: A step-by-step guide. Sage (2022)
14. Meerbaum-Salant, O., Armoni, M., Ben-Ari, M.: Habits of programming in scratch.

In: Proceedings of the 16th ACM conference on Innovation and technology in
computer science education. p. 168–172. Association for Computing Machinery,
New York, NY, USA (2011)

15. Mistrik, I., Soley, R.M., Ali, N., Grundy, J., Tekinerdogan, B.: Software quality as-
surance in large scale and complex software-intensive systems. Morgan Kaufmann
(2016)

16. Moreno, J., Robles, G.: Automatic detection of bad programming habits in scratch:
A preliminary study. In: 2014 IEEE Frontiers in Education Conference (FIE) Pro-
ceedings. pp. 1–4. IEEE (2014)

17. Obermüller, F., Bloch, L., Greifenstein, L., Heuer, U., Fraser, G.: Code Perfumes:
Reporting Good Code to Encourage Learners. In: Berges, M., Mühling, A., Armoni,
M. (eds.) The 16th Workshop in Primary and Secondary Computing Education.
pp. 1–10. ACM, New York, NY, USA (2021)

18. Palomba, F., Bavota, G., Di Penta, M., Oliveto, R., De Lucia, A.: Do they really
smell bad? a study on developers’ perception of bad code smells. In: 2014 IEEE
International Conference on Software Maintenance and Evolution. pp. 101–110.
IEEE (2014)

19. Stegeman, M., Barendsen, E., Smetsers, S.: Towards an empirically validated model
for assessment of code quality. In: Simon, Kinnunen, P. (eds.) Proceedings of the
14th Koli Calling International Conference on Computing Education Research. pp.
99–108. ACM, New York, NY, USA (2014)

20. Stegeman, M., Barendsen, E., Smetsers, S.: Designing a rubric for feedback on
code quality in programming courses. In: Proceedings of the 16th Koli Calling
International Conference on Computing Education Research. pp. 160–164 (2016)

21. Techapalokul, P., Tilevich, E.: Understanding recurring quality problems and their
impact on code sharing in block-based software. In: 2017 IEEE Symposium on
Visual Languages and Human-Centric Computing (VL/HCC). pp. 43–51. IEEE
(2017)

60 V. Gutmann et al.

Supporting Non-CS Teachers with
Programming Lessons

Svetlana Unkovic[0009−0004−5538−2971] and
Martina Landman[0000−0002−0274−4172]

TU Wien, Karlsplatz 13, Vienna, Austria

Abstract. The introduction of a new compulsory subject in secondary
schools and the publication of the syllabus in Austria poses great chal-
lenges for many teachers. A crucial point is the fact that the selected
teachers often do not have an adequate degree in computer science or
similar training. Consequently, the lack of their CS competencies often
leads to an insufficient teaching, as there were not specifically trained
enough for this subject before its introduction. Our outreach programme
“eduLAB” offers an initiative where teachers in schools are supported
by student staff in teaching programming. To evaluate this initiative, 28
teachers were asked how our programming courses and offerings could be
adapted and expanded to support teachers and also students in the new
compulsory subject. This paper analyses the survey results and ideas of
what we can do to further support teachers in this situation.

Keywords: programming course · Programming with Processing · out-
reach to school teachers · CS school curriculum · teacher training.

1 Introduction

In Austria, a rethinking of digital education and computer science education
resulted in the replacement of the pre-scheduled exercise by the compulsory
subject “Basic Digital Education” (BDE) in 2022, which combines aspects of
media education and computer science. One hour per week is dedicated to this
subject from the 5th to the 8th grade.

The number of teachers trained in the field is by far not sufficient to fill
the open positions, which means that many teachers have to fill in without the
proper training and background. We are interested in a first assessment of the
teachers’ own view on the matter. Based on existing literature [7] we hypothesise
that teachers feel insecure about teaching the subject area. Moreover, we aim to
answer the following two research questions:

RQ1. How do teachers who teach the compulsory subject “Basic Digital Edu-
cation” in secondary schools rate their prior programming knowledge?

RQ2. How can our programming course for 9th grade be adapted to make it
useful for the compulsory subject and thus support teachers?

CC BY 4.0, S. Unkovic and M. Landman
J.-P. Pellet and G. Parriaux (Eds.): ISSEP 2023 Local Proceedings, pp. 61–74, 2023.
https://doi.org/10.5281/zenodo.8431918

https://doi.org/10.5281/zenodo.8431918

2 Related Work

The importance of teaching computer science in lower secondary education is
being recognized worldwide and included in existing curricula or new school
subjects, as well as the early implementation of this curriculum [12]. Introducing
programming into curricula is also advocated by official guidelines such as the
Informatics Curriculum or the new subject “Basic Digital Education”[2].

One example of a programming initiative is Scratch1, which provides visual
block programming as a learning tool and guided projects as teaching materials.
Another example is Code.org2, offering coding resources, curriculum materials,
and professional development programs for teachers. There are many more online
initiatives that offer teaching materials as well as teacher training courses (e.g.
coderdojo.com, codeclub.org, codeweek.eu, etc.). In contrast, our approach is
to support teachers directly in their classroom and to provide additional teaching
materials. A good example of a successful introductory programming course is
shown by Porter and Simon at UCSD, which focused on the three aspects pair
programming, peer instruction and media computation[9].

However, new content in the curriculum leads to new teacher responsibilities.
Especially if they lack adequate training for new curriculum content, they may
struggle to support their students and feel overwhelmed [7]. A study, which com-
pared teachers’ attitudes towards CS skills, discovered a shortage of adequately
trained teachers who require assistance in teaching programming skills [13]. The
need of better training is also highlighted in [11]. Additionally, the new cur-
riculum seems cryptic according to teachers without proper CS education (see
3.2). The importance of including computer science in national secondary school
curricula underline the need of our approach to support untrained teachers in
teaching programming.

Furthermore, we used Processing [10], a programming language known for
its extensive visual representation capabilities, into our course to enhance the
visualization of programming concepts. Starting from our Processing course,
originally designed for university students, we adapted and tailored it for upper
secondary school classes [5]. Based on teachers’ support, we expect to see greater
interest in computer science and a better understanding of programming, which
can be reinforced through such outreach activities [4].

3 Structure and Content of the Compulsory Subject

The aim of the introduced subject is to provide future adults with early educa-
tional and professional opportunities as well as private advantages over so-called
“digital illiterates”[6].

1 https://scratch.mit.edu/
2 https://code.org/

62 S. Unkovic and M. Landman

3.1 Syllabus

A look at the syllabus reveals that the compulsory subject is built on the five
competence areas “orientation”, “information”, “communication”, “production”
and “action”[2].

– Orientation: “. . . analysing and reflecting on social aspects of media change
and digitalization.”

– Information: “. . . dealing responsibly with data, information and informa-
tion systems.”

– Communication: “. . . communicating and cooperating by using informa-
tion and media systems.”

– Production: “. . . creating and publishing digital content, designing algo-
rithms and programming: Decomposing problems, recognising patterns, gen-
eralising/abstracting and designing algorithms.”

– Action: “. . . assessing offers and possibilities for action in a world shaped
by digitalisation and using them responsibly.”

In addition, the content is categorized in technological, social, and interac-
tional domains. These perspectives are based on the “Frankfurt Triangle” [1]
which purpose is to interdisciplinarily guide and structure educational processes
in digital transformation, involving all relevant disciplines.

For the sake of simplicity, they can be described by three questions (T)“How
do digital technologies work?”, (G)“What are the social interactions that result
through the use of digital technology?” and (I)“What are the options for inter-
action and action for pupils?”.

In order to close the circle between the introduced model and the five com-
petence areas, we want to show their connection: Each competence area is sub-
ordinated to the three presented perspectives T, G and I. It must be added
that a competence area does not have to be limited to only one description of a
perspective. On the contrary, several descriptions from one perspectives can be
found in a competence area. In addition, some competence areas contain areas of
application that can be used for teaching, but by far not all areas are supported
with these suggestions.

3.2 Remarks and Criticism on the New Syllabus and Realisation

By studying the syllabus closely, including individual discussions with teachers
during our (programming) workshops and their feedback on teaching at school,
it becomes apparent that the strong generalisation and cryptic description of
certain sub-areas T, G and I can quickly lead to perplexity and confusion in the
preparation of the lessons. The abstract explanations and lack of examples and
descriptions in the fields of application, if they even exist, make designing the
teaching units an obstacle.

In addition, the quick introduction of the new compulsory subject leads to
open teaching positions which need to be filled. Due to the shortage of teachers
non-specialist teachers without training or background in computer science are

Supporting Non-CS Teachers with Programming Lessons 63

therefore obliged to teach this subject. Particularly young teachers are affected,
as we have learned from informal conversations among young teachers that they
are often presumed by older colleagues having the know-how and experience.
Still the repertoire of knowledge in teaching is missing and by many older col-
leagues not considered. From this, the affected teachers face the problem of not
knowing which and how they can adequately convey certain contents in class.
Additionally, it has to be taken in account that they often have to become fa-
miliar with the contents themselves. This problem is also pointed out in other
literature [14]. To support teachers, Austria’s Federal Ministry provides offers at
the University College of Education and a MOOC “Basic Digital Education”[3]
as part of a continuing and further education programme. The question has to
be raised whether it is possible to pack an entire university course or a teacher
training programme into such a framework. There is as well an offer to an exist-
ing university course “Teacher of Basic Digital Education”3 which corresponds
to a duration of two years.

This gives us hope and future outlook that one day qualified persons will fill
these places through this university course. Unfortunately, due to shortage of
study places in this course and teachers in general, this initiative and approach
could turn into a rather unrealistic concept. Nevertheless, our research group
wants to support, reach out to those teachers who are lacking in programming,
and also provide remedial support in the future.

4 Setting

We are offering a short online programming course for teachers and young stu-
dents alike, originally targeted at 9th grade students. The course is based on and
uses Processing4 as a programming language. The Austrian curricular guide-
lines demand, however, that programming be taught in 8th grade (the guidelines
regarding programming are shown in table 1).

Level Excerpts from the syllabus

(T)
“Design and iteratively develop programs that combine control
structures,including nested loops and compound conditionals.”

(I)
“cooperate with provided media and software applications in a pur-
poseful and creative way

8th grade

(I)
“create simple programs or web applications using appropriate tools
to solve a specific problem or accomplish a specific task.”

Table 1: Overview of the competence area “Production” from the curriculum of
the subject “Basic Digital Education”.

3 https://www.ph-noe.ac.at/de/weiterbildung/hochschullehrgaenge/
4 https://processing.org/

64 S. Unkovic and M. Landman

We have therefore begun to modify our original course for 9th graders to
better fit the target age group of 8th graders. Additionally, there is a number of
teachers who took the course with or booked it for their students. The course’s
contents are briefly discussed in the following subsections.

4.1 Programming Crash Course as a Workshop in Schools

Our free programming course focused on “Computer Science”, aligning with
the syllabus objectives from 9th grade onwards. A year ago, we restructured
our previous workshop into a four hour programming “crash course”. In this
programming workshop, pupils have the opportunity to get a taste of the Java-
like programming language Processing. Since the language allows graphic output
right from the start, the students can quickly see results and experience their
first successes in programming.

The workshop is run by our student staff and tutors in schools and, in ex-
ceptional cases, online and is designed for two double sessions5. The flexibility
makes the workshop very popular, depending on the choice only one double les-
son can be used or both. The workshop implementation follows a team-teaching
format with the teacher. There is always a short introduction to the program-
ming concepts, followed by a free working session. However, the hands-on session
is always longer than the theoretical and practical introduction by the workshop
leaders. In the practical section, the students have the opportunity to work in
groups and support each other.

Our tasks and materials are accessed via a website link provided by our
staff during the first session. In addition to the tasks, the students receive a
“cheat sheet” that lists the most important Processing commands, and a student-
friendly and adapted script with all important explanations from our MOOC
course created for first-year university students [5]. Moreover, we provide so-
lutions on request with uniform commentary notation, as well as a detailed
description of the program sequence.

Looking back to the periods between March 2022 and May 2023, our offer
was used by five schools, including eight groups with 187 pupils. Seven of these
groups were in the 9th grade and one group in the 8th grade, of which five groups
of the 9th grade opted for the four hour programming block. In the 8th grade,
the workshop leaders noticed that the students needed more time to understand
certain programming concepts compared to the 9th graders. Therefore, only the
first double session was conducted. Nevertheless, it must be said that starting
from one supervised group, it is not possible to draw conclusions about all 8th

graders. However, since the subject BDE only lasts until the 8th grade and
programming is part of the syllabus, we consider offering a slimmed-down version
of the course for the 8th grade or possibly introduce another environment, such as
microworlds [8], which would then be prepared on the basis of our programming

5 The duration of a session corresponds to 50 minutes. CS classes are usually held in
double sessions.

Supporting Non-CS Teachers with Programming Lessons 65

crash course from the 9th grade onwards. For this purpose, we conducted a
questionnaire to find out the needs of the teachers who teach BDE.

Between December 2022 and May 2023, five teachers, including one outside
the country, requested access to the website and to the Moodle course which
contains more content, in total 11 lessons [5].

4.2 Comparison of the previous and new version of the course

We noticed that certain contents were not well received by the students, so
we skipped contents such as “defining and working with own variables”, “com-
pound comparisons in branches” or “arithmetic operations” from our workshop
program. Instead, we have included or adapted materials and tasks that focus on
understanding the concepts, such as “calling methods”, “predefined variables”,
“loops” and “branches”. The changes in the course can be seen in table 2 and 3.

Table 2: Comparison of the old and new version of the course - Part 1.

5 Data collection and methodology

We have conducted a survey among the first group of teachers who worked
with our programming course and teachers who are teaching BDE. Some of

66 S. Unkovic and M. Landman

Table 3: Comparison of the old and new version of the course - Part 2.

the teachers who participated do not have a formal training in computing as
such. In total, we received answers from 28 participants (11 female and 17 male
teachers), all of whom teach grades 5 to 12. The survey was mostly multiple-
choice-questions (MCQ) or Likert-scale questions (from 1 to 5). The survey’s
structure is shown in table 4.

Similar research in this area shows that the lack of inclusion of certain CT
perspectives in computer science classes is due to a lack of prior programming
knowledge and non-existent CT knowledge [14]. Learning motivation and fear
of failure are cited as the main reasons and the biggest challenge. With our
questionnaire we want to check whether teachers really need support, especially
in the area of programming, and if so, which measures need to be set.

The online questionnaire was carried out in spring 2023. We used various
channels for dissemination, such as our newsletter or contacting schools that
attended our workshops. The questionnaire contains 26 questions that were
grouped in five categories. Bifurcations were built into the questionnaire. Some
sections could be skipped, depending on whether someone had taken the pro-
gramming crash course before or not. This way, BDE teachers could be filtered
out from CS teachers. However, the focus is on BDE teachers and how they
can be guided by our research group in terms of programming. The remaining
categories serve the general goal of improving our existing programming course.

Supporting Non-CS Teachers with Programming Lessons 67

Category 1 Demographic data of the participants

The gender, professional experience and teaching subjects of the participants were
recorded at the beginning of the questionnaire.

Category 2 Digital education

– assessment of the infrastructure at the school
– access to learning materials and further and in-service training
– reasoning for teaching the subject ”Digital Basic

Category 3a Our Outreach programme

– participation in the offers of the programme (e.g. unplugged workshops)

Category 4 Own programming experience

Objective 1 Prior programming knowledge of the teachers.

– previous knowledge and self-assessment in programming
– repertoire of programming languages
– motivation for participating in the programming

Category 5 Programming course Processing

Objective Feedback and attempt at ongoing improvement of materials and im-
plementation.

– preparation of the contents in the first and second programming block
– difficulties encountered in programming and programming concepts by learners
– suggestions for improvement
– continuation with the programming language in the classroom and use of the

Moodle course
Category 3b Appeal of the programming Crash Course

Objective 2 Support BDE teachers through existing programming course (with
customisation) or other programming opportunities.

– naming the reasons for participation
– desires for other programming languages or microworlds
– interest in further education and training

Table 4: Overview of the categories and the associated content of the question-
naire.

6 Results

In total, 28 teachers answered the survey, of which 19 teach BDE. Of these
19 participants ten answered to have a degree in computer science or similar
training. The most common motivations for teaching BDE were related subject,
professional aptitude and/or assignment by others (e.g. principal).

For related subjects6, the combinations were often mathematics, followed by
other subjects like English or history. Voluntary reporting was predominantly
coupled with professional aptitude, among those volunteers only two teachers did

6 In Austria, the teacher training programme is linked to the choice of two (or more)
subjects, which enables teaching in Austrian schools. The choice of subjects can be
made independently, i.e. they do not have to be related at all.

68 S. Unkovic and M. Landman

not have proper training and came forward due to strong interest in imparting
knowledge to students. Those who were assigned by others to teach BDE, did not
have more than 10 years of professional experience in teaching which supports the
assumption that young teachers are assigned more commonly. But this small data
set cannot be used to draw conclusions about the general public. Nevertheless,
the result is a good indication of an existing problem in the school setting.

More than half of the participants, which corresponds to almost three quar-
ters of the BDE teachers, did not take part in any of our offers, but heard about
our initiative through colleagues or self-referrals. In terms of previous program-
ming experience and knowledge, one third of BDE teachers claim to have good
to excellent skills. (1) Python, (2) Java and (3) C#/C++ were the most used
programming languages among all our participants and are ranked by frequency.
57% of all participants state to have little to none experience at all. Slightly more
than half of them are BDE teachers and the rest correspond to CS teachers. On
closer inspection, these CS teachers have more than 10 years of professional ex-
perience and probably do not have a computer science degree, but attended only
a university course, see figure 1.

Fig. 1: Overview of programming experience of all participants.

16 out of 28 participants have little to none experience in programming, who
we want to pay more attention to and reach with our programming course. For
this purpose, six teachers, who already attended our course, were filtered during
the questionnaire via branches. Two of these six teachers chose and completed
the entire programme of our course with their students. The remaining teachers
based it on the two sessions (= block 1). In the first block section the opinions
on the categories introduction to the environment and method selection, e.g.
rect() or triangle(), were split, with the first half describing as suitable and by
the other as very suitable. Nearly 67% of the participants rated the subsection
“predefined variables” as suitable, but no further comments for improvement
were made. (1) Problems with syntax, (2) Understanding error messages and
finding errors, (3) Saving and finding files and (4) Lack of understanding the
programme and programme process were identified as difficult for the students

Supporting Non-CS Teachers with Programming Lessons 69

from the teachers’ perspective and are ordered by occurrence. To all the concepts
presented, loops and compound comparisons in branches were described as most
difficult. Again only two groups have done the whole programme. A general
suggestion for improvement was interactive videos on the website for the students
to better understand the tasks and unification and simplification of the provided
cheat sheets.

Fig. 2: Overview of programming experience of all participants.

The following items would speak for the attractiveness of the course on the
part of the teachers: Variety in the lessons, Support for non-specialist teachers
and Insight into tools and environments used (figure 2). The majority of par-
ticipants would be satisfied with the existing offer and programming language,
still 39% suggest a microworld, use of robots or another text-based programming
language, such as Python, Rust or C#. 75% would like to receive further edu-
cation or training from our institution. This can be explained by the insufficient
offers, as 26.3% described the category ”learning materials” as insufficient and
52.6% as neutral.

7 Discussion

This evaluation aimed to investigate the programming knowledge and needs of
teachers who teach the compulsory subject BDE in secondary schools (RQ1)
and to explore how we can adapt the programming course, which was originally
designed from the 9th grade onwards, to support these teachers and their students
better (RQ2).

Regarding the first research question (RQ1), the questionnaire revealed that
a significant number of teachers (57%) reported having little to no programming
experience. This outcome supports our assumption that there is a potential
gap in programming skills among the participants and that those untrained
often face the problem in teaching programming in their classes. Furthermore,
among those who claimed to have programming knowledge, the most popular

70 S. Unkovic and M. Landman

used programming languages were Python, Java and C#/C++, which is an
indicator of the general popularity of the languages in today’s community and
underscores the choice of Processing in our course, as it is Java-like. Regarding
RQ2, the questionnaire results shed light on the challenges faced by teachers
and their suggestions for improvement in the new version of the programming
course.

Difficulties for students included syntax problems, understanding error mes-
sages, saving and finding files, and a lack of understanding of the program and
its process. This results from oral comments made by students and their teach-
ers. Teachers observed that loops and compound comparisons in branches were
particularly challenging for the students. Feedback from teachers who had al-
ready participated in the course highlighted the need for interactive videos on
the course website and simplified cheat sheets. These insights can guide future
improvements to the programming course, addressing the identified challenges
and suggested improvements. There were also suggestions for additional enhance-
ments, such as including microworld, using robots, or incorporating alternative
text-based programming languages like Python, Rust or C#. These suggestions
indicate a desire to further diversify and customise the course content to teach-
ers’ and students’ specific needs.

The questionnaire also revealed positive aspects of the course that were at-
tractive to teachers, such as the variety of lessons or support for non-specialist
teachers. A very satisfactory result on the course, since it was the goal to reach
the teachers that needed it and give students a good first programming experi-
ence. However, it is crucial to note that the study’s limitations, particularly the
small sample size of only 28 teachers, strongly restrict the generalisability of the
findings. A larger sample would provide a more representative picture and offer
opportunities for future research.

8 Conclusion

In conclusion, this work gave an overview of the structure and content of the
newly introduced subject “Basic Digital Education” (BDE) in secondary schools
and the associated difficulties faced in teaching, especially in the area of program-
ming. In addition, this paper presented an already existing programming course
from 9th grade onwards, which shows great potential to be applied in lower
levels. The survey results highlighted a programming skill gap among teachers
responsible for teaching BDE classes and identified certain concepts as difficult
for students.

The feedback from teachers who had already attended the programming
course provided valuable suggestions for improvement. However, the study’s lim-
itations, particularly the small sample size, call for further research to validate
and extend these findings. Future investigations should aim to include a more
extensive and more diverse sample of teachers to obtain a more comprehensive
understanding of the programming knowledge and needs of teachers in secondary
schools. In the future, we would like to adapt the suggestions for improvement

Supporting Non-CS Teachers with Programming Lessons 71

in the current course and adapt it for the 8th grade, hold further training for
CS and BDE teachers with a focus on “programming” and offer programming
courses from 5th grade.

References

1. Brinda, T., Brüggen, N., Diethelm, I., Knaus, T., Kommer, S., Kopf, C., Mis-
somelius, P., Leschke, R., Tilemann, F., Weich, A.: Frankfurt-Dreieck zur Bildung
in der digital vernetzten Welt. Ein interdisziplinäres Modell (2020)

2. Bundesministerium für Bildung, Wissenschaft und Forschung: Änderung der
Verordnung über die Lehrpläne der Mittelschulen sowie der Verordnung über die
Lehrpläne der allgemeinbildenden höheren Schulen . https://www.ris.bka.gv.

at/eli/bgbl/II/2022/267/20220706 (2022), [Online; accessed 25-May-2023]
3. Bundesministerium für Bildung, Wissenschaft und Forschung: Mini-mooc ,,digi-

tale grundbildung”. https://www.bmbwf.gv.at/Themen/schule/zrp/dibi/paed/

mooc_dgb.html (2022)
4. Lakanen, A.J.: On the impact of computer science outreach events on k-12 stu-

dents. Jyväskylä studies in computing (236) (2016), https://jyx.jyu.fi/handle/
123456789/49729

5. Landman, M., Futschek, G., Unkovic, S., Voboril, F.: Initial learning of textual
programming at school: Evolution of outreach activities. Olympiads in Informatics
pp. 43–53 (2022). https://doi.org/10.15388/ioi.2022.05

6. Moritz, T.: Bildung und medienpädagogik im zeitalter der digitalen medien. Prob-
leme, Herausforderungen und Perspektiven für Pädagogik, Bildung und Schule in
Zeiten von Internet und Telekommunikation. Medien Impulse pp. 51–60 (2001)

7. OECD: Curriculum overload: A way forward. OECD Publishing, Paris (2020).
https://doi.org/10.1787/3081ceca-en

8. Papert, S.: Microworlds: Incubators for knowledge. Mindstorms-Children, Com-
puters and Powerful Ideas pp. 120–134 (1980)

9. Porter, L., Guzdial, M., McDowell, C., Simon, B.: Success in introduc-
tory programming. Communications of the ACM 56(8), 34–36 (2013).
https://doi.org/10.1145/2492007.2492020

10. Reas, C., Fry, B.: Processing: A programming handbook for visual designers and
artists. MIT Press, Cambridge, Massachusetts (2007), https://ieeexplore.ieee.
org/book/7008153

11. Sentance, S., Csizmadia, A.: Computing in the curriculum: Challenges and
strategies from a teacher’s perspective. Education and Information Technolo-
gies 22(2), 469–495 (2017). https://doi.org/10.1007/s10639-016-9482-0, https:

//link.springer.com/article/10.1007/s10639-016-9482-0#citeas
12. Vegas, E., Hansen, M., Fowler, B.: Building skills for life: How to expand and

improve computer science education around the world. Brookings (2021)
13. Wu, L., Looi, C.K., Multisilta, J., How, M.L., Choi, H., Hsu, T.C.,

Tuomi, P.: Teacher’s perceptions and readiness to teach coding skills:
A comparative study between finland, mainland china, singapore, tai-
wan, and south korea. The Asia-Pacific Education Researcher 29(1), 21–
34 (2020). https://doi.org/10.1007/s40299-019-00485-x, https://link.springer.
com/article/10.1007/s40299-019-00485-x

14. Zhang, L., Nouri, J., Rolandsson, L.: Progression of computational thinking skills in
swedish compulsory schools with block-based programming. In: Proceedings of the
Twenty-Second Australasian Computing Education Conference. pp. 66–75 (2020)

72 S. Unkovic and M. Landman

A Appendix: Excerpt from the questionnaire

1. Indicate how long you have been teaching:
(a) 0 - 1 years
(b) 1 year
(c) 2 years
(d) 3 years
(e) 4 years
(f) 5 years
(g) 5 - 10 years
(h) 10 - 20 years
(i) 20 - 30 years

2. Please state which subjects you teach:
(a) geometry
(b) mathematics
(c) English
(d) German
(e) other living foreign language
(f) Latin/ancient Greek
(g) Computer Science
(h) history
(i) geography
(j) Basic Digital Education
(k) other:

3. Why did you decide to teach “Digital Basic Education”? (Multiple selection
possible)
(a) Voluntary reporting
(b) Professional aptitude
(c) Related subject
(d) Classification by other persons (e.g. principal, etc.)
(e) other:

4. Assess your programming skills:
(a) none, I am a beginner and have little experience
(b) rather little, I have gained first experiences
(c) rather advanced, I can write my own programs
(d) advanced, I implement my own projects

5. If applicable: Which programming languages have you already worked with?
(Multiple selection possible)
(a) Java
(b) C#/C++
(c) Python
(d) Processing
(e) PHP
(f) other:

6. Please indicate why you would/have chosen the programming crash course
(an introduction to programming with a Java-like programming language
and comprises 1-2 double lessons):(Multiple selection possible)

Supporting Non-CS Teachers with Programming Lessons 73

(a) Students should get to know a new programming language
(b) Processing as an introductory language to programming for students
(c) I have little programming experience myself and would like to see how

it is implemented.
(d) Future cooperation with the institution
(e) Part of the syllabus
(f) other:

7. Please indicate if you have already booked a Processing course:
(a) 2 hour session
(b) 4 hour session
(c) No

8. I found the content in the first 2 hour session suitably prepared:
(a) Introduction in the environment
(b) Method selection (e.g. rect(), triangle())
(c) Pre-defined variables

9. I found the content in the second 2-hour block suitably prepared:
(a) Branches - simple comparisons
(b) Loops
(c) Branches - compound comparisons

10. Indicate whether difficulties were noticeable in your class: (Multiple selection
possible)
(a) Dealing with the environment
(b) Problems with the syntax
(c) Understanding and finding error messages
(d) Difficulties in creating programs to solve the tasks
(e) Saving and finding files
(f) Overstretched by the resources
(g) Lack of understanding the program structure
(h) other:

11. Please mark which concepts have been noticeably not easy for the students:
(Multiple selection possible)
(a) Branches - simple comparisons
(b) Loops
(c) Branches - compound comparisons
(d) Variables
(e) Methods
(f) other:

12. Rate this programming crash course. This offer would be good because (Mul-
tiple selection possible)
(a) Support for non-specialist teachers
(b) Variety in the classroom
(c) Insight into new methods of knowledge transfer
(d) Insight into tools and environments in use
(e) Networking and cooperation with the institution
(f) other:

74 S. Unkovic and M. Landman

MazeMastery – A Python Framework for
Teaching Maze-Traversal in High School

Raphaël Baur2, Jens Hartmann1, and Jacqueline Staub1

1 Faculty 4, Computer Science, University of Trier
Behringstraße 21, 54296 Trier, Germany

2 Department of Computer Science, ETH Zürich
Universitätstrasse 6, 8092 Zürich, Switzerland

rabaur@student.ethz.ch
{s4jehart, staub}@uni-trier.de

Abstract Programming is an activity that is strongly based on ab-
straction as many solutions can be generalized to cover a wide range of
applications. For students who are still in the process of developing their
abstraction skills, learning to write code for the general case can be a
daunting experience. We present the Python framework MazeMastery
which offers a didactic tool for teaching graph exploration strategies
through maze-based challenges at high school. Students can verify their
algorithms against randomized test cases that currently span six levels of
complexity as maze structures continuously increase in their structural
complexity. The tool offers an adaptable platform for examining students’
learning while challenging their conceptual understanding. MazeMastery
is an open-source community project for scientists and educators.

1 Graph Theory and the Long Way to High School

School systems around the globe are slowly adapting to the changing demands
in the job market by enforcing algorithmic problem-solving competencies in their
school syllabi. The UK, a country once said to be lagging behind Germany in
terms of CS education [15], has swiftly reacted by introducing computer science
as a compulsory subject across all grades of schooling. Meanwhile, most districts
of Germany still teach computer science as an optional subject which is offered
at the earliest from lower secondary school [14].

Addressing algorithmic concepts late requires that the focus is all the clearer.
The central objective of computer science in school is to foster computational
thinking skills. This term summarizes a variety of skills that encompass problem
decomposition, pattern recognition, generalization, and abstraction, alongside
learning to develop algorithms and formalizing them by programming. A wealth of
problems can be tackled using these skills, e.g., from modeling problems using the
formal notations of mathematics all the way to advanced programming concepts
such as recursion.

One domain that has already been shown to be accessible to students of all
ages is graph theory [7,16]. As a fundamental and powerful data structure, graphs

CC BY 4.0, R. Baur et al.
J.-P. Pellet and G. Parriaux (Eds.): ISSEP 2023 Local Proceedings, pp. 75–87, 2023.
https://doi.org/10.5281/zenodo.8431922

https://doi.org/10.5281/zenodo.8431922

can be used for modeling and analyzing multi-entity relationships, such as social
networks or transport systems. The corresponding algorithms are universally
applicable to all graphs including grid graphs and mazes. Since the 1980s, graph
theory has been suggested as a topic for computer science education in Germany [2]
and has not disappeared since. In dealing with graph problems, students need to
think systematically, experiment, and test their strategies.

Programmers typically explore a range of possible solutions – rarely is there
only one correct solution for a given problem. Depending on their skill level,
learners may find solutions between two ends of a spectrum: at one end they
come up with conceptually simple solutions that are highly specialized to a
specific problem instance, while at the other end, students find generalized and
complex solutions for larger problem classes. The journey along this spectrum
can be modeled as an adapted semantic wave. Maton’s semantic wave theory [18]
distinguishes between semantic density/gravity to describe the different levels of
human ingenuity. Semantic density conceptualizes the degree of condensation of
meaning (perceived as complexity). Basic programming commands, for instance,
contain less semantic meaning (i.e., they are semantically less “dense”) than the
concept of recursion. In contrast, semantic gravity conceptualizes the degree of
abstraction of meaning (perceived as abstraction). Tailored solutions to a given
problem are less abstract (and thus contain less semantic gravity) than fully
generalized solutions. Teachers can model a student’s learning path via their
teaching materials according to the concept of a semantic wave.

Existing materials are available for generating and visualizing mazes [12],
for illustrating search algorithms [3,5,17,1], for interacting with mazes in mixed
reality [9], using robots [6] or via classical programming [4,13]. While these existing
projects feature various maze-related topics in isolation, we present a tool that
combines all parts in a single didactic framework for Python programming classes.
Moreover, we incorporate techniques from the semantic wave theory into a single
open-source tool. The following section describes how this tool works and how
it can be used for modeling mazes as graphs and for subsequently traversing a
maze in a visual environment.

2 A Framework for Exploring DFS via Maze Traversal

Graph traversal algorithms such as depth-first-search (DFS) are topics in com-
puter science programming curricula at high school. To implement a DFS graph
traversal algorithm from scratch, several preconditions must be met: Students
require familiarity with both non-linear data structures like graphs for modeling
purposes and with programming constructs such as sequences, loops, variables,
branching, lists, matrices, stacks, and recursion.

In the following, we present a didactic tool for teaching maze traversal
in Python based on the above-mentioned prerequisites. We first discuss how
mazes can be modeled as graphs and then dive into the technical details by
presenting a tool that generates custom maze instances to challenge students’

76 R. Baur et al.

conceptual understanding. Finally, we discuss the generation of mazes with
dedicated attributes.

2.1 Modeling Mazes as Graphs

Students encounter mazes in their everyday lives, from architecture to entertain-
ment; it is thus an intuitively known object of study that can be modeled as a
graph. Specifically, grid mazes can be represented as planar graphs whose nodes
correspond to individual maze cells. A cell permits access to its spatially adjacent
cells if and only if there is no wall between them. We call such cells neighbors.
Three features characterize grid mazes:

1. There is a distinctive start and end point. These nodes can be marked, e.g.,
using dedicated markers. In our case, the start point corresponds to the initial
position of the agent, whereas the endpoint is the location of the Minotaur.

2. A grid maze consists of individual cells arranged in a grid structure. Each
cell has at most four neighbors; one in each compass direction.

3. Whether or not two adjacent grid cells are neighbors (which allow passing
through in both directions) is determined by the presence or absence of
separating walls.

Consider a rectangular maze of m rows and n columns exhibiting the attributes
above. A natural approach to model such a maze as a graph consists in representing
each cell as a node, arranging them in a grid of the same dimension as the maze,
and connecting two adjacent nodes by an edge if their corresponding maze cells
have no walls in between. With this representation, we obtain a grid graph of
size m × n. Each node has a unique coordinate (i, j) with i ∈ {0, 1, . . . , m − 1}
and j ∈ {0, 1, . . . , n − 1} that can be used as a two-tuple to determine the cell.
Figure 1 illustrates such a maze of size 4 × 5 alongside the corresponding grid
graph. In this case, maze traversal starts on the cell with coordinates (0, 0), and
the target is on coordinates (2, 3).

Figure 1: The same 4 × 5 grid structure once represented as a maze and once as a graph

A Python Framework for Teaching Maze-Traversal in High School 77

Note that this naming convention for nodes not only allows for assigning
each cell a unique name, but also allows for deriving from a coordinate (i, j) its
adjacent cells to the north, south, west, and east ((i − 1, j), (i + 1, j), (i, j − 1)
and (i, j + 1) respectively). This implicit information is the first objective that
students get to explore in our task series.

Although nodes in grid graphs typically have 4 neighbors (ignoring nodes at
the maze border), this is generally not the case in grid graphs representing mazes.
In grid graphs for mazes, nodes tend to have fewer neighbors with as few as 0 to
4 edges per node. For example, in Figure 1, cell (1,3) is connected only to (0,3)
and (1,2). Although (2,3) and (1,4) are also spatially adjacent, they do not allow
direct access due to the prevailing topology with walls. It is thus impossible to
directly visit the Minotaur on cell (2,3) from (1,3).

2.2 MazeMastery – A Tool for Teaching Maze Traversal

We developed a Python library named MazeMastery to facilitate students’ ex-
plorative, programmatic, and in-depth exposure to the graph model presented
in the previous subsection. We provide MazeMastery as a stand-alone Python
package, which allows it to be easily integrated into any development environment
supporting a Python interpreter. We provide an open-source implementation at
GitHub, and the package can be installed using the pip package manager using
pip install mazemastery.

The library provides a student-friendly user interface created with tkinter
that offers randomized exercises and tests for a diverse learning experience. A
minimal vocabulary of six basic commands, shown in Figure 2, is sufficient in
combination with classic Python constructs to use the library in high school
programming classes.

Students take control of an agent and are challenged to guide it from the
starting point to the end point (where the Minotaur awaits, drawing inspiration
from mythological narratives). Commands like get_pos() and set_pos(c) are
provided to determine the agent’s position and facilitate its traversal to neigh-
boring cells. Using put_[blue|red]_gem() and has_[blue|red]_gem(c), markers
can be positioned on the current cell for state management, and by utilizing
has_minotaur() and get_neighbors(), students gain the means to examine
the local surroundings of the agent, even when dealing with randomized and
unknown grids. MazeMastery uses a global Cartesian coordinate system where
the agent is, however, only able to move within his local neighborhood.

2.3 Level Description

MazeMastery currently provides six progressive levels, each curated to systemati-
cally increase the complexity and abstraction of the algorithmic implementation
required. Students have the flexibility to approach the levels with whatever
methods seem suitable. Each level comprises mazes with a specific characteristic
that poses requirements on the generalizability of the students’ solutions.

78 R. Baur et al.

–

–

– –

– –

Figure 2: Basic Commands used within MazeMastery

An overview of all levels along with an exemplary and modular codebase
showcasing key insights, can be found in Figure 10. These insights serve as
guiding principles, regardless of the specific implementation chosen by students.
We designed levels such that students can build upon their previous code and
add new functionality as the complexity of the mazes increases, thus increasing
semantic density and decreasing semantic gravity over time.

Level 1 introduces the agent starting on the left of an extended pathway with
the Minotaur at the wall to the right (see Figure 3). Navigating through this maze
requires students to visit several consecutive nodes. Students can achieve this
using a single coordinate instance whose column index is continuously updated
and used in the set_pos(c) command.

Level 2 shifts the positioning of the Minotaur at the beginning of each level
(see Figure 4). Without adapting the solution found for level 1, the agent likely
steps past the Minotaur due to this change. Consequently, the search should
terminate upon encountering the Minotaur. To this end, our library exposes the
has_minotaur() function, which checks whether the Minotaur is located at the
agent’s coordinate.

Level 3 deviates from the linear progression of the previous two levels by
presenting an unicursal maze structure that does not contain any dead ends or
loops, i.e., each node still has only two neighboring nodes but is not arranged in a
straight line (see Figure 5). In previous levels, it was sufficient to only adjust the

A Python Framework for Teaching Maze-Traversal in High School 79

column index of the agent’s position, but now this method will prove ineffective
if the path changes direction. Keeping track of where the agent is coming from
and where it is going to be is the core challenge of this stage. The users will
most likely find that they need to mark previously visited nodes, which can be
achieved using the put_blue_gem() command, which places a blue jewel on the
agent’s coordinates, and the has_blue_gem(c) command, which enables users
to check if node c was previously marked.

Level 4 presents a perfect maze structure exclusively comprising dead ends,
devoid of any cycles (see Figure 6). It introduces nodes with more than two
neighbors, thus confronting students with the challenge to effectively address
dead ends and navigate despite them to advance further in the maze. A possible
strategy involves the utilization of blue gems to mark the nodes that have
been visited once and red gems, which can be placed and checked for with the
commands put_red_gem() and has_red_gem(c) respectively, for nodes that
have been visited twice (i.e., on the return path from a dead end). When students
find themselves at a dead end, they need to employ a mechanism to exclude
nodes already marked from their path options.

Level 5 presents multiply connected mazes with both dead ends and cycles (see
Figure 7). To address this challenge, students need to recognize the importance of
making previously visited nodes retrievable, a requirement not present in previous
levels. In this context, students are encouraged to contemplate adopting either an
iterative or recursive approach. In the iterative method, students employ a stack
data structure, which allows them to store the visited nodes in a last-in-first-out
manner. As the agent naturally progresses through the maze, visited nodes can be
pushed onto the stack, facilitating easy retrieval when backtracking is necessary.

Level 6 serves as the most advanced stage in the current structure. After
locating the Minotaur, the students’ objective changes to guiding the agent back
to the entrance (Figure 8). This can be achieved via recursion; the recursive
descent enables traversal into the maze, while the recursive ascent allows for an
effective return path. Level 6 serves as a culmination of the student’s learning
journey, consolidating their understanding of recursive algorithms and providing
a platform to showcase algorithmic skills in the context of maze traversal.

Figure 3: Sample Maze for Level 1 Figure 4: Sample Maze for Level 2

80 R. Baur et al.

Figure 5: Unicursal Maze with One Single Path From Start to End (Level 3)

Figure 6: Perfect Maze without Loops but with Dead Ends (Level 4)

Figure 7: Multiply connected Maze with Loops and Dead Ends (Level 5)

Figure 8: Multiply connected Maze with Backtracking (Level 6)

A Python Framework for Teaching Maze-Traversal in High School 81

Figure 9: Level structure with possible implementation

82 R. Baur et al.

2.4 Our Contribution to Teaching Recursion

The outlined level hierarchy is designed to provide students with a structured
and progressive introduction to algorithmic concepts related to maze traversal.
The challenges emphasize the importance of iterative and recursive methods,
conditional statements, and data structures for graph traversal. While some of
these concepts can be challenging to teach, recursion is known as a concept that
is especially hard to grasp [10,19] and for which several incorrect mental models
have been found [8,11]. We address two such flawed mental models:

1. The looping model manifests as an erroneous identification of recursion and
loops, where the recursive process is perceived as a unified entity rather
than a sequence of successive instantiations. This misinterpretation blurs the
distinction between recursion and traditional looping constructs. It is crucial
to note that until level 4, the maze challenges can indeed be effectively solved
using loops. However, although loops can be replaced with tail recursion,
this substitution is not universally applicable to all forms of recursion. This
limitation becomes evident in levels 5 and 6, where more complex tasks such
as identifying cycles and dead ends demand a more profound understanding
of the backtracking process. As students grapple with the intricacies of
backtracking in these scenarios, they might recognize the constraints inherent
in relying solely on an iterative approach, especially without an explicit stack.

2. The recursive descent model manifests as an initial assumption that recursion
terminates solely upon reaching the base case. This model is challenged in
levels 5 and 6 as students realize the necessity of the recursive ascent to
continue the traversal process by backtracking and overcoming impediments.
They realize that instructions following the recursive call are required to
return to the correct path using different-colored node markings.

Students who develop mental models that do not fully capture the essence of re-
cursion might potentially encounter challenges in their conceptual understanding,
which could affect their problem-solving abilities. Addressing these misconceptions
is, therefore, a pertinent aspect of teaching programming. Our library addresses
this point using tailor-made maze instances for each of the six levels.

2.5 Maze Generation

To accommodate different levels of complexity, MazeMastery generates maze
instances with specific topological and geometrical properties. We discuss how
mazes for each level are generated:

– Levels 1 and 2 present mazes that represent straight corridors that only differ
in the positioning of the Minotaur. The corresponding graphs consist of a
single chain of nodes that differ only by their column coordinates.

– Level 3 involves unicursal mazes constituted by a single corridor with ran-
domized turns. This type of maze is generated by sampling self-avoiding
walks, i.e., from an initial node, neighbors are added by sampling randomly

A Python Framework for Teaching Maze-Traversal in High School 83

until the path self-intersects. To prevent early intersections, we use a heuristic
by increasing the probability of choosing neighbors in less-traversed direc-
tions. For each direction, we count the number of nodes that lie opposite
the direction at hand, yielding values zd where d indicates the direction
up, down, left, and right. To compute the probability of selecting the neigh-
bor in a specific direction, we use a tempered softmax function, defined as
exp(−βzd)/

∑
d′ exp(−βzd′). The tempered softmax serves two purposes. First,

it compresses the counts we obtain into a range between 0 and 1. This
compression allows us to interpret the results as probabilities. Second, it
ensures that the sum of these probabilities across all directions equals 1,
creating a valid probability distribution. The parameter β influences the
shape of the resulting distribution. When β is small, the distribution ap-
proaches uniformity, meaning each direction is chosen with roughly equal
probability. Larger values of β emphasize the differences between the counts,
increasing the chances of exploring less frequently chosen directions. However,
deterministically extending the path towards a less-explored direction will
not yield trajectories that cover the whole grid, but will tend to the center
of the grid and then end due to self-collisions. Choosing β = 0.01 seems to
strike a good balance between uniform distribution, which is prone to early
self-intersections, and a strategy that strives towards unexplored areas too
greedily, leading to paths that converge to the middle of the maze too quickly.

– Level 4 involves mazes with junctions and dead-ends, but no cycles, so-called
perfect mazes that correspond to trees. To generate these mazes, we create a
spanning tree using randomized depth-first search. In that process, potential
neighbors are chosen uniformly at random. To create the final maze, we start
with a fully disconnected grid graph and connect two nodes if and only if
they are connected in the previously generated spanning tree. With that, we
ensure that each cell is reachable and no loops exist, following the properties
of a spanning tree.

– Levels 5 and 6 involve mazes with dead ends and loops. We first generate
the maze analogously to level 4. Then, we remove walls with probability p if
their removal does not create 2 × 2 grids within the maze that do not contain
a wall, retaining the maze structure while avoiding large areas with no walls.

3 Evaluation

We conducted a qualitative think-aloud study with five male participants aged 19
to 23 years. They had all programming experience of at least 3 years but varied
knowledge of Python syntax.

3.1 Study Setup
The study aimed to assess (i) whether the tool allows heterogeneous learning, and
(ii) whether there are specific problems all participants encounter. After a brief
introduction to the six commands (see Figure 2), participants started progressing
from level 1 to 6 on their own. All actions were recorded for subsequent analysis.

84 R. Baur et al.

3.2 Findings
A short summary of experiences:
(i) Personalized learning seems possible. Solutions for level 1 sometimes fore-

shadowed later concepts. Participants progressed at their individual pace,
some reaching level 3 in just five, others taking more than 20 minutes.

(i) Six levels seem too few. Intermediate levels between 2 and 3, and between 3
and 4 are advisable for a smoother learning experience. Within 60 minutes,
no participant reached beyond level 4, one only reached level 3.

(ii) Confusion arose from associating commands with the agent’s actions. Ini-
tial parameterized commands like put_red_gem() allowing off-agent gem
placement caused confusion, leading to the command set presented before.

More detailed information including solutions is provided here.

4 Conclusion

Programming is an activity that requires abstraction as many solutions can be
generalized to cover a wide range of applications. For students who are still in the
process of developing their abstraction skills, this can be a daunting experience.
This work proposes an approach to address this hurdle in the context of graph
traversal using two-dimensional mazes. MazeMastery, our Python framework,
currently provides six levels of increasing semantic complexity: students first infer
global attributes of a given problem class by analyzing concrete instances, they
then develop a generalized algorithm and finally verify their algorithm against
concrete but unknown test cases. The intended learning path varies in semantic
complexity both throughout a specific level but also across all levels.

Ongoing research evaluates the framework’s effectiveness in teaching algorith-
mic problem-solving and analyzing learning paths. The modular and adaptable
nature of the framework allows for customization and integration with other teach-
ing resources in the context of programming. Limitations include the frameworks’
early development stage which did not yet involve tutorials and a quantitative
evaluation. However, we hope that this work inspires the scientific community to
become an active partner in researching the topic of graph theory in education
and promote future research on or with our open-source Python framework.

Acknowledgment We gratefully acknowledge the generous support of the Carl-
Zeiss-Foundation for funding our research. Moreover, we extend our heartfelt
appreciation to Dr. Martin Löhnertz for his assistance in proofreading and
providing input to this work.

References
1. Alan Blair, David Collien, Dwayne Ripley, and Selena Griffith. Constructivist

Simulations for Path Search Algorithms, pages 990–998. Australasian Association
for Engineering Education, Sydney, 2017.

A Python Framework for Teaching Maze-Traversal in High School 85

2. R. Bodendiek, H. Schumacher, K. Wagner, and G. Walther. Graphen in Forschung
und Unterricht: Festschrift K. Wagner. B. Franzbecker, 1985.

3. Alberte Emilie Christensen, Cecilie Jegind Christensen, Johannes Louis Geishauser
Hald, and Nicolai Otto. Generating and solving mazes, 2019.

4. Xiaozhou Deng, Danli Wang, Qiao Jin, and Fang Sun. Arcat: A tangible program-
ming tool for dfs algorithm teaching. In Proceedings of the 18th ACM International
Conference on Interaction Design and Children, IDC ’19, page 533–537, New York,
NY, USA, 2019. Association for Computing Machinery.

5. Clemens Bandrock et al. Projekt 4d labyrinth. https://www.mintgruen.tu-
berlin.de/mathesisWiki/doku.php?id=ss2021:project6:4d_labyrinth retrieved 23-4-
10, 2021.

6. Sergey Filippov, Natalia Ten, Ilya Shirokolobov, and Alexander Fradkov. Teaching
robotics in secondary school. IFAC-PapersOnLine, 50(1):12155–12160, 2017.

7. J. Paul Gibson. Teaching graph algorithms to children of all ages. In Proceedings of
the 17th ACM annual conference on Innovation and technology in computer science
education, pages 34–39, 2012.

8. Tina Götschi, Ian Sanders, and Vashti Galpin. Mental models of recursion. ACM
SIGCSE Bulletin, 35(1):346–350, 2003.

9. Lorenz Klopfenstein, Saverio Delpriori, Brendan Paolini, and Alessandro Bogliolo.
Codymaze: The hour of code in a mixed-reality maze. In INTED2018 proceedings,
pages 4878–4884. IATED, 2018.

10. Dalit Levy and Tami Lapidot. Recursively speaking: analyzing students’ discourse of
recursive phenomena. In Proceedings of the thirty-first SIGCSE technical symposium
on Computer science education, pages 315–319, Austin Texas USA, 2000. ACM.

11. Claudio Mirolo. Is iteration really easier to learn than recursion for CS1 students? In
Proceedings of the ninth annual international conference on International computing
education research, ICER ’12, pages 99–104, New York, 2012. Association for
Computing Machinery.

12. Muhammad Ahsan Naeem. pyamaze. https://github.com/MAN1986/pyamaze
retrieved 2023-4-10, 2021.

13. Richard Rasala, Jeff Raab, and Viera K. Proulx. The sigcse 2001 maze demonstration
program. In Proceedings of the 33rd SIGCSE technical symposium on Computer
science education, pages 287–291, 2002.

14. Richard Schwarz, Lutz Hellmig, and Steffen Friedrich. Informatikunterricht in
Deutschland – eine Übersicht. Informatik Spektrum, 44:95–103, 2021.

15. Sue Sentance and Neena Thota. A comparison of current trends within computer
science teaching in school in germany and the uk. In Informatics in schools: local pro-
ceedings of the 6th International Conference ISSEP 2013; selected papers; Oldenburg,
Germany, February 26–March 2, 2013, volume 6, pages 63–75. Universitätsverlag
Potsdam, 2013.

16. Robert R. Snapp. Teaching graph algorithms in a corn maze. ACM SIGCSE
Bulletin, 38(3):347–347, 2006.

17. MakeSchool Team. Solving the maze: Trees and mazes.
https://makeschool.org/mediabook/oa/tutorials/trees-and-mazes/solving-the-ma
ze/ retrieved 23-4-10.

18. Jane Waite, Karl Maton, Paul Curzon, and Lucinda Tuttiett. Unplugged computing
and semantic waves: Analysing crazy characters. In Proceedings of the 2019
Conference on United Kingdom & Ireland Computing Education Research, pages
1–7, 2019.

19. Susan Wiedenbeck. Learning recursion as a concept and as a programming technique.
ACM SIGCSE Bulletin, 20(1):275–278, 1988.

86 R. Baur et al.

A Appendix

Incomplete Complete

Recursive Descent

End

Start

i, j = get_pos()
new_pos = (i, j + 1)

set_pos(new_pos)

for neighbor in get_neighbors():

put_blue_gem()

if not has_blue_gem(neighbor):

new_pos = neighbor

found_neighbor = False

if not found_neighbor:

put_red_gem()

for neighbor in get_neighbors():

new_pos = neighbor
break

stack = [get_pos()]

new_pos = stack.pop()
else:
   stack.append(get_pos())

found_neighbor = True

break

old_pos = get_pos()

if has_minotaur() or \
 found_minotaur:

found_minotaur = True
return

solve()

put_red_gem()
set_pos(old_pos)

Recursive Ascent

Recursion tree unrolled?

Recursive Ascent

LEVEL 2

LEVEL 3

LEVEL 4

LEVEL 5

LEVEL 6

Iterative Approaches

while True: while not has_minotaur():

I1: Movement through

direct manipulation of the

coordinates

Update position

I3.1: Mark visited node

with blue gem

Iterate through current neighbors

Complete Incomplete

True False

I3.2: Check marked status,

when considering next node

Auxiliary variable to keep

track of whether at least one

neighbor is unvisited

Set auxiliary variable

I4: If all neighbors are marked

as visited (i.e., dead end), mark node

with red gems and backtrack

True False

Mark node as visited during

backtracking

Iterate through current neighbors

Complete Incomplete

if not has_red_gem(neighbor):

True False

I3.2: Check marked status,

 when considering next node

LEVEL 1

True False

True False

Legend

A sequence connected by arrows of the same

color represents the succession of insights and

corresponding implementations students need

to attain to solve a level.

I2: Check whether Minotaur

has been found

Dashed arrows represent the return to the

beginning of the loop.

I5: Maintain explicit node visitation order using stack

Figure 10: Flowchart illustrating the insights gained in the course of programming

A Python Framework for Teaching Maze-Traversal in High School 87

Computer Science Education
with a Computer in the Background

Maciej M. Sysło1[0000-0002-2940-8400]

1 Warsaw School of Computer Science, Warsaw, Poland
syslo@ii.uni.wroc.pl

Abstract. The original premise of the unplugged approach was to introduce
students to the concepts of computer science (CS) in a way that does not require
access to computers, in particular for programming. It is difficult to fully main-
tain this approach today, when almost all schools and all students are equipped
with digital equipment. The Bebras challenge is another initiative addressed to
students of all ages in K-12 in which it was originally assumed that students
have no prior knowledge of CS. The new CS curriculum was introduced in Po-
land in 2017/2019 and since then we witness a variety of approaches taken by
teachers and schools to meet the curriculum requirements. In this paper we pre-
sent an idea of teaching and learning CS with computers which are in the back-
ground and the use of them depends on a particular situation and student's deci-
sions. We consider this approach as an extension of the unplugged approach.
Four groups of such activities are distinguished: (1) classical unplugged with a
computer in the background, (2) problem situations for which a computer is on-
ly a medium, (3) educational robotics, and (4) designing solutions to problems
outside computers before using them. We shortly characterize these groups and
comment on their use in developing computational thinking and assessment.

Keywords: Unplugged, Computational Thinking, Curriculum

1 Introduction

We believe that the selected approaches to the development of computational thinking
(CT), programming skills and learning about computer science (CS) can bring the
expected results, as the authors of the papers assume. In our case, we look for an ap-
proach that will guarantee the achievements of all students as provided for in the CS
core curriculum. Contrary to most research results conducted on selected groups of
students from a fixed school level, we are interested in implementing the spiral devel-
opment of all students throughout the years of their stay in school, i.e. in K-12. It
follows from this premise that we cannot limit ourselves to a fixed approach or fixed
tools – teachers and especially students should be free to choose.

Computer science (Informatics) education has a long history in Poland. In this his-
tory, you can find elements corresponding to today's unplugged and CT approaches
that have been used and developed for a long time without being specifically named
as they are today.

CC BY 4.0, M. Sysło
J.-P. Pellet and G. Parriaux (Eds.): ISSEP 2023 Local Proceedings, pp. 89–101, 2023.
https://doi.org/10.5281/zenodo.8431926

https://doi.org/10.5281/zenodo.8431926

We will focus here on teaching CS and the presence or absence of a computer and
its applications in this process. We will justify our approach extending the unplugged
approach to CS with a computer in the background in a sense that a computer could
be in a reach of students and they can use it when they (or teacher) decide that it can
help them to learn better.

Today when all students have an easy access to technology, smartphones in their
pockets, tablets and computers in school computer labs, it is difficult to convince
students to CS classes with no access to technology.

2 CS education in Poland

2.1 Early History of CS education in Poland

The first regular lessons related to “computers” were held in Poland in two HS in
Wrocław in the second half of the 1960’ when the terms “computer” and “informat-
ics” did not have counterparts in Polish and a computer was a “mathematical ma-
chine”. The school subject was called „Programming and using a computer”. Since
those days a computer was mainly used for numerical calculations, students in this
first informatics classes learnt some basic numerical methods for solving mathemati-
cal problems and programming languages (assembler, Algol 60). They ran their pro-
grams on the real mainframe Elliott 803 located at the University (Sysło, 2014a).

The official history of informatics (computer science in Polish) in Polish schools
started in 1985 with the first official informatics curriculum for the school subject
called “Elements of Informatics” proposed by the Polish Information Processing So-
ciety and approved by The Ministry of National Education. The curriculum covered
the topics related to the use of microcomputer applications (for text editing, creating
graphics and sounds, building tables and simple databases, making simulations) and
also elements of algorithmics and structural programming using Logo, mainly for
drawing pictures and operations on lists of characters (Sysło, 2014a).

In Poland, we are very proud that algorithmics and programming in infor-
matics education, introduced to the curriculum in 1985, have remained in the
national core curriculum for all these years until today.

2.2 Computational thinking in the CS curriculum of 1997

From 1997 for the next 15 years in Poland, all national core curriculum on CS sup-
ported Denning's opinion that: Computational thinking has a long history within com-
puter science. Known in the 1950s and 1960s as “algorithmic thinking,” it means a
mental orientation to formulating problems as conversions of some input to an output
and looking for algorithms to perform the conversions (Denning, 2009).

In the curriculum for HS approved in 1997, in the section "Algorithmics and pro-
gramming" one can read that the school is to provide conditions for students to ac-
quire the following competences, called algorithmic thinking:

• Define a problem situation, including data [abstraction], the goal and the results.

90 M. Sysło

• Formulate a plan for solving the problem – separate sub-problems [decomposition]
and indicate connections between them.

• Choose a way to solve the problem:
o design an algorithm [algorithmic thinking].
o use an existing program or program a solution method in a selected program-

ming language [implementation, programming].
• Analyze the correctness of the algorithm and its implementation [debugging], and

assess its complexity [evaluation], test the program [testing].
• Complex projects solve in a team [collaboration].
• Choose and solve problems from various school subjects [generalization].

The above list of competencies resembles the operational definition of CT (Barr et al.,
2011). Additionally, we have inserted into the text above some mental tools of CT (in
italic) that constitute another definition of CT. Thus, CT as algorithmic thinking has a
long tradition in our CS education. In the years that followed, these curriculum state-
ments slightly reformulated were addressed to all school levels.

2.3 The new CS curriculum

In the last 20 years several countries began introducing CS for all students with CT as
a main capability. We in Poland continue our efforts to address CS to all students in
K-12 with algorithmic thinking as the main approach which, as illustrated above, is
another formulation of the operational definition of CT.

The new core curriculum of CS has been introduced to K-8 in September 2017 and
to HS, including vocational schools, in September 2019. It benefits very much from
our experience in teaching informatics in schools for more than 30 years (Sysło,
Kwiatkowska, 2015).

The new curriculum consists of Unified aims, which define five knowledge areas
in the form of general requirements, they are the same for all school levels. The most
important are the first two aims and their order in the curricula: (I) Understanding
and analysis of problems based on logical and abstract thinking, algorithmic think-
ing, and information representations; (II) Programming and problem solving by
using computers and other digital devices – designing algorithms and programs,
organizing, searching and sharing information, using computer applications. The con-
tent of each aim, defined adequately to the school level, consists of detailed Attain-
ment targets. Thus, learning objectives are defined that identify the specific infor-
matics concepts and skills students should learn and achieve in a spiral fashion
through the four levels of their education (grades 1-3, 4-6, 7-8, HS 9-12). At each
level the implementation of the curriculum varies across three elements – the first
element is more important at lower levels and elements 2 and 3 become more im-
portant during progression: (1) problem situations, cooperative games, and puzzles
that use concrete meaningful objects – discovering concepts, heuristics; (2) computa-
tional thinking about the objects and concepts – algorithms, solutions; (3) program-
ming, moving from visual/block to text-based environment, including program testing
and debugging. For benefits of such a spiral curriculum see (Webb et al., 2017).

Computer Science Education with a Computer in the Background 91

2.4 Computational thinking

As a conclusion to the history of our way to CS4ALL in Poland, where CT appears to
be operationally defined and consisting of some mental tools used in the process of
solving problems, we avoid to use the terms “CT education”, “teaching CT”, “CT
classes” and similar, as used by many authors. CT is an approach and a collection of
mental tools used in problem solving as a byproduct in learning CS concepts and
methods (algorithms). Therefore, the following definition of CT fits our approach
(Wing, 2014): Computational thinking is the thought processes involved in formulat-
ing a problem and expressing its solution(s) in such a way that a computer – human
or machine – can effectively carry out.

We propose not to directly teach CT, but teach how to discover, develop, and use
CT in solving problems from various areas of education, especially in CS. Similarly,
as we suggest not to “teach Scratch” but to “teach programming using Scratch”.

The introduction of CT to education, along with Jannette Wing in 2006, is also at-
tributed to Seymour Papert in connection with his idea of constructionist learning
(Papert, 1980) focused on stimulating students to reflective thinking. The most ap-
pealing to us is the saying of Papert from 1970 (Papert, 1970) that: children learn by
doing and thinking about what they do. Therefore, treating CT as a problem-solving
strategy that involves the use of CT-related mental tools in the process, we add also a
constructionist viewpoint and expect students’ reflective thinking.

3 CS education with a computer in the background

Computer Science Unplugged (CS Unplugged) has been defined as: a collection of
activities and ideas to engage a variety of audiences with great ideas from computer
science, without having to learn programming or even use a digital device. It origi-
nated in 1990’ as an outreach program to engage school students to help them under-
stand what computer science might involve other than programming. Then some un-
plugged activities have been described and published in several languages (see csun-
plugged.org) and they are widely used in lessons and also in research. The approach is
mentioned in textbooks and web services on teaching CS and appears also in recom-
mendations for national and school curricula. However, the available content was still
intended as enrichment and extension exercises, and did not assume that computer
science would be part of the curriculum (all citations from Bell, Vahrenhold, 2018).

From pedagogical point of view, unplugged approach is based on constructivism
and partly on constructionism: students construct their own knowledge, sometimes
producing also certain artifacts, by utilizing what they have already learnt, using some
mental tools, and engaging with problem situations to be solved or questions to be
answered. This process of learning leads them to understand important concepts, prin-
ciples, and mechanisms, mainly of computing nature (Relkin, Strawhacker, 2021).

Looking back at the history of CS education in Poland, briefly described in Sec.2
(Sysło, 2014a), algorithmics plus programming and problem solving using algorith-
mic thinking were closely related in the 1965 and 1985 curricula for schools as well
as in all national core curricula after 1997. In 1980’ when regular CS lessons entered

92 M. Sysło

schools, students had a long way (in distance and time) to a computer, therefore they
had to spent a lot of time writing their programs on paper before the programs reached
a computer. Also teachers were explaining CS concepts and algorithms using tradi-
tional tools. It was time of unplugged introduction to CS and preparation for pro-
gramming. I remember HS classes coming with their teachers to our Institute for CS
lessons (the Institute was quite well equipped in computers) – the students spent first
hour in a classroom developing their algorithms and programs and then spent one
hour in a computer lab uploading, running, testing, and debugging their programs.

Never in the past or in recent years have we referred to classes as unplugged or
plugged-in, these CS teaching and learning phases have been naturally intertwined
and integrated. Today it is difficult to maintain an unplugged approach when almost
all schools are fairly well equipped with digital equipment. Moreover, it is reported
that unplugged activities are effective when used in a context where they will be ulti-
mately linked to implementation on a digital device, either through programming, or
by helping students to see where these ideas impinge on their daily life (Bell, Lodi
2019). Unplugged activities may play a role of introduction to using CT tools. In par-
ticular, combining both unplugged and plugged-in activities may help students to
better comprehend programming concepts and constructions such as variables, loops,
conditionals, and events, which are shared by CT, programming, and CS in general.

Understanding the unplugged approach as an introduction to CS without using a
computer, mainly so as not to program it, we extend here the range of unplugged, to
teaching and learning environments with a computer in the background, in which
the computer (and other IT technologies) is in the background of learning activities,
closer or further, more or less integrated, but not as the technology used in learning to
program, although in the process of CS problem solving including programming.

Almost every CS concept can be introduced to students without using a computer.
However, since we focus on rigorous CS education, we propose to use the approach
with a computer in the background very flexibly. Ultimately, it is the teacher who
decides about the role of computers in his classes, but leaving students the choice so
that they have an opportunity to develop also their ability to make decisions about the
use and the role of computers and other technologies in the problem-solving process.

We distinguish four types of environments in which a computer has its place in the
background, in a certain sense. In the rest of this chapter we focus our attention on
these environments and comment how they can be used in learning and teaching to
reaching the goals of CS education including – the most important – CT skills.

• classical unplugged, eventually with some computer puzzles
• Bebras tasks
• educational robotics
• algorithmics and programming unplugged.

One may thing also about other types of environments which are combination of dif-
ferent tools, mechanical and electronic calculating machines, games, computer games
etc. which can be used to introduce students to fundamental concepts of computing.
We use such environments at a children’s university (Sysło, Kwiatkowska, 2014b).
Our approach contributes to constructionist learning, to learning by doing and making

Computer Science Education with a Computer in the Background 93

meaningful objects in the real world, computational models of real-world situations.
Our learning environments are extensions of classical unplugged ones by encouraging
children to purposely and properly use computers for certain activities.

3.1 Classical unplugged

By classical unplugged activities we mean the activities originally proposed by Mike
Fellows and Tim Bell and the other activities of similar type used to engage young
students with basic ideas and algorithms from computing and problem solving, but
without using a computer or another digital device. Since usually there are many digi-
tal devices in the classrooms (tablets, smartphones), we have created a package of 25
modules with simple applications that can be used in many ways by the youngest
students, hence its name: Informatics for Kids – I4K (pl. Informatyka dla Smyk). The
applications are mostly related to CS education, but they can also be useful in classes
related to almost any other education: mathematics, natural sciences, languages, art,
etc. Some modules are linked to the Bebras tasks or the code.org puzzles.

Almost all activities proposed in this package, intended to be
carried out on a computer or tablet, can be transferred to situa-
tions arranged outside the computer with appropriately prepared materials (cards,
templates etc.). Then such classes take the form of the classical unplugged – a group
activity, providing kids with additional impressions, cooperation skills and reflection.

Behind the package there is the idea of Jean Piaget's constructivism, according to
which the kids build their knowledge on the basis of what they already know and the
experience gained while performing various exercises. This idea of learning by doing,
which has its roots in progressivism at the turn of the 19th and 20th centuries, was
extended at the end of the 20th century by Seymour Papert to constructionism, plac-
ing additional emphasis on artifacts (also on a screen) that are the product of learners.
It is well characterized by Papert's words that: children learn by doing and thinking
about what they do (Papert, 1970). Currently, the thinking accompanying children's
educational activities is well defined by mental tools that make up CT.

3.2 Bebras tasks

The Bebras Challenge consists in solving a certain number of tasks (called Bebras
tasks). Most of the tasks are in the form of illustrated stories that describe certain
“real” problem situations. The tasks are related to concepts, issues or methods in CS,
usually indirectly, hidden in the stories. The Challenge is an opportunity for students
to discover CS concepts and methods (algorithms) by solving short tasks that promote
CT (Dagienė et al. 2019). They have about 3 minutes to solve a task: to choose a right
multiple-choice entry, write an answer (usually a string of characters) in an open win-
dow or interact with a part of the task formulation to complete its solution. A comput-
er is only a medium for presenting the tasks and is used to create and save task solu-
tions. The Bebras tasks may be also used in a full unplugged fashion, printed or ar-
ranged on the floor, far from computers.

94 M. Sysło

In Poland, the Challenge is run by a computer system, client-server type – each de-
cision of a student (client) taken at his school computer is recorded on the server.
After a challenge, we issue augmented versions of all tasks which contain an addi-
tional section consisting of: a correct solution and its development, and comments that
are extended version of the original task section “It’s informatics”. The comments are
addressed to both, students and to teachers.

In the beginning of the Challenge, it was assumed that the Bebras tasks could be
solved without any previous knowledge of CS or programming. On any level of
school education, students were not supposed to demonstrate any CS knowledge, but
possibly the ability to solve tasks using mental tools of CT. After almost 20 years of
the Challenge which have been accompanied by many national initiatives aimed at
introducing CS for all students at all education stages, the role of the Bebras tasks
should be reconsidered and possibly reviewed. One hour of a challenge a year, usually
taken by only some students on only a selection of concepts, topics and tools, is not
able to make a significant impact on CS education of all students in general.

Reviewing the pertinent references we could not find any evidence that the Bebras
tasks are used beyond the challenge and integrated with regular CS lessons and learn-
ing strategies in a class, except assessment, see Lonati (2020). On the way to over-
come this situation, we build a repository of Bebras tasks as a collection of individual
tasks in both versions, competition and with explanations, used in the Challenge in
Poland. The tasks are tagged with CS concepts and CT mental tools used in the tasks
(see (Dagienė et al. 2020; Datzko, 2021) for a classification of Bebras tasks). A teach-
er can choose one or more tasks from the repository by setting the stage of the Chal-
lenge and selecting key words characterizing the tasks with CS concepts and CT
tools. From selected tasks, a teacher can create a mini-challenge for a class, which can
be used in several ways, as a warm-up preparing or introducing students to a lesson
topic, as a test how students are prepared for a lesson, or as a test assessing students'
knowledge and skills in the range of CS concepts and CT skills at the end of a lesson.

The repository allows easy access to tasks to learn how to solve them. There is no
other way to learn than to practice with such tasks – this is our answer to teachers,
students and their parents when they ask: How to prepare students for the Challenge.

The idea underlying the Bebras Challenge as a way to introduce students to CS,
can be extended on professional development of teachers. This may apply to all
teachers who do not have a full ICT/CS education as required by the curriculum. We
focus our attention on primary education teachers (grades K-3), who are graduates of
pedagogical faculties and usually have contact only with ICT classes.

The Bebras tasks can also be used as measures to assess students' overall develop-
ment and ability to transfer acquired CT skills while solving problems that, by the
nature of these tasks, relate to real problem situations (Román-González et al., 2019).
A special moment for such an assessment may be the end of a certain educational
stage, for example at the end of primary education K-3 what is very important for a
successful spiral development of students. Again, the repository of Bebras tasks may
be very useful to properly arrange tests according to expected knowledge and skill of
students.

Computer Science Education with a Computer in the Background 95

3.3 Educational robotics

Learning with physical robots, such as Dash&Dot, Ozobot, Genibot can be seen as a
continuation of the kinesthetic activities from the first group of activities, when for
example a robot is supposed to imitate the movements of children or vice versa, on
the floor or on the screen. Moreover, physical manipulation of objects promotes chil-
dren’s’ constructionist learning through the development of mental representations of
the objects. Solving various tasks and problems they create, build, evaluate, and re-
vise their constructions and concepts which are to meet their expectations and goals.
Robotics also encourages students to analyze real world problems, think creatively,
and apply CT tools in the process of proposing solutions to such problems (Bers,
2008), (Grover, 2011), (Chevalier et al., 2020).

Classes with robots can also play a role of introduction to programming when stu-
dents turn on robots and control their moves to achieve certain goals with the help of
programs made in a language characteristic for given types of robots. In such classes
students have opportunity to learn that robots can understand they own language to
communicate with them: graphical collection of interactive instructions (Dash&Dot),
colors (Ozobot), cards (Genibot), and Blockly (Dash&Dot, Ozobot, Genibot).

Although playing with a robot is unplugged to some extent, almost every robot
contains a "mechanism" to control its behavior. Watching the youngest children play-
ing with robots, treating robots as programmable devices goes to the background of
their attention, they are mainly interest in the behavior of the robots they want to
achieve. Thanks to this, it is quite easy to associate the types of robot moves with
concepts that have a broader meaning, such as moving in different directions or dis-
tances, repeating selected moves a certain number of times, or performing certain
moves depending on the situation encountered by robots. From such learning with
robots it is quite close to a more formal approach to programming concepts in general.

A special type of lessons with robots are concerned with controlling them on a
computer screen. Such children activities are important to implement the statement in
our curriculum for K-3 which reads: "A student [...] programs sequences of instruc-
tions which control an object on the screen of a computer or other digital devices". An
excellent environment for this type of activities are puzzles in the Hour of Code initia-
tive (https://code.org/learn), which is very popular in Poland – in 2018 there were
more than 650 M students registered to code.org from Poland. Such a popularity is
due to many thoughtful solutions such as: (1) the heroes of the puzzles are characters
known to students from their favorite stories, comics and games; here they can inter-
act with them; (2) puzzles are in sets of increasing difficulty; (3) the solutions of puz-
zles consist in arranging a program in a block-based language to pre-prepared scenar-
ios; (4) the students can run, debug and improve solutions many times; (5) they can
also view the Java Script code corresponding to the block-based solution. Although
there is no direct connection of the code.org activities with CT concepts, solving such
puzzles arranged in courses which correspond to particular algorithmic and program-
ming constructions, students apply abstraction and pattern matching, then decomposi-
tion and finally algorithms in solving puzzles. Moreover, using event blocks students
can program interaction what is a quite advanced CS topic.

96 M. Sysło

3.4 Algorithmics and programming unplugged

Modeling, designing and solving problem situations outside the computer as a step
preceding the computer solution – in unplugged fashion – has a history as long as CS
in professional and educational environments. In 1950’ till even in 1980’, for a pro-
grammer or a student there was a long way (in distance and time) to a computer,
therefore they spent a lot of time on writing their programs on paper before they were
run on a computer. I remember when students’ programs brought to a computer, run
successfully without any corrections – I don’t think it happens today, now they sit at a
computer until their programs run correct.

Caeli and Yadav (2020) in they view on historical development of CS emphasize
the importance of combining plugged and unplugged activities, as means to fully
understand and take advantage of the power of computing. Unplugged activities can
be very efficient in understanding the concepts and methods behind a problem to be
solved and computer tools to be used.

Skills of programming are not needed to develop an algorithm for a problem, alt-
hough programming a solution is needed to fully experience limitations when imple-
menting the algorithm. On the other hand however, after a few first lessons on pro-
gramming with a properly chosen algorithms to be implemented, any next lesson on
creating and implementing an algorithmic solution to a problem cannot be naturally
split into unplugged and plugged parts – students working on an algorithmic solutions
quite often use programming constructions they have already learnt to describe algo-
rithmic constructions. Finally, a description of an algorithm, even on paper, takes a
pseudo programming language form, which can be considered as a result of not only
combining plugged and unplugged activities but as an integration of both approaches.

The first informatics textbook Elements of informatics (in Polish) for high schools
appeared 1989 and contained two chapters on algorithmics and programming. The
chapter “From a problem to a program – elements of programming in Pascal” leads
from formulating a problem situation to a program in Pascal and the chapter “Calcu-
late faster – the efficiency of algorithms” deals with practical efficiency and theoreti-
cal optimality of some searching and sorting algorithms. In 1997, the author published
the book Algorithms (in Polish) “for those who are interested in learning how to cre-
ate algorithms and using them to solve problems” and in 1998 the book on algorithms
was accompanied by Pyramids, cones and other algorithmic constructions (in Polish),
which consists of 15 short chapters on various problem situations treated in an un-
plugged manner for developing some algorithmic topics and techniques, see Table 1.

Each problem situation in the Pyramids can be first discussed, analyzed and solved
to some extent far from a computer. Popular examples are: social games, short codes,
change making, etc. The book contains also a chapter on the stable marriage problem
which has a much longer history in the author’ teaching using unplugged approach. In
a class on algorithmics in the early 1970’, the author has decided to introduce the
Gale and Shepley's algorithm for creating stable marriages to a group of students (the
same number of boys and girls). First, the students created lists of preferences in the
other sex group and then they started to perform the algorithm (which is a kind of
greedy method) interchangeably choosing in the other group and revising their choic-

Computer Science Education with a Computer in the Background 97

es when refused in the other group. Finally a class concluded writing a computer pro-
gram which in that time was run in the batch mode. The author was able to see the
benefits of the applied approach – unplugged – after 20 years, when he met one of the
students and he remembered exactly how the algorithm “run” on the living organism
of students – he was able to repeat it. I doubt whether he would be able to reproduce a
program written for this algorithm. Today, when computers are at hand and every-
where and I still recommend this algorithm to be performed in a group of students
before they start programming it.

Table 1. Contents of the book Pyramids… Each chapter is characterized by CS topics it deals
with and CT tools applied in solving the related problems.

Chapters CS topics, CT tools
Add a pinch of salt to taste – are recipes
algorithms

CS topics: precision of algorithmic steps
CT tools: approximation, uniqueness, cook versus compu-
ter

How the pyramids were built CS topics: calculations
CT tools: algorithm

Social games CS topics: who is the idol? leader election.
CT tools: reduction by elimination

The efficiency of Russian peasants in
multiplication – how to simplify your life

CS topics: binary system, fast multiplication
CT tools: multiplication by decomposition

Recursion – how to use what we know,
how to "dump the work" to a computer

CS topics: generating consecutive digits of a number
CT tools: recursion, positional representation of numbers

Fibonacci numbers – how to be perfect CS topics: Fibonacci numbers in science
CT tools: recursive thinking, fast calculations

Filling vessels using the Euclid algorithm CS topics: Euclid algorithm
CT tools: geometric interpretation, diophantine equation

Prime numbers and composite numbers CS topics: prime and composite numbers
CT tools: algorithm, testing whether a number is prime

Clock arithmetic – benefits of residuals CS topics: modular arithmetic
CT tools: fast calculations on large numbers

Searching in ordered and unordered sets
– about the benefits of taking care of
order

CS topics: searching in ordered sets
CT tools: binary search, divide and conquer

Finding stable relationships – dancing
couples, marriages

CS topics: stable matching
CT tools: greedy strategy

Do we always gain from greediness? CS topics: the change making problem, leaving the maze
CT tools: greedy algorithm

Small trees – fast vending machines and
short codes

CS topics: Huffman compression, fast vending machines
CT tools: greedy approach, trees

Backtracking search CS topics: the queens problem, leaving the maze
CT tools: backtracking, brute force

Dynamic programming CS topics: dynamic programming

98 M. Sysło

CT tools: optimization by dynamic programming
The topics discussed in Pyramids… are introduced there in an informal way, omitting
theoretical arguments. Practical applications and examples help the reader to solve
some of the tasks in the book, which may be considered as a test of comprehension.

This book can be used by teachers as a demonstration of pedagogical content
knowledge (PCK) that subject knowledge and teaching methods cannot be considered
independently (Shulman, 1986). PCK combines the knowledge of the subject with
pedagogy and the practice of teaching it. PCK is (Shulman): "The ways of represent-
ing and formulating the subject that make it comprehensible to others", to students
and also to teachers when they first approach new topics they are going to teach.

3.5 Conclusions

Activities as puzzles appear in all the above groups. They are important “tools” for
algorithmic thinking, accompanied by other CT tools. In particular (Levitin, 2005):
(1) puzzles lead to thinking about algorithms on a more abstract level not directly
related to programming; (2) strategies of solving puzzles are always special instances
of general problem-solving techniques which might be useful in other domains; (3)
solving puzzles helps to develop creativity; (4) puzzles are usually very attractive for
students more than regular lesson assignments, making them working harder.

The approach to developing CT skills presented in this paper is a proposal to inte-
grate unplugged activities and coding without any restrictions when using one or the
other in the spiral development of computing skills and CT. Decisions are in the
hands of teachers and students who should be able to choose the best way of learning
for them. There is no dichotomy of unplugged or programming, unplugged should be
integrated with the process of learning programming and CS concepts in general..

Activities of students outside a computer are offered today to the youngest adepts
of CS, but in the past they have also accompanied specialists in CS, especially in
times when computers were located in remote and isolated places. Activities in clas-
ses without a computer or with a computer in the background have also broader goals
of developing the ability to select tools (hardware or/and software) as a decision in the
process of designing a way to solve a problem. In some cases, it may turn out that a
computer is not needed at all, for example, when certain calculations can be done by
hand, and when we decide to use a computer – the solution can be created in a ready-
made application without the need to create our own program.

How different is the role of computers in the activities discussed in this chapter. In
the first case, computers are really in the background. In the Bebras Challenge, com-
puters are necessary, but they are only a medium for conducting the challenge. Then,
in playing with robots, a computer may appear either as a processor built into such
devices or as a robot control device, often requiring programming. Finally, in the last
type of activities, the computer waits for a prepared student to make proper use of it.

All these four types of activities have one thing in common – they are addressed to
all students, including also those who do not think about connecting their professional
future with CS. Therefore, they are to bring them closer to CS using various methods
and from different points of view, with or away from the computer, to varying de-

Computer Science Education with a Computer in the Background 99

grees of depth. As a result, they are to tear off the secrecy from CS solutions and
bring closer the laws and mechanisms of their functioning. Knowledge of these mech-
anisms can be useful even to a non-specialist to understand their operation, and some-
times even modify them for their own purposes.

References

1. Barr D., Harrison J. and Conery L. (2011), Computational Thinking: A Digital Age Skill
for Everyone. Learning and Leading with Technology, 38, 20–23.

2. Bell T., Vahrenhold J. (2018), CS Unplugged – How is it used, and does it work? in:
Böckenhauer H.-J., Komm D., Unger W. (eds.), Adventures between lower bounds and
higher altitudes. Springer, New York: 497–521.

3. Bell T., Lodi M. (2019), Constructing Computational Thinking Without Using Computers,
Constructivist Foundations 3/14, 342-359.

4. Bers M.U. (2008), Blocks to robots, Learning with Technology in the Early Childhood
Classroom, Teachers College, Columbia University, New York

5. Caeli E.N., Yadav A. (2020), Unplugged Approaches to Computational Thinking: a His-
torical Perspective, TechTrends, nr 6/2020.

6. Chevalier, M., Giang, C., Piatti, A., & Mondada, F. (2020), Fostering computational think-
ing through educational robotics: A model for creative computational problem-solving. In-
ternational Journal of STEM Education, 7, 41.

7. Dagienė V., Futschek G., Stupuriene G. (2019), Creativity in solving short tasks for learn-
ing computational thinking, Constructivist Foundation 14, 3, 382-415.

8. Dagienė V., Hromkovic J., Lacher R. (2020), A two-dimensional classification model for
the Bebras tasks on informatics based simultaneously on subfields and competencies,
ISSEP 2020.

9. Datzko Ch. (2021), A multi-dimensional approach to categorize Bebras tasks, ISSEP 2021.
10. Denning P.J. (2009), Beyond Computational Thinking, CACM 52, 6, 28-30.
11. Grover S. (2011),Robotics and Engineering for Middle and High School Students to De-

velop Computational Thinking, Annual Meeting of the American Educational Research
Association, New Orleans

12. Levitin A. (2005), Analyze That: Puzzles and Analysis of Algorithms, SIGCSE’05, ACM.
13. Lonati V. (2020), Getting Inspired by Bebras Tasks. How Italian Teachers Elaborate on

Computing Topics, Informatics in Education, Vol. 19, No. 4, 669–699.
14. Papert S. (1970), Teaching Children Thinking, WCCE, IFIPS, Amsterdam.
15. Papert S. (1980), Mindstorms. Children, Computers, and Powerful Ideas, Basic Books.
16. Relkin E., Strawhacker A. (2021), Unplugged Learning: Recognizing Computational

Thinking in Everyday Life, in: Bers M. (ed.), Teaching Computational Thinking and Cod-
ing to Young Children, IGI Global, 41-62.

17. Román-González M., Moreno-León J., Robles G. (2019), Combining assessment tools for
a comprehensive evaluation of computational thinking interventions. in: Kong S.C., Abel-
son H. (eds.),Computational thinking education, Springer, 79–98.

18. Shulman L.S. (1986), Those who understand: Knowledge growth in teaching, Educational
Researcher, 2/15, 4–14

19. Sysło M.M. (2014a), The First 25 Years of Computers in Education in Poland: 1965 –
1990, in:Tatnall A., Davey B. (eds.), History of Computers in Education, IFIP AICT 424.

20. Sysło M.M., Kwiatkowska A.B. (2014b), Playing with Computing at a Children’s Univer-
sity, WiPSCE '14, Berlin, Germany, 104-107.

100 M. Sysło

21. Sysło, M.M., Kwiatkowska, A.B. (2015), Introducing a new computer science curriculum
for all school levels in Poland, ISSEP 2015.

22. Webb M. et al. (2017), Computer Science in the School Curriculum: Issues and Challeng-
es, in: Tatnall A., Webb M. (eds.), WCCE 2017, IFIP AICT 515, 421–431.

23. Wing J. (2014), Computational Thinking Benefits Society,
http://socialissues.cs.toronto.edu/index.html%3Fp=279.html.

Computer Science Education with a Computer in the Background 101

Effects of the Use of Robots on Algorithmization,
Decentration and Locating in the Plane Skills

Emma Schenkenberg van Mierop[0009−0001−4502−7704],
Acsa-Loriane Schmidt, and Morgane Chevalier[0000−0002−9115−1992]

University of Teacher Education, Lausanne, Switzerland
{emma.schenkenberg, acsa-loriane.schmidt, morgane.chevalier}@hepl.ch

Abstract. Now that computer science (CS) has entered the curriculum,
two questions regularly emerge: on the one hand, teachers wonder in
which time slot to teach CS and, on the other hand, they wonder about
the equipment to be used and thus the methods of implementing the
activities (plugged or unplugged). Without a time slot in the schedule,
CS activities are widely used in mathematical activities, especially for
planar orientation. In this context, we question the effect of the use
of a robot by 10 to 12-year-old students on their abilities to create an
algorithm, decenter, and coordinate in the plane. An experimental method
was conducted with thirty-six students divided into two experimental
groups (with and without robots). Four critical skills were assessed in
a pre- and post-test: algorithmization, decentration, absolute location,
and relative location abilities. The results show that the students who
programmed the robots made more progress overall than those who
performed paper-based tasks only. The algorithmization performance
of both groups improved significantly, showing that this skill can be
trained in both plugged and unplugged activities. The contribution of
this research is twofold as it shows the effect of the use of educational
robots on students’ ability to decenter and, assures teachers that they
can use both plugged and unplugged modalities for computer science
activities during planar orientation activities in mathematics.

Keywords: teacher education · computer science education · disciplinary
course

1 Introduction & Context

Computer Science (CS) entered the compulsory school curriculum in the French-
speaking part of Switzerland in 2021. Since no time slot is dedicated to its
teaching in the K-8 timetable, this new discipline has largely found its place in
mathematical activities, particularly in those of locating in the plane. Indeed,
the design of a route is a recurrent task in geometry and it can be materialized
by educational robots (ER) which execute programs to move from point A to
point B. As computer science is not a subject that is being thought on its own,
it needs to be integrated into other subjects. Therefore we often see the use
of robots in mathematics, but it is also used during language courses. The use

CC BY 4.0, E. Schenkenberg van Mierop et al.
J.-P. Pellet and G. Parriaux (Eds.): ISSEP 2023 Local Proceedings, pp. 103–116, 2023.
https://doi.org/10.5281/zenodo.8431728

https://doi.org/10.5281/zenodo.8431728

of ER then allows "placing the student at the heart of the conscious learning
process, which sees him/her involved as an actor of his/her own learning tools"
[7] (p. 35). Beyond this pedagogical added value, it remains relevant to study the
contributions of ER to the construction of knowledge in both CS and mathematics.
In the context of the route task, each of these two disciplines mobilizes the notion
of algorithmization as knowledge to be constructed, while relying, as a prerequisite,
on the students’ ability to locate in the plane. However, the literature indicates
that this prerequisite is often underestimated and that the ability to locate in the
plane often poses difficulties for students [2] insofar as it implies, upstream, the
ability to decenter [13] and thus to locate in space. Faced with such a nesting of
abilities, it is clear that the route task is not so easy. However, the literature also
shows that the use of ER, such as the Blue-bot robot (TTS Group Ltd, Hucknall,
Nottinghamshire, United Kingdom), allows precisely the training of students’
ability to decenter [8,3]. Therefore, our research question is the following: if ER
allows students to develop their ability to program and to decenter,
does it have also a positive effect on their ability to locate themselves
in the plane? As a result, the objective of the present study is to measure the
effect of the use of ER on formulating an algorithm, decentration, and locating in
the plane abilities of 10 to 12-year-old students. Our research hypotheses are as
follows: 1) Students who performed the route task by programming a robot (test
group) will improve their ability to decenter (thus to locate in space) significantly,
while this will not be the case for students who only performed the same task
on paper (control group). 2) The students who performed the route task by
programming a robot (test group) will significantly improve their ability to locate
on the plane, as a result of the development of their decentration skills, while the
students who only performed the same task on paper (control group) will not.

This paper has the following structure: in Section 2, we mention analyses of
similar initiatives or approaches to CS education of future teachers. Subsequently,
we talk about the source of the data we collected to answer our research question
in Section 3 and analyze it in Section 4. We conclude finally in Section 6.

2 Related Work

2.1 Locating in the Plane

According to Piaget [12], knowledge related to locating in space develops in
childhood when the child is in the operative stage (between the ages of 7 and
12). At this stage, children can adopt different points of view from their own, in
particular, to distinguish between what is in front of them and what is behind
them, but they still have some difficulty distinguishing between left and right.
Moreover, knowledge related to planar location is developed around 11-12 years
old, when the child moves into the formal operative stage. Euclidean space
(coordinate space) then appears, which corresponds to "global knowledge of
an environment independent of the individual’s point of view" ([10], p. 25).
Furthermore, three types of cues can be distinguished according to Charnay and
Douaire [4]: 1) The subjective cue that takes into account the observer’s point

104 E. Schenkenberg van Mierop et al.

of view i.e., the cue is placed on the subject, and the directions are determined
according to the subject’s frame of reference; 2) The objective reference point
which is independent of the observer’s point of view i.e., the chosen objects are
used as temporary reference points and the directions are defined independently of
the observer’s point of view; 3) The absolute reference point i.e., reference points
defined by a reference point (origin) and directions and orientations (graduated
axes). Based on this state-of-the-art, in-plane locating tasks often consider, on
one hand, the relative cues and, on the other hand, the absolute cues.

Moreover, while manipulating objects, 2 spaces should be considered: the
micro-environment considers the space between the student and the plane while
the meso-environment considers the space between the student and the robot
which moves both in the plane and in the space. The use of robots thus adds
complexity to the task of locating objects in the plane.

2.2 Decentration and Robots

Locating in space requires the ability to decenter, i.e. to adopt points of view
other than one’s own. According to Piaget[12], during the decentration process,
the subject moves from the spatio-temporal stage to the logical-mathematical
stage. As soon as students start using an object (such as a robot), they need to
know how to decenter from it, so as to be able to locate in the plane and space.
In this regard, a study [14] tested students’ ability to distinguish left and right
through a paper-based activity versus an activity with a robot. This study was
carried out in Quebec with 22 students aged 6 and 7. The results were similar
between the pre-test (60% success rate before the activity with the robot) and the
post-test (62% success rate after the activity with the robot), which does not, at
this stage, allow us to attribute an effect of the use of a robot on the decentration
activity. Nevertheless, according to the researchers, we should continue to explore
the effects of paper-based activities aimed at decentration awareness, and the
effects of activities with educational robots that mobilize cognitive strategies on
decentralized movement planning. Our study thus allows us to continue exploring
this avenue, albeit with older children (aged 10 to 12).

2.3 The Route Task and the Skills of Algorithmization and
Programming

While the route task is aimed at the ability to locate in the plane, it is also often
implemented to develop the ability to anticipate what is needed for problem-
solving. It is in this context that the notions of algorithmization and programming
take their place in both mathematics and CS. Learning to program, using educa-
tional robots is a relatively recent pedagogical approach [11]. The task of moving
from point A to point B (referred to here as the route task) offers an affordable
programming opportunity, insofar as the problem-solving posed by this task is
common. Programming involves writing computer code to create a program to
be executed by a machine (in this case, a robot). This program tells the robot
what to do and how to do it. As a result, the problem-solver (here, the student)

Use of Robots for Algorithmization, Decentration and Locating Skills 105

needs to think before programming in order to be able to solve the problem [6]
behind the route task. As these previous authors demonstrate, educational robots
are tangible, offering students the chance to put their thoughts into practice by
manipulating them. Like puppets, students move them (for example) to embody
the solution to the problem posed. It is at this point that students verbalize
a solution, i.e. formulate in their own words the behavior of the robot to be
programmed. The next step is to transpose this behavior, formulated in the
student’s language, into a programming language (the robot’s). In the context
of our study, it is pertinent to delineate between the proficiencies of algorith-
mization and programming, considering that not all students engage in robot
programming. Algorithmization, herein, pertains to the procedure involving the
conceptualization, formulation, and construction of algorithms. In our pedagog-
ical approach, students are tasked with the creation of a comprehensive set of
sequential directives, transcribed onto paper, aimed at strategizing a navigational
course from point A to point B. The act of programming itself involves a whole
range of actions and thoughts, and when it comes to programming robots, it also
involves the physical dimension and spatial location (not just in the plane). In
fact, according to [7], the specific features of robots compared to other digital
tools, such as computers, are on the one hand that "the robot is distinguished
by its nature as a real and systemic object", which contrasts with the virtual
character of computer-based educational software [9], and secondly that the robot
can "combine learning from robotics and learning by robotics".

3 Data Collection & Methodology

3.1 Population

In order to address our research question, we conducted a quantitative quasi-
experiment involving two classes from primary schools in Switzerland’s Canton
of Vaud. A total of 36 primary students aged 10 to 12 participated in the study,
which lasted three weeks. In order to create two equivalent groups, the overall
score on a pre-test, which measured all four skills (decentration, algorithmization,
relative location, and absolute location) was assessed (Table. 1). The research
was conducted in accordance with the stipulations set forth in the 190 decision of
the education department of the canton of Vaud (Switzerland), which required
anonymization of data, consent from school principals, and voluntary participa-
tion with written consent from legal representatives of the participants. The study
was conducted by two pre-service teachers from HEP Vaud with the assistance of
two qualified primary teachers. One researcher was present per class to oversee
the experimental groups and only intervened if there was an issue with the robots.
The other qualified teacher oversaw the control group and intervened only to
correct exercises when they were finished. Most students never programmed a
robot before and never had a computer science course as it is not implemented
in the curricula. However, all students knew how to use a tablet and received a
short 30-minute introduction to the Blue-bot robot.

106 E. Schenkenberg van Mierop et al.

Experimental group Control group Total
Number of girls 11 10 21
Number of boys 7 8 15
Total 18 18 36
Grades x<60 7 8 15
Grades 60<x<80 4 5 9
Grades x>80 7 5 12

Table 1. Distribution of participants in both groups.

3.2 Design of the Study

The experimental group received a 90-minute math course dedicated to the
coordinate plane and locating objects in space, during which they programmed
a Blue-bot robot using the Blue-bot application on a tablet. Each group was
provided with one robot, a gridded floor mat, a tablet, and an exercise worksheet
(Appendix. 8). The control group performed a paper-based activity in pairs, com-
pleting traditional mathematical exercises (Appendix. 8). Both groups received
similar feedback: the control group was informed if an exercise was correct or
incorrect, while the experimental group received feedback from the tablet or
the robot. All the exercises used in the study were sourced directly from Swiss
exercise books or were modified to align with the robot-based activities. The
90-minute session required students to create an algorithm to guide a robot from
point A to point B. While students working on paper wrote down the algorithm
(which they embodied in a programming language made of arrows), students
working with the robots programmed the path on a tablet (Table. 2). As the
paper-based activity was routine, students were expected to complete it more
quickly. On the other hand, students working with the robot were expected to
take more time by programming the robot to accomplish the task.

Pre-test Introduction to
robotics

Robots and Paper
activity Post-test Exchange groups

All students All students Gp 1 with robots All students Gp 1 on paper
Gp 2 on paper Gp 2 with robots

30 minutes 60 minutes 90 minutes 30 minutes 60 minutes
Table 2. Design of the experiment

It was known beforehand that the precision of the movements of the Blue-bot
would pose a challenge for students in the experimental group. Due to the robot’s
tendency to move 15cm and turn 90°, it was anticipated that the robot may not
always end up in the precise location intended. The students were advised of this
issue and were instructed to replace the robot when necessary. Furthermore, it
was anticipated that programming exercises would be relatively more manageable
for students working with the robot, while more conventional coordinate plane
exercises would prove more difficult with the robot. Conversely, it was also

Use of Robots for Algorithmization, Decentration and Locating Skills 107

anticipated that students working on paper would experience greater difficulty
with the algorithmization, but would face less difficulty with the coordinate plane
exercises. While creating the exercises, we presumed that students might encounter
challenges in transferring their learning from the robotics-based activities to the
paper-based post-test.

3.3 Data Collection & Data Analysis

The experiment tested a two-modality experimental condition: with a robot and
without a robot (on paper). To measure the learning of decentration and locating
in the plane, we created a paper-based pre- and post-test, which measured four
skills: decentration, algorithmization, relative location, and absolute location.
These skills were broken down into measurable indicators (Appendix. 6). The pre-
and post-test were given before and after the paper-based activity and the robot
activity. The dataset utilized in this study consisted of points, each representing
a continuous variable. The study quantitatively evaluates the dimensions of
decentration and algorithmization. For each instance where the student is required
to decenter themselves, one point is awarded if the spatial rotation is executed
accurately. Similarly, one point is awarded for the correct execution of a series of
steps to evaluate the dimension of algorithmization. The dimensions of absolute
and relative locating are evaluated qualitatively based on four weighted criteria,
each with a weightage of two points: coordinate order, coordinate sign, origin
accuracy, and precision. Scores were assigned based on a total of 16 to 27 points
and were weighted to reflect the students’ competencies as closely as possible. The
pre-test in decentering provided a baseline score and ensured that the control and
experimental groups were equivalent. The present study employed a statistical
analysis using the Wilcoxon signed-rank test. Excel and XLSTAT software were
used for data analysis and visualization. Due to a limited sample size of 18
students per group, the Wilcoxon test was utilized as it is well-suited for assessing
significant differences in small paired samples.

4 Findings

The mean scores of students’ pre- and post-tests were compiled in a table that
can be found in Appendix. 7. The mean scores for the experimental group and
control group were compared to assess the effectiveness of the robot intervention.
A statistically significant improvement (p < 0.05) in all mean scores was observed
for both experimental and control groups, with the exception of the absolute
locating skill within the control group.

4.1 General Achievement in the Tests

The test revealed a significant difference between the pre- and post-test scores for
the experimental group, with a Wilcoxon signed-rank test statistic of T = 2.50
(p = 0.000). The test also revealed a significant difference between the pre- and

108 E. Schenkenberg van Mierop et al.

post-test scores for the control group, with T = 31.50 (p = 0.009). This indicates
a statistically significant improvement in performance regardless of the group
to which they were assigned. The findings of this study indicate that the choice
between paper-based and robot-based instruction does not significantly influence
the overall grades of the students. However, it is important to conduct a detailed
analysis of each specific skill to determine if there are any significant differences
between the two instructional methods.

Fig. 1. Graph of general achievement of both groups in the tests.

4.2 Achievement in decentration

The results of the study revealed a significant difference between the pre- and
post-test scores for the experimental group, with T = 25.5 (p = 0.014). Upon
conducting a detailed analysis, it was found that the skill of decentering exhibited
a significantly greater improvement in the group assigned to manipulate robots
compared to the paper group.

4.3 Achievement in Algorithmization

Our study findings indicate that participants’ algorithmization skills significantly
improved, regardless of whether they completed the exercises on paper or by using
a Blue-bot robot. Both the experimental group and control group demonstrated
substantial performance gains in their algorithmization abilities. The Wilcoxon
signed-rank test statistics were T = 12 (p = 0.003) for the control group and
T = 2 (p = 0.000) for the experimental group, indicating that the intervention
effectively enhanced this skill regardless of the mode of delivery.

Use of Robots for Algorithmization, Decentration and Locating Skills 109

Fig. 2. Graph of achievement in decentration for both groups in the tests.

Fig. 3. Graph of achievement in algorithmization for both groups in the tests.

4.4 Achievement in Relative Location

The results of our study also demonstrate that all participants significantly
improved their relative location skills, irrespective of their group allocation. The
Wilcoxon signed-rank test statistics were T = 9 (p = 0.020) for the control
group and T = 13 (p = 0.026) for the experimental group, indicating that the
intervention effectively enhanced this skill regardless of the mode of delivery.

110 E. Schenkenberg van Mierop et al.

Fig. 4. Graph of achievement in relative location for both groups in the tests.

4.5 Achievement in Absolute Location

The results of the study revealed a significant difference between the pre- and post-
test scores for the experimental group, with T = 10.5 (p = 0.040). The findings
suggest that the robot-assisted intervention used in the study was particularly
effective in enhancing the absolute location ability of the participants.

Fig. 5. Graph of achievement in absolute location for both groups in the tests.

Use of Robots for Algorithmization, Decentration and Locating Skills 111

5 Discussion

The purpose of this study was to explore the potential benefits of manipulating
and programming robots in order to develop decentration and spatial location
skills.

Our first hypothesis proposed that students who programmed a robot would
significantly improve their ability to decenter. Our findings support this hypoth-
esis. The engagement with robot programming seemed to facilitate a deeper
understanding of spatial relationships and improved spatial navigation. Our
research findings support existing literature, affirming that programming en-
hances decentration skills. The Blue-bot application facilitated decentration and
anticipation, which are essential components of the learning process [8]. Further-
more, the provision of immediate feedback by the Blue-bot robot reinforced the
positive effects on decentration. By promptly recognizing errors and limitations
in decentration, students became aware of the challenges involved and demon-
strated self-regulatory behaviors. Immediate feedback is particularly beneficial for
procedural learning [15], and since decentration is a procedural skill, it requires
timely feedback for effective acquisition. In contrast, the control group, which
did not receive immediate feedback, experienced greater difficulty in recognizing
their own limitations in decentration. Therefore, the disparity in results regarding
decentration skills can be attributed to the more direct and tangible approach
utilized in the experimental group, involving the robot, as well as the provision
of immediate feedback, which facilitates the regulation and learning process
associated with decentration.

Our second hypothesis suggested that the experimental group, who engaged
in robot programming, would demonstrate a significant enhancement in their
spatial skills compared to the control group. Our findings provide further sup-
port for this hypothesis, as they reveal that students who engaged in robot
programming exhibited notable advancements in their absolute locating abil-
ities. The development of decentration appeared to play a pivotal role in the
participants’ enhanced capacity to mentally manipulate objects within a plane
and comprehend spatial relationships more proficiently. These results have been
shared with the teachers of both classes and will be taken into account in further
mathematics and computer science courses. Students who solely worked with
paper materials remained confined within a limited micro-environment, lacking
the stimulus to explore beyond their immediate paper sheet. In contrast, students
manipulating robots transcended this micro-environment and transitioned to a
broader meso-environment by constantly walking around the Blue-bot grid. We
postulate that the size of the resources utilized may have influenced the students’
engagement with the environment.

While the absolute locating skill was improved only by the experimental group,
the relative locating skill was significantly improved by both groups. Decentration
is useful for relative location [4], which explains why the robot group was able to
improve this ability. However, a valid question arises as to why the control group
also exhibited significant advancements (p-value = 0.003) despite the absence
of notable improvements in decentration skills. We posit that this occurrence

112 E. Schenkenberg van Mierop et al.

may be attributed to the delayed feedback they received, which fostered a more
comprehensive understanding of the concepts at hand [5].

Lastly, our findings in the algorithmization skill showed that both groups
improved significantly. Research indicates that algorithmization can be effectively
taught through both plugged and unplugged approaches [1]. Thus, both groups
in our study were provided with opportunities to engage with this concept,
either by directly programming robots or by manually constructing algorithms
on paper. The cognitive processes involved in the creation of algorithms were
highly similar across both groups. Notably, students in the experimental group
received immediate feedback, enabling them to self-regulate. In contrast, the
control group received delayed feedback, as their exercises were corrected by
the teacher once all tasks were completed. Nonetheless, substantial progress
in algorithmization skills was observed in both groups. It can be postulated
that immediate feedback facilitates task completion, whereas delayed feedback
encourages the development of problem-solving strategies. These findings align
with previous research, which demonstrates that delayed feedback stimulates
the cultivation of anticipation processes and the formulation of more refined
behavioral instructions for programming the robot [5].

It is important to acknowledge that further research is needed to validate these
findings across larger and more diverse samples, as well as explore the use of robots
with more complex tasks and prevent students from getting immediate feedback.
Such investigations would contribute to a more comprehensive understanding of
the benefits and implications of integrating robot programming into educational
practices.

6 Conclusion

This research aimed to investigate the impact of manipulating robots on decen-
tration skills and performance in locating in the plane among 10 to 12-year-old
students. The study included two experimental groups, one using robots and one
without robots, with a total of 36 participants. Pre- and post-tests assessed four
key skills: decentration, algorithmization, absolute locating, and relative locating.
The results indicated that students who programmed the robots showed a greater
overall improvement, particularly in the skill of decentering, which had a positive
effect on location in the plane.

Students who did not manipulate robots demonstrated an understanding of
algorithms, as a result of delayed feedback. Both groups made significant progress
in algorithmization skills, highlighting the effectiveness of both plugged-in and
unplugged approaches.

However, it is important to note that these results are limited by the small
sample size of the study. Future research should aim to replicate these findings
on a larger scale to further investigate the effects of educational robots on
decentration and location skills. Overall, educational robotics has the potential to
contribute to both mathematical and computer science education, which proves
that ER has its place in primary schools. We strongly believe that computer

Use of Robots for Algorithmization, Decentration and Locating Skills 113

science supports mathematics and vice versa. A programmer needs to know basic
mathematics to understand algorithmization, but computer science also supports
mathematics by enabling students to manipulate abstract concepts.

References

1. Baron, G.L., Drot-Delange, B.: L’informatique comme objet d’enseignement à l’école
primaire française ? mise en perspective historique. Revue française de pédagogie
195, 51–62 (2016)

2. Berthelot, R., Salin, M.H.: L’enseignement de l’espace à l’école primaire. Grand N
65, 37–59 (1999)

3. Béziat, J.: Les tic à l’école primaire en france: informatique et programmation.
Revue de 38 (2012)

4. Charnay, R., Douaire, J.: Apprentissages géométriques et résolution de problèmes
au cycle 3. Hatier (2006)

5. Chevalier, M., Giang, C., El-Hamamsy, L., Bonnet, E., Papaspyros, V., Pellet, J.P.,
Audrin, C., Romero, M., Baumberger, B., Mondada, F.: The role of feedback and
guidance as intervention methods to foster computational thinking in educational
robotics learning activities for primary school. Computers & Education 180, 104431
(2022)

6. Chevalier, M., Giang, C., Piatti, A., Mondada, F.: Fostering computational thinking
through educational robotics: A model for creative computational problem solving.
International Journal of STEM Education 7(1), 1–18 (2020)

7. Gaudiello, I., Zibetti, E.: La robotique éducationnelle: état des lieux et perspectives.
Psychologie française 58(1), 17–40 (2013)

8. Greff, É.: Le robot blue-bot et le renouveau de la robotique pédagogique. La nouvelle
revue de l’adaptation et de la scolarisation (3), 319–335 (2016)

9. Hsu, S.H., Chou, C.Y., Chen, F.C., Wang, Y.K., Chan, T.W.: An investigation
of the differences between robot and virtual learning companions’ influences on
students’ engagement. In: 2007 First IEEE International Workshop on Digital Game
and Intelligent Toy Enhanced Learning (DIGITEL’07). pp. 41–48. IEEE (2007)

10. Nys, M.: Développement des représentations spatiales d’itinéraires virtuels: com-
posantes cognitives et langagières. Ph.D. thesis, Université Paris Descartes Paris
Sorbonne (2015)

11. Papert, S.A.: Mindstorms: Children, computers, and powerful ideas. Basic books
(2020)

12. Piaget, J.: La naissance de l’intelligence chez l’enfant. 9e éd. Neuchâtel: Delachaux
et Niestlé (1977)

13. Rigal, R.: Right-left orientation, mental rotation, and perspective-taking: When
can children imagine what people see from their own viewpoint? Perceptual and
motor skills 83(3), 831–842 (1996)

14. Romero, M., Dupont, V., Pazgon, E.: À gauche ou à droite du robot? test de
perspective décentrée gauche-droite par le biais d’une activité sur papier et d’une
activité de robotique pédagogique. In: Actes Du Colloque CIRTA. pp. 52–53 (2016)

15. Shute, V.: Focus on formative feedback. Review of Educational Research 78(1),
153–189 (2008)

114 E. Schenkenberg van Mierop et al.

Appendix

Fig. 6. Example of tasks in Pre- and post-tests. Original instructions in French
with English translation.

Fig. 7. Table of descriptive statistics

Use of Robots for Algorithmization, Decentration and Locating Skills 115

 Fig. 8. Left : Paper tasks. Right : Robot tasks. Original instructions in French
with English translation.

116 E. Schenkenberg van Mierop et al.

Teaching Quantum Informatics at School:
Computer Science Principles and Standards

Giulia Paparo1[0000−0002−4782−8337], Regina Finsterhoelzl2[0000−0002−0899−4957],
Bettina Waldvogel1[0000−0002−0658−1032], and
Mareen Grillenberger1,3,4[0000−0002−8477−1464]

1 Schwyz University of Teacher Education, Goldau, Switzerland
{giulia.paparo,bettina.waldvogel,mareen.grillenberger}@phsz.ch

2 University of Konstanz, Konstanz, Germany
regina.finsterhoelzl@uni-konstanz.de

3 Lucerne University of Teacher Education, Lucerne, Switzerland
4 Lucerne University of Applied Sciences and Arts, Rotkreuz, Switzerland

Abstract. The application of knowledge from quantum physics to com-
puter science, which we call “quantum informatics”, is driving the devel-
opment of new technologies, such as quantum computing and quantum
key distribution. Researchers in physics education have recognized the
promise and significance of teaching quantum informatics in schools, and
various teaching methods are being developed, researched and applied.
Although quantum informatics is equally relevant to computer science
education, little research has been done on how to teach it with a focus
on computer science concepts and knowledge. In this study, we position
quantum informatics within Denning’s Great Principles of Computing
and propose Quantum Informatics Standards for secondary schools.

Keywords: quantum computing · quantum information science and
technology · K-12 education · great principles of computing

1 Introduction

The application of quantum physics to computer science has the potential to
open new avenues of thought and endeavors within computer science. From
quantum computers that could outperform classical supercomputers at solving
computationally hard problems, to quantum key distribution that could make
it physically impossible for a third party to eavesdrop unnoticed, quantum in-
formatics has the potential to have a major impact on computer science and
society as a whole [29]. Most of these technologies are still in development, and
the timeframe and applications for their large-scale implementation are not yet
predictable. However, this does not affect the theoretical change in thinking and
skills that quantum technologies require. It is important to start thinking about
how to introduce students to this new way of thinking at an early stage, for
several reasons. First, teaching quantum informatics in schools means laying
the foundation for an informed society that can consciously discuss the future

CC BY 4.0, G. Paparo et al.
J.-P. Pellet and G. Parriaux (Eds.): ISSEP 2023 Local Proceedings, pp. 117–128, 2023.
https://doi.org/10.5281/zenodo.8431939

https://doi.org/10.5281/zenodo.8431939

of these technologies and their applications. Second, learning about quantum
information can help students develop new perspectives, challenge what they
think they already know, and develop a curious approach to the nature of com-
putation. Finally, from an educational perspective, it is a wonderful example to
explore how to teach complex and inherently multidisciplinary topics in school.

The aim of this paper is to support the teaching of quantum informatics in
lower and upper secondary schools by providing an overview of the subject and
defining principles and standards, as an orientation in the development of edu-
cational material. To this end, we ask the following questions: How can quantum
informatics be positioned from the perspective of computer science education?
and What are the most important learning outcomes for secondary school stu-
dents learning about quantum informatics from a computer science education
perspective? To answer these questions, we first suggest how quantum informat-
ics could be positioned within Peter Denning’s Great Principles of Computing
[5], and then propose Quantum Informatics Standards for secondary schools.

2 Related Works

In the past years, there has been a rapidly growing interest in the teaching of
quantum informatics. This interest sparked especially from physics educators,
who saw in quantum technologies the possibility to access quantum mechanics,
a notorious hard to teach subject at school, in a more tangible and direct way [7].
Many interesting approaches for teaching quantum informatics at school were
developed and evaluated, e. g. [23], [2], [9]. In addition, a variety of serious games
[27], visualization tools [21], zines (i. e. self-published DIY magazines) [11], and
role-playing [18] approaches were developed that could be used to engage high
school students along with the broader public. We will present in more depth
some of these approaches in section 7. It is important to note that these were
mostly small-scale interventions carried out by a group of experts, and that more
extensive research, as well as teaching guidelines, training, or evaluation criteria
for teachers are still needed.

An important step towards establishing a common language as well as an ori-
entation for educational programs was the formulation of the European Frame-
work for Quantum Technologies [8]. However, this framework aims to map com-
petencies and skills for quantum technologies, and therefore includes topics of
little relevance from a computer science perspective, such as quantum sensing. At
the same time, it does not give much space to relevant topics, such as quantum
information theory, and focuses mainly on higher education. On the contrary,
“Key Concepts for Future Quantum Information Science Learners” [1] and more
directly its expansion for computer science [12] target more clearly quantum in-
formatics from a computer science perspective and at high school level. The first
[1] offers a good overview and a basis for educators, and it is expanded and eval-
uated further for Computer Science learning outcomes and activities [12]. The
latter, however, is aimed at pre-college and beyond, and the level of knowledge
and skills required is not suitable to younger students.

118 G. Paparo et al.

Seegerer et al. [26] discussed quantum computing as a topic in computer
science education and made a proposal for its central concepts, ideas, and ex-
planatory approaches. In our previous work, we systematically analyzed the key
concepts of quantum informatics further and applied them for the formulation
of competencies within guidelines of the German Informatics Society [22]. Al-
though the results are in German, the presented mapping of the key concepts of
quantum informatics should also be understandable for English speakers, as it
consists mostly of language-independent technical terms.

The above-mentioned works constitute a first good step for supporting the
teaching of quantum informatics. Standards for quantum informatics education
at the lower and upper secondary level are still needed, and this work aims to
fill this gap, building upon some of the previously defined key concepts and
competencies ([12], [26], [22], [8]).

3 Terminological Remarks

Generally, it is distinguished between quantum technologies of the first genera-
tion and second generation. The first generation is defined by technologies that
could be built thanks to our understanding of quantum physics. This definition
includes technologies, such as lasers, transistors and global positioning systems
(GPS). The second generation of quantum technologies builds on the capability
to control and manipulate the properties of quantum systems, for example, to
build quantum computers and quantum sensors.

Naturally, as computer science educators, we are looking further than the
technology alone. As Michaeli et al. [20] pointed out, the best term to define
the field of research describing the knowledge and applications related to these
new technologies from the perspective of computer science is in German “Quan-
teninformatik”. We translated that as “quantum informatics” instead of quan-
tum computer science to indicate a broader view on information processing not
limited to computers alone. Other commonly used terms to describe the field
are “Quantum Information Science (QIS)”, “Quantum Information Science and
Technologies (QIST)”, and “Quantum Computing”. All of these terms intersect
in some aspects and at the same time suggest a different focus (i. e. on infor-
mation theory or computation). The term “quantum informatics”, although less
commonly used, describes more directly what we are interested in: We want
students to understand, use, and think about the changes in computer science
(informatics) brought about by the application of our knowledge of quantum
theory. For these reasons, we prefer the term “quantum informatics” in this
article and hope it will be broadly used in the future.

4 Methodological approach

In order to position quantum informatics from the perspective of computer sci-
ence, we used the Great Principles framework of Peter Denning [5] as a way
to categorize a new technology within overarching principles that could then

Teaching Quantum Informatics at School 119

serve as a guide for educators and curriculum developers. As described in more
detail in section 5, we first categorized the key concepts of quantum informat-
ics [22] within the Great Principles. The categorization was carried out by the
first author, while the second and third authors, with expertise in quantum in-
formation theory and computer science education respectively, provided critical
review. Re-categorization possibilities were discussed, as well as the addition of
further concepts. The categorization was then reviewed by an external computer
science expert.

The newly formulated orientation within the Great Principles, as well as
relevant aspects of the previously described frameworks ([12], [8], [26]), then
served as a basis for the further formulation of the standards. The previously
defined learning goals [22] were analyzed within the framework of the CSTA K-
12 Computer Science Standards [4]. These describe a general core set of learn-
ing objectives for the K-12 computer science curriculum and are widely used
for curriculum development and assessment in the USA and around the world,
and thus provided an excellent orientation for an initial formulation of interna-
tional quantum informatics standards. The formulated standards were iterated
following the principles of the Standards Developer’s Guide [16]. Details are ex-
plained in section 6. Finally, to make the learning outcomes more tangible to the
reader, exemplary teaching approaches from the literature were assigned to the
standards. The teaching approaches were chosen based on whether they were
considered to fit the newly defined Quantum Informatics Standards, specifically
whether they were designed for high school students, address one or more of the
defined standards, and were suitable from a computer science perspective (see
section 7 for more details).

5 Great Principles of Quantum Informatics

Peter Denning defined in a compact and coherent way, the overarching, fun-
damental principles of computer science, what he called “Great Principles of
Computing” [5]. The Great Principles framework aimed to stimulate deep struc-
tural thinking about computer science as a discipline and to provide a common
language that encourages connections within computer science and across dis-
ciplines, providing existing stories while inspiring and structuring new didactic
approaches. To do so, he defined seven categories (“windows”) based on the fun-
damental questions underlying computing technologies. For each window, Den-
ning proposed “principal stories” to depict the richness of each principle, make
it more tangible, and to indicate examples of its historical development.

We carried out a categorization of quantum informatics within the Great
Principles framework, in order to provide an orientation of quantum informatics
within computer science, i. e. to help in structuring and seeing the principles of
computer science within quantum informatics. To do so, quantum informatics
concepts [22] were first categorized within this framework. The categorization
was then critically reviewed, and re-categorization and the addition of new con-
cepts were discussed. There was almost no need for re-categorization. As in Den-

120 G. Paparo et al.

ning’s framework, some concepts could be assigned to more than one window,
as these are regarded as overlapping rather than exclusive. However, in order to
achieve a comparable balance with the principal stories of classical computing,
it was necessary to add several concepts that were not originally part of our
selection. This was especially the case for the windows “Design” and “Evalua-
tion”, which were also added later to the Great Principles by Peter Denning [6].
As Denning states, this framework is evolving with time and is not an exhaus-
tive representation of the field, which is even more true for a relatively young
discipline such as quantum informatics.

Our goal was to use the framework as a didactic tool to provide orientation,
not to revise the Great Principles. While it has been possible to position the
main concepts of quantum informatics within this framework, this should not
be seen as an exhaustive or conclusive statement, but rather as an exploratory
approach to provide guidance to computer science teachers and educators. The
results are illustrated in Table 1.

Table 1. Great Principles of Computing and Principal-Stories of Quantum Informatics

Window Central Concern Principal Stories (Classical Computing) Principal Stories (Quantum Informatics)

Computation

What can be
computed; limits of
computing

Algorithm, control structures, data structures, automata,
languages, Turing machines, universal computers, Turing
complexity, Chaitin complexity, self-reference, predicate logic,
approximations, heuristics, non-computability, translations,
physical realizations.

Quantum algorithms (Shor, Deutsch, Grover, aso), quantum
simulation, physical and logical control structures, programming
languages, universal quantum computing (on different hardware
platforms), quantum complexity theory, fault-tolerant quantum
computation.

Communication

Sending messages
from one point to
another

Data transmission, Shannon entropy, encoding to medium,
channel capacity, noise suppression, file compression,
cryptography, reconfigurable packet networks, end-to-end
error checking.

Quantum cryptography, quantum key distribution, quantum
networks (quantum channels, trusted nodes), quantum error
correction, von Neumann entropy, quantum Shannon theory,
multi-party computation with entangled pairs.

Coordination

Multiple entities
cooperating toward
a single result

Human-to-human (action loops, workflows as supported by
communicating computers), human-computer (interface, input,
output, response time); computer-computer (synchronizations
raceds, deadlock, serializability, atomic actions).

Classical-to-quantum (hybrid algorithms), human-classical
computer (quantum circuit code), human/machines-quantum
computer (pulse execution, control of operating conditions).

Automation

Performing
cognitive tasks by
computer

Simulation of cognitive tasks, philosophical distictions about
automation, expertise and expert systems enhancement of
intelligence, Turing tests, machine learning and recognition,
bionics. Quantum machine learning.

Recollection

Storing and
retriving
information

Hierarchies of storage, locality of reference, caching, address
space and mapping, naming, sharing, thrashing, searching,
retrieval by name, retrieval by content.

Quantum measurement, error mitigation techniques, encoding
and decoding.

Design

Performance
prediction and
capacity planning

Hierarchical aggregation, design principles (abstraction, divide-
and-conquer, virutal machines, layering).

Fault tolerant design, hybrid quantum-classical architectures,
circuit design and transpilation.

Evaluation
Building reliable
software systems

Network of servers, Resource sharing, modeling, simulation,
experiment, and statistical analysis of data.

Benchmarking, i.e. gate set tomography, quantum state
tomography, randomized benchmarking, direct fidelity estimation.

6 Learning Standards for Quantum Informatics

The K-12 Computer Science Framework [4] is divided into practices and con-
cepts that form the basis of our Quantum Informatics Standards. We left the
practices unchanged because they are overarching practices that apply to com-
puting in general as well as to its quantum applications. The standards were
then formulated following the principles of the Standards Developer’s Guide [16]
highlighted in italics. Each standard was formulated by integrating one or more
practices with a quantum concept and one or more CS concepts. We formulated
the standards with a high degree of rigor, meaning that the standards should

Teaching Quantum Informatics at School 121

represent an appropriate cognitive and content demand for students. However,
these are only theoretically formulated standards that need to be tested empir-
ically. In light of future empirical evaluation, when unsure, we rather included
a topic or chose a higher standard. For reasons of manageability, we focused
on fundamental concepts like quantum information and quantum algorithms,
while left out topics such as quantum simulation and hardware for quantum
information processing, as these were either less relevant for computer science
standards or too complex for secondary schools. We wrote the standards to be
specific enough to convey and measure the knowledge expected of students, and
to be as jargon-free and accessible as possible for a topic as new and complex
as quantum informatics (for the sake of clarity and consistency, we could not
avoid using some technical terms in the standards definitions, but we have ac-
companied them with comprehensive explanations). Equity and diversity is a
particularly important principle for our topic, since what we want to contribute
to by teaching quantum informatics early is indeed a more diverse and inclusive
science. In formulating the standards, we have been careful to ensure that they
can be learned and demonstrated in a variety of ways, using different visualiza-
tions and representations, allowing learners to use and further develop individual
learning strategies and approaches. However, this is an aspect that needs fur-
ther and deeper attention in the future as more materials and approaches are
developed. Last, the connection to other disciplines is intrinsic to physics and
mathematics, but has not been made explicit in this first formulation of the
standards. Overall, it should be considered that these standards are a first theo-
retical formulation, and we wish to see them used, tested and critically evaluated
in order to formulate more accurate, inclusive and adequate descriptions in the
future.

The resulting standards are summarized in Table 2. For each quantum con-
cept, we have indicated the corresponding CSTA concept. We did not establish a
one-to-one correspondence with the CSTA concepts, as topics such as quantum
error correction and quantum cryptography are very relevant within quantum
informatics, while quantum networks and quantum internet are not yet devel-
oped enough to be suitable for secondary schools. In the following, each quantum
informatics content area is described in more detail, based largely on some of
the authors’ previous work [22] and on the description of the key concepts in the
literature (e. g. [1], [26]).

Quantum information: A qubit is the basic unit of quantum information.
Qubits, like bits, always have a well-defined value when measured, but unlike
bits, they also exhibit quantum mechanical properties such as superposition and
entanglement. Superposition means that a qubit can be in a state that is a
combination of 1 and 0, and only when it is measured will it be either 0 or 1
with a probability determined by its previous state of superposition. Qubits can
also be entangled, that is, connected in such a way that none of the entangled
qubits can be described independently of the others. If one qubit (in a maximally
entangled pure two-qubit state) is measured, the state of the other entangled
qubit is also instantaneously determined, no matter how far apart the qubits

122 G. Paparo et al.

are. These special properties can provide computational advantages, since it is
possible, for example, to influence the state of two or more different, physically
distant qubits by a single operation. This understanding of qubits and the laws
that they follow is the basis for further understanding of quantum informatics. In
the classroom, students should learn what a qubit is and what makes it similar to
bits and what makes it different. A deeper understanding of the special properties
of qubits would allow students to grasp the possibilities as well as the limitations
of quantum information and computation. Students should also be able to read
and evaluate the accuracy of a popular article on quantum computing.

Quantum error correction: The current phase of quantum computer de-
velopment is called the Noisy Intermediate-Scale Quantum (NISQ) era. These
processors are very error-prone and are yet too small for implementing large-scale
quantum error correction codes on them. Quantum error correction and fault-
tolerant quantum computation are currently a very actively researched area and
fundamental for the development of large scale quantum computers. Although
classical error detection and correction requires students to apply important
computer science concepts such as data decomposition and representation, it is
not traditionally taught in school. By learning about quantum error correction,
students will learn what error correction is, why it is relevant to computer sci-
ence, and why classical error correction is not applicable to quantum computing.

Quantum computing systems: Different physical methods of building
quantum computers are currently being explored, such as superconducting qubits
or ion traps. Just as there are different ways of developing quantum computers,
there are also different languages for programming them. By using one of these
platforms, students can experience the principles of quantum computing and
interact with a quantum computer themselves.

Quantum algorithms: Calculations on quantum computers are described
by quantum algorithms, and one model to describe them is that of quantum cir-
cuits. In a quantum circuit, the steps of the algorithm are described by quantum
gates performed on one or more qubits and a measurement operation for read-
out. So far, there are only a limited number of useful algorithms that could give
quantum computers a significant speed advantage in basic computing problems
such as factoring large numbers. However, for many other types of computation,
there are no easy ways to implement them on a quantum computer, and there
is no advantage to doing so. A current challenge in quantum computing is to
develop efficient as well as useful algorithms for quantum computers. In fact,
students should not be expected to develop new algorithms themselves. How-
ever, they can learn about the effects of gates on qubits and how they can be
put together to create an algorithm. Students can replicate some well-known
algorithms and reason about their logic and properties.

Quantum cryptography: Shor’s algorithm showed that fully functional
quantum computers (with a large enough number of qubits and a sufficiently
small error rate) would be able to factor large numbers efficiently, threatening
today’s most widely used encryption methods. However, quantum effects can
also make communication more secure based on physical principles.

Teaching Quantum Informatics at School 123

T
a
b
le

2
.

L
ea

rn
in

g
S

ta
n

d
a
rd

s
fo

r
q
u

a
n
tu

m
in

fo
rm

a
ti

cs
a
t

se
co

n
d

a
ry

sc
h

o
o
l

le
v
el

C
S
T
A

C
o
n
c
e
p
t

Q
u
a
n
tu

m
C
o
n
c
e
p
t

S
ta

n
d
a
rd

s
B

y
th

e
en

d
o
f

g
ra

d
e

1
2

st
u

d
en

ts
sh

o
u

ld
b

e
a
b

le
to

:
C
S
T
A

P
ra

c
ti
c
e

D
a
ta

&
A

n
a
ly

si
s

Q
u

a
n
tu

m
In

fo
rm

a
ti

o
n

-
p

o
in

t
o
u

t
th

e
d

iff
er

en
ce

s
a
n

d
si

m
il

a
ri

ti
es

b
et

w
ee

n
q
u

b
it

s
(q

u
a
n
tu

m
b

it
s)

a
n

d
b

it
s

a
s

u
n

it
s

o
f

in
fo

rm
a
ti

o
n

.
-

ex
p

la
in

w
h

ic
h

n
ew

p
o
ss

ib
il

it
ie

s
o
f

in
fo

rm
a
ti

o
n

p
ro

ce
ss

in
g

a
ri

se
w

it
h

q
u

b
it

s
(t

h
a
n

k
s

to
su

p
er

p
o
si

ti
o
n

a
n

d
en

ta
n

g
le

m
en

t)
.

a
b

st
ra

ct
io

n
,

co
m

p
u

ta
ti

o
n

a
l

p
ro

b
le

m
s

Q
u

a
n
tu

m
E

rr
o
r

C
o
rr

ec
ti

o
n

-
ex

p
la

in
w

h
y

q
u

a
n
tu

m
er

ro
r

co
rr

ec
ti

o
n

is
fu

n
d

a
m

en
ta

l
in

th
e

d
ev

el
o
p

m
en

t
o
f

q
u

a
n
tu

m
co

m
p

u
te

rs
.

-
d

es
cr

ib
e

th
e

co
n

ce
p

t
o
f

fa
u

lt
to

le
ra

n
ce

.

co
m

p
u

ta
ti

o
n

a
l

p
ro

b
le

m
s

C
o
m

p
u

ti
n

g
S

y
st

em
s

Q
u

a
n
tu

m
C

o
m

p
u

ti
n

g
S

y
st

em
s

-
d

es
cr

ib
e

th
e

b
a
si

cs
o
f

q
u

a
n
tu

m
co

m
p

u
te

r
d

es
ig

n
a
n

d
o
p

er
a
ti

o
n

.
-

u
se

a
fo

rm
a
l

la
n

g
u

a
g
e

to
in

te
ra

ct
w

it
h

a
q
u

a
n
tu

m
co

m
p

u
te

r.

cr
ea

ti
n

g
,

te
st

in
g

a
n

d
d

efi
n

in
g

A
lg

o
ri

th
m

s
&

P
ro

g
ra

m
m

in
g

Q
u

a
n
tu

m
A

lg
o
ri

th
m

s
-

ex
p

la
in

h
ow

q
u

a
n
tu

m
a
lg

o
ri

th
m

s
ca

n
h

el
p

so
lv

e
im

p
o
rt

a
n
t

p
ro

b
le

m
s

in
co

m
p

u
te

r
sc

ie
n

ce
.

-
re

b
u

il
d

g
iv

en
q
u

a
n
tu

m
a
lg

o
ri

th
m

s
a
n

d
a
n

a
ly

ze
th

ei
r

a
d

va
n
ta

g
es

ov
er

cl
a
ss

ic
a
l

a
lg

o
ri

th
m

s.

te
st

in
g

a
n

d
d

efi
n

in
g
,

co
m

p
u

ta
ti

o
n

a
l

p
ro

b
le

m
s

N
et

w
o
rk

s
&

th
e

In
te

rn
et

Q
u

a
n
tu

m
C

ry
p

to
g
ra

p
h
y

-
d

es
cr

ib
e

w
h
y

to
d

ay
’s

m
o
st

co
m

m
o
n

ly
u

se
d

en
cr

y
p

ti
o
n

m
et

h
o
d

is
th

re
a
te

n
ed

b
y

fu
tu

re
q
u

a
n
tu

m
co

m
p

u
ti

n
g
.

-
te

st
a

q
u

a
n
tu

m
k
ey

d
is

tr
ib

u
ti

o
n

p
ro

to
co

l
(e

.g
.,

B
B

8
4
)

-
ex

p
la

in
th

e
a
d

va
n
ta

g
es

o
f

q
u

a
n
tu

m
en

cr
y
p

ti
o
n

a
n

d
h

ow
it

d
iff

er
s

fr
o
m

o
th

er
en

cr
y
p

ti
o
n

m
et

h
o
d

s.

co
ll

a
b

o
ra

ti
n

g
,

te
st

in
g

a
n

d
re

fi
n

in
g

Im
p

a
ct

o
f

C
o
m

p
u

ti
n

g
Im

p
a
ct

o
f

Q
u

a
n
tu

m
In

fo
rm

a
ti

cs
-

id
en

ti
fy

fu
tu

re
im

p
li

ca
ti

o
n

s
b

et
w

ee
n

q
u

a
n
tu

m
in

fo
rm

a
ti

cs
a
n

d
it

s
em

b
ed

d
in

g
in

so
ci

et
y.

-
d

is
cu

ss
ch

o
ic

es
,

n
o
rm

s,
a
n

d
b

eh
av

io
rs

th
a
t

a
re

p
o
ss

ib
le

in
re

sp
o
n

se
to

th
e

o
p

p
o
rt

u
n

it
ie

s
a
n

d
ri

sk
s

o
f

q
u

a
n
tu

m
co

m
p

u
ti

n
g
.

co
m

m
u

n
ic

a
ti

n
g
,

in
cl

u
si

o
n

124 G. Paparo et al.

Quantum cryptography takes advantage of the fact that due to the principles
of quantum mechanics, it is impossible for a third party to eavesdrop on the sys-
tem without disrupting it and thus (probably) being detected. Cryptography is
fundamental to today’s digital society, and many frameworks and curricula have
recognized it [17]. Students can learn about quantum cryptography in a course
focused solely on cryptography, or while learning about quantum informatics.
Students should learn why today’s most widely used encryption method, RSA,
is threatened by quantum computers. Also, by trying out a quantum key dis-
tribution protocol on their own, they can consider how it differs from classical
cryptography and where its potential and risks lie.

Impact of quantum informatics: If fully functional quantum computers
are realized, they could crack the most commonly used encryption methods. At
the same time, they could be used to perform process optimizations that could
lead to significant efficiency gains and bring energy savings. In addition, quantum
simulation has the potential to contribute to a better understanding of quantum
mechanical systems, which could allow us, for example, to develop new drugs and
materials. Societal implications lend themselves well to discussion with students,
and one could discuss, for example, how access to quantum computing, if limited
to individual governments or a few private companies, could alter power relations
in society (cf. [29]).

7 Exemplary Teaching approaches

Lastly, we provide concrete examples of how the standards could be implemented
in practice. We selected teaching approaches that fit with the newly defined
Quantum Informatics Standards (selecting for content, age group and computer
science applicability). In order to show how it is possible to develop different
approaches to the Quantum Standards, appealing to younger students and dif-
ferent levels of knowledge and abstract thinking, we then classified the selected
approaches based on Bruner’s modes of representation [3]. These approaches are
meant to be examples, and as such we did not undertake a systematic review of
all existing approaches, as it was not the focus of this work.

Action based approaches: The role-playing approach to introduce to
qubits and their properties developed by López-Incera and Dür [18] is a good
example for an action based introduction to quantum information. The authors
developed a role-playing game where some students are the qubits and others
are the scientists. The qubits have to follow rules about how to position arms
and legs and what to do when the scientists throw a ball at them (measure
them), while the scientist have to figure out these rules. This way it is possible
to explain superposition and entanglement, as well as the complexity of scien-
tific hypotheses, in a tangible and playful way. The authors developed a similar
role playing approach also for quantum cryptography [19] and there are several
other unplugged examples to teach to quantum cryptography. Perry et al. [23]
developed a pen&paper way to experience the BB84 protocol, one of the main
quantum key distribution protocols, which relies on qubit properties instead of

Teaching Quantum Informatics at School 125

mathematical complexity. Another promising enactive way to learn about quan-
tum key distribution is to build and use the Qeygen machine [28]. With this
analog machine, students can exchange a key using the BB84 protocol, simulate
an eavesdropper, and experience the possibilities and limitations of quantum key
distribution.

Image based approaches: The states of a qubit are generally represented
as vectors in a 2-dimensional complex space (Hilbert space), and most textbooks
use the Bloch sphere (or a simplified unit circle) as a geometrical representation
of qubits ([2], [23]). However, since most high school students lack knowledge
of complex numbers and linear algebra, this might not be the most accessible
visualization. Often metaphors are used, such as flipping coins, balls of different
colors, or a couple in love ordering wine in a restaurant. Although the metaphors
have the advantage of making a connection to the everyday life of the students,
as also pointed out by Seegerer et al. [26], they run the risk of being taken
too literally on the one hand, and of not making the peculiarity of quantum
principles sufficiently obvious on the other. Therefore, also other approaches
that are closer to quantum mechanical formalism have been developed, such as
the QI4Q formalism [25]. Here black and white marbles are used to represent
qubits and the boxes the marbles pass through represent quantum gates. This
approach has the advantage of explaining all necessary quantum gates correctly
and in an accessible, tangible way, without using any mathematics, but also the
disadvantage of having to learn somewhat arbitrary rules and of being suitable
only for relatively simple algorithms (cf. [9]). Economou et al. [9] showed how to
use the QI4Q formalism to model the Deutsch algorithm, disguised as a game.
This allows students not only to build a simple quantum algorithm using the
properties of quantum gates, but also to observe the advantages of quantum
over classical information processing. As with classical algorithms, it is valuable
for students to discuss them with pseudocode or different approaches before
being confronted with a formal language.

Language based approaches: Many platforms offer free access (after reg-
istration) to their quantum computing power via the cloud, such as Qutech’s
Quantum Inspire [24] or IBM Quantum [14]. This last one is widely used for
educational purposes as it provides an attractive graphical interface where you
can drag and drop to simulate (and execute) the effect of different gates on one
or more qubits, as well as qiskit, a Python-based software development kit. Stu-
dents can build their qubit circuits and run them on a real quantum computer,
experiencing quantum computing and its limitations, i. e. they can compare the
simulation with the real computer and understand the need for error mitigation
as well as error correcting techniques. The IBM website offers a comprehensive
textbook with integrated exercises [15], but it is aimed at university students
with a high motivation and interest in mathematics. This could be reduced and
simplified according to the students’ knowledge, needs and the time available (as
in [10]). On a symbolic, language-based level, students can also discuss risks and
potentials in the development of quantum informatics. Although most learning
resources mention this aspect, it is never the main focus of the teaching material

126 G. Paparo et al.

on quantum informatics. Interesting approaches to thematize this can however
be borrowed by other disciplines such as future studies [13] and integrated in a
quantum informatics curriculum.

The presented approaches show how an action based access to quantum infor-
mation and quantum cryptography is possible for younger students (e.g. lower
secondary school), while more complex and abstract topics such as quantum
computer systems, quantum algorithms, and the implications of quantum in-
formatics might be more suitable for higher secondary school. In general, we
have provided one or more teaching examples for the defined quantum concepts,
although not all defined learning outcomes, such as the ability to describe the
concept of fault tolerance or the discussion of responses to the opportunities and
risks of quantum computing, are directly addressed by existing approaches. We
are convinced that it is possible to teach all the defined standards in a way that
is appropriate for school, and intend to show this in the future.

8 Conclusion

With this paper, we offer a contribution to the introduction of quantum infor-
matics in schools: Its technologies and practices have been mapped and viewed
from the perspective of the Great Principles framework, and a first proposal for
learning standards at secondary school level, have been presented. It is impor-
tant to note that this is only preliminary theoretical work and that the standards
need to be tested and evaluated empirically. We are in the process of develop-
ing teaching materials and approaches based on the proposed standards and
the analysis of existing teaching approaches, and hope that others will do the
same. It is our goal that the standards and analysis proposed here will be useful
to computer science teachers and educators who are designing new materials,
planning lessons, or seeking a first orientation for teaching quantum informatics.

References

1. Alpert, C.L., Edwards, E., Franklin, D., Freericks, J.: Key Concepts for Future
QIS Learners, https://qis-learners.research. illinois.edu/, (accessed: 08.2023)

2. Billig, Y.: Quantum Computing for High School Students. Yuly Billig (Aug 2018)
3. Bruner, J.S.: Toward a Theory of Instruction. Belkapp Press, Cambridge (1966)
4. Computer Science Teacher Association(CSTA): K-12 Computer Science Standards

(Revised 2017), https://csteachers.org/page/standards
5. Denning, P.J.: Great principles of computing. Commun. ACM 46(11), 15–20 (2003)
6. Denning, P.J.: Computing is a natural science. Communications of the ACM 50(7),

13–18 (Jul 2007)
7. Deutsch, D.: Physics, philosophy, and quantum technology. In: Proceedings of Sixth

International Conference on Quantum Communication, Measurement and Com-
puting. Princeton, NJ (2003)

8. Directorate-General for Communications Networks, Content and Technology (Eu-
ropean Commission), Müller, R., Greinert, F.: Competence framework for quantum
technologies: methodology and version history. Tech. rep., Publications Office of
the European Union (2021)

Teaching Quantum Informatics at School 127

9. Economou, S.E., Rudolph, T., Barnes, E.: Teaching quantum information science
to high-school and early undergraduate students (Aug 2020)

10. EPiQC Education team: Introduction to quantum computing and qiskit (2023),
https://www.epiqc.cs.uchicago.edu/hs-qiskit, (accessed: 08.2023)

11. Franklin, D., Palmer, J., Jang, W., Lehman, E.M., Marckwordt, J., Landsberg,
R.H., Muller, A., Harlow, D.: Exploring Quantum Reversibility with Young Learn-
ers. In: Proceedings of the 2020 ACM Conference on International Computing
Education Research. pp. 147–157. ACM, New York, NY, USA (Aug 2020)

12. Franklin, D., Rogers, M., Rozansk, D., Tabor, C., Wong, T.G., Yen, B.: QIS
Key Concepts for Early Learners: K-12 Framework High School Computer Sci-
ence (2021), https://q12education.org/wp-content/uploads/2022/09/QISE-K-12-
framework-HS-Computer-Science-1.pdf

13. Horst, R., Gladwin, D.: Multiple futures literacies: An interdisciplinary review.
Journal of Curriculum and Pedagogy 0(0), 1–23 (2022)

14. IBM: Ibm quantum, https://quantum-computing.ibm.com/, (accessed: 08.2023)
15. IBM Quantum: Qiskit textbook, https://qiskit.org/learn/, (accessed: 08.2023)
16. K12 Computer Science Framework: Guidance for Standards Developers,

https://k12cs.org/guidance-for-standards-developers/, (accessed: 08.2023)
17. Lodi, M., Sbaraglia, M., Martini, S.: Cryptography in Grade 10: Core Ideas with

Snap! and Unplugged. In: Proceedings of the 27th ACM Conference on Innovation
and Technology in Computer Science Education Vol. 1. ACM (Jul 2022)

18. López-Incera, A., Dür, W.: Entangle me! A game to demonstrate the principles of
Quantum Mechanics. American Journal of Physics 87(2), 95–101 (Feb 2019)

19. López-Incera, A., Hartmann, A., Dür, W.: Encrypt me! A game-based approach to
Bell inequalities and quantum cryptography. European Journal of Physics 41(6)
(Nov 2020), http://arxiv.org/abs/1910.07845

20. Michaeli, T., Seegerer, S., Romeike, R.: Quanteninformatik als Thema und Auf-
gabengebiet informatischer Bildung. In: INFOS 2021. pp. 1–10 (2021)

21. Migda l, P., Jankiewicz, K., Grabarz, P., Decaroli, C., Cochin, P.: Visualizing quan-
tum mechanics in an interactive simulation – Virtual Lab by Quantum Flytrap.
Optical Engineering 61(08) (Jun 2022)

22. Paparo, G., Waldvogel, B., Grillenberger, M.: Quanteninformatik:
Schlüsselkonzepte und -kompetenzen. In: INFOS 2023. pp. 1–10 (in press)

23. Perry, A., Sun, R., Hughes, C., Isaacson, J., Turner, J.: Quantum Computing as a
High School Module (Apr 2020), http://arxiv.org/abs/1905.00282

24. QuTech: Quantum inspire, https://www.quantum-inspire.com, (accessed: 08.2023)
25. Rudolph, T.: Q is for quantum, https://www.qisforquantum.org, (accessed:

08.2023)
26. Seegerer, S., Michaeli, T., Romeike, R.: Quantum Computing As a Topic in Com-

puter Science Education. In: The 16th Workshop in Primary and Secondary Com-
puting Education. pp. 1–6. ACM, Virtual Event Germany (Oct 2021)

27. Seskir, Z.C., Migdal, P., Weidner, C., Anupam, A., Case, N., Decaroli, C., Ercan,
I., Foti, C., Gora, P., Parvin, N., Scafirimuto, F., Sherson, J.F., Surer, E., Wootton,
J., Zabello, O., Chiofalo, M.: Quantum Games and Interactive Tools for Quantum
Technologies Outreach and Education: A Review and Experiences from the Field.
Optical Engineering, 61(8) (2022)

28. TueftelAkademie: Qey-gen, the quantum key generator,
https://tueftelakademie.de/quantum1x1/quantum cryptography/gey-gen, (ac-
cessed: 08.2023)

29. de Wolf, R.: The Potential Impact of Quantum Computers on Society (2017),
http://arxiv.org/abs/1712.05380

128 G. Paparo et al.

Measuring Didactical Competencies for
Informatics Education among Prospective

Primary School Teachers

Christin Nenner1[0000−0002−5230−4343] and Nadine Bergner2[0000−0003−3527−3204]

1 TUD Dresden University of Technology, Germany
2 RWTH Aachen University, Germany

Abstract. Even primary school children live in a world that is perme-
ated by informatics. Therefore, they need informatics competencies in
order to be able to understand and help shape this world. To enable the
acquisition of informatics competencies in primary school, informatics-
competent primary school teachers are essential. In addition to informat-
ics competencies, they also need the didactical competencies to teach in-
formatics in a way that is appropriate for the subject, the child, and the
purpose. This article presents a way to measure didactical informatics
competencies. Self-assessment items are used to measure participants’
self-perceived didactical informatics competencies pre and post seminar
participation. Reflection sheets are used to support reflection on the de-
veloped lesson plans, including assessment of target group orientation,
informatics relevance, and professional correctness.

Keywords: Informatics education · Prospective primary school teachers
· Didactical competencies

1 Motivation and Introduction

Both the Committee on European Computing Education [1] and the European
Commission within the Digital Education Action Plan 2021-2027 [4] advocate
continuous informatics education for all students, starting in primary school.
For this to be implemented, informatics education needs to be integrated into
primary school teacher training [13, 5]. Therefore, prospective primary school
teachers not only need informatics competencies by themselves but also compe-
tencies in teaching them. According to [20], didactical competencies refer to the
question of how learning processes can be promoted and supported. In particu-
lar, it is about good quality tasks, explanations, and representations. The model
of didactic reconstruction for informatics described in [2] includes, among other
components, the capture of teachers’ perspectives.

In order to enable prospective primary school teachers to develop didac-
tical informatics competencies, courses are designed and offered explicitly for
this purpose at various university locations. In a seminar at the PH Schwyz
for prospective primary school teachers focusing on data structures, algorithms

CC BY 4.0, C. Nenner and N. Bergner
J.-P. Pellet and G. Parriaux (Eds.): ISSEP 2023 Local Proceedings, pp. 129–138, 2023.
https://doi.org/10.5281/zenodo.8431951

https://doi.org/10.5281/zenodo.8431951

(incl. block-based programming) and informatics systems [3], the development
of didactical informatics competencies is supported through the use of teach-
ing examples. In a seminar on informatics for primary school at the University
of Wuppertal offered for prospective primary school teachers [7], not only ex-
isting teaching materials are tested but the participants also develop their own
informatics-specific lesson plans (LP). The participants test these with each other
in the seminar and reflect on them together. In seminars of a collaborative project
in North Rhine-Westphalia for prospective primary school teachers for science
[11], the developed LP are implemented by the participants with primary school
children. The experiences of the participants are reflected upon cooperatively.
At TUD Dresden University of Technology the seminar “Informatics education
in primary schools” [19] was designed that combines good approaches of the de-
scribed courses. For this seminar, previously existing and in the seminar acquired
didactical informatics competencies should be measured3. Until now, there is no
informatics-specific measuring instrument for didactical competencies.

This article presents a possible instrument for measuring didactical informat-
ics competencies. Chapter 2 addresses the research question and design before
exemplary results are presented and discussed in chapter 3. In both cases, the
self-assessment questionnaire and the reflection sheet on the developed LP are
considered. Chapter 4 on limitations and outlook closes the article.

2 Research Question and Design

In order to address the research question “How can didactical informatics com-
petencies of prospective primary school teachers be assessed? ”, an instrument
consisting of a self-assessment questionnaire and a reflection sheet for the devel-
oped LP was designed. It was used for the first time in a seminar on informatics
education in primary schools, in which prospective primary school teachers ac-
quire both professional and didactical informatics competencies (see Fig. 1).

2.1 Self-Assessment Questionnaire

The developed self-assessment questionnaire consists of eleven items (see Tab. 1
in the appendix), which are rated on a 5-point Likert scale (1: strongly disagree
to 5: strongly agree) before the start of the seminar and after the discussion of the
LP (see Fig. 1). Eight self-assessment items (SA1–SA8) were formulated based on
competency formulations in the standards for teacher education of the Standing
Conference of the Ministers of Education and Cultural Affairs [12, p. 9]. These
were supplemented by three items on confidence in SA9: elaborating informatics
content together with primary school students, SA10: the excitement of primary
school students for informatics content, and SA11: the answering of individual
questions about informatics content, taken from [9] with slight adaptions. In

3 In order to also measure subject-specific informatics competencies, another measure-
ment instrument was developed, which is explained in more detail in [18].

130 C. Nenner and N. Bergner

Fig. 1. Structure of the seminar on informatics education in primary school

order to establish a reference to concrete informatics contents, the self-assessment
items SA9, SA10 and SA11 are queried for the six topic areas based on the
recommendations of the German Informatics Society [6]: (1) informatics systems
in the living world, (2) functionality of informatics systems, (3) coding data, (4)
algorithmic thinking, (5) programming, and (6) functionality of the Internet.
Here, the participants can only indicate whether they are confident in the self-
assessment item related to the respective topic area.

2.2 Reflection Sheet for Developed LP

To improve one’s own teaching competencies, lesson observations with subse-
quent reflections are an important foundation [10]. Based on [8] and [17], a re-
flection sheet with eleven items was created to survey the didactical informatics
competencies (see Tab. 2 in the appendix). In order to use the reflection sheet,
the prospective primary school teachers have to create informatics-specific LP,
which they present to one another, then test parts and reflect on them coopera-
tively in the seminar. To develop these eleven items, existing statements in liter-
ature were modified or supplemented with regard to the specifics of informatics.
The reflection sheet is used by the prospective primary school teachers and the
informatics didacticians to rate the LP on a five-point Likert scale (1: strongly
disagree to 5: strongly agree). The participants use the reflection sheet after the
presentation and the testing of a part of the LP with the other participants for
a peer feedback (example item: The teacher focused on informatics-specific con-
tent in the lesson.). The informatics didacticians use the reflection sheet for the
evaluation of the LP (tabular plan and first materials) without further explana-
tion (example item: The LP focuses on informatics-specific content.). In the first
step, each informatics didactician comments on all eleven items for each LP, and
rates them on the scale. After the didacticians have done this independently,
they discuss their assessments with each other and agree on a value on the scale.
This applies to version 1 (V1) and the revised version 2 (V2). The assessment of
the revised versions will take place approximately three months after rating V1.

Measuring Didactical Competencies for Informatics Education 131

There is no direct comparison with V1. The assessments of V1 and V2 are com-
pared in order to detect possible changes in the students’ individual didactical
informatics competencies. Fig. 1 shows the measurement times.

3 Exemplary Results and Discussion

The instrument for measuring didactical informatics competencies has been used
in the elective seminar since the winter semester 2021/22. A total of N = 19 data
sets were collected. Prospective primary school teachers from the 3rd semester or
higher participated. Four of these indicated that they had already participated in
informatics education courses. Two further participants stated to have educated
themselves individually through their own research. In the following, first, the
results of the self-assessment questionnaire and then those of the reflection sheet
for the developed LP are presented and discussed.

3.1 Exemplary Results on the Self-Assessment Questionnaire

In the pre-post comparison of the participants’ self-assessment of didactical in-
formatics competencies (see Fig. 2), significant changes are shown for all eleven
items (exact significance (2-sided) ≤ 0.05). The largest changes are shown in
SA5: knowledge of material (∆A = 2.68) and SA7: development of concepts to
enable informatics education (∆A = 2.53). This can be explained by the fact
that many already existing materials are presented and tested within the input
phase of the seminar. Developing concepts for informatics education is also a
focus of the seminar. With average values of 3.68, the participants already es-
timate before the seminar SA2: importance of informatics education as well as
SA10: their confidence in relation to the excitement of students for informatics
contents to be high. Thus, the changes are small with 0.53 and 0.84. The high
pre value of the importance of informatics education in primary school can be
explained by the fact that it is an elective seminar and the prospective primary
school teachers freely chose from various elective options. Between participants
without and with informatics education, the greatest differences are evident in
the items SA3: connection to current curricula (∆A = 1.17), and SA5: knowledge
of material (∆A = 1.06) prior to participation in the seminar, with the average
values of those with prior knowledge being higher in each case. Participants’
self-assessments after the seminar differed little between these two groups.

When participants assessed whether they were confident in SA9: elaborating
the informatics content, SA10: exciting students, and SA11: answering individ-
ual questions (see Fig. 3), significant changes were found in the pre-post design
for the topic areas of (2) functionality of informatics systems, (3) coding data,
and (4) algorithmic thinking. For the topic area (1) informatics systems in the
living world, significant changes were found for SA11: answering questions, and
for the topic area (5) programming, significant changes were found for SA9:
elaborating the informatics content and SA10: exciting primary school students.
For the topic area (6) functionality of the Internet, participants’ confidence of

132 C. Nenner and N. Bergner

Fig. 2. Pre-post comparison of participants’ self-assessment of didactical informatics
competencies. N = 19

all three items (SA9, SA10, SA11) actually decreased. This could indicate that,
prior to participating in the seminar, the participants associated media literacy
competencies such as using the Internet with this topic area, indicating a mis-
conception. In this case, the acquired informatics competency could have led to
the participants being less confident in this topic area after participating in the
seminar.

Fig. 3. Pre-post comparison of participants’ self-assessment of didactical informatics
competencies SA9, SA10 and SA11 for six informatics topic areas. N = 19

Furthermore, it is remarkable that the participants already assess themselves
with rather good values for SA9 (Apre = 3.00) and SA10 (Apre = 3.68) for
informatics contents in general prior to the seminar. This could be related to
the fact that participants are more likely to associate these items with talking
about informatics and may also have misconceptions about informatics (e. g.,
equating it with media literacy). The participants are much less confident in
answering individual questions about informatics content (SA11; Apre = 2, 37).
This could indicate that the participants perceive more informatics competencies
as necessary here than in SA9 and SA10. Looking at the confidence for the six
topic areas prior to the seminar, less than 50% of the participants are confident
in SA9, SA10 and SA11 for (2) functionality of informatics systems, (3) coding
data, (4) algorithmic thinking, (5) programming. This could indicate, when asked
about their confidence in more concrete informatics topic areas, doubts seem to
arise.

Measuring Didactical Competencies for Informatics Education 133

3.2 Exemplary Results on the Reflection Sheet for Developed LP

The assessment of V1 of the LP by the informatics didacticians shows deficits
especially for the items concerning RS2: prior knowledge of the primary school
children, RS4: comprehensible work assignments, RS9: informatics correct expla-
nation, and RS10: target group oriented explanation. Fig. 4 shows an example
of the differences in the assessments of the informatics didacticians of the two
versions (V2 – V1) of the LP by three participants. The difference of the evalua-
tion on a 5-point Likert scale (1 - strongly disagree, 5 - strongly agree) is shown.
A positive difference is to be interpreted as an increase in competency since the
score of V1 is subtracted from that of V2.

Fig. 4. Differences of the evaluation of the first and revised LP (points V2 - points V1)
of three participants (P)

The assessment of the prospective primary school teachers of the LP using
the reflection sheet reveals that they generally give rather positive ratings. The
deficits of the LP in RS9: informatics correct and RS10: target group oriented
explanation, which were pointed out by the informatics didacticians, are not
visible in their assessments.

4 Limitations and Outlook

The self-assessment questionnaire of didactical informatics competencies was
applied successfully. However, this could only be tested with prospective primary
school teachers who voluntarily chose to attend the seminar. Therefore, it is not
a representative sample of all prospective primary school teachers. Furthermore,
misconceptions, as they have been shown in the experiences of the seminars at
the PH Schwyz [3] and the University of Wuppertal [7] (see chapter 1), about
the term informatics and the terms in the naming of the topic areas influence
the self-assessment of the participants.

The presented reflection sheet can only partially be used to measure didac-
tical informatics competencies. The peer feedback collected with the reflection
sheet has no added value for the survey of the didactical informatics compe-
tencies because the participants hardly recognized the weaknesses in the LP of
the others and generally evaluated them very positively. It cannot be used as a
research tool, but it is didactically useful for application in teaching. In addition,

134 C. Nenner and N. Bergner

the peer feedback by the participants and the feedback by the informatics di-
dacticians are not comparable, since the formats of the survey are very different
from each other. The informatics didacticians provide their feedback only on the
LP that are available in tabular form. The participants of the seminar also look
into the tabular documents, can ask questions to the presenting participants
and often have more or revised materials available. By asking questions or the
expression of comments by individual participants in the presence of the whole
group, all participants may be influenced in their evaluation of the LP. In the use
of the reflection sheet by the informatics didacticians in the assessment of the
V1, limitations arose from the fact that the participants did not always follow
the instructions for the preparation of the LP. If, e. g., the work assignments and
informatics explanations were not provided or specified, the LP could only be
assessed inadequately or not at all with regard to the items on these topics. The
same applies to the learning materials.

The items of the reflection sheet are partly difficult to evaluate on the five-
point Likert scale. Here, item-specific formulations describing the respective lev-
els could be helpful. The use of the reflection sheet enables the consideration of
the same criteria for the assessment of the developed LP from the perspective
of the informatics didacticians and the participants.

For testing the LP revised by the prospective primary school teachers with
primary school students as a real teaching-learning scenario like in the seminars
of a collaborative project in North Rhine-Westphalia [11] (see chapter 1), a
feedback sheet has already been developed on which the primary school students
can evaluate the lesson. For this, statements from [15] were selected, which are
supplemented by one or two informatics learning objectives of the respective
LP. The seminar leader participates in the tests and uses the reflection sheet
to assess the observed lesson. Through the extension, it can be checked whether
the informatics competencies can be elaborated by the participants together with
the primary school students.

Acknowlegdement ”The projects underlying this article are part of the ”Qual-
itätsoffensive Lehrerbildung”, a joint initiative of the Federal Government and
the Länder which aims to improve the quality of teacher training. The pro-
gramme is funded by the Federal Ministry of Education and Research. The
authors are responsible for the content of this publication.”

References

1. Committee on European Computing Education: Informatics Education in Europe:
Are We All In The Same Boat? Tech. rep., ACM (2017)

2. Diethelm, I., Hubwieser, P., Klaus, R.: Students, Teachers and Phenomena: Edu-
cational Reconstruction for Computer Science Education. In: Proceedings of the
12th Koli Calling International Conference on Computing Education Research. pp.
164–173. ACM, New York, NY, USA (2012)

Measuring Didactical Competencies for Informatics Education 135

3. Döbeli Honegger, B., Hielscher, M.: Vom Lehrplan zur LehrerInnenbildung - Er-
ste Erfahrungen mit obligatorischer Informatikdidaktik für angehende Schweizer
PrimarlehrerInnen. In: Informatische Bildung zum Verstehen und Gestalten der
digitalen Welt. pp. 97–107. Gesellschaft für Informatik, Bonn (2017)

4. European Commission: Digital Education Action Plan 2021-2027 – Resetting ed-
ucation and training for the digital age (2020)

5. German Rector’s Conference: Teacher education in a digital world. Resolution of
the Senate of the HRK on 22 March 2022 (2022)

6. Gesellschaft für Informatik e. V. (GI): Kompetenzen für informatische Bildung im
Primarbereich. Empfehlungen der Gesellschaft für Informatik e. V. erarbeitet vom
Arbeitskreis »Bildungsstandards Primarbereich« – Beschluss des GI-Präsidiums
vom 31. Januar 2019 – veröffentlicht als Beilage zu LOG IN Heft 191/192. (2019)

7. Haselmeier, K.: Informatik in der Grundschule – Stellschraube Lehrerbildung. In:
Pasternak, A. (ed.) Informatik für alle. pp. 89–98. Gesellschaft für Informatik,
Bonn (2019)

8. Helmke, A.: Unterrichtsqualität und Lehrerprofessionalisierung. Diagnostik
von Lehr-Lern-Prozessen und evidenzbasierte Unterrichtsentwicklung. Klett-
Kallmeyer, Hannover, 1. edn. (2022), Anhang: Einblicknahme in die Lehr- und
Lernsituation, ABS, V 7.1

9. Hildebrandt, C.: Skalenhandbuch Selbstwirksamkeitserwartung von Informatik-
lehrkräften (2019)

10. Höppner, C., Dotzler, C., Körndle, H., Narciss, S.: Training mit Microteach-
ing zur Entwicklung und zum Einsatz formativer Feedbackstrategien in Lehr-
Lernsituationen. In: Uhde, G., Thies, B. (eds.) Kompetenzentwicklung im
Lehramtsstudium durch professionelles Training. Universitätsbibliothek Braun-
schweig (2019)

11. Kuckuck, M., Best, A., Gryl, I., Grey, J., Brinda, T., Windt, A., Schreiber, N.,
Batur, F., Schmitz, D.: Informatische Bildung in Praxisphasen des Sachunterrichts
in NRW. In: Humbert, L. (ed.) INFOS 2021 – 19. GI-Fachtagung Informatik und
Schule. pp. 241–250. Gesellschaft für Informatik, Bonn (2021)

12. Kultusministerkonferenz: Standards für die Lehrerbildung: Bildungswissenschaften
(2019), vom 16.12.2004 i. d. F. vom 16.05.2019

13. Kultusministerkonferenz: Lehren und Lernen in der digitalen Welt. Die ergänzende
Empfehlung zur Strategie ”Bildung in der digitalen Welt” (2021)

14. Lehner, M.: Didaktische Reduktion. Haupt, Bern, 2. edn. (2020)
15. Lenske, G.: Schülerfeedback in der Grundschule: Untersuchungen zur Validität.

No. Bd. 92 in Pädagogische Psychologie und Entwicklungspsychologie, Waxmann,
Münster New York (2016)

16. Maras, R., Ametsbichler, J., Ostermann, A.: Unterrichtsgestaltung in der Grund-
schule - ein Handbuch. Auer, Augsburg, 6. edn. (2019)

17. Meyer, H.: Leitfaden Unterrichtsvorbereitung. Cornelsen, Berlin, 1. edn. (2007)
18. Nenner, C., Bergner, N.: Informatische Kompetenzen (angehender) Grund-

schullehrkräfte sichtbar machen: Ein Messinstrument mit selbsteinschätzungs-
und aufgabenbasierter Komponente. In: Hellmig, L., Hennecke, M. (eds.) INFOS
2023 20. GI-Fachtagung Informatik und Schule. Gesellschaft für Informatik, Bonn
(2023), (in press)

19. Nenner, C., Bergner, N.: Seminar zur informatischen Bildung in der Grundschule.
In: Desel, J., Opel, S. (eds.) 10. Fachtagung Hochschuldidaktik Informatik (HDI)
2023. FernUniversität Hagen, Hagen (2023), (in press)

20. Schubert, S., Schwill, A.: Didaktik der Informatik. Spektrum, Akademischer Verlag,
Heidelberg, 2. edn. (2011)

136 C. Nenner and N. Bergner

A Appendix

Table 1. Items for the self-assessment questionnaire of didactical informatics compe-
tencies

Self-assessment items SA1 – 8 (based on competency formulations in the
standards for teacher education of the Standing Conference of the Ministers of
Education and Cultural Affairs [12, p. 9])

SA1: I have an idea of what content and concepts informatics education
encompasses.

SA2: The teaching of informatics competencies is of great importance to me.

SA3: I know points of contact for informatics content and competencies in
current primary school curricula.

SA4: I have an idea of how to integrate informatics education into my teaching.

SA5: I can draw from a selection of existing materials for the implementation of
informatics education in primary school.

SA6: I can develop teaching-learning concepts that enable informatics
education for primary school students.

SA7: I have the confidence to test given teaching-learning concepts with a small
group (max. ten participants) that enable informatics education for
primary school students.

SA8: I have the confidence to test given teaching-learning concepts with a class
that enable informatics education for primary school students.

Self-assessment items SA9 – 11 (slightly adapted taken from [9])

SA9: I am confident in my ability to work with primary school students to
develop informatics content and skills.

SA10: I am confident in my ability to get primary school students excited about
informatics content.

SA11: I have the confidence to answer primary school students’ individual
questions about informatics content.

Measuring Didactical Competencies for Informatics Education 137

Table 2. Items of the reflection sheet (RS) for developed lesson plans (LP) including
the source (S) it is inspired by

Nr. Item - informatics
didacticians

Item - participants S

RS1 The LP is clearly structured. The teacher structured the
lesson clearly.

[8]

RS2 The LP actively links to the
students’ previous experiences
and knowledge.

− [17]

RS3 The LP contains examples
from the everyday life of the
primary school students
and/or ties in with the
interests of the primary school
students.

The teacher integrated
examples from the everyday
life of the primary school
students and/or ties in with
the interests of the primary
school students.

[8]

RS4 In the LP, the work
assignments are formulated in
a way that is understandable
for primary school students.

The teacher formulated the
work assignments in a way
that is understandable for
primary school students.

[17]

RS5 The materials used in the LP
are designed in a way that is
appealing to and
understandable for primary
school students.

The teacher designed the
materials in a way that is
appealing to and
understandable for primary
school students.

[17]

RS6 The LP is student-centered
and activating.

The teacher designed the
lesson in a student-centered
and activating way.

[17]

RS7 The LP focuses on
informatics-specific content

The teacher focused on
informatics-specific content in
the lesson.

[16]

RS8 In the LP, the
informatics-specific subject
matter is effectively developed
with the primary school
students.

The teacher developed the
informatics specific subject
matter with the primary
school students in an effective
manner.

[14]

RS9 In the LP, the
informatics-specific subject
matter is explained correctly.

The teacher explained the
subject matter correctly.

[14, 16]

RS10 The LP explains the
informatics-specific subject
matter in a way that is
appropriate for primary school
students.

The teacher explained the
informatics-specific subject
matter in a way that is
appropriate for primary school
students.

[14]

RS11 In the LP, the
informatics-specific content is
prepared according to the
formulated learning objectives.

− [14]

138 C. Nenner and N. Bergner

Computational Thinking from Preschool to
University: The Versatility of UML Modeling in

Education

Nina Lobnig[0000−0002−7097−8317] and Corinna Mößlacher[0009−0001−6223−406X]

Department of Informatics Didactics, University of Klagenfurt
Universitätsstraße 65-67, 9020 Klagenfurt

Nina.Lobnig@aau.at; Corinna.Moesslacher@aau.at

Abstract. Teaching computer science is seen as an important part of
today’s society and many educational institutions, not only as a separate
subject but also as part of cross-curricular and interdisciplinary teach-
ing. Modeling with UML diagrams is a computer science topic that is
excellent for this purpose since it offers wide applicability in computer
science classes as well as other subjects. In computer science education,
modeling is an important part of software development and the design of
databases. It also has potential in other disciplines, including language
classes, natural sciences, economics, and more, to structure and visualize
interrelations and processes in different contexts.
This paper highlights the benefits of (UML) modeling in education and
provides teaching examples and ideas. Specifically, this involves the use
of activity diagrams, object diagrams, and class diagrams. Apart from
computer science classes, one of those teaching examples is planning
(stop-motion) videos as an interdisciplinary approach. Another example
is using UML modeling in language classes for (better) visualization and
understanding of the characters and their relations from a book or play.
We use this approach in our workshops and can provide experience from
teachers using our teaching material.Overall, this paper offers insight
into the successful use of UML modeling in different educational settings
and provides practical recommendations and further ideas for teachers as
well as instructors seeking to incorporate UML modeling into curricula.

Keywords: computer science education · UML diagrams · interdisci-
plinary education · cross-curricular education

1 Introduction

In today’s educational landscape, there is increasing recognition of the need to
think and act beyond traditional disciplinary boundaries. Efforts are being made
in many schools and curricula to promote interdisciplinary and cross-curricular
teaching, as evidenced by the multiple references to “interdisciplinary” in nearly
all present curricula (e. g. in [2] or even in primary school with explicit interdis-
ciplinary topics [1]). Beyond the well-known goals of deepening and connecting

CC BY 4.0, N. Lobnig and C. Mößlacher
J.-P. Pellet and G. Parriaux (Eds.): ISSEP 2023 Local Proceedings, pp. 139–150, 2023.
https://doi.org/10.5281/zenodo.8431948

https://doi.org/10.5281/zenodo.8431948

knowledge, integrating tools and methods from other disciplines can bring sev-
eral valuable advantages. An example approach is the adoption of modeling with
UML (Unified Modeling Language) in educational contexts. Our objective is to
highlight how this can enrich non-computer-science subjects and as well be used
in interdisciplinary teaching.

UML facilitates the establishment of connections between various topics and
concepts, enabling to grasp interrelationships better and enhance their ability
to connect and synthesize knowledge and communicate about it. By introducing
practical examples straight out of the classroom and workshops, we offer valu-
able insights and recommendations to educators on how to integrate modeling
into their subjects. By doing so, teachers can expand their repertoire beyond
traditional and often unstructured mind maps and instead use established and
standardized forms of representations already prevalent in computer science.

Visualizing thoughts and ideas can help in understanding and solving prob-
lems - an important part of Computational Thinking. When learning this con-
cept, it can be helpful to have methods that help to formulate (unplugged)
algorithms and structured thoughts. Writing ideas and concepts in a more for-
mal language, e.g. UML, can also be seen as part of Computational Thinking.
Furthermore, one can perform pattern recognition on these structures and ab-
stract thoughts into higher-level concepts. These are all operations that belong to
Computational Thinking [9] and can be visualized with UML (object diagrams
for structuring, class diagrams for abstraction, activity diagrams for algorithms).

Throughout this paper, we will showcase a range of diverse approaches to
support teachers in integrating a structured form of modeling into their lessons.
Additionally, we will address the challenges that may arise and provide best
practices to overcome these hurdles. We firmly believe in the potential of mod-
eling in the educational context for students of different ages and in different
topics and subjects.

2 Modeling with UML diagrams: Why and what for?

2.1 UML as a Standardized Notation for Modeling in Computer
Science

UML is a universal modeling language that provides various diagrams for visu-
alizing the structure and behavior of systems. Although its original purpose is
to visualize software in a standardized way, the features can be used for various
other purposes. UML provides diagrams for various purposes, defined in such
a way that they can be applied to different topics. Basically, you just choose
the right diagram type for the given information (e.g. entities with properties
and their relationships) and visualize the information. The standardized rules
ensure that the information can be understood without much additional context
by any person who knows UML. The process is no different than visualization in
mathematics: you choose the right statistical diagram to represent the results,
apply the rules, and any person with basic mathematical knowledge can read
the representation without much effort.

140 N. Lobnig and C. Mößlacher

This standardization is one of the main features that shows the strength
of this method in education: it can be learned as a new method (like statistical
diagrams in mathematics) that can be applied to various topics in other subjects.
The rules remain the same once learned, only the context changes. In addition,
standardization facilitates the design and exchange of teaching materials.

2.2 Beyond Mindmaps: About the Power of Formal Diagrams

A typical approach when trying to visualize information is to create a mind or
concept map. This method is widely used - also in a school context - and has
many advantages. The rules are easy to explain. Unnecessary filler words are
omitted, the most important terms are arranged in a structured way, and so on.

Nevertheless, it is sometimes difficult to create correct mind maps. The line
between the words represents a relationship (supercategory - subcategory start-
ing from the middle of the diagram). Often, however, the connecting lines simply
represent “somehow belongs to”. In the worst case, this leads to circles in the
diagram. The relationships can then no longer be interpreted and information is
lost. If the diagram is drawn strictly according to the relationship of the items,
it is structured in categories (e.g. as a preliminary stage of a table of contents).

The diagram is not suitable for more complex relationships or processes.
Actually, there is only one rule that must be followed for creating a mind map:
the relationship is represented by a line. Thus, from a computer science point
of view, it can be said: mind-maps are always possible if the information can be
represented as a tree (as there is a root, edges, and nodes). A mixture of different
meanings for the edges is not possible, as the edges are not labeled and must
therefore always represent the same relationship. Concept maps address this
issue by incorporating labeled edges and enabling cross-links between nodes.
Those are used instead of mind maps as an improved and established concept,
which can also be used in interdisciplinary contexts (see [6]).

However, they also follow a hierarchical structure like mind maps, and in
addition, the nodes are units with a label but without properties. The use cases
are thus limited. To be able to represent these contents, more complex diagrams
with further rules must be used. In an object diagram, for example, the relation-
ships between the individual objects (nodes) can be defined with identifiers and
each object has different properties with different characteristics.

2.3 Choosing the Right UML Diagram: Matching Diagram Types
to Modeling Needs

UML includes many diagram types. For use in teaching, a selection must be
made that on the one hand covers all important use cases (i.e. different types of
information), but on the other hand, gets by with as few different diagrams as
possible. A selection could be (according to [8]):

– Use Case Diagram
– Class Diagram (and Object Diagram)

The Versatility of UML Modeling in Education 141

– State Machine Diagram
– Sequence Diagram
– Activity Diagram

The Class and Object Diagram can be used to visualize entities and relationships.
The Activity Diagram can be used to visualize every kind of algorithm/process.
With these two diagrams, we can cover a wide range of contexts. Of course, there
are also other variants to represent relationships and processes. However, UML
offers the advantage of standardized representation and is widely used (outside
the classroom). The Use Case Diagram, State Machine Diagram, and Sequence
Diagram have a rather limited application scope (in our topics) and will not be
discussed here.

We have also looked at other variants of representation with diagrams, but
currently use mainly UML diagrams. Earlier variants of the material (details
on our workshops and material are presented in the next section) also used
the entity-relationship diagram. These represent the same content as the class
diagram. The original idea was that this diagram would be more design friendly
for students. But with this diagram, only classes can be represented - an abstract
concept for students. This led to many incorrect diagrams, for example, the
students were looking for a place to write the property values and added them
wrong. The change to an object diagram (introduced as a fact sheet) for a specific
object was easier to understand and use.

When further analyzing the object diagrams, students can more easily rec-
ognize the abstract structures and form a class diagram on the object diagram
(e.g. class Person from several individuals).

2.4 UML Modeling in Computer Science Education

The use of graphical notations for the structured representation of facts, mostly
in the form of UML diagrams, is particularly common in computer science ed-
ucation (not surprisingly, as it is a computer science technique). However, the
extent to which it is used in the classroom varies greatly between countries and
types of schools. In general, however, it is very similar to its use in computer
science. Modeling is most commonly used in software development to describe,
analyze and present algorithms and programs. UML diagrams are also used in
database design.

For example, in the Austrian curriculum, at the end of primary school, the
defined competencies for interdisciplinary computer science education encompass
comprehension, execution, and formulation of instructions [1]. This could be
done through modeling, although hardly is. In the basic curriculum for digital
education [3] the term modeling is mentioned directly, but only in the general
section. In the concrete objectives, only “(graphical) notations” within the topic
of algorithms are mentioned. Experience (also) shows that modeling is hardly
dealt with in lower secondary education. However, in secondary school curricula
(like the AHS curriculum [2]), modeling can be found in the area of software
development (and algorithms) and especially in the design of databases.

142 N. Lobnig and C. Mößlacher

3 Methodology

In our lab (“Informatik-Werkstatt”) we develop teaching material for different
(computer science) topics. We try to offer material about important concepts for
different age groups (kindergarten to university level). To test and develop our
material, we organize workshops. The development of the material, presented
later on, follows a multi-step process established at our computer science lab
within our university and includes not only the initial development phase but
also quality assurance in the form of internal reviews and evaluations and ongoing
improvements.

In the initial phase, we break down the important concepts of a computer
science topic according to the circumstances (regarding the age group, available
time, and others) and create a first draft of the materials. This is refined and
integrated into playful, open learning using the “COOL Informatics” concept
(Cooperative Open Learning, see [7]). It is then handed over to colleges or field
experts to provide constructive feedback and suggestions for improvement. Af-
ter rework, the materials undergo practical testing in small-group workshops
in different age groups, ranging from kindergarten to primary and secondary
schools. These workshops are controlled environments for gathering empirical
data, insights, and experiences from facilitators and participants. Additionally,
collaborative partnerships with schools enable the materials to be sometimes
piloted in specific classroom settings, further enriching the empirical basis for
refinement and serving as pre-studies.

Upon another revision process, the materials are published under a Creative
Commons Attribution (CC-BY) license on a widely accessible material exchange
platform1. This licensing approach enables educators to freely access, utilize,
and adapt the materials to suit their instructional contexts and preferences.
To support ongoing professional development and dissemination, the workshop
team continues to offer sessions centered around the materials. These sessions
can be booked by whole classes, where teachers can gain practical insights into
their effective implementation within diverse classroom settings. Additionally,
the materials are also presented and discussed in teacher professional develop-
ment programs. By engaging with the materials in this context, educators have
the opportunity to share their practical experiences, exchange pedagogical strate-
gies, and collectively contribute to the ongoing refinement and improvement of
the materials as we get valuable insights and feedback from practicing teachers.
Our approach is related to design-based research, which is described in Aguayo
et al. [4] or Barab et al. [5] among others.

4 Interdisciplinary Teaching Examples for Describing
and Working with Processes

In this section, we will explore the versatile use of activity diagrams in the
school setting, highlighting their applicability across various age groups, from

1 https://www.rfdz-informatik.at/materialboerse/ (note: site in German)

The Versatility of UML Modeling in Education 143

kindergarten to university. Activity diagrams serve as visual representations of
temporal sequences, incorporating branching paths and providing a structured
overview of processes. Before delving into specific examples, we briefly recap
what activity diagrams are and how we use them in the educational context.

Activity diagrams find valuable application in visualizing daily routines, such
as tooth brushing, and biological processes, such as the life cycle of a butterfly.
By presenting these activities graphically, students are better able to compre-
hend and engage with the steps involved, fostering their understanding of the
sequences. Additionally, activity diagrams aid in maintaining a sense of organi-
zation, helping students remember tasks or plan for future activities. While par-
ticularly beneficial for younger students, activity diagrams can also be utilized
across different age groups. Their applicability extends beyond specific subjects,
making them a valuable resource in various educational subjects. For example:

Interdisciplinary (School Projects):
Activity diagrams are useful for students in the lower grades who are plan-
ning and describing scenes for video creation, particularly for interactive
videos that involve multiple storylines (using tools like H5P).

Computer Science:
In the field of game programming and design, activity diagrams serve as a
crucial component in outlining planned sequences of events, to visualize and
comprehend the flow of a game.

Mathematics:
Activity diagrams can be used to describe specific calculation algorithms,
facilitating the understanding of complex mathematical processes. They can
be utilized to illustrate the step-by-step procedures involved in solving math-
ematical problems.

Science:
Activity diagrams find application in representing procedures or processes in
various scientific subjects. For instance, they can be employed to illustrate
chemical reactions, laboratory procedures, and scientific experiments.

4.1 Example: Lina’s Routine of the Day (preschool)

Now we present an example derived from a collaborative project with a local
kindergarten, where the daily routine of a fictional child named Lina is repre-
sented, displayed in figure 1. This activity diagram serves as an introductory
example in our teaching materials and workshops, showcasing how activity dia-
grams can be used and providing an understanding of their structure. Addition-
ally, it facilitates discussions about various familiar routines and processes, such
as morning or bedtime rituals, teeth brushing, and hand washing.

The initially presented diagram showcases the sequential activities (with pho-
tographs, because the children2 can not read yet) from Lina having breakfast
at home to her time in kindergarten, including lunch. After lunch, she either

2 We use “children” to refer to students, particularly the younger ones.

144 N. Lobnig and C. Mößlacher

Fig. 1. Linas Day: An activity diagram for kindergarten children (left: diagram with
empty fields, right: completed puzzle)

plays outside in the garden or engages in indoor drawing and coloring, depend-
ing on the weather (introducing conditions and branches). At home, she enjoys
a bedtime story, concluding her day as she drifts off to sleep.

Students are encouraged to actively participate and complete provided ac-
tivity diagrams like puzzles. For example, a diagram where certain activities are
missing and need to be placed in the correct sequence. Additionally, arrows may
be absent, and students are tasked with adding them to specify the flow of the
activities. The underlying examples can encompass a wide range of processes
tailored to different age groups, thematic interests, or connections to other top-
ics: explaining the rules of simple games, outlining the plot of a fairy tale, or
presenting basic cooking or baking recipes.

Considering the chosen age group in this kindergarten example, it is recom-
mended that the children do not create their own activity diagrams but instead
engage in collaborative project work with the guidance of kindergarten person-
nel. However, in higher age groups, allowing students to draw and create their
own activity diagrams is both feasible and encouraged, as it promotes individual
expression and deeper engagement with the concept and can also be used for
higher purposes.

4.2 Experiences and Teachers’ Reports

Simple sequences can already be used in kindergarten, e.g. in the form of a
picture story (only sequences, without loops and branches). This is already un-
derstandable for children without reading skills. Simple properties (here actually
only the sequence) can already be experienced or discussed. Simple branching
(with simple conditions, e.g. Is the sun shining? yes/no) can also be used. The
representation often automatically results in loops with simple conditions and
thus already maps the most important control structures.

As part of a project conducted in collaboration with a local kindergarten, the
use of visual activity diagrams was tested and successfully utilized. Even after
the project concluded, these diagrams continued to be utilized in the university’s
computer science workshop and became a consistent component of workshops
for kindergarten children. The children thoroughly enjoy the puzzle-like nature

The Versatility of UML Modeling in Education 145

of working with activity diagrams, as it facilitates discussions about various rou-
tines—an area of focus in kindergarten where children develop their own rou-
tines and engage in conversations about them. The project’s materials were also
presented and discussed in professional development sessions and workshops for
kindergarten personnel, receiving positive feedback. Many participants expressed
an interest in creating their own daily schedules with personalized photos and
marking the current activity on a large bulletin board. This approach provides
a structure for the children, allowing them to anticipate upcoming activities and
feel familiar with the day’s plan, which is particularly beneficial during atypical
routines. Additionally, during some workshops, a beneficial and motivating ac-
tivity involved printing out the activity diagram steps on large sheets of paper
and placing them on the floor. The children would then physically step on each
activity, mimicking its execution. This approach worked well for activities with a
physical or sportive aspect, enabling the students to imitate specific steps, such
as pretending to apply soap from a dispenser or simulating towel drying.

Similar instructional examples utilizing activity diagrams can be found in
other age groups, from primary school to university students, because the com-
plexity of the examples and diagrams can be increased accordingly. Illustrating
game rules through activity diagrams is an approach for different age groups
and can enhance comprehension and provide a clear overview, facilitating the
learning process and game introduction. Notably, activity diagrams offer a more
organized representation compared to textual descriptions, making them easier
to understand and comprehend. While in schools, students often create activity
diagrams manually by hand, at the university level, digital tools such as Power-
Point graphics, Visual Paradigm, and similar software are commonly employed.
In these groups, the focus of using activity diagrams may shift from simply
discussing and understanding processes to planning a (programming) project.

We also employ activity diagrams in a teacher education course that intro-
duces pre-service teachers to computational thinking concepts. UML diagrams,
including activity diagrams, are utilized to plan the creation of educational
videos. These diagrams serve as a blueprint for implementation, and students re-
ceive feedback from their peers before proceeding. A similar approach is applied
in computer science workshops focused on video production (using stop-motion),
particularly in the lower grades. Students plan their videos using object and ac-
tivity diagrams. The posters with the diagrams help students maintain focus
and keep track of the scenes.

5 Interdisciplinary Teaching Examples for Story Plot
Development and Book Reports

In this section, we present the utilization of object and class diagrams in the
school setting, especially in different subjects. Object diagrams are beneficial
for visualizing complex information regarding concrete objects with properties
and relationships between each other, while class diagrams provide a higher-level
representation of properties and relationships between object types.

146 N. Lobnig and C. Mößlacher

Object diagrams can be employed in various subjects, such as literature, film
studies, and non-fiction text analysis. They assist in designing main characters
for stories, summarizing non-fiction texts, and characterizing figures in films,
books, or plays. Object diagrams provide a clear and concise visualization of im-
portant information, making it easier to evaluate content and develop structures
before writing a text. Most students already have early experience with similar
diagrams: fact sheets, where there are objects that have properties and property
values. Hence, this is a good starting point and a good way to build on already
existing knowledge from students.

The very common class diagrams, on the other hand, offer a general rep-
resentation of relationships between object types. Unlike object diagrams that
emphasize concrete instances, class diagrams focus on object types and their re-
lationships in a higher-level representation. Although in computer science, class
diagrams are often introduced first and objects are instantiated. But according
to our experience and discussions with teachers, for students, the path from the
concrete to the abstract is in this case usually easier to follow.

Both types of diagrams can be used with different age groups. However,
we recommend starting with object diagrams only in late primary school and
introducing class diagrams later, towards the end of lower secondary school (or
even at the beginning of upper secondary school), as they require more abstract
thinking. Both diagrams can (again) be used in a wide range of subjects:

Interdisciplinary, Language Classes:
Object diagrams can be used for outlining the main characters from a film,
book, or play, together with their characteristics and their relevant rela-
tionships and interconnections. They can also be very helpful in developing
characters for own stories. Class diagrams can be utilized to illustrate the
elements and structure of more generalized things, like literary genres (e. g.
fairy tales).

Economics and History:
The diagrams can help model the relationships between different actors,
such as customers, products, and services, providing a visual representation
of their interactions in economic settings. In History, they can assist in vi-
sualizing hierarchies, political systems, social structures, and relationships
between historical events or developments.

Natural Sciences:
With Class diagrams, it is possible to illustrate the classification and hierar-
chy of living organisms, showcasing their relationships and categorizations.
Object diagrams can be beneficial in modeling the components of ecosystems
or food webs, helping students grasp the complex interactions and depen-
dencies between different organisms.

Mathematics:
Class diagrams can also be used for teaching geometry, visualizing the order-
ing and similarities of geometric objects such as rectangles, squares, rhom-
buses, and parallelograms.

Computer Science:
Class diagrams are widely used to depict the relationships between classes,

The Versatility of UML Modeling in Education 147

objects, and components in software systems, facilitating system design and
development. Sometimes they are also used in the context of database design
(e. g. at our university). Object diagrams can be utilized to visualize the
instantiation and interactions between objects in software applications.

5.1 Example: Story Plot Development in School Projects (lower
grade)

We now focus on the development and analysis of story plots as a good example
of the usage of object diagrams. What follows is an explanation of the purpose
and advantage of using diagrams when developing plots. What follows next, is a
teaching example that can be part of interdisciplinary teaching, school projects,
and also single subjects (e. g. in the creation of videos on subject-related topics)
using this approach. Hence, this type of diagram is a main part of our workshops
for computational thinking and video planning and production. This is, by the
way, the most booked workshop at our lab and we also published the used
learning material for teachers to use.

When writing stories (as text development or as the basis for a film or a
performance), the concept is an elementary part. Before the development of the
linear text, the story should already have been designed and thought through.
For many students, however, it is precisely this part that is less interesting and
is often skipped. For a good story, however, not only the plot is important. If you
only concentrate on the plot, you will not create a well-developed, thought-out
story. The characters are also important. When developing a concept, people
often only think about the plot development. They do not consider what char-
acteristics the figures have, how they relate to each other, and how they develop
or integrate their abilities into the story. Even if these considerations do not
explicitly become part of the text, they may change the formulations and form
more of an interconnected story in which the characters are not arbitrarily in-
terchangeable. Since many students like to skip this point, it may be necessary
to frame it differently, to clarify the advantages, and to convey this method as
a profitable possibility.

In our teaching example (used in the mentioned workshops), we use object
diagrams to do this. We use them to design the main characters of stories when
writing fairy tales or planning videos. We introduce this diagram type based on
already familiar fact sheets. The lessons follow the same steps as described in
the example of the activity diagram in the section above: After an introductory
phase, students actively engage by completing or enhancing incomplete diagrams
to familiarize themselves with object diagrams. Subsequently, they are tasked
with creating their own object diagrams for the purpose of planning their own
story, mostly in the form of group projects. These elements are then arranged
on a poster and later connected. This approach facilitates group discussion and
the development of better storylines. The resulting poster or diagram serves as a
valuable tool for organizing the story, aiding in maintaining a coherent narrative,
and reducing content-related errors, such as inconsistencies with characters or
objects, during the writing process. Moreover, for teachers, it is easier to evaluate

148 N. Lobnig and C. Mößlacher

the content in this form than a linear text and provide early feedback, because it
allows them to develop the structures, additions, extensions, etc. before starting
to write a text, which is then more difficult to change.

5.2 Experiences and Teachers’ Reports

Experience with the concept of designing stories and planning videos with object
diagrams has yielded positive results, both in workshops and also two academic
courses (one in teacher training on computational thinking and one as part of
an extension study program). The material therefore is frequently used and not
surprisingly making it the most popularly booked workshop in our lab. During
the development process, we experimented with other types of diagrams and
approaches, but they did not work that well. For instance, we attempted to use
Entity-Relationship (ER) diagrams in earlier examples. However, this approach
is more challenging for the students, because of the level of abstraction. They
needed to work with (concrete) objects first. Consequently, we switched to us-
ing object diagrams, which have been much more successful, clearer, and easier
for the students. In previous applications, object diagrams were mainly used. In
some cases, an initial abstraction has already been made by considering some
common features of the objects (e.g. which properties all persons have). Subse-
quently, these approaches could be extended to the design of class diagrams. This
would also allow stories to be analyzed on a meta-level (e.g. protagonist, antago-
nist, ...). In this step from the concrete to the abstract students can develop the
competencies to think about abstract concepts. These competencies can then
be used in contexts where class diagrams fit better (e.g. non-fiction texts in sci-
ence or mathematics). In practice, particularly in the field of IT, class diagrams
are frequently used and serve as a good foundation for understanding techni-
cal descriptions, especially those related to software. Therefore, they are usually
introduced in computer science classes, but students sometimes encounter diffi-
culties. According to our experience and discussions with teachers, following the
path from the concrete to the abstract is usually easier for students. They need
to be capable of thinking more abstractly, making it more suitable for older age
groups and even not recommended when working with instantiated objects. A
similar approach to the teaching example above can be applied to text or story
analysis, where the main characters from a book, film, or play, along with their
characteristics and relationships, are outlined. This can also be done with non-
fiction texts. We have tested such an approach in a cooperative school project,
but it did not provide presentable data yet. But it showed the importance of a
good introduction of the diagram type as well as giving examples and exercises to
the students prior to them creating diagrams on their own. Otherwise, they will
likely create some sort of mind map instead. But it also showed that, with object
diagrams, important information can be visualized clearly and concisely, even
when dealing with numerous objects and relationships. Evaluating the content
in this form is easier than with linear text. This approach is beneficial for works
such as the Nibelungen saga or complex films like “Fantastic Beasts,” which are
sometimes discussed in English classes. These stories involve multiple characters

The Versatility of UML Modeling in Education 149

with distinct traits and various connections to one another. Object diagrams can
aid in preparing for or analyzing films and plays, allowing students to become
familiar with the characters, their key characteristics, and their relationships.
Therefore, they can be a valuable component of literature analysis.

6 Conclusion and Future Work

In this paper, we have demonstrated the diverse applications of UML diagrams in
the classroom. We have presented UML diagrams in non-computer-science sub-
jects. We have provided detailed explanations of teaching and working with activ-
ity diagrams, object diagrams, and class diagrams, all accompanied by teaching
examples and discussions of our experiences. By showcasing the versatility of
UML diagrams, we aim to inspire other educators and foster cross-disciplinary
exchanges. Of course, not everything and every topic have to be structured and
analyzed with UML diagrams. But we experienced that many students have
problems with structuring information and focusing on relevant elements and
UML therefore can be a versatile and easy method for students as well as teach-
ers. We also want to mention that we see structure not as a limiting factor to
creativity but as a method to express (and formulate) one’s own, creative ideas.
We hope that our insights and examples serve as a valuable resource for teachers,
encouraging them to explore the potential of UML modeling in their classrooms.
In the future, we will continue working with the material and improve it further
as well as develop other material in our lab. We also want to do further research
and gather scientific data on the presented approaches.

References

1. Lehrplan der Volksschulen (02-2023), https://www.ris.bka.gv.at/Dokumente/

BgblAuth/BGBLA_2023_II_1/Anlagen_0004_4CCCAF59_2631_4F7A_90D0_

D7A4C7D611CC.pdfsig
2. Lehrplan für allgemeinbildende höhere Schulen (1985-2023), https://www.ris.bka.

gv.at/GeltendeFassung.wxe?Abfrage=Bundesnormen&Gesetzesnummer=10008568
3. Lehrplan Pflichtgegenstand Digitale Grundbildung (2022), https://www.ris.bka.

gv.at/Dokumente/BgblAuth/BGBLA_2022_II_267/BGBLA_2022_II_267.html
4. Aguayo, C., Eames, C., Cochrane, T.: A framework for mixed reality free-choice,

self-determined learning. Research in Learning Technology 28, 1–19 (03 2020)
5. Barab, S., Squire, K.: Design-based research: Putting a stake in the ground. Journal

of the Learning Sciences 13, 1–14 (01 2004)
6. Reiska, P., Möllits, A.: Interdisciplinary of concept maps. In: Proceedings. p. 151 ff.

CMC 2018 (2018)
7. Sabitzer, B.: A neurodidactical approach to cooperative and cross-curricular open

learning: ”COOL informatics”. Habilitation, University of Klagenfurt (2014)
8. Seidl, M., Brandsteidl, M., Huemer, C., Kappel, G.: UML@classroom: Eine

Einführung in die objektorientierte Modellierung. dpunkt-verlag, Heidelberg (2012)
9. Wing, J.M.: Computational thinking and thinking about computing. Philosophi-

cal Transactions of the Royal Society A: Mathematical, Physical and Engineering
Sciences 366(1881), 3717–3725 (2008)

150 N. Lobnig and C. Mößlacher

Identifying Computational Thinking Behaviors
in the Robotics Programming Activity⋆

Megumi Iwata1[0000−0001−7944−5157], Kateryna Zabolotna1[0000−0003−3920−9859],
Kati Mäkitalo1[0000−0003−4037−2872], Jari Laru1[0000−0003−0347−0182], and

Jonna Malmberg1[0000−0002−8890−4068]

University of Oulu, Pentti Kaiteran katu 1, 90570 Oulu, Finland
megumi.iwata@oulu.fi

Abstract. Robotics programming is a context which can enhance the
development of computational thinking (CT) by demonstrating abstract
concepts in a concrete way. Assessing applied CT components from be-
havioral observation has not yet been studied extensively. We aim to
advance the means to identify CT behaviors in a robotics programming
activity. In this paper, we introduce a pilot study where we examine an
existing CT behavior scheme by applying it into the robotics program-
ming contexts. The ninth grade students worked on the tasks of building
the robot arm and programming it to make different movements. We
analysed the video data to identify CT behaviors in their interactions.
All items in the CT behavior scheme were observed in the robotics pro-
gramming activity. CT behaviors were observed most in the independent
programming phase. The students applied CT while testing the com-
mands and debugging. In the building phase the complex process with
the physical materials increased the opportunity to apply decomposition
and abstraction. The results indicate that the structured instructional
design of the activity minimised the students’ freedom, creativity and
thinking, which might limit the chance to apply CT components. We
conclude that CT behavior scheme can be used in the robotics program-
ming contexts, however, modifications in the descriptions of the items to
adjust to the robotics contexts are necessary. The findings contribute to
the CT research community by advancing the methodological approach
of assessing CT and by deepening the understanding of the robotics pro-
gramming as the contexts to use the CT components.

Keywords: Computational thinking · Behavioral observation · Robotics
programming

1 Introduction

Computational thinking (CT) is considered as the cognitive aspect of computa-
tional literacies [10] and the necessary skill for everyone [21]. In Finland, CT is

⋆ This study was supported by the GenZ strategic profiling project of the University
of Oulu funded by the Academy of Finland [project No.318930] and the University
of Oulu. The data collection was carried out with the support of LeaF Research
Infrastructure, University of Oulu, Finland.

CC BY 4.0, M. Iwata et al.
J.-P. Pellet and G. Parriaux (Eds.): ISSEP 2023 Local Proceedings, pp. 151–165, 2023.
https://doi.org/10.5281/zenodo.8431953

https://doi.org/10.5281/zenodo.8431953

a part of the national framework of digital competence which applies to early
childhood education and care, pre-primary education and nine-year of primary
and lower secondary education (comprehensive school) [6]. CT has been studied
most extensively in the past 10 years [15]. Yet, definition of CT is still under dis-
cussion. One of the frequently used definitions was provided by Aho summarising
CT as “the thought processes involved in formulating problems so their solutions
can be represented as computational steps and algorithms” (p. 832) [1]. Recog-
nising CT as a transferable competence beyond programming and computing,
Ezeamuzie and colleagues defining CT as ”the cognitive skill required to design
algorithmic solutions for problems in different knowledge areas” (p.502) [5].

In more practical level, researchers have proposed operational definitions of
CT mapping the concepts, the processes, and the practices underlying when CT
is applied. In this paper, we call them as CT components. We select the four
CT components: problem decomposition, abstraction, pattern recognition and
algorithm design, which are identified as the common CT components [3,20].
Decomposition is understood as simplifying a problem/task by dissecting it into
manageable parts that can be addressed separately [3,17]. Abstraction is a prac-
tice of concentrating on the essential part to solve a problem/task while conceal-
ing minor details [3,5]. Pattern recognition is identifying patterns/rules based
on observations and applying these rules to a other instance [3,17]. Algorithm
design is formulating logical and ordered instructions to solve a problem/task
translating abstract ideas into concrete procedure [3,17].

Robotics programming can be an effective way to introduce CT in K-12 edu-
cation [12,16]. A constructivist learning environment can support understanding
and demonstrating the abstract concept of CT in a concrete way [8]. In addition,
the use of physical materials increases cognitive challenges by adding another
layer of complexity in the activity, which can enhance the use of CT [13,9]. The
previous study indicates that the middle school students prefer to learn comput-
ing with hands-on physical computing environments compared to screen-based
computing environments [12]. The authors indicate that open-ended activity de-
sign appears to increase students’ interests and confidence in coding despite of
the additional challenges of troubleshooting with physical components.

There has been an increasing interest in studying the assessment of CT in the
past years. The most common assessment methods of assessing CT competences
are pre- and post-test, self-report and artifact analysis [19]. Using observation as
a assessment method allows assessing CT competences directly in the activity
which provide richer and content-related information of students’ CT compe-
tences [14]. The structured systematic observation was used to assess the stu-
dents’ competences in the block-based programming contexts using Scratch [14].
One of the scales of the structured systematic observation was ”computational
concepts” which lists six items to assess the students’ competence. Observational
analysis was used to identify the development of CT of 5-year-old children [18].
The authors assessed CT through analysing the movement of the robot that the
children controlled. However, assessing CT through behavioral observation has
not been well studied [3].

152 M. Iwata et al.

In this study, we aim to advance the behavioral observation method to iden-
tify applied CT components from the students’ interactions in the robotics pro-
gramming activities. We conduct a pilot study where we apply an existing frame-
work of CT behavior scheme to examine its usability in the robotics programming
contexts. We set the following two research questions.

1 Which CT components are present in the robotics programming activity?
2 To what extent are the CT behaviors observed in students’ interactions in

the different phases of the robotics programming activity?

This study contributes CT research community by deepening the conceptual
understanding of CT in robotics programming contexts and by developing be-
havioral observation as a methodological approach to identifying the use of the
CT components.

2 Related Work

2.1 CT in the Robotics Programming Contexts

In robotics activities, students are encouraged to actively interact with the phys-
ical objects, to play and to design. Often the robotics activities were designed
as student-centered and facilitated by the instructors who help students in the
programming and other challenges [8]. A previous study shows that minimum
instructions encourages students’ trials-and-errors behavior [4].

There are a view of CT in robotics that claims that CT appears when the stu-
dents program to make the robot move [8,4]. On the other hand, there is broader
view that CT is not limited to the programming part of the robotics activities,
but it appears in all phases of robotics activities. The latest study propose six
components of CT in robotics activities recognising CT as an approach apply-
ing computer science concepts and procedures to understand, model, and solve
a problem using tangible objects or programming software [13]. The proposed
components are divided into three categories: problem analysis, systems and
creation, which includes two components in each category: identify the problem,
organise and model the problem, formal system (software), physical system (tan-
gible objects), devise a solution, and evaluate the solution and perform iteration
[13].

2.2 Frameworks for Identifying CT Behaviors

To our knowledge, two frameworks for observing CT behaviors have been in-
troduced. Computational Thinking Behavior Scheme (CTBS) was developed by
Boom and colleagues to identify CT behaviors in block-based programming con-
texts using Scratch [3]. The framework defines four CT components (decomposi-
tion, abstraction, pattern recognition and algorithm design). CTBS lists 11 items
as behavior indicators to identify the applied CT components. The observation
of CT behaviors are done by measuring the time spent rather than correctness

Computational Thinking Behaviors in Robotics Programming 153

of the applied CT [3]. The authors found the correlation between the applied
CT components and the quality of the end results (the programming projects
in Scratch). They note that the instrument was developed specifically to the
context of their study, thus the items should be examined carefully.

Another framework focuses on the CT components in the robotics contexts.
Keith and colleagues developed the coding system for CT in the robotics activ-
ity for the children aged 8-13 using LEGO Mindstorms EV3 robotics kit [11].
The framework categorises four CT components (analysis, algorithmic thinking,
debugging and designing). The framework was developed considering the charac-
teristics of the robotics contexts. For example, design of the robot is considered
as one aspect to support the use of CT components [11].

After examining the two frameworks above, we decided to use CTBS in the
following pilot study. The reason is because, firstly, it was valid in some extent as
the authors found that the CT components observed with CTBS are correlated
with the quality of the program. Secondly, lack of items related to the program-
ming in the framework by Keith and colleagues can be challenging to adapt to
our pilot study, which has both building and programming phases.

3 Research Methods

3.1 The Context of the Study: Robotics Programming Workshop

Participants of the Workshop This pilot study was implemented in the two-
day robotics programming workshop organised and facilitated by the researchers.
The workshop was offered as a part of a week-long work-life orientation1, which
is required in the Finnish National Core Curriculum for Basic Education. Par-
ticipants of the workshop included 21 ninth grade students in the international
school in Finland. Among several other options, the students chose to partic-
ipate in this workshop by themselves. There was no requirement of the prior
knowledge to participate for the workshop. Nevertheless the students had been
introduced to programming within the Finnish National Core Curriculum for
Basic Education.

Description of the Tasks The goal of the workshop was building the robot arm
and programming it to make different movements. The robot arm called ”Alvin”
and the software application to program Alvin were designed and provided by a
company in Finland2. In the workshop, the students worked as a group of two
or three following the provided instructions. No strict timetable was provided,
thus each group worked on the tasks on their own pace. The instructors were
available if the students needed additional help. The tasks of the workshop were
divided into two phases: building phase and programming phase, as described
below.

1 Työelämään tutustuminen (TET) in Finnish
2 https://simua.com/

154 M. Iwata et al.

Building Phase In the building phase the students assembled the robot arm (Fig.
1). The robot arm was made from the pre-cut wooden parts, six servo motors
and a microcontroller (ESP32). The students assembled them using the screws,
the hammer and other tools. The base part of he robot arm can be rotated and
the arm part can be flexed and extended with the joints. It has the hand part
that can rotate, open and close to grabbed objects. The video instructions were
provided to support the students in the building phase. The purpose of this
phase was to build the same functional robot that can be programmed rather
than designing and creating their own artifacts using their creativity. Although
these instructions explained the steps in detail, the students had a chance to
make decisions of how they approach to the tasks.

Fig. 1: Robot arm Alvin

Programming Phase After building the robot arm, the students started pro-
gramming to make different movements. The goal of the programming phase was
creating procedures (collection of movements) by combining the different pre-
programmed movements. The pre-programmed movements included turn, bow
and bend, and open and close the hand, which can be used with the structures,
such as for-loop, while-loop. Programming was done by sending the commands
through the software application on the tablet device. The interface of the soft-
ware application was designed as if communicating with the robot with text
messages (Fig. 3). For instance, to bend the robot arm, the movements of each
servo motor can be programmed by sending the commands, such as ”move the
servo 1 for 40 degrees”. The printed booklet instructions3 including guidance for
programming and the exercises were provided (Fig. 2).

Guided Programming Phase During the programming phase, the instructor held
the short lecture, where they went through the beginning of the programming
part in the booklet instructions together with the students. They explained how

3 The booklet was still a prototype and not a commercial product.

Computational Thinking Behaviors in Robotics Programming 155

Fig. 2: Booklet instructions Fig. 3: Programming interface

to send the commands, how to create classes, how to test the commands in the
interface, and how to create and execute procedures. In the data analysis, we
called this lecture as guided programming phase, and other moments, when the
students worked on the programming exercises by themselves, as independent
programming phase.

3.2 Data of the Study and Analysis

Data Collection and Ethical Consideration The data collection was carried
out with the support of LeaF Research Infrastructure4, at the University of Oulu,
Finland. The data of this pilot study was the video of a group of two students
recorded on the second day. The video included both building and programming
phases. The length of the video was 8394 seconds (140 minutes). The video was
taken in front of the desk where the students were sitting. On the desk, the robot
arm was clearly visible. The video did not show the programming interface, so
the log data was used to understand the processes of the programming phase.

The data collection was carried out as a part of a larger research program,
the GenZ profiling project of the University of Oulu. It was approved by the
ethical committee of the university and was carried out according to the national
and international ethical guidelines [2,7]. Informed consent was collected from
both participants and their guardians. Students’ names were replaced with ID
numbers (pseudonymized) prior to data processing.

Data Analysis The data analysis was conducted in the Observer XT environ-
ment. The unit of the data analysis was group rather than individuals. We first
identified the process of the activity by categorising into three phases: building
phase, individual programming phase and guided programming phase. We then
divided the students’ interactions into ”on-task interaction” and ”off-task inter-
action” to remove irrelevant moments. The interactions between the students

4 https://www.oulu.fi/en/research/research-infrastructures/leaf-research-
infrastructure

156 M. Iwata et al.

and the instructors, which subject was related to the task, were coded as an on-
task interaction. After that, we conducted coding of the CT behaviors based on
CTBS. Appendix 1 shows CT behavior scheme by Boom and colleagues [3] with
the adjustments in the behavior indicators to make it suitable to the contexts.
We changed the term ”code blocks” and ”code chunks” to ”commands” and
”story or game” to ”pieces”. In the analysis we focused on ”meaningful episode”
in the activity, where the students applied the CT components. A meaningful
episode included the students’ interactions with silence of less than 10 seconds.
We calculated the duration and the frequency of each item in Observer XT in
order to analyse how the CT components appeared during the activity.

We did not include as CT behavior when the students were working on the
task but the interactions did not include their active thinking on the task. For
instance, when the students were identifying the next step by just checking the
instruction without discussing it, we did not code as CT behavior.
Student A: OK, what’s next?
Student B: (Watching the video) Ah... this part.

Neither we coded as CT behavior if a student just tell the other what to do.
Student A: Take that off.
Student B: OK.

Another example of non-CT behavior was when the students had an unclear
issue but did not engage in discussing.
Student A: Is there a limit to the bend?
Student B: I don’t know. (Change the subject.)

4 Results

Table 2 shows the length of each phase. The building phase lasted for 3249
seconds (54 minutes, 38.7% of the total length of the video). It started in the
beginning of the activity as the students were continuing building the robot arm
from the previous day. The independent programming phase took place after
the building phase for 3751 seconds (63 minutes, 44.7% of the total length of
the video). The guided programming phase, which was in the middle of the
independent programming phase, was 1168 seconds (19 minutes, 13.9% of the
total length of the video). The length of the on-task interactions was 5696 seconds
(95 minutes, 67.9% of the total length of the video).

Table 1: Phases of the robotics programming activity

Building
Independent
programming

Guided
programming

Other Total

Duration (s) 3249 3751 1168 226 8394
Percentage (%) 38.7 44.7 13.9 2.7 100.0

Computational Thinking Behaviors in Robotics Programming 157

4.1 CT Behaviors Observed in the Robotics Programming Activity

The CT behaviors observed in the three phases of the robotics programming
activity are summarised in Table 3 in Appendix 2. All four CT components
in CTBS were observed in the video data. Total duration of the meaningful
episodes was 2596 seconds (43 minutes) and it was 31% of the total length of the
video. Total frequency of the moments, which CT behaviors were observed, was
158 times. Among the CT components, ”algorithm design” (ALG) was observed
most frequently (133 times) and the longest duration (2082 seconds). The sec-
ond most frequent CT component was ”decomposition”, which total duration
was 299 seconds and observed 36 times. Between the two least observed CT com-
ponents, ”abstraction” was observed longer duration (136 seconds) than pattern
recognition (80 seconds).

Independent Programming Phase The CT behaviors were observed the
most in the independent programming phase. In total the CT behaviors were
observed 119 times and the duration was 1812 seconds which is around 70% of
the total CT behaviors. In the independent programming phase, most of the
CT behaviors were directly related to the process of designing algorithms in
the commands. Below is an example of CT behaviors from the independent
programming phase with the CTBS items assigned (see Appendix 1).

Example The students were teaching the robot a new movement ”dance move”
which combined several movements that they have previously tested. Student A
read the instructions and suggested the steps to proceed while Student B held
the tablet to program the robot arm.
Student A: Let’s start (writing) ”To make dance move” (command) and then
”Make dance move” (command) [DCM1, DCM2].
Then two students discussed the content of the commands, for example, degrees
of turning and the order of the movements in ”the dance move” [ALG1]. After
that, the students sent the commands and observed the robot arm checking
whether the robot arm moved as expected [ALG2]. As there was an error, the
students tried to fix the error [ALG3].

Building Phase About 20% of the CT behaviors were observed in the building
phase. In the building phase, the students had many problems with the physical
materials, where the CT behavior of debugging was observed. In addition, the
process of the building was complex as they needed assemble many parts in
the correct orders. In such process, the CT behaviors of decomposition and
abstraction was used. Below is an example of debugging in the building phase,
which was coded under the CTBS item [ALG3].

Example The students were trying to assemble a part on the robot arm with
several screws. Student A held the screw driver and Student B held the part and
the robot arm together. While screwing the students realized that the part was

158 M. Iwata et al.

not aligned anymore. The students decided to unscrew and try again.
Student B: Wait wait wait. You are not...
Student A: Ohh it is not?
Student B: You’re punching through the thingy (wooden piece) for some reason.
Student A: Right. Maybe it’s not aligned with the hole.
Student B: There is no hole, right?
Student A: There’s a hole used to be.
Student B: There is?
Student A: Yeah there is. Wait. Right, let’s totally unscrew this and then...

Guided Programming Phase In the guided programming phase, the CT
behaviors were least observed. Less than 10% of the CT behaviors were present
in the guided programming phase. As an example of CT behaviors from the
guided programming phase is as follows.

Example The students were learning the basics of programming following the
instructor’s example command. The students discussed the content of the exam-
ple command [ALG1]. Then they checked that it worked [ALG2].
After that the students wanted to customise the example command but they did
not find how to do it. The students asked the instructor. The below interaction
was coded as pattern recognition and algorithms [PTR2, ALG1].
Student A: What if we later on want to add something into the procedure? How
to do that?
Instructor: You can ask Alvin how to do that. And you can copy paste, and mod-
ify and edit any text, and overwrite. . .
Student A: Ah.
Student B: Select all, copy, then paste.

5 Discussion and Conclusion

5.1 Usability of CTBS in the Robotics Contexts

In this study we tested the existing framework of identifying the behaviors for ap-
plied CT components in the new context. All the items in CTBS were observed
in the video data of the pilot study. Thus, even though CTBS was originally
developed for the block-based programming context, it is possible to apply it
into the robotics programming contexts. The CT behaviors were observed most
in the independent programming phase. This is understandable as it is closest
to the context which CTBS was originally developed. In the guiding program-
ming phase, the least CT behaviors were present. This was also expected as the
students were mostly listening the instructor’s short lecture and there were less
interactions between the students.

The building phase, which is unique to the robotics contexts, although the
CT behaviors were observed, the overall presence was far less than the indepen-
dent programming phase. One reason is because the coding framework was not

Computational Thinking Behaviors in Robotics Programming 159

optimised for the robotics contexts. Some of the behavioral indicators in CTBS,
such as PTR2 (”Use of copy-paste”), were more closely related to programming
(see Appendix 1). The behavioral indicators can be modified further to adapt the
characteristics of the robotics contexts. For instance, in the building phase, the
students observed the model of the robot arm while assembling their own. This
could be considered as copy-paste in robotics contexts as they were transferring
the observed constructions to their own context. Another item: ALG1 (”Putting
commands together”), could be modified to the robotics programming contexts
by adding descriptions related to physical materials, such as ”Identifying the
steps and the order to assemble the parts”.

5.2 Influences of the Activity Design on the Use of CT

Complexity in Building Phase ”Decomposition” and ”abstraction” were
somewhat observed in the independent programming and the building phases.
It was more present in the building phase than programming phases. One reason
might be that there were more complexity in the building phase, including many
steps involving different physical parts needed to be assembled in the correct ori-
entation and the correct order. The use of CT in the complex process including
physical materials are discussed also in the previous studies [13,9]. In the com-
plex process, the students had to discuss and agreed on the steps to proceed.
Compared to the building phase, the programming phase was more simplified
and straightforward. The level of programming was rather low, the interface was
easy to use and the detailed instructions were provided.

Structured Activity with Step-by-Step Instructions Both ”Decomposi-
tion” and ”abstraction” are considered as part of problem analysis [13]. Because
the instructions were provided, which included each step to build the robot arm
and many example commands, in most of the tasks the students did not need
to analyse the problems and plan the procedure by themselves. The complex
problems were already divided into small pieces and written as step-by-step in-
structions. The students were strictly following the instructions, thus their focus
was fixed to the immediate next steps rather than the further goals. This may
be the reason of why DCM2 (”Identifying the immediate next step”) was most
observed among ”decomposition” items. If the students have more freedom in
the tasks, they may have more chances to plan their tasks.

Limited Possibility of Customisation ”Pattern recognition”, which was the
least observed CT components in our study, is the skill to identifying the similar
characteristics (rules) to transfer them into the different contexts [3]. This can
appear, for example, in the process of customising the commands. However, in
the pilot study, the students did not have enough opportunity to customise the
commands by themselves as the instructions in the activity were quite complete
and not encouraging making modifications. Design and creativity are the aspects
that is important in the robotics contexts [11,13]. Building of the robot arm could

160 M. Iwata et al.

be designed as ill-structured allowing the students to personalise the robot, which
can increase their interests [12] and the chance to apply the CT components.

5.3 Limitation of the Study and Future Research Direction

A limitation of this study is the small amount of data. Only part of one group’s
activity was analysed. This was partially because the aim of the pilot study
was to test the preliminary usability of CTBS in the robotics contexts for the
further development. The next step of the research is to test the updated CTBS
with other participants in the same workshop. Another limitation is related to
the data analysis. In the data analysis, the on-task interactions with maximum
of 10 seconds silence was conducted before coding of the CT behaviors. Thus,
some moments of applied CT components, which were not discussed between
the students, might be excluded from the CT behaviors. For example, in the
guiding programming phase, the students were mostly silence, although they
were following the instructions and programming the robot arm. This needs to
be examined carefully in the future research. Finally, due to the time constraint,
validation of the coding was incomplete. As the coding process of identifying CT
behavior is subjective, we recognise that the validation of the coding scheme is
the immediate next task.

To conclude, this study found the possibility of assessing applied CT com-
ponents through behavioral observation in the robotics programming activity
using CTBS. The framework should be adjusted to the contexts and further
examination is needed. The robotics programming contexts added complexity
in the activity by involving physical materials. The instructional design should
be considered carefully to increase the chance to apply CT in the activity. In a
structured activity, students’ freedom and creativity are minimised and it can
result in limiting their own thinking and the opportunity to use CT. The activity
should be designed to maintain the balance of task difficulties and the space for
student’s freedom, creativity and thinking.

Computational Thinking Behaviors in Robotics Programming 161

6 Appendix 1

CT compo-
nents

Behavioral indicator Example episode

Decomposition
(DCM)

DCM1: Putting problem into pieces / build-
ing sub problems

Students discuss the current
step as a part of the overall
process: Should all the
pieces have to be assembled?

DCM2: Identifying the immediate next step
DCM3: Discussing if then relations of the
pieces (is related to programming elements)

Abstraction
(ABS)

ABS1: Focusing on important information;
neglecting unimportant details

Students neglect a part of
the process: We don’t need
to do everything yet.

ABS2: Simplifying anything problem, sub
problem, functions, commands, etc.

Pattern
recognition
(PTR)

PTR1: Identifying similar characteristics
(sub problem, functions, commands etc.)

Students recognise the
similarities in the process:
It’s all of these, right? So
just go like this. I think it’s
just way easier.

PTR2: Use of copy-paste
PTR3: Aha moments (must be related to an
event when student understood relationship
between things)

Algorithm
design
(ALG)

ALG1: Putting commands together Students discuss which
parts should be assembled
in which order: This part
needs to be put through here,
and after that put this one.

ALG2: Testing and judging algorithm (i.e.,
run a set of code and actively observing a
running sequence)
ALG3: Debugging - try to find error and
adjust algorithm

CT components and the behavior indicators were adapted from CT behavior scheme
by Boom and colleagues [3]. The terms in the behavior indicators were modified and
the example episodes were added by the authors.

162 M. Iwata et al.

7 Appendix 2

CTBS
item1 Building

Independent
programming

Guided
programming

Phases total

Duration2 Freq.3 Duration Freq. Duration Freq. Duration Freq.

DCM1 - (-) - (-) 8 (100.0) 1 (100.0) - (-) - (-) 8 (100.0) 1 (100.0)

DCM2
157

(55.8)
14 (42.4)

125
(44.2)

19 (57.6) - (0.0) - (0.0)
282

(100.0)
33

(100.0)
DCM3 9 (100.0) 2 (100.0) - (0.0) - (0.0) - (0.0) - (0.0) 9 (100.0) 2 (100.0)

DCM
total

166
(55.7)

16 (44.4)
125

(44.3)
19 (55.6) - (0.0) - (0.0)

299
(100.0)

36
(100.0)

ABS1
101

(100.0)
2 (100.0) - (-) - (-) - (-) - (-)

101
(100.0)

2 (100.0)

ABS2 24 (68.8) 1 (50.0) 11 (31.2) 1 (0.0) - (0.0) - (0.0)
34

(100.0)
2 (100.0)

ABS
total

125
(92.1)

3 (75.0)
10.7

(31.2)
1 (25.0) - (0.0) - (0.0)

136
(100.0)

4 (100.0)

PTR1
19

(100.0)
2 (100.0) - (-) - (-) - (-) - (-)

19
(100.0)

2 (100.0)

PTR2 - (-) - (-) - (-) - (-)
17

(100.0)
1 (100.0)

17
(100.0)

1 (100.0)

PTR3 - (-) - (-) 31 (70.0) 1(50.0) 13 (30.0) 1(50.0)
44

(100.0)
2(100.0)

PTR
total

19 (23.8) 2 (40.0) 31 (38.5) 1 (20.0) 30 (37.7) 2 (40.0)
80

(100.0)
5 (100.0)

ALG1 4 (0.9) 1 (2.8)
318

(68.0)
30 (83.3)

145
(31.1)

5 (13.9)
447

(100.0)
36

(100.0)

ALG2 20 (2.6) 1 (2.1)
716

(96.5)
45 (93.8) 7 (0.9) 2 (4.2)

742
(100.0)

48
(100.0)

ALG3
287

(30.8)
7 (24.1)

605
(69.2)

22 (75.9) - (0.0) - (0.0)
874

(100.0)
29

(100.0)

ALG
total

293
(14.1)

9 (8.0)
1638

(78.7)
97 (85.8) 152 (7.3) 7 (6.2)

2082
(100.0)

133
(100.0)

CT
total

603
(23.2)

30 (19.0)
1812

(69.8)
119

(75.3)
181 (7.0) 9 (5.7)

2596
(100.0)

158
(100.0)

1 See Appendix 1 for the descriptions of CTBS items.
2 Duration of the item in the phase. Unit is second. () after the value indicates the

percentage of the total duration of the item in all phases.
3 Frequency of the item in the phase. Unit is n. () after the value indicates the percentage

of the total frequency of the item in all phases.

Computational Thinking Behaviors in Robotics Programming 163

References

1. Aho, A.V.: Computation and computational thinking. The computer journal 55(7),
832–835 (2012)

2. ALLEA - All European Academies: The european code of conduct for research
integrity revised edition (2017), https://www.allea.org/wp-content/uploads/

2017/05/ALLEA-European-Code-of-Conduct-for-Research-Integrity-2017.

pdf, last accessed 14 August 2023

3. Boom, K.D., Bower, M., Siemon, J., Arguel, A.: Relationships between computa-
tional thinking and the quality of computer programs. Education and Information
Technologies 27(6), 8289–8310 (2022)

4. Chevalier, M., Giang, C., Piatti, A., Mondada, F.: Fostering computational think-
ing through educational robotics: A model for creative computational problem
solving. International Journal of STEM Education 7(1), 1–18 (2020)

5. Ezeamuzie, N.O., Leung, J.S.: Computational thinking through an empirical lens:
A systematic review of literature. Journal of Educational Computing Research
60(2), 481–511 (2022)

6. Finnish National Agency for Education: The framework for digital competence
(2023), https://eperusteet.opintopolku.fi/#/en/digiosaaminen/8706410/

osaamiskokonaisuus/8709075, last accessed 4 August 2023

7. Finnish National Board on Research Integrity TENK: The ethical principles of
research with human participants and ethical review in the human sciences in fin-
land (2019), https://tenk.fi/sites/default/files/2021-01/Ethical_review_
in_human_sciences_2020.pdf, last accessed 14 August 2023

8. Ioannou, A., Makridou, E.: Exploring the potentials of educational robotics in
the development of computational thinking: A summary of current research and
practical proposal for future work. Education and Information Technologies 23,
2531–2544 (2018)

9. Iwata, M., Pitkänen, K., Laru, J., Mäkitalo, K.: Exploring potentials and challenges
to develop twenty-first century skills and computational thinking in k-12 maker
education. In: Frontiers in Education. vol. 5, p. 87. Frontiers Media SA (2020)

10. Kafai, Y.B., Proctor, C.: A revaluation of computational thinking in k–12 ed-
ucation: Moving toward computational literacies. Educational Researcher 51(2),
146–151 (2022)

11. Keith, P.K., Sullivan, F.R., Pham, D.: Roles, collaboration, and the development of
computational thinking in a robotics learning environment. Computational think-
ing education pp. 223–245 (2019)

12. Love, T.S., Asempapa, R.S.: A screen-based or physical computing unit? examin-
ing secondary students’ attitudes toward coding. International Journal of Child-
Computer Interaction 34, 100543 (2022)

13. Romero, M.: Assessment of computational thinking in an ill-defined problem-
solving task with modular robots. In: International Conference of the Learning
Sciences (ICLS). Montreal, Canada (2023)

14. Saez-Lopez, J.M., Marcos, R.G., Esteban, V.C.: Visual programming languages
integrated across the curriculum in elementary school: A two year case study using
“scratch” in five schools. Computers & Education (2016)

15. Saqr, M., Ng, K., Oyelere, S.S., Tedre, M.: People, ideas, milestones: a scientometric
study of computational thinking. ACM Transactions on Computing Education
(TOCE) 21(3), 1–17 (2021)

164 M. Iwata et al.

16. Shahin, M., Gonsalvez, C., Whittle, J., Chen, C., Li, L., Xia, X.: How secondary
school girls perceive computational thinking practices through collaborative pro-
gramming with the micro: bit. Journal of Systems and Software 183, 111107 (2022)

17. Shute, V.J., Sun, C., Asbell-Clarke, J.: Demystifying computational thinking. Ed-
ucational research review 22, 142–158 (2017)

18. Terroba, M., Ribera, J.M., Lapresa, D., Anguera, M.T.: Observational analysis
of the development of computational thinking in early childhood education (5
years old) through an intervention proposal with a ground robot of programmed
directionality. European Early Childhood Education Research Journal 30(3), 437–
455 (2022)

19. Tikva, C., Tambouris, E.: Mapping computational thinking through programming
in k-12 education: A conceptual model based on a systematic literature review.
Computers & Education 162, 104083 (2021)

20. Wang, C., Shen, J., Chao, J.: Integrating computational thinking in stem educa-
tion: A literature review. International Journal of Science and Mathematics Edu-
cation 20(8), 1949–1972 (2022)

21. Wing, J.M.: Computational thinking and thinking about computing. Philosophi-
cal Transactions of the Royal Society A: Mathematical, Physical and Engineering
Sciences 366(1881), 3717–3725 (2008)

Computational Thinking Behaviors in Robotics Programming 165

Computational Thinking Readiness of Incoming
High School Students in Taiwan

Greg C. Lee1[0009−0002−5624−543X], Jia-Yi Chen2[0009−0003−9929−4263], and
Yu-Wen Yang3[0009−0009−4612−3595]

1 National Taiwan Normal University, Taipei, Taiwan
leeg@csie.ntnu.edu.tw

2 National Taiwan Normal University, Taipei, Taiwan
81147002S@ntnu.edu.tw

3 National Taiwan Normal University, Taipei, Taiwan
wen860806@gmail.com

Abstract. The new national K-12 curricula went into effect four years
ago in 2019. Of which, the technology curriculum has shifted towards
cultivating Computational Thinking (CT) and programming skills of stu-
dents. The first group of students who completed middle school education
under the new national curriculum entered high school in fall of 2022.
A multi-year study is underway to evaluate how the new curriculum
has improved students’ CT skills. A CT and programming assessment
tool was created for this study. Two types of tasks, namely goal-based
and problem-based tasks, were designed to test different CT and pro-
gramming skills. The two goal-based tasks require pattern recognition
and generalization CT skills as well as simple repetition and selection
programming skills to solve. The two problem-based tasks additionally
require students to have good abstraction skills in solving the given tasks.
In this paper, results from the first year of on-going study are reported.
A total of 17 schools, 130 classes and 4,475 students participated in this
study. The incoming high school students were tested during the first four
weeks of classes before additional programming lessons were conducted.
Thus the result reflects students’ learning outcome from middle schools.
Overall, the majority of students were able to solve the two goal-based
tasks (94% and 92%). However, only less than one fifth of students were
able to solve the two problem-based tasks (20% and 10%). This result
showed that students need more practice to improve their abstraction
skills. Further analysis of students’ programs showed that students have
the most difficulty in using variables. Findings from this study provide
good feedback to middle school teachers. Furthermore, statistical data
provides a good baseline for future studies.

Keywords: Computational Thinking · Assessment types and tasks ·
Online assessment system · CS education

1 Introduction

In recent years, research on Computational Thinking (CT) has focused on the
development of effective instructional strategies, the cultivation of foundational

CC BY 4.0, G. C. Lee et al.
J.-P. Pellet and G. Parriaux (Eds.): ISSEP 2023 Local Proceedings, pp. 167–174, 2023.
https://doi.org/10.5281/zenodo.8431959

https://doi.org/10.5281/zenodo.8431959

skills required, and the formulation of assessment methods and frameworks for
CT. In 2019, the new K-12 national curriculum went into effect, which also
mandates to have Information technology (IT) classes in each of the two semester
of grades 7-9. The new IT curriculum emphasizes on Computational Thinking
and programming for problem solving. Thus, the curriculum is more oriented
toward computer science than computer applications. Many grades 7-9 teachers
in Taiwan, as with many other countries, uses Scratch [7], Blockly [1], MIT
App Inventor [4], Greenfoot [3], etc. as computer programming learning tools in
practice. Understanding the effectiveness of curriculum implementation is one of
the important goals after the implementation of the new curriculum. However,
previous assessments of Computational Thinking lack quantitative tools that can
be used for a large number of tests, so it is difficult to provide a comprehensive
report on the effectiveness of curriculum implementation.

In 2010, Koh, Basawapatna, Bennett, and Repenning [2] developed a visual
semantic assessment tool called the Computational Thinking Pattern (CTP)
graph particularly for student-created games and simulations. The graph can be
used to indicate the existence of CT transferred from games to science simula-
tions. The Fairy Assessment [8] was proposed a few years later in another study
to assess two aspects of CT skills, thinking algorithmically, and making effective
use of abstraction and modeling. In the assessment, although students were lim-
ited to the Alice based learning environment, this study has been regarded as
one of the major developments in the assessment of CT skills. In 2015, Moreno-
Leon & Robles [5, 6], assessed students’ CT skills with “Dr. Scratch” by ana-
lyzing students’ visual programming projects. Dr. Scratch is an analytical tool
that automatically analyzes Scratch projects and assigns a CT score in terms of
abstraction, decomposition, parallelism, logical thinking, synchronization, flow
control, user interactivity, and data representation. The tool demonstrates how
students’ programming skills can be improved with the feedback provided.

In summary, there have been some studies evaluating students’ CT abilities,
some of them assessed students’ specific CT abilities by pre-designed tasks, or
conversely, directly analyzing students’ existing game projects to understand
their CT abilities. In this study, we conducted a large scale experiment to assess
incoming high school students’ Computational Thinking readiness after they
have had three years of middle school computer classes. The assessment was
based on actual problem solving tasks through programming that require differ-
ent types of CT and programming skills. In the following sections, the assessment
tasks are first explained before the research setup and finding are presented.

2 Chippy Assessment Tool

The Chippy assessment is composed of two types of tasks, with two goal-based
tasks to assess students’ pattern recognition ability and simple programming
ability to perform the same routine repetitively. Students are shown an animation
of the task at hand and must recognize the repetitive pattern in the animation
before writing Scratch or Blockly code to complete the task. Students can run

168 G. C. Lee et al.

their program and see an animation of the effect of executing their program code
step by step. On the other hand, the problem-based tasks are described in words
with sample input and output. The tasks are already familiar to the students so
are easy for them to understand. The problem-based tasks have test data that
correspond to different possible instances/cases of the problem. When students’
programs are executed, feedback can then be provided to alert them of different
scenarios that have not yet been correctly considered.

The four tasks used in this study are given in Fig. 1. The two goal-based
tasks are Light and Robot Vacuum. The Light task repetitively projects different
colored light onto the stage. The projected light color is determined by switching
on or off the red, blue, and green lights above the stage. Students must watch
the animation, observe the repetitive color pattern of the projected lights, and
write program to perform the same task. For the Robot Vacuum task, the task
animation shows that the robot goes around the classroom to clean dust off
the floor. Once students recognize the same turning/moving directions can be
used to sweep each quarter section of the classroom, the program code are quite
simple as shown in Fig. 1(b).

The two problem-based tasks are Cake Promotion and Drink Orders. The
Cake Promotion task asks students to calculate the discount, the shipping fee,
and the total price. Students must be able to set proper variables, break problem
into taking order and calculation subtasks before designing proper algorithm to
solve the problem. The Drink Orders task is similar to the Cake Promotion task
but added requirement to use list/array data structure and wrinkle to compute
subtotal/total of the order. Both tasks require students to demonstrate good
abstraction, problem decomposition and algorithmic design skills. The two tasks
have 5 and 6 different possible cases, respectively, that students should consider
when designing algorithm. Possible correct programs for the two tasks are shown
in Fig. 1(c) and (d). The CT skills needed to complete each task is summarized
in Table 1.

Table 1. Computational Thinking skill required for each task.

Tasks
Skills

Pattern Recognition Abstraction Decomposition Algorithm Design

Light !

Robot Vacuum ! !

Cake Promotion ! ! !

Drink Orders ! ! !

CT Readiness of Incoming High School Students in Taiwan 169

(a) (b) (c) (d)

Fig. 1. The Chippy Assessment Tasks: (a) Light, (b) Robot Vacuum, (c) Cake Promo-
tion, (d) Drink Orders.

3 Research Setup

3.1 Participants

A call for research participation was made to high school teachers before the start
of the fall semester. Teachers with Information Technology classes for incoming
high school students (10th grade) were encouraged to participate. In all, 21
teachers from 17 schools with 130 classes for a total of 4,475 students signed
up for this study.

3.2 Procedure

The participating teachers use one class period within the first four weeks of
the new semester to conduct the Chippy Assessment Test. The assessment was
conducted before additional programming lessons in high school. Teachers were
asked to use the first 5 minutes of the class to explain the assessment tool.
Students then have 45 minutes to work on the above mentioned four tasks.
Teachers can help explain the tasks, but students must think, write, and debug
programs on their own. Student program for each task was evaluated instantly,
and so students know if a task is completed correctly.

3.3 Assessment Scale

The assessment test was scored objectively. As shown in Table 4, Light and Robot
Vacuum can only have either 0 or 100 scores, denoting having programmed
incorrect or correct problem-solving strategies. For the Cake Promotion and
Drink Orders tasks, partial scores were given based on the number of possible
distinct scenarios considered and whether they can produce correct output. The
maximum score for each task was 100. Students were able to see the evaluation

170 G. C. Lee et al.

result instantly. Furthermore, students were given feedback on where or why
the program was not given a 100 score. For the goal-based tasks, animation of
students’ program will reflect the moves as instructed, giving students visual que
to where the algorithm failed. For the problem-based tasks, all possible problem
scenarios were listed and those that were solved incorrectly were clearly marked.

3.4 Expected Outcome

The maximum score for the assessment test is 400. Having completed the Infor-
mation Technology curriculum in middle schools (7th∼9th grades), high school
freshmen (10th grade) are expected to have the competency to complete both
goal-based tasks and at least one of the two problem-based tasks with 45 minutes.
Students with more practices or can think more quickly can possibly complete
all four tasks. Therefore, as shown in Table 2, with each task having a score of
100 points, the expected total score of students is between 251 and 350, an
equivalent of completing 2.5 to 3.5 tasks. Scores above 351 indicates having ex-
cellent CT and programming skills. Scores between 151 and 250 indicates not
being able to complete one problem-based task and thus only having moderate
CT and programming skills. Any score below 150 indicates not being able to
complete even the two goal-based tasks; therefore, having inadequate or no
CT and programming skills.

Table 2. The CT skills description corresponding to each score range.

Score Range Relative to the 7th∼9th grades IT curriculum

351-400 Excellent CT and programming skills.

251-350 Expected CT and programming skills.

151-250 Moderate CT or programming skills.

51-150 Inadequate CT and programming skills.

0-50 No CT and programming skills.

4 Results and Findings

4.1 Quantitative Analysis

The average score among all 4,475 students participated in this study is 198.
Given the expected score of 251 or better, this average score suggests that the
CT readiness of incoming high school students, in general, is somewhat below
expectation. Table 3 gives the number and the percentage of student scoring in
each score range. It can be seen that only 12% (9%+3%) of students performed
as expected or better, while most students (71%) exhibited moderate CT and
programming skills. It is alarming that close to one fifth (2%+15%) of students
still have inadequate CT skills as they enter high schools.

CT Readiness of Incoming High School Students in Taiwan 171

Table 3. Number of students and percentage of students in each score range.

CT/Prog. Skills No CT Inadequate Moderate Expected Excellent Total

Score Range 0-50 51-150 151-250 251-350 351-400 Avg. = 198

No. of Students 74 661 3193 392 155 4475

% of Students 2% 15% 71% 9% 3% 100%

Next, we look at the results by task. Table 4 shows the descriptive statis-
tics. The table shows that majority of students attempted the two goal-based
tasks (99% and 96%). Furthermore, majority of students did complete these two
tasks (94% and 92%) correctly. This shows that students are capable of find-
ing repetitive patterns from the given problem animation and write programs
to perform the same task. For the problem-based tasks, only 56% and 35% of
students attempted the two tasks, respectively. This shows that close to half of
students either did not attempt or ran out of time to solve problem-based tasks.
Of those attempted problem-based tasks, a majority of students (73% and 87%)
were not able to receive any partial scores, while only 20% and 10%, for the two
tasks, respectively, of student were able to receive full score. These statistical re-
sults show that majority of students were not proficient in problem analysis and
Computational Thinking, which led to difficulty in solving the problem-based
tasks.

Table 4. Number of people and percentage in each score range.

Task Attempted Average Score Score Distribution

Light 99% 93.6

Robot Vacuum 96% 92.2

Cake Promotion 56% 22.7

Drink Orders 35% 12.0

172 G. C. Lee et al.

4.2 Qualitative Analysis

After looking through students’ programs for the problem-based tasks, two ob-
servations can be made about student’s CT and programming abilities.

1. Poor understanding and proper usage of variables
Although students have learned to use variables, proper usage of variables
requires high level of abstraction skill. In general, students do have under-
standing of storing values in variables, but often can only use variables as
constants. For example, in Fig. 2(a), although student’s program did use a
variable “Cake” to store the number of cakes ordered, that program failed
to declare a second variable to keep track of the running total. In this case
student did not know how to “update” variable value as required in this
task. As another example, in Fig. 2(b), the program had five variables to
keep track of the drink prices, but also used the same variables for checking
the ordered drink number. Students conceptually associated drink number
with drink price in the same variable; thus, unable to use one variable for
order checking and another variable for overall cost computation.

(a) (b)

Fig. 2. Sample student program for (a) Cake Promotion, (b) Drink Orders tasks.

2. Inefficient formulation of different problem instances
Another common problem exhibited by students’ programs is that the pro-
gram did not properly condition different cases of the problem with variables.
Furthermore, many programs used multiple if statements, instead of nested
if-then-else statement to match natural logical reasoning of different cases.
For example, in Fig. 3(a), the program failed to use if-then-else structure,
but the actual error lay in not being able to keep a running total using a
second variable. In Fig. 3(b), in addition to being unable to read in value for
variable a and the lack of a variable for running total again, the program
used five if-do statements to check for drink order number. In both of these
examples, students decomposed the problem into a few independent cases.
In fact these should be exclusively disjoint cases.

CT Readiness of Incoming High School Students in Taiwan 173

(a) (b)

Fig. 3. Sample student program for (a) Cake Promotion, (b) Drink Orders tasks.

5 Conclusions

In this study, incoming high school students were put to the test to assess their
CT and programming learning achievement from their middle school informa-
tion technology education. The results were rather surprising and alarming. Two
recommendations are relayed back to the middle school teachers. First, when
training students to think computationally, there is a need to focus more on ab-
straction of problems, including formulating different problem instances logically.
Secondly, more examples and practices are needed to help build conceptualiza-
tion and good usage of variables.

In summary, this first year study provides a good baseline for future studies.
We will continue to conduct this study annually, expanding to more schools and
classes. Qualitative results will lead to development of teaching strategies to
meet the learning objectives of the information technology curriculum.

References

1. Blockly, https://developers.google.com/blockly. Last accessed 3 June 2023.
2. Koh, K.H., Basawapatna, A., Bennett, V., Repenning, A.: Towards the automatic

recognition of computational thinking for adaptive visual language learning. 2010
IEEE Symposium on Visual Languages and Human-Centric Computing. (2010).

3. Kölling, M.: The Greenfoot Programming Environment. ACM Transactions on
Computing Education. 10, 1–21 (2010).

4. MIT APP Inventor, https://appinventor.mit.edu/. Last accessed 3 June 2023.
5. Moreno-León, J., Robles, G.: Analyze your Scratch projects with Dr. Scratch and

assess your computational thinking skills. Presented at the Scratch Conference, 12-
15 (2015).

6. Moreno-León, J., Robles, G.: Dr. scratch: a Web Tool to Automatically Evaluate
Scratch Projects. Proceedings of the Workshop in Primary and Secondary Comput-
ing Education. 132-133 (2015).

7. Resnick, M., Maloney, J., Monroy-Hernández, A., Rusk, N., Eastmond, E., Bren-
nan, K., Millner, A., Rosenbaum, E., Silver, J., Silverman, B., Kafai, Y.: Scratch:
Programming for All. Communications of the ACM. 52, 60–67 (2009).

8. Werner, L., Denner, J., Campe, S., Kawamoto, D.C.: The Fairy Performance As-
sessment: Measuring Computational Thinking in Middle School. Proceedings of the
43rd ACM technical symposium on Computer Science Education. (2012).

174 G. C. Lee et al.

Insights and Conclusions from Analyzing the Hungarian
Bebras Initiative in 2021-2022

Zsuzsa Pluhár1[0000-0003-2688-4652] and Bence Gaál1[0000-0001-8771-7140]

1 Eötvös Loránd University, Budapest, Faculty of Informatics
pluharzs@ik.elte.hu, gaalbence@inf.elte.hu

Abstract. Empowering young people to become active agents in modern socie-
ty and shape the world around them is a critical imperative for education. It is
essential to inspire and equip them with the skills and knowledge to make a
positive impact on their communities and the world at large. In addition, digital
skills and computational thinking are crucial components of modern education
that can enable young people to navigate an increasingly complex and techno-
logically advanced world. Developing these skills can not only enhance their
employability but also empower them to find innovative solutions to global
challenges and drive positive change in society.

The Bebras initiative, with over 70 countries participating, is a successful
approach to involving school students in computer science problem-solving and
deep thinking. In Hungary, the Bebras challenge is conducted in cooperation
with ViLLE, and the results from 2021 were analyzed in detail. Further analysis
was carried out on the 2021 and 2022 tasks separately, raising additional re-
search questions that led to the development of a methodology and research
project. The present study summarizes these analyses, along with the methodol-
ogy and research project, and establishes additional research questions.

The methodology and the findings of this new research project can have an
impact on the development of computer science challenges in the topic of prob-
lem-solving, and motivation in CS and CT and they can serve as a guide for fu-
ture studies and analyses in this field.

Keywords: Bebras challenge, Computational Thinking, motivation in Comput-
er Science, Computer Science education.

1 Introduction

Computational thinking (CT) is a crucial skill for all students in the 21st century, not

just those pursuing computer science or mathematics. However, the concept can be

complex and is often misunderstood as being narrowly related to computing or com-

puters. [1] The significance of computational thinking has aroused the swift advance-

ment of educational initiatives and programs dedicated to its cultivation. The devel-

opment of students' computational thinking skills presents challenges in terms of its

adaptability and emphasis across diverse educational environments, as it extends be-

CC BY 4.0, Z. Pluhár and B. Gaál
J.-P. Pellet and G. Parriaux (Eds.): ISSEP 2023 Local Proceedings, pp. 175–186, 2023.
https://doi.org/10.5281/zenodo.8431961

https://doi.org/10.5281/zenodo.8431961

yond the boundaries of programming and computer science, encompassing interdisci-

plinary aspects. [2]

Applying CT in education significantly enhances students' capacity for critical and

analytical thinking, fostering their aptitude to think systematically and computational-

ly. [3] Thinking computationally refers to the utilization of computer science princi-

ples for problem-solving purposes. This cognitive process encompasses the systemat-

ic decomposition of a problem into more manageable subcomponents, the identifica-

tion and analysis of patterns and interconnections within the problem domain, the

formulation of algorithmic representations or procedural instructions to address the

problem systematically, and the critical evaluation of the solution's suitability and

effectiveness in achieving the intended objectives.

1.1 The Bebras Challenge

The Bebras Challenge [4, 5, 6] is an international initiative aimed at promoting along-

side the computational thinking (CT) the computer science and informatics among

primary and secondary school students. The challenge consists of solving short con-

cept-based tasks that are based on informatics concepts and can be answered in a few

minutes. Organized annually for almost twenty years, the challenge has gained popu-

larity in many countries as an informal school event. Participants in the challenge are

usually supervised by teachers who may integrate the challenge into their teaching

activities. The challenge is structured into six age groups, each with its own set of

tasks: Pre-Primary (grades 1-2), Primary or Little Beavers (grades 3-4), Benjamins

(grades 5–6), Cadets (grades 7–8), Juniors (grades 9–10), and Seniors (grades 11–12).

Students solve 18 to 24 tasks in 45-55 minutes.

The Bebras Challenge aims to make informatics education more attractive for

learners by providing problem-solving experience and insight into what lies beyond

digital technology. [4] It provides a platform for students to showcase their abilities

and compete with other participants from diverse schools and nations. This event

enables them to connect with like-minded individuals and potentially form new

friendships within their area of interest.

The Bebras Challenge, which has a strong resemblance to the CS unplugged meth-

odology [7], is primarily conducted online. Its tasks are designed to be solved without

the aid of a computer, promoting hands-on learning. The tasks are concise, engaging,

and centered around fundamental computer science concepts, enabling students to

comprehend the underlying principles behind technology. The CS unplugged methods

are highly effective in providing students with a glimpse into another fascinating as-

pect of computer science - the inner workings of a computer. [4,6]

Overall, the Bebras Challenge is an excellent way to promote informatics educa-

tion and CT among students, and it has been successful in promoting CT, as evi-

denced by the increasing number of participants each year. [8] The challenge's struc-

ture, which includes different age groups and sets of tasks, makes it accessible to a

wide range of students, and its online format makes it easy to participate in from an-

ywhere in the world.

176 Z. Pluhár and B. Gaál

1.2 The Bebras Challenge in Hungary

Since 2011, the Hungarian Bebras Challenge [7,8] has been running with the goal of

promoting informatics and CT among students. The challenge aims to motivate stu-

dents in exploring computing, develop problem solving and critical thinking skills,

provide activities that can be done in classrooms without requiring computers, and

suggest school and after-school activities to teachers.

The number of participants has been steadily increasing each year (see Fig.1), with

students of various ages and schools taking part in the challenge. Participants are

given 45 minutes to solve tasks online, with easy, medium, and hard levels of difficul-

ty to choose from.

Fig. 1. The number of participants in the Hungarian Bebras challenge from 2011 to 2022.

Tasks are always presented in the same order based on their difficulty, and partici-

pants are allowed to switch between tasks while they compete. To prevent students

from feeling discouraged by negative marks for incorrect answers, the Challenge

awards bonus marks to all participants at the beginning.

In cooperation with Lithuania, Finland and India the Hungarian Bebras organizers

started in 2021 a new project to use a learning analytics enriched environment, ViLLE

[8]. The number of the participating countries was extended in 2022 with Sweden,

Ireland, Spain, as well.

Multiple choice questions were used in the first year (2021), with four options. It

was improved to use interactive tasks in 2022.

Analyzing the Hungarian Bebras Initiative in 2021-2022 177

2 Analysis of the results of the Challenge in 2021-2022

2.1 Methods

We analyze the scores and the differences in scores between girls and boys every

year. In addition to the descriptive statistics, the Independent T-test (on score’s inter-

val scale) is executed using SPSS.

When we analyzed the results in each task separately, our aim was only to analyze

the students' success without being influenced by the task's difficulty level. So, we

normed the results of the students for -1 (wrong answer), 0 (not answered), and +1

(correct answer) and ran Mann-Whitney tests in ordinary scales.

2.2 Success in the Tasks

2021.

In 2021, 33467 students participated in 5 age groups. There was no big difference

between the number of girls and boys, only in the oldest age group (senior), where the

difference between the number of boys and girls was more than two times. (See Fig. 2)

Fig. 2. The number of participants in the Hungarian Bebras challenge 2021 clustered by age
groups and gender.

The first analysis showed significant differences between boys and girls only in the total scores
of the two oldest age groups. (see Table 1)

 sex N mean sd t df p

Juniors girls 5929 112.20 36.486 3.129 12459 <.001 boys 6562 110.21 34.606
Seniors girls 808 89.06 28.193 5.690 1668 <.001 boys 1976 96.00 31.590

178 Z. Pluhár and B. Gaál

Table 1. descriptive statistics about Junior and Senior categories in 2021

Because of this first result, our deeper, task and gender separated analysis focuses

on the 2 oldest age groups.

More descriptive analysis of the difficulty level shows that success in task-solving

moves together in the case of girls and boys in both age groups. However, some can

be seen some differences (see Fig.3 and Fig 4.).

Fig. 3. The means of the normalized results in the Hungarian Bebras challenge 2021 in Junior
age group for the used tasks.

Fig. 4. The means of the normalized results in the Hungarian Bebras challenge 2021 in Senior
age group for the used tasks.

To analyze deeper the tasks more separately we collected the tasks for each age group

where significant differences in the success can be found (see Appendix A).

We used 25 tasks in these two age groups, and 13 tasks had shown a significant

difference for girls in 4, and for boys in 9 cases.

We could not find a relationship between the significant differences and the diffi-

culty level of the tasks. Some tasks were wrongly graded for difficulty level (see Fig 3

Analyzing the Hungarian Bebras Initiative in 2021-2022 179

and Fig. 4), the number of correct solutions was higher (easier than graded) or lower

(harder than graded).

In Junior level two tasks showed lower numbers in solutions, were harder as ex-

pected (2021-BE-02 and 2021-UZ-02) and showed significant differences. The other

tasks that showed a significant difference were either easier or at an appropriate level

of difficulty.

In senior level 3 easy, 2 medium and 2 hard tasks showed significant differences

and except for one task (2021-PH-03), they were of the expected level of difficulty

and performed according to their classification for the age group (see Fig.4).

If we can find significant differences in both age groups in the same tasks, the dif-

ferences are for the same gender (boys). The 3 tasks showing significant difference

for girls, and used in both age groups, didn’t show differences in the oldest age

group.

2022.
In 2022, 37350 students participated from 283 schools in 5 age groups in the com-

petition. There was no big difference between the number of girls and boys. The

highest difference can be found again in the oldest age group (see Fig.5).

Fig. 5. The number of participants in the Hungarian Bebras challenge 2022 clustered by age
groups and gender.

For this year we created the same analysis as for the results in 2021.

In 2022 we have found a significant difference in the two oldest age groups be-

tween girls and boys again (see Table 2).

 sex N mean sd t df p

Juniors girls 7018 80,71 34,306 13.734 13279 <.001 boys 6265 89,32 37,970
Seniors girls 2189 65,86 30,608 5.861 4943 <.001

180 Z. Pluhár and B. Gaál

boys 3493 70,92 33,372

Table 2. descriptive statistics about Junior and Senior categories in 2022

The descriptive analysis of the difficulty level shows again that success in task-

solving moves together in the case of girls and boys in both age groups. However,

some differences can be seen again (see Fig.6 and Fig.7).

Fig. 6. The means of the normalized results in the Hungarian Bebras challenge 2022 in Jun-
ior age group for the used tasks

 Fig. 7. The means of the normalized results in the Hungarian Bebras challenge 2022 in Sen-

ior age group for the used tasks

To analyze deeper the tasks separately we collected the tasks for each age group

where significant differences in the success can be found (see Appendix B).

Of the 24 tasks used in these two age groups, 13 tasks had shown significant dif-

ference for girls in 1, and for boys in 12 cases.

In the case of using a task in more age groups we can see significant differences

not in all age groups, this year as well. We could not find a relationship between the

significant differences and the difficulty level of the tasks.

Analyzing the Hungarian Bebras Initiative in 2021-2022 181

Overall, the tasks in the Junior age category were poorly calibrated. In general, in

terms of correct answers, the tasks were more difficult for the participants than ex-

pected.

Although most of the easy tasks in the Senior age category should have been rated

as medium or difficult (see Fig. 6. and Fig. 7.), they did not necessarily show a signifi-

cant difference between girls and boys. Only two tasks from 6 show significant dif-

ferences and was harder as expected.

If we can find significant differences in more age groups in the same tasks, the dif-

ferences are for the same gender.

3 New Research – Gender Texting Analysis

We identified and will discuss the features of tasks where the impact was more rel-

evant, and where the difference showed significancy.

Our next step in this research based on your analysis is to find whether the story or

the texting of the tasks influence the success of students in these tasks.

3.1 Methodology

The determination of the gender of tasks was prepared a larger-scale study involv-

ing teachers and students (participants and not participants as well).

Data collection was conducted through an online survey.

In the first part of the survey the respondents are asked to provide their gender, age

group, and whether they participated in the current competition that included the tasks

in question.

The second part of the survey (see Fig. 8) utilizes a 5-point Likert scale to gauge the

gender of the tasks based on the task body presented. Respondents are provided with

the following options to choose from:

Very masculine - Rather masculine - Neutral - Rather feminine - Very feminine

Fig. 8. An example question of the questionnaire. (Answers from left to right: very masculine,

rather masculine, neutral, rather feminine, very feminine)

In the questionnaire, the participants are given the 2021 and 2022 Junior, Senior

Bebras tasks and have to decide whether they considered the tasks to be masculine or

feminine based on a quick reading. Participants have to make these quick and intui-

182 Z. Pluhár and B. Gaál

tive judgements based only on the brief descriptions of the tasks and the associated

graphical elements. In this way, the study focuses on exploring how the "gender" of

the task will be perceived by the participants through their first impressions.

4 Discussion

The aim of future research on the questionnaire is to determine whether gender per-

ceptions of tasks are synchronous in those tasks where significant differences were

found between boys' and girls' scores. If task perceptions show significant differences

in perceptions, it is necessary to determine whether this is caused by the text, graphic

elements or other cultural preconceptions of the tasks. If necessary, replacing these

elements of the tasks by repeating the research will clearly identify what is causing

the gender bias. Finally, an international comparison would be undertaken, where we

would look at the tasks in different countries, and through this we would investigate

the role of linguistic and cultural factors.

A next step – to analyze the results and texting, visual elements of other countries

and languages could extend the research.

We believe that the results of our research can greatly help the future design of the

Bebras tasks to ensure that the implementation of inclusive task design is not com-

promised in any way, as one of the most important aspects of the Bebras Initiative is

to make information technology accessible to all, creating equal conditions for chal-

lenge participants.

Another aspect of the significant difference between the results of girls and boys

could show a general problem in science education based on preconceptions of gender

roles. A deeper analysis of attitudes and changes of attitudes during school years can

be the following research sub-topic. Based on the result of gender motivation research

the aspect of the action can have another dimension.

References

1. Li, Y., Schoenfeld, A.H., diSessa, A.A. et al. Computational Thinking Is More about
Thinking than Computing. Journal for STEM Educ Res 3, 1–18 (2020).
https://doi.org/10.1007/s41979-020-00030-2

2. Lodi, M., Martini, S. Computational Thinking, Between Papert and Wing. Sci & Educ 30,
883–908 (2021). https://doi.org/10.1007/s11191-021-00202-5

3. Saidin, Noor Desiro & Khalid, Fariza & Martin, Rohanilah & Kuppusamy, Yogeswary &
Munusamy, Nalini. (2021). Benefits and Challenges of Applying Computational Thinking
in Education. International Journal of Information and Education Technology. 11. 248-
254. 10.18178/ijiet.2021.11.5.1519.

4. Dagiene, V., Futschek, G.: Bebras International Contest on Informatics and Computer Lit-
eracy: Criteria for Good Tasks. In: R. T. Mittermeir, M. M. Syslo (Eds.), Informatics Edu-
cation – Supporting Computational Thinking. Lect. Notes in Computer Science. Vol. 5090,
Springer, 19–30. (2008).

Analyzing the Hungarian Bebras Initiative in 2021-2022 183

5. Dagienė, V., & Stupurienė, G.: Bebras - a sustainable community building model for the
concept based learning of informatics and computational thinking. Informatics in educa-
tion, 15(1), 25-44. (2016).

6. Dagiene, V., Futschek, G., & Stupuriene, G.: Creativity in Solving Short Tasks for Learn-
ing Computational Thinking. Constructivist Foundation14(3), 382-396. (2019).

7. Pluhár, Zs.: Extending computational thinking activities. Olympiads in Informatics, 15, 83-
89 (2021).

8. Pluhár, Zs. et al.: Bebras Challenge in a Learning Analytics Enriched Environment: Hun-
garian and Indian Cases. In: Bollin, A., Futschek, G. (eds) Informatics in Schools. A Step
Beyond Digital Education. ISSEP 2022. Lecture Notes in Computer Science, vol 13488.
Springer, Cham. https://doi.org/10.1007/978-3-031-15851-3_4 (2022).

Appendix

Appendix A – Result of the tasks’ analysis in Hungarian Bebras
Challenge 2021 separately:

junior senior
 Boys N=6562 Girls N=5929 Boys N=1976 Girls N=808

task name mean sd mean sd task name mean sd mean sd

2021-AT-01 0,13 0,988 0,11 0,991 2018-LT-04 -0,3 0,82 -0,27 0,804

2021-BE-02 -0,54 0,836 -0,6 0,794 2021-AT-06 -0,48 0,767 -0,37 0,802

2021-CA-02 0,25 0,938 0,3 0,92 2021-BE-02 -0,52 0,844 -0,54 0,837

2021-CH-04c1 0,57 0,816 0,56 0,822 2021-CA-02 0,44 0,883 0,38 0,901

2021-CH-06 0,5 0,857 0,56 0,827 2021-CH-06 0,62 0,775 0,61 0,784

2021-CH-07a -0,04 0,963 -0,05 0,959 2021-CH-07a 0,02 0,968 0,01 0,97

2021-CH-13 0,04 0,971 0,13 0,965 2021-CH-13 0,19 0,971 0,19 0,968

2021-CZ-05 -0,08 0,986 -0,07 0,991 2021-CZ-04 -0,11 0,95 -0,39 0,848

2021-DE-08b -0,11 0,98 -0,12 0,98 2021-CZ-05 -0,08 0,985 -0,08 0,986

2021-HU-02 0,58 0,807 0,53 0,839 2021-DE-05 -0,2 0,906 -0,14 0,882

2021-ID-10 0,67 0,717 0,66 0,729 2021-HU-02 0,65 0,752 0,5 0,862

2021-IN-05 0,14 0,976 0,07 0,982 2021-HU-04 -0,31 0,842 -0,39 0,778

2021-IT-01b -0,34 0,881 -0,34 0,888 2021-ID-10 0,76 0,63 0,67 0,716

2021-LT-07 0,34 0,938 0,31 0,948 2021-IT-01b -0,21 0,945 -0,22 0,933

2021-PH-03 -0,35 0,896 -0,44 0,854 2021-IT-02b -0,36 0,84 -0,4 0,785

2021-SI-02 -0,25 0,925 -0,33 0,895 2021-PH-03 -0,34 0,916 -0,46 0,855

2021-SV-01 0,17 0,959 0,09 0,967 2021-SI-02 -0,04 0,972 -0,24 0,922

2021-UZ-02 0,02 0,995 -0,07 0,993 2021-SV-01 0,27 0,949 0,14 0,973

184 Z. Pluhár and B. Gaál

id junior senior

2018-LT-04 no sign.dif.

2021-AT-01 no sign.dif.

2021-AT-06 Z=-3.585; p=<.001

2021-BE-02 Z=-4.492; p<.001 no sign.dif.

2021-CA-02 Z= -2.926; p=.003 no sign.dif.

2021-CH-04c1 no sign.dif.

2021-CH-06 Z= -3.572; p<.001 no sign.dif.

2021-CH-07a no sign.dif. no sign.dif.

2021-CH-13 Z= -5.036; p<.001 no sign.dif.

2021-CZ-04 Z= -6.916; p<.001

2021-CZ-05 no sign.dif. no sign.dif.

2021-DE-03

2021-DE-05 no sign.dif.

2021-DE-08b no sign.dif.

2021-HU-02 Z= -3.091; p=.002 Z= -4.784; p<.001

2021-HU-04 no sign.dif.

2021-ID-10 no sign.dif. Z= -3.287; p=.001

2021-IN-05 Z= -4.372; p<.001

2021-IT-01b no sign.dif. no sign.dif.

2021-IT-02b no sign.dif.

2021-LT-07 no sign.dif.

2021-PH-03 Z= -5.354; p<.001 Z= -2.997; p=.003

2021-SI-02 Z= -4.120; p<.001 Z= -4.868; p<.001

2021-SV-01 Z= -4.585; p<.001 Z= -3.192; p=.001

2021-UZ-02 Z= -4.733; p<.001

Appendix B – Result of the tasks’ analysis in Hungarian Bebras
Challenge 2022 separately:

junior senior

Boys N=6562 Girls N=5929 Boys N=1976 Girls N=808

task name mean sd mean sd task name mean sd mean sd

2022-AU-03 0.83 0.545 0.73 0.675 2022-AT-04 0.06 0.972 0.04 0.956

2022-CA-06 0.27 0.956 0.15 0.98 2022-CH-04 -0.03 0.963 -0.21 0.937

2022-CY-01 0.31 0.946 0.35 0.929 2022-DE-03 0.57 0.785 0.47 0.83

Analyzing the Hungarian Bebras Initiative in 2021-2022 185

2022-HU-04 -0.29 0.944 -0.62 0.759 2022-DE-05 -0.39 0.901 -0.5 0.828

2022-SK-04 0.45 0.883 0.44 0.886 2022-DE-07 -0.67 0.722 -0.69 0.698

2022-VN-05b 0.24 0.961 0.26 0.956 2022-LV-03 -0.09 0.986 -0.22 0.956

2022-AT-04 -0.11 0.953 -0.18 0.931 2022-CA-04 -0.31 0.936 -0.44 0.879

2022-CH-04 -0.03 0.965 -0.23 0.933 2022-IT-02 -0.4 0.893 -0.4 0.89

2022-DE-03 0.51 0.806 0.41 0.855 2022-MK-01 -0.04 0.98 -0.04 0.979

2022-DE-05 -0.43 0.872 -0.52 0.794 2022-NL-03 0 0.024 0 0

2022-DE-07 -0.73 0.634 -0.79 0.568 2022-US-06 -0.21 0.913 -0.27 0.892

2022-LV-03 -0.23 0.942 -0.33 0.907 2022-UZ-03 -0.1 0.944 -0.28 0.896

2022-CA-04 -0.38 0.882 -0.52 0.805 2022-AT-02 -0.3 0.864 -0.36 0.842

2022-IT-02 -0.47 0.821 -0.48 0.818 2022-BE-02 0.08 0.911 0.14 0.903

2022-MK-01 -0.24 0.9 -0.31 0.882 2022-CA-02 -0.31 0.821 -0.3 0.825

2022-NL-03 0 0.032 0 0.018 2022-KR-06 -0.51 0.617 -0.53 0.582

2022-US-06 -0.14 0.872 -0.15 0.872 2022-NZ-01 -0.63 0.535 -0.62 0.506

2022-UZ-03 -0.19 0.864 -0.29 0.841 2022-UA-03b -0.47 0.53 -0.44 0.533

id junior senior
2022-AT-02 no sign.dif.

2022-AT-04 Z=-3.753; p<.001 no sign.dif.

2022-AU-03 Z=-9.879; p<.001

2022-BE-02 no sign.dif.

2022-CA-02 no sign.dif.

2022-CA-04 Z=-9.293; p<.001 Z=-5.196; p<.001

2022-CA-06 Z=-7.047; p<.001

2022-CH-04 Z=-11.723; p<.001 Z=-6.881; p<.001

2022-CY-01 Z=-2.793; p=.005

2022-DE-03 Z=-7.418; p<.001 Z=-4.837; p<.001

2022-DE-05 Z=-5.461; p<.001 Z=-4.011; p<.001

2022-DE-07 Z=-4.972; p<.001 no sign.dif.

2022-HU-04 Z=-20.689; p<.001

2022-IT-02 no sign.dif. no sign.dif.

2022-KR-06 no sign.dif.

2022-LV-03 Z=-6.450; p<.001 Z=-4.693; p<.001

2022-MK-01 Z=-4.479; p<.001 no sign.dif.

2022-NL-03 no sign.dif. no sign.dif.

2022-NZ-01 no sign.dif.

2022-SK-04 no sign.dif.

2022-UA-03b no sign.dif.

2022-US-06 no sign.dif. no sign.dif.

2022-UZ-03 Z=-6.523; p<.001 Z=-6.715; p<.001

2022-VN-05b no sign.dif.

186 Z. Pluhár and B. Gaál

Poster Descriptions

Integrating Computational Thinking with
Mathematical Problem Solving⋆

Arnold Pears1[0000−0002−5184−4743], Javier Bilbao2[0000−0002−2784−8496],
Valentina Dagienė3[0000−0002−3955−4751], Yasemin

Gulbahar4[0000−0002−1726−3224], András Margitay-Becht5, Marika Parviainen6,
Zsuzsa Pluhar5[0000−0003−2688−4652], and Pál György Sarmasági5

1 KTH Royal Institute of Technology pears@kth.se
2 Applied Mathematics Department University of the Basque Country Bilbao, Spain

javier.bilbao@ehu.eus
3 Institute of Educational Science, Vilnius University, 01513 Vilnius, Lithuania

valentina.dagiene@mif.vu.lt
4 Ankara University, Türkiye ysmnglbhr@gmail.com

5 Eötvös Loránd University, Hungary abecht@inf.elte.hu pluzsu@gmail.com

psarmasagi@inf.elte.hu

Abstract. The Erasmus+ project Computational Thinking and Math-
ematical Problem Solving, an Analytics Based Learning Environment
(CT&MathABLE) provides comprehensive learning analytics driven
support for developing Computational and Algebraic Thinking in K-12
schools. Through the deployment of digital technology the project pro-
vides educators with new approaches to skills development that builds
on well supported learning pathways and is individually tailored to the
learner. This is achieved through a novel learning systems architecture
which supports individualized development paths and integration of Com-
putational Thinking and mathematical conceptual development with tai-
lored problem solving and assessment frameworks.

Keywords: Computational Thinking · CT · Algebraic Thinking · AT ·
Mathematics Education· Curriculum · Learning Pathways.

1 Introduction

As part of curricula reforms, many European countries have already included
elements of Computational Thinking (CT) skills in compulsory schooling [1].
CT is a type of analytical thinking that employs mathematical and engineer-
ing thinking to understand and solve complex problems within the constraints
of the real world [3]. Algebraic Thinking is defined as the ability to generalize,
represent, justify, and reason with abstract mathematical structures and rela-
tionships [2]. One of the most attractive ways to do this is by integrating AT

⋆ This work has been funded through the Erasmus+ Programme KA220-SCH project
CT&MathABLE: “Computational Thinking and Mathematical Problem Solving, an
Analytics Based Learning Environment”, 2022-1-LT01-KA220-SCH-000088736.

CC BY 4.0, A. Pears et al. (poster description)
J.-P. Pellet and G. Parriaux (Eds.): ISSEP 2023 Local Proceedings, pp. 189–192, 2023.
https://doi.org/10.5281/zenodo.8431989

https://doi.org/10.5281/zenodo.8431989

and CT education into computer science or similar courses. For instance, the
Ministry of Culture and Education in Finland highlights new literacy competen-
cies, which include ICT skills, media literacy and programming. On the other
hand, Lithuania on the other hand has introduced compulsory CT education
from early grades through to the end of compulsory schooling. To address this
variation in curricula, an in depth analysis of six European national curricula
has been conducted to expose CT and AT content in mathematics and other
subjects, initially focusing on students aged 9 to 14 years. This analysis forms
the foundation for developing individualized learning pathways. Our analysis re-
veals considerable similarity, allowing for the development of core learning paths,
however, there is considerable regional variation.

2 Method

Establishing learning pathways of broad relevance requires an in-depth under-
standing of the relationships between conceptual development in the domain and
the linkage of this understanding to conceptual progression within each topic or
skill area. We define the ability to think computationally as a combination of
higher-order cognitive skills: a) abstraction, b) algorithmic thinking, c) analyti-
cal thinking and decomposition, d) data collection, analyses and representation,
e) evaluation and adjustment, and f) transferability (generalization). Algebraic
Thinking lies at the core of Mathematics and serves as an integral component
of the broader construct Mathematical Thinking. Our approach builds upon a
review of related literature, which establishes a research-informed classification
of Algebraic Thinking skills and competencies. This classification structure was
used to derive an initial set of codes that enable us to annotate the curricula
of six European countries (Finland, Hungary, Lithuania, Spain, Sweden, and
Türkiye). Following this comprehensive analysis and classification of curricula
a final coding structure was developed that captured the conceptual content of
CT and Algebraic Thinking as evident in the analyzed curricula.

3 Analysis and Results

As one might expect the six national curricula differed both structurally and in
terms of content and order of introduction of concepts. A curriculum typically
consists of a series of topics, and within each topic area a list of its detailed
learning material and outcomes is specified. The curricula forming the empirical
data for our study therefore need to be consolidated during analysis. Appendix 1
contains the number of detailed learning statements in each curriculum ordered
by country. One reason for the richness of the Hungarian curriculum is that it
contains two kinds of details. One is the preparation for the knowledge, and the
other is the real learning outcome. Some topic details are divided into 2-3 parts
in a country, while it is in only one row in the others. These differences were
reduced during the steps of consolidation. Duplication, associated with cognitive

190 A. Pears et al.

progression in key topics was an important aspect of the analysis, since these
sequences need to be incorporated into the CT&MathABLE learning pathways.

After eliminating duplicates, the Hungarian curriculum was selected as a ref-
erence point, since it is the most detailed. Each row of the other curricula was
assigned to the corresponding topic in the Hungarian curriculum, if it existed, or
a new topic (and perhaps code) was created where needed. The most important
outcome of the current study is the identification of topic areas and concen-
trations within the curricula of our sample of six countries. The countries we
studied exhibit a strong correlation, with commonality between curricula of over
47% between any four countries and over 80% with another three. Each country
has its own national focus, with greater coverage of certain topics compared to
the other countries studied. Spain places emphasis on problem-solving and pat-
tern recognition; Finland prioritizes equations and operations; Hungary focuses
on comparison, sorting, and equations; Lithuania emphasizes measurements and
problem-solving; Sweden places considerable focus on problem-solving and ra-
tios; and for Türkiye highlights measurements and and equations as particularly
significant. Further details are provided in Appendix 1.

4 Conclusion

We have comprehensively analysed mathematics education literature to formu-
late a precise definition of the cognitive development areas encompassed by Al-
gebraic Thinking. This definition, along with a higher-order CT definition, have
been applied to coding of statements within the mathematics curricula of six
European nations. We observe substaintial similarity, as well as intriguing differ-
ences, in terms of the frequency with which certain codes are referenced. Content
analysis reinforces the assertion that the core of the curricula shares significant
similarity, with a congruence of nearly 50%. A general learning pathway is also
evident, commencing with the exploration of simple objects through classifica-
tion and categorization, as learners delve into their properties and relationships.
Drawing from their experiences, learners identify patterns and acquire the ability
to generalize. Their mathematical vocabulary expands and matures, culminat-
ing in the integration of advanced concepts and definitions, which, combined
with their arithmetical skills, equip them for problem-solving. This overarching
learning trajectory encompasses the key elements of Algebraic Thinking and will
serve as a foundation for the subsequent phase of the project, facilitating the
creation of tasks necessary to support individual learning paths within each tra-
jectory. This personalisation will be achieved by leveraging learning analytics,
aiding each learner in defining a unique trajectory along the path, based on their
previous task performance and demonstrated accomplishments.

References

1. Bocconi, S., Chioccariello, A., Kampylis, P., Dagienė, V., Wastiau, P., Engel-
hardt, K., Earp, J., Horvath, M., Jasutė, E., Malagoli, C., Masiulionytė-Dagienė,

Integrating Computational Thinking with Mathematical Problem Solving 191

V., Stupurienė, G., Giannoutsou, N., Inamorato dos Santos, A., Punie, Y.,
Cachia, R.: Reviewing computational thinking in compulsory education: state
of play and practices from computing education. Joint Research Centre (Eu-
ropean Commission), Publications Office of the European Union, LU (2022),
https://data.europa.eu/doi/10.2760/126955

2. Br̊ating, K., Kilhamn, C.: Exploring the intersection of algebraic and computa-
tional thinking. Mathematical Thinking and Learning 23(2), 170–185 (Apr 2021).
https://doi.org/10.1080/10986065.2020.1779012

3. Denning, P.J., Tedre, M.: Computational Thinking: A Dis-
ciplinary Perspective. Informatics in Education 20(3), 361–
390 (Jul 2021). https://doi.org/10.15388/infedu.2021.21,
https://infedu.vu.lt/journal/INFEDU/article/701, publisher: Vilnius Univer-
sity Institute of Data Science and Digital Technologies

Appendix 1

Fig. 1. Curricula comparison

192 A. Pears et al.

A Constructionist Approach for Transitioning to
College-Level Mathematics Education

András Margitay-Becht1, 2

1 Saint Mary’s College of California, 1928 Saint Mary’s Road, Moraga, CA 94575, USA
2 Eötvös Lóránd University, Pázmány Péter sétány 1/C, 1117 Budapest, Hungary

abecht@inf.elte.hu

Abstract. Math phobia is ever present in our society: a significant portion of
students find math stressful. This paper describes a constructionist approach to
providing support to freshman computer science students studying mathematics.
Utilizing the high-level of existing programming knowledge of incoming com-
puter science students at Eötvös Lóránd University, a workshop series is pro-
posed to be offered where the students will learn how they can construct the in-
troductory concepts and techniques of linear algebra using their existing pro-
gramming knowledge, thereby helping them achieve a deeper, more meaningful
understanding of the field.

Keywords: Math education at university level, Math phobia, Constructionism,
Constructivism

1 Introduction

Math phobia is the fear of doing math. It can greatly impact the entire life of an indi-
vidual: “Highly math-anxious individuals are characterized by a strong tendency to
avoid math, which ultimately undercuts their math competence and forecloses im-
portant career paths. […] Although the causes of math anxiety are undetermined,
some teaching styles are implicated as risk factors.”[1]

According to the 2012 PISA study[2], about 30% of students have anxiety doing
Mathematics. These results describe the strong anxiety definition: students actively
feel bad while doing math. There is a much wider group of students who simply dis-
like math without the feeling of helplessness, and thus end up avoiding engaging with
it similarly. The result of these self-limiting of Math are adults who are struggling to
perform the simplest of calculations, and often react by talking themselves into think-
ing mathematics is not even important “in the real world”.

Math anxiety has been analyzed for a long time. Richardson and Suinn [3] devel-
oped a rating scale of Math anxiety back in 1972. Betz[4] analyzed the prevalence of
math anxiety in 1978, finding that females and students who had poorer preparation in
High School were more math anxious. Four decades later, Khasawneh et. al. [5] per-
formed a scoping review of relevant literature, summarizing findings of the field.

CC BY 4.0, A. Margitay-Becht (poster description)
J.-P. Pellet and G. Parriaux (Eds.): ISSEP 2023 Local Proceedings, pp. 193–196, 2023.
https://doi.org/10.5281/zenodo.8432028

https://doi.org/10.5281/zenodo.8432028

They found that Math anxiety is prevalent among many disciplines and across multi-
ple countries.

What is the impact of math anxiety and poorer math performance on university
studies? Abraham et. al. [6] reviewed literature focusing on college readiness in math.
They found that more students were in remedial Math classes than English or Read-
ing. Atuahene and Russel [7] were also investigating American college students’ math
readiness, and found similarly dire results. DiMartino and Gregorio [8] looking at
Italian Math majors found a crisis in transitioning to university level Math studies.
Those students who managed to change their attitudes towards mathematics succeed-
ed in transitioning, but those who did not ended up failing. They called on the im-
portance of supporting this transition, focusing on students’ feelings and attitudes
during the first year. Geisler and Rolka [8] found, that students who consider math to
be a series of rules and formulas tend to struggle when transitioning to university. On
the other hand, students who view Math as a dynamic field with relevant applications
usually succeed.

This paper is a proposed solution to explicitly expressed math phobia by a specific
group of students at a specific university. Using a constructionist approach the stu-
dents can take control of their own understanding of mathematics, with the aim of it
reducing the fear and anxiety they experience when learning the material.

2 Constructionist math education for computer science students

In his seminal work Mindstorms[9], Seymour Papert highlighted the opportunity pre-
sented by the advent of personal computers. He hoped that the universal appeal of the
computer, “the Proteus of machines” will ensure that all children will be enthralled by
it. He then hoped to translate this excitement into a general excited view of mathemat-
ics and sciences. Noss and Hoyle utilized this concept to teaching mathematics, first
by using the LOGO programming language [10], then further developing it into the
Microworlds context [11]. The constructionist approach to teaching mathematics
integrated the highly approachable Scratch programming language to form Scratch-
Math[12]. The idea behind the current project is to re-capture the success of Scratch-
Math by re-creating a similar experience for an older group of students.

2.1 Constructing Linear algebra

At Eötvös Lóránd University we are providing the students with an introductory
mathematics course during their first semester. The course is made up of roughly half
a semester’s worth of summary of high school mathematics, but the second half intro-
duces a new area: linear algebra. This proposal is about supporting linear algebra
education through a constructionist approach.

The motivation to provide constructionist support comes from interaction with
some students in my mentor class. At our university all incoming freshmen are as-
signed to mentor courses where a student from a higher grade and a mentor instructor
meets them weekly to discuss difficulties and solve problems. Most students start the

194 A. Margitay-Becht

program having had some experience with programming; in my groups 38 out of 40
said they are comfortable writing code, but the most feared subject they had was
mathematics. Yet when we re-contextualized the mathematics topics through the lens
of programming (for example, by explaining how formal logic and conditional state-
ments are rather similar, and they can translate one to the other), they reported higher
understanding, less fear and greater motivation to work on the math. This proposal is
an attempt to create a systemic support system for the study of linear algebra accessi-
ble to all interested students instead of the ad-hoc delivery as part of another course,
delivering reduced anxiety to a broader group of students.

2.2 Proposed delivery method

The intervention would be delivered as a series of optional workshops provided in a
synchronous online manner in the evenings of the fall of 2023. The workshops being
optional and an expansion of the course material means that the experiment is low
stakes for the students: no student will be worse off by trying out the experience, and
can freely discontinue participation. If, on the other hand, this approach would be
provided instead of the traditional class material, such options would not be possible.
Based on student feedback, the online modality and evening delivery ensures that
most students can participate in their preferred mode of studying: at home, with their
own equipment. This also means that students from different lecture groups can join,
possibly addressing a broader audience.

The workshops would be advertised through the mentor classes to reach all incom-
ing freshmen. The first sessions would take place a few weeks before the linear alge-
bra material would start and would focus on familiarizing the students with the Py-
thon programming environment we will be using, and representations of numbers,
vectors and matrices using the Pandas framework. The workshops then would follow
the material weekly, first quickly summarizing the current topic, then leading the
students through some programming exercises where they would implement the algo-
rithms discussed during their math class in the programming environment used.

Please note: the student solutions are not expected to be optimal, or even necessari-
ly always correct. Indeed, the programming environment contain solutions to all of
the problems the students will be dealing with. The point is, that by re-implementing
simple mathematical algorithms on vectors (for example vector addition, subtraction,
calculating lengths of vectors, angles between them, dot products, cross products) and
then matrices (inverting a matrix, finding the eigenvalues, etc.), the students are con-
structing functional algorithms – and also constructing a deep understanding of how
those mathematical concepts and algorithms work.

The expected results are deeper understanding of linear algebra, a more instinctive
understanding of the tools, methods and algorithms, and as a positive side effect, a bit
of practice of applied computational thinking.

Transitioning to College-Level Mathematics Education 195

3 Conclusion

Providing a series of constructionist workshops in mathematics for computer science
students at Eötvös Lóránd University has the potential to not only increase their un-
derstanding of mathematics and provide them with additional programming practice,
but also help them overcome any existing math fear of math. This work continues the
work started at Saint Mary’s College of California teaching students without any pro-
gramming background how to move past their fear of quantitative subjects, specifical-
ly programming, and become more self-assured, confident and have higher self-
efficacy[13]. The author hopes that this approach translated over to mathematics can
reverse already developed math phobia, and potentially re-ignite interest not only in
mathematics, but also in the more mathematically-based areas of computer science.

References

1. Ashcraft, M.H.: Math Anxiety: Personal, Educational, and Cognitive Consequences. Curr
Dir Psychol Sci. 11, 181–185 (2002). https://doi.org/10.1111/1467-8721.00196.

2. OECD: Key findings - PISA 2012, https://www.oecd.org/pisa/keyfindings/pisa-2012-
results.htm, last accessed 2023/01/31.

3. Richardson, F.C., Suinn, R.M.: The Mathematics Anxiety Rating Scale: Psychometric da-
ta. Journal of Counseling Psychology. 19, 551–554 (1972).
https://doi.org/10.1037/h0033456.

4. Betz, N.E.: Prevalence, distribution, and correlates of math anxiety in college students.
Journal of Counseling Psychology. 25, 441–448 (1978). https://doi.org/10.1037/0022-
0167.25.5.441.

5. Khasawneh, E., Gosling, C., Williams, B.: What impact does maths anxiety have on uni-
versity students? BMC Psychology. 9, 37 (2021). https://doi.org/10.1186/s40359-021-
00537-2.

6. Abraham, R.A., Slate, J.R., Saxon, D.P., Barnes, W.: College-Readiness in Math: A Con-
ceptual Analysis of the Literature. Research and Teaching in Developmental Education.
30, 4–34 (2014).

7. Atuahene, F., Russell, T.A.: Mathematics Readiness of First-Year University Students.
Journal of Developmental Education. 39, 12 (2016).

8. Di Martino, P., Gregorio, F.: The Mathematical Crisis in Secondary–Tertiary Transition.
Int J of Sci and Math Educ. 17, 825–843 (2019). https://doi.org/10.1007/s10763-018-9894-y.

9. Papert, S.: Mindstorms: Children, computers, and powerful ideas. (1980).
10. 10. Hoyles, C., Noss, R. eds: Learning mathematics and Logo. MIT Press, Cambridge,

Mass (1992).
11. Noss, R., Hoyles, C.: Constructionism and Microworlds. In: Duval, E., Sharples, M., and

Sutherland, R. (eds.) Technology Enhanced Learning: Research Themes. pp. 29–35.
Springer International Publishing, Cham (2017). https://doi.org/10.1007/978-3-319-02600-8_3.

12. Noss, R., Hoyles, C., Saunders, P., Clark-Wilson, A., Benton, L., Kalas, I.: Making Con-
structionism Work at Scale: The Story Of Scratchmaths. Presented at the October 1 (2020).
https://doi.org/10.7551/mitpress/12091.003.0007.

13. Margitay-Becht, A., Das, U.: Enhancing student learning through hidden motivational
learning outcomes. In: Enomoto, K., Wagner, R., and Nygaard, C. (eds.) Enhancing stu-
dent learning outcomes in higher education. Libri Publishing Ltd. (2023).

196 A. Margitay-Becht

Enhancing Teacher Education Through STEAM
Integration in Informatics⋆

Anita Juškevičienė[0000−0003−1772−5537]

Vilnius University, Akademijos str. 4, Vilnius 08412, Lithuania
anita.juskeviciene@mif.vu.lt

Abstract. In the realm of modern education, the fusion of Science,
Technology, Engineering, Arts, and Mathematics (STEAM) principles
with informatics has emerged as a transformative approach to teacher ed-
ucation. This poster presentation delves into the innovative intersection
of STEAM education and informatics, elucidating its profound impact
on the professional development of educators.
As the educational landscape evolves in response to technological ad-
vancements, this poster encourages institutions and educators to embrace
the synergy of STEAM education and informatics, fostering a cadre of
proficient, innovative, and adaptable teachers prepared to lead their stu-
dents into an era of boundless possibilities.

Keywords: Informatics · STEAM education · 3C4Life · teacher educa-
tion.

1 Introduction

1.1 Motivation

Teacher shortages have become a pressing issue in Europe, prompting the ini-
tiation of an EU-funded endeavor with the primary objective of enhancing the
appeal of the teaching profession. collaborative initiative, known as 3C4life [1]
underscores the necessity for educators to modernize their pedagogical abili-
ties, competencies, embrace digital methodologies, and exhibit self-sufficiency.
3C4life consortium takes on a critical challenge that hinders optimal conditions
for STEM education throughout the continent: the insufficiency of STEM edu-
cation systems in adequately supporting teachers to thrive in their roles.

The culmination of 3C4Life project’s efforts has resulted in the creation of an
online platform, ”teach4life,” tailored to cater to aspiring STEM student teach-
ers, emerging teaching professionals, and seasoned in-service STEM educators.
The platform serves as a means to bolster the appeal of the STEM teaching
profession and enable comprehensive growth.

⋆ Supported by the ERASMUS+ grant program of the European Union under grant
no. 626 139-EPP.I-2020-2-DE-EPPKA3-PI-POLICY, project “Perspectives for Life-
long STEM Teaching – Career Guidance, Collaborative Practice and Competence
Development”.

CC BY 4.0, A. Juškevičienė (poster description)
J.-P. Pellet and G. Parriaux (Eds.): ISSEP 2023 Local Proceedings, pp. 197–201, 2023.
https://doi.org/10.5281/zenodo.8432006

https://doi.org/10.5281/zenodo.8432006

In order to enhance the allure of the teaching profession, several imperative
prerequisites have been identified:

– The cultivation of a positive perception of the teaching vocation is impera-
tive, both among educators themselves and within the broader society.

– Embracing the teaching profession as an ongoing journey of development,
characterized by the integration of innovative teaching methodologies, is cru-
cial.

– Encouraging and establishing collaborative practices and communities for
professional learning is a pivotal step.

– Teachers must be provided with consistent support from the outset of their
careers and throughout their professional trajectories, facilitating continuous
professional advancement.

Project’s measure represents a cutting-edge digital platform for STEM teachers,
marked by its inventive approach to professional progression. The initiative is
structured around three key viewpoints:

– Career: It encompasses both vertical and horizontal trajectories, offering
comprehensive career guidance.

– Cooperation: Fosters collaborative practices among pertinent stakeholders
within the national educational sphere. This primarily involves pre- and in-
service STEM educators, higher education institutions engaged in training
and research, providers of professional development, policymakers in educa-
tion, and practitioners in schools.

– Competence: Focuses on the continual development of contemporary teach-
ing and leadership competencies, ensuring educators remain updated and
equipped with relevant skills.

The competence area provides activity ideas for implementing STEM activ-
ities in the classroom using innovative pedagogy:

– The use of inquiry-based learning allows learners to pose research questions,
formulate hypotheses and test them through research.

– The principle of authentic context allows for the inclusion of research topics
that are relevant to learners’ interests in STEM learning activities.

– The social aspects of science encourage learners to engage in dialogue, dis-
cussion and debate. Their nature is often controversial. Learners have to
form opinions and make decisions involving scientific, moral, ethical or so-
cial issues.

This study explores the dynamic integration of STEAM elements within teacher
education, specifically focusing on the realm of informatics. By infusing pedagog-
ical practices with creative and interdisciplinary thinking, teachers are equipped
with a diverse toolkit to engage and inspire the next generation of informatics
enthusiasts.

Poster highlights the positive influence of STEAM-infused informatics educa-
tion on teachers’ confidence, competency, and enthusiasm for teaching complex

198 A. Juškevičienė

technological concepts. By fostering an environment of innovation, adaptability,
and cross-disciplinary collaboration, this approach paves the way for educators
to nurture the analytical, computational, and creative thinking abilities of their
students.

The poster also underscores the role of ongoing professional development and
mentorship in sustaining the momentum of STEAM-integrated informatics edu-
cation. It explores the transformative power of continuous learning, networking,
and collaborative platforms, which further enrich the teaching and learning ex-
perience. Through captivating visuals and informative content, this poster not
only underscores the significance of STEAM education in teacher training for
informatics but also advocates for a paradigm shift in educational approaches
to nurture a new generation of teachers equipped to navigate the ever-evolving
digital landscape.

1.2 What to be presented at ISSEP 2023

The poster showcases diverse approaches to incorporating STEAM concepts into
teacher training, i.e., project-based learning and collaborative problem-solving,
designed to empower educators with the skills needed to foster a holistic under-
standing of informatics. In the teach4life platform competence area (see Fig. 1)
you can find a large collection of tasks for the classroom that follow innovative
pedagogical concepts, sorted by subject and methodology. For example, in an

Fig. 1. Teach4life platform competence area.

engineering subject Authentic Context is presented the lesson “How to build a
(pneumatic) pontoon bridge to evacuate civilians?” Engineering Design Process
is an analytic and creative problem-solving process that engages a person in
opportunities to make something physical and/or digital that matters. Project
based learning can be implemented by using design thinking approach that also
integrates computational thinking practices [2]. Design thinking serves as an ed-
ucational framework due to its inherent attributes that foster the cultivation of
specific skills essential for a productive learning approach. These skills lay the
foundation for an enriching learning experience, encompassing factors such as

Enhancing Teacher Education Through STEAM Integration in Informatics 199

the drive for exploration, receptiveness to novel concepts, imaginative thinking,
and various metacognitive proficiencies [3]. Design thinking has the potential to
expand the scope of STEAM instruction. Moreover, it offers educators a struc-
tured avenue to foster enhanced creativity and interdisciplinary engagement, not
only as a foundational element in their own pedagogical approach but also as an
integral facet of students’ immersive STEAM encounters [4]. The first activity
was implemented based on this topic, however we decided to develop smart car
security system by using Arduino controller kits (see Fig. 2, left).

Fig. 2. Design thinking implementation activity (left); Jamboard environment (right).

Collaborative problem solving - idea generation is one of the stages of design
thinking. There are various methods and tools for collaboration. To stimulate
teachers’ creativity and digital literacy, we have chosen a very timely topic - the
morality of autonomous machines - and an easily accessible and usable online
tool - Jamboard. The second activity was implemented based on Engineering
area Socio-Scientific Issues in STEM Education topic “Should self-driving cars
have a moral conscience?”. Using Jamboard, we asked teachers to identify the
factors that they think might influence the life-saving decisions of autonomous
machines. We then asked them to rank them in order of importance and give
numerical values. In the final stage, we presented several possible scenarios and
mathematically calculated whose life should be saved first (see Fig. 2, right).

Acknowledgment. This work was supported by the ERASMUS+ grant pro-
gram of the European Union under grant no. 626 139-EPP.I-2020-2-DE-EPPKA3-
PI-POLICY, project “Perspectives for Lifelong STEM Teaching – Career Guid-
ance, Collaborative Practice and Competence Development”.

200 A. Juškevičienė

References

1. 3C4life project Homepage, https://icse.eu/international-projects/3c4life/. Last ac-
cessed 11 Aug 2023

2. Juškevičienė, A., Pears, A., Jevsikova, T., and Stupurienė, G.: Computa-
tional Thinking Design Application for STEAM Education. In Data Science
in Applications. Cham: Springer International Publishing pp. 1–26. (2023)
https://doi.org/https://doi.org/10.1007/978-3-031-24453-7

3. Scheer, A., Noweski, C., and Meinel, C.: Transforming constructivist learning into
action: Design thinking in education. Design and Technology Education: An Inter-
national Journal 17(3),(2012)

4. Henriksen, D.: Creating STEAM with design thinking: Beyond STEM and arts
integration. The STEAM Journal, 11 3(1), 11 (2017)

Enhancing Teacher Education Through STEAM Integration in Informatics 201

GeNIUS: Conditions for Successfully Teaching
Computer Science Infused Natural Science

Classes in Schools

Elena Yanakieva1[0000−0002−2900−7252], Annette Bieniusa1[0000−0002−1654−6118],
Christoph Thyssen1, Thomas Becka3, Julia Albicker2[0000−0002−1757−9050],

Niklas Westermann2, Barbara Pampel2, and Johannes Huwer2

1 University of Kaiserslautern-Landau, Kaiserslautern, Germany
{elena.yanakieva,annette.bieniusa,christoph.thyssen}@rptu.de

2 University of Konstanz, Konstanz, Germany {barbara.pampel, julia.albicker,

johannes.huwer, niklas.westermann}@uni-konstanz.de
3 Eduard-Spranger-Gymnasium, Landau, Germany

Abstract. Algorithmic and computational thinking are usually seen as
solely computer science skills. However, we believe that algorithms are
commonly utilized in other subjects, such as conducting experiments
in natural science settings. This poster presents our work as part of
the project ”GeNIUS”, which aims to develop scenarios for computer-
science-infused natural science lessons in schools and derive the neces-
sary conditions for successfully conducting such lessons. So far two such
scenarios have been conceptualized and tested in German schools. Con-
ditions such as reliable technical infrastructure, teachers’ and students’
prior experience with computer science basics have proven to be crucial
for successful lessons.

Keywords: STEM · Computational Thinking · Algorithmic Thinking ·
Multi-disciplinary Teaching.

1 Introduction

Our ever-evolving digital society necessitates that schools adjust and provide
future generations with the required skills to thrive. The Standing Conference of
the Ministers of Education and Cultural Affairs in Germany (KMK)4, responsi-
ble for education and schooling, has brought out a strategy called ”Education in
the Digital World” in 2016 [2], which aims to develop digital skills across schools.
They have identified various computer science (CS) competencies anchored in
established subjects that have not been sufficiently addressed. E.g., competence
area ”5. problem solving and acting”, especially ”5.5 recognizing and formulating
algorithms” has been identified to be an integral part of the natural sciences,
including biology, chemistry, and physics, as part of ”designing and carrying

4 https://www.kmk.org/kmk/information-in-english.html

CC BY 4.0, E. Yanakieva et al. (poster description)
J.-P. Pellet and G. Parriaux (Eds.): ISSEP 2023 Local Proceedings, pp. 203–206, 2023.
https://doi.org/10.5281/zenodo.8432002

https://doi.org/10.5281/zenodo.8432002

out experiments”, which is a competence requirement in their curriculum plan.
Thus, CS-infused lessons, compatible with natural science lessons, are necessary.

We identified that the competencies proposed by KMK in its strategy fall
under computational thinking (CT). CT describes the process of formulating a
problem to executing a solution to the problem [6, 1]. Integration of CT and algo-
rithmic concepts into lessons for conceptualizing problems and operationalizing
their solutions show overlaps with scientific work [4, 3]:

– Understanding diagrams that describe or represent real-world problems;
– Planning tasks by systematically arranging the necessary processing steps;
– Using real data to examine critically and, if necessary, revise solutions;
– Break down complex processes into smaller parts;
– Create flow charts to represent different parts of a process.

With this poster, we aim to present our project GeNIUS, and its first results.
GeNIUS aims to identify the necessary conditions to successfully offer scientific
informatics education (SIE) as part of experimental natural science lessons while
simultaneously providing lesson scenarios that can be easily adopted.

2 Project Description

As part of GeNIUS, lesson scenarios will be conceptualized in cooperation with
teachers, according to the principle of participatory action, and conducted in
schools, both such that enforce mandatory CS lessons and such that do not.
The results will be evaluated concerning the conditions necessary to successfully
integrate CT skills into the curriculum, specifically in natural science classes.
These conditions may concern the conceptual parts but also the essential infras-
tructure.

Analogous to digitalized scientific research, algorithmic procedures for ob-
taining measurements in experiments can be individually adapted and actively
experienced by students using simple programming environments and sensors.
Through automation, time previously used for manual measurements can be
used for other purposes. This makes it possible to implement didactic concepts
that were once not feasible, which in turn requires didactic evaluation. Condi-
tions for the success of SIE will be derived from evaluating such SIE scenarios.
In addition, it will be investigated whether:

– students’ subject-related competencies improve as a result of SIE,
– how students’ and teachers’ perceptions of respective subjects change and
– whether they grow subject-related interest and self-efficiency expectations.

The evaluation findings will be publicly available in the form of best practice
examples. They will prepare science teachers in Germany for meaningful SIE
in further training courses. The following section provides an insight into the
design and evaluation of the first SIE scenarios.

204 E. Yanakieva et al.

3 First Results

So far, we have developed two lesson scenarios, with focus on students in German
schools. These can be used as part of the curriculum of the combined subject
”natural science” in grade 6 or, if the teacher sees fit, in any of the separate
subjects - biology or physics in the later grades.

The first scenario focuses on insulation and energy efficiency in housing, and
the second one tests how light affects plant growth. The students are expected
to have already learned about the topics in the respective subject. The scenar-
ios focus on providing a better understanding of the topic through hands-on
experimentation. In both scenarios, the first phase is the experiment conceptu-
alization. The teacher leads a discussion over the topic, and the students are
encouraged to think about a possible experiment to answer the posed questions.
A possible analogous experiment is discussed, which leads to the idea of potential
automation of the process, as part of which an algorithm is formulated.

The next phase provides the CS basics of block-based programming and
utilizing microcontrollers to acquire sensory data. The microcontroller used in
both experiments is Calliope Mini [5], as it is the most commonly available in
German schools. This phase can be omitted if the students are familiar with the
basics.

In the next phases students work in groups of two. In the first scenario, each
group receives a cardboard box, which serves the purpose of the house, and each
group insulates their house with materials of their choice. Next, they implement
the previously designed algorithm as a program for the Calliope Mini to measure
the temperature. In the second experiment, two groups work on one plant. One
group measures light and distance, while the second one measures moisture and
temperature. Light serves as the control parameter; moisture and temperature
remain constant. Three different settings are prepared: 100%, 50%, and 25% light
transmission. The insulation experiment lasts approximately 30 minutes, while
the plant growth one continues for seven days. In the end, a lesson is dedicated
to discussing the observed results.

We conducted these scenarios in schools and outlined some critical conditions
necessary for successful lessons.

Technical insfrastructure Many schools in Germany lack the necessary
infrastructure to carry out long-term experiments such as the plant growth one.
The school needs a reliable Internet connection to reliably save the data and dis-
play it in real-time for the students to observe the plant growth from anywhere.
Furthermore, most schools we tested these scenarios in demand having accounts
or certificates to establish an Internet connection. Calliope Mini supports only
connection via simple SSID and password. Furthermore, some applications are
disabled on the school devices, which can require specific workarounds.

Teachers’ prior experience We are working with highly motivated teach-
ers that acknowledge the necessity of digitalizing natural science lessons. How-
ever, motivation and high engagement are not enough when unforeseeable situa-
tions occur. Our experience shows that teachers who have prior experience with
microcontrollers and feel more secure in teaching CS concepts can resolve tech-

Conditions for Successfully Teaching Computer Science Infused Natural Science 205

nical difficulties among the students quicklier. Therefore, as part of GeNIUS, we
are planning training sessions for teachers, in which CS skills will be developed,
by using microcontrollers, focusing on Calliope Mini. These will help use them
meaningfully as part of the school lessons.

Students’ prior experience Students showed improved enthusiasm when
using microcontrollers in lessons that are not commonly related to CS. We ob-
served differences in handling technical difficulties between students already fa-
miliar with handling Calliope Mini and the ones who did not have prior experi-
ence. The latter was easily discouraged if something did not work out as intended
- e.g., the connection did not succeed.

Despite the above-mentioned limitations, the tendency exists for students
to feel more motivated to find out answers through digitally-guided hands-on
experimentation. Furthermore, all teachers have stayed as highly motivated to
conduct further scenarios with us in the upcoming school years. In addition,
more teachers are showing interest to be part of GeNIUS.

4 Summary and Future Work

We briefly presented our project GeNIUS, which focuses on determining condi-
tions for successfully integrating computer science concepts into natural science
curriculum in schools.

In the future, we plan to enhance the two presented scenarios and concep-
tualize further ones for the separate subjects of biology, chemistry, and physics.
We plan to evaluate both CS and subject-related competencies that the students
acquire as part of these lessons. Also, further evaluation of the importance of
the students’ prior CS experience and preconceptions is intended.

Acknowledgments

This research was funded by the Federal Ministry of Education and Research
(project “GeNIUS” grant number 16MF1011A and 16MF1011B).

References

1. Aho, A.V.: Computation and computational thinking. The computer journal 55(7),
832–835 (2012)

2. DER KULTUSMINISTER, D.L., DEUTSCHLAND, I.D.B.: Strategie der kultus-
ministerkonferenz ”bildung in der digitalen welt” (2017)

3. Drieling, K.: Der experimentelle Algorithmus: Das Beispiel Bodenversalzung. na
(2006)

4. Eickelmann, B., Vahrenhold, J., Labusch, A.: Der Kompetenzbereich” Computa-
tional Thinking”. Erste Ergebnisse des Zusatzmoduls für Deutschland im interna-
tionalen Vergleich (2019)

5. Reese, K., Wolf, V.: Calliope mini. LOG IN: Vol. 38, No. 1 (2017)
6. Wing, J.M.: Computational thinking. Communications of the ACM 49(3), 33–35

(2006)

206 E. Yanakieva et al.

From Wooden Blocks to Whimsical Robots:
The “Programmieren spielend entdecken” Series

 to Nurture our Future Innovators
Fatmir Racipi, Stephanie Eugster, and Mathias Kirf

PHSG St. Gallen University of Teacher Education

Abstract. This poster presents the educational initiative of the extracurricular
learning centre Smartfeld in St. Gallen, Switzerland. It focuses on the Pro-
grammieren spielend entdecken (Discovering Programming through Play) se-
ries, which is designed to provide a motivating introduction to programming for
students of all ability levels in primary and secondary schools in the canton of
St. Gallen. It consists of four different workshops tailored to different school
levels. The PSE workshops aim to improve IT skills and various competencies,
including social skills, while providing grade-specific programming experienc-
es. Smartfeld, a unique interdisciplinary venture, brings together regional higher
education institutions and the start-up environment. Located in the vibrant
Swiss Innovation Park Ost, Smartfeld's mission is to foster creativity and future
skills, promote STEAM education, and prepare students and educators for the
digital age in an inspiring learning environment.

This poster does not have empirical results, but teacher feedback and workshop
attendance data support its success, particularly among primary school educa-
tors. The workshops use a visual programming language to facilitate under-
standing and focus on core programming concepts. The inclusion of robots and
microcontrollers increases engagement and motivation levels remain consistent-
ly high. The Smartfeld initiative has delivered over 400 workshops to over 7000
students. The use of visual programming languages has proved effective in fa-
cilitating problem solving and stimulating interest in programming, highlighting
the importance of hands-on, experiential learning in the digital age.

Keywords: robot, programming, introduction, primary education, secondary
education, creativity, playful, microcontroller, extracurricular, learning lab

CC BY 4.0, F. Racipi et al. (poster description)
J.-P. Pellet and G. Parriaux (Eds.): ISSEP 2023 Local Proceedings, pp. 207–210, 2023.
https://doi.org/10.5281/zenodo.8431969

https://doi.org/10.5281/zenodo.8431969

1 Extracurricular learning venue “Smartfeld”

This poster describes an example of practice in the offer of the education laboratory
“Smartfeld” in St. Gallen, Switzerland. It presents the series “Programmieren spielend
entdecken” PSE (engl.: discover programming through play), an offer for all levels of
primary and secondary school. The overall objective is to provide motivating pro-
gramming introductions for pupils with diverse performance levels across schools
within the canton of St. Gallen. These workshops aim to bolster IT proficiency and a
range of competencies, including social skills. Classes are invited to partake in work-
shops tailored to their grade level, hosted at the extracurricular learning center, Smart-
feld.

Smartfeld is an interdisciplinary initiative that stand as a unique entity in Switzerland,
consisting of key stakeholders such as the Switzerland Innovation Park Ost, Swiss
Federal Laboratories for Materials Science and Technology (EMPA), the St. Gallen
Centre of Vocational Education and Training (GBS), the University of Applied Sci-
ences of Eastern Switzerland (OST), the University of Teacher Education St. Gallen
(PHSG) and the University of St. Gallen (UniSG). The overarching mission revolves
around nurturing creativity and future skills while preparing pupils and educators for
the demands of the digital era. Nestled within the dynamic Switzerland Innovation-
park Ost, replete with burgeoning start-ups, Smartfeld combinates technology and
creativity, thereby fostering a deliberate emphasis on STEAM subjects and the crea-
tion of inspirational learning and experimental ecosystems.

This poster presents a practical demonstration of an innovative and playful approach
to programming introduction within the school environment. All findings and conclu-
sions presented herein are grounded in teacher feedback, practical classroom experi-
ences, and an overall analysis of workshop participation data since the inception of
the program.

Feedback analysis underscores the high acclaim received by active educators. It
serves as a captivating and motivating initiation into the world of programming for
pupils while instilling confidence in teachers' abilities to integrate programming into
their curricula. There exists a substantial demand for such programs, particularly
among primary-level educators. The intensive format of the workshops expedites
efficient grade-appropriate introductions, fostering a compelling start and enabling
swift progression. By introducing vital concepts within this learning ramp, pupils gain
a foundation that can be further reinforced within their schools. Consequently, more
complex educational goals can be pursued with a foundation already established.
Moreover, the authentic context of the start-up hub co-located within the Smartfeld
facility fosters direct and credible implementation, emphasizing the relevance and
applicability of these skills in the professional world. This localized experience pro-
vides pupils with an understanding that such opportunities are not limited to Silicon
Valley but are also manifest in their region.

208 F. Racipi et al.

2 Programmieren spielend entdecken – Workshops

The PSE series represents a structured introduction to programming designed for
schools within the region. Comprising four half-day workshops tailored to various
grade levels, ranging from the first primary school class to the final secondary school
class, this initiative seeks to nurture pupils' programming skills over the course of
their educational journey. Each workshop integrates age-appropriate robots or micro-
controllers, fostering a hands-on, progressively challenging learning experience.

1st & 2nd primary class: Cubetto
Commencing with the utilization of the non-computer-based learning robot "Cubetto,"
this introductory stage engages pupils in the fundamental concepts of programming.
Wooden blocks are employed to construct simple sequences in playful tasks.

3rd & 4th primary class: Thymio
This phase bridges the gap between robots and computers, initiating pupils into the
world of visual programming languages. Individual sequences are constructed using
various programming blocks, empowering pupils to execute tasks like illuminating an
LED upon button press. Early sensor integration, such as the ultrasonic sensor show
the combination of input and output through different pre-programmed modules.

5th & 6th primary class: mBot
Advancing to more sophisticated programming paradigms, pupils delve into concepts
like loops and iterations to program self-guided robots. The visual programming lan-
guage evolves with the incorporation of more intricate blocks, stimulating cognitive
growth and problem-solving skills to program an obstacle-dodging robot.

1st - 3rd secondary class: micro:bit
The apex of the PSE series integrates microcontrollers, enabling pupils to interface
with multiple sensors and actuators concurrently. This workshop promotes a deeper
understanding of device control and encourages creative problem-solving.

The overarching objective is to provide pupils with a tangible programming experi-
ence, fostering an immediate connection between their actions and technical devices.
This approach enhances pupils' engagement, curiosity, and persistence in pursuing
diverse programming objectives.

Throughout these workshops, a visual programming language is exclusively em-
ployed. This pedagogical choice underscores the efficacy of block-based program-
ming, as it simplifies program comprehension and enables a clear focus on core pro-
gramming concepts. By minimizing text-based errors, pupils can more effectively
engage with the structural aspects of programming, thus facilitating a more compre-
hensive understanding of programming principles.

From Wooden Blocks to Whimsical Robots 209

 Fig. 1. An overview of the four different workshops of the “Programmieren spielend
entdecken” series with their corresponding robots or micro-controller and their pro-
gramming language.

3 Conclusion

The Smartfeld has already conducted around 400 workshops engaging over 7000
pupils as part of the PSE series. The PSE series underscores the favourable reception
of the four workshops within the PSE series, as evidenced by sustained interest from
regional educators visiting the Smartfeld regularly. Emphasis on visual programming
languages has yielded positive outcomes, guiding pupils effectively toward problem-
solving.

The decision to focus primarily on visual programming languages has proven to be
the right one, as we have seen that it leads the pupils to the solution of the problems.
With the block-based programming language, it is easier to focus on the concepts and
not have to deal with the common errors of text-based programming languages.

The incorporation of robots and microcontrollers proves to be successful as it enhanc-
es the pupil’s enjoyment for programming and facilitating their initiation into the
field. Consistently high motivation levels among participants stem from direct feed-
back afforded by interactions with robots and microcontrollers. Notably, these con-
clusions are based on initial feedback and insights garnered during workshop imple-
mentations, necessitating further investigation into motivation as a function of block-
based languages or haptic device usage.

The figures show that the Smartfeld is being actively used. It is particularly well used
by teachers at the primary level. It is posited that this preference may be attributed to
the generalist training of primary school teachers as opposed to their specialized sec-
ondary-level counterparts. Within the primary level, workshops tailored for 5th and
6th-grade classes witness the highest attendance rates, partially attributable to the
integration of "media and computer science" into standard curriculum at this educa-
tional tier.

Programmieren spielend
entdecken (Z1, Z2, Z3)

Cubetto:
1. & 2. Klasse

Thymio:
3. & 4. Klasse

mBot:
5. & 6. Klasse

Micro:bit:
7. - 9. Klasse

210 F. Racipi et al.

Finding Patterns in Productive Failure Steps?
An Explorative Case Study in a Teaching

Learning Lab for Computer Science

Frauke Ritter1[0000−0001−5744−9456] and Nadine
Schlomske-Bodenstein1[0000−0003−0835−165X]

1 Department for CS, University of Education, Karlsruhe, Germany
2 {frauke.ritter,nadine.schlomske-bodenstein}@ph-karlsruhe.de

https://www.ph-karlsruhe.de

Abstract. Teaching algorithmic thinking is a core task of education in
the 21st century. The productive failure approach is not yet widely used in
computer science, but promising insights in better understanding learn-
ing processes in the process of acquiring algorithmic thinking. A calliope
workshop is designed and implemented to identify N = 13 learner’s pat-
terns of productive failure steps in students in an exploratory qualitative
case study. Productive failure patterns will then serve in a subsequent
study for training student teachers in formative assessment. The results
of this exploratory case study provide preliminary indications of how
learning and teaching workshops on algorithmic thinking can be designed.

Keywords: Algorithmic Thinking · productive failure · Computational
Thinking.

1 Introduction

In order to become an empowered citizen in our rapidly digitizing world, it is
of great importance to teach students digital literacy according to, and thus
especially computational thinking (CT) ([1]). For this to succeed, pedagogical
approaches are needed that teach students CT, especially algorithmic thinking
(AT) as a part of CT ([13]), for us the definition of AT steps according to [11] is
crucial. An approach that has already been successfully tested in mathematics
is productive failure (PF) [3], which belongs to the category PS-I (first problem
solving then instruction) according to [5]. The theory states that students learn
the content better when they first problem solve (PS) and then receive instruc-
tion (I). As an example of a PS-I approach, the approach of [3] and [6] includes
four interdependent steps: (a) activating and differentiating prior knowledge re-
lated to the target concepts, (b) attending to critical conceptual features of the
target concepts, (c) explaining and elaborating these features, and (d) organizing
and merging the critical conceptual features into the target concepts. In the field
of CS education, the approach is not very common yet, only [12] has presented
it so far. Therefore, this study has the approach, in a first research step, to

CC BY 4.0, F. Ritter and N. Schlomske-Bodenstein (poster description)
J.-P. Pellet and G. Parriaux (Eds.): ISSEP 2023 Local Proceedings, pp. 211–214, 2023.
https://doi.org/10.5281/zenodo.8431993

https://doi.org/10.5281/zenodo.8431993

analyze the steps of students who are taught AT using a developed workshop
designed according to the principles of PF, and thus possibly identify typical PF
patterns for CS education. This data will then be used to train student teachers
in our CS Teaching and Learning Lab (TLL) to recognize PF and thus better
train formative assessment of students. Overall, this is an exciting new area of
research in CS education, which is presented here as a first step using the ex-
ploratory study conducted. Our research questions are: RQ1: What kind of
productive failures can be identified during the process of acquiring
algorithmic thinking? RQ2: To what extend can patterns of productive
failures be identified?

2 Methods

The research question is operationalized through an exploratory single case study
[14] that follows a qualitative approach, collecting and analyzing qualitative, tri-
angulated data. Students’ programmed codes were captured at several points
during the collaborative group work phases as students worked on the problem-
based tasks. We are analyzing the qualitative through qualitative content anal-
ysis [7] and developed the following coding scheme to better understand the
productive failures that were made and to better capture how pre-service teach-
ers identified and categorized them.

Setting and Participants The sample is N=13 high school students, ages
13-14. They participated in a 90-minute workshop. The content was to program
a counter step using block-based programming and the calliope. The students’
prior knowledge was programming with Scratch (sequences, loops, conditions,
variables). We conducted the Calliope workshop taking into account research-
based practices ([9]) to ensure that the workshop was implemented as designed.
We considered [10] treatment fidelity categories.

Fig. 1. Workshop design according to
the principles of productive failure ac-
cording to [3], [4] and the algorithmic
thinking steps according to [11]

Material: Workshop Design We de-
veloped a workshop (fig. 1) following [11]’s
AT steps and PF [3, 4]’s design principles.
Students solved a problem using Calliopes
and block-based language. The workshop
consisted of 3 phases: Problem Solving,
Instruction, and Final Problem Solving
(Fig. 1). In the Problem Solving phase,
students work independently and individ-
ually, but have the opportunity to elab-
orate and explain at any time. In the
instructional phase, different approaches,
including failed ones, are presented and
compared, and the problem is finally clar-
ified with all the necessary content so that

212 F. Ritter and N. Schlomske-Bodenstein

each student can create his or her individ-
ual solution in the final phase. The prob-
lem is challenging but not frustrating.

Instruments and Analysis The students’ steps were videotaped on the com-
puter to identify and qualitatively assess the steps in the learning process, es-
pecially the steps where PF occurs. In addition, the entire intervention was
videotaped so that the students’ presentations could be qualitatively assessed.
Students worked through the AT steps using a paper-pencil worksheet and the
block-based programming language makeBlock. Both the worksheets and the
programs created were recorded. The collected qualitative data will be ana-
lyzed using a reductive qualitative content analysis according to the interpretive
paradigm of [7], using a developed category system based on the categories of
[8] adopted by [2] to identify PF patterns.

3 Results and Summary

In our initial analysis of the data, we analyzed the first phase of the workshop,
the PS step before instruction, to identify PF. For this purpose, we evaluated
the individual video recordings in combination with the created programs. The
results show that the most frequently assigned category was Problem Solving (77
out of a total of 221). Orientation (55) and Criteria Development (40). Problem
Analysis (21) and Problem Evaluation (27) were less frequent and Problem Cri-
tique appeared only once. Additionally we have categorized a total of 15 PFs
(RQ1), 7 of which were in the solution development phase (logic errors, flow con-
trol errors, number representation errors), 3 in the criteria development phase,
and 4 in the orientation phase (e.g., incorrectly selected physical elements or
LED display errors). Due to the small number of PFs found, no valid patterns
can be identified at this time (RQ2).

This case study is limited in several ways that need to be addressed in future
work. First, it included only a small sample, and second, it did not examine the
level of AT of the learners at the individual level. Of course, these two aspects
could be the reason why only a few PFs could be found. Therefore, in a subse-
quent study, care should be taken to make the tasks even more open and/or to
select a more heterogeneous, larger learning group. The problem solving process
in the AT steps can be seen well in the categories, although Problem Analy-
sis and Problem Evaluation are somewhat underrepresented, so that the basic
approach in the AT steps according to [11] in combination with PF should be
pursued further. In the next step, we will collect more student data and further
analyze the data. In addition, we will study several workshops using the prin-
ciple of PF. This data will be the basis for training students in our CS TLL to
recognize PF and thus better train students’ formative assessment. In particu-
lar, the relationship to misconceptions needs to be explored, as [15] or semantic
errors in learning text-based languages are also found in PF steps of block-based

Finding Patterns in Productive Failure Steps 213

programming. Overall, there are interesting connections to different CS research
approaches to be explored.

References

1. Juškevičiene, A., Dagiene, V.: Computational thinking relationship with digital
competence. Informatics in Education 17(2), 265–284 (2018)

2. Kapur, M.: Productive failure. Cognition and Instruction 26(3), 379–424 (2008)
3. Kapur, M.: Productive failure in learning the concept of variance. Instructional

Science 40(4), 651–672 (2012)
4. Kapur, M.: Examining Productive Failure, Productive Success, Unproductive Fail-

ure, and Unproductive Success in Learning. Educational Psychologist 51(2) (2016)
5. Loibl, K., Roll, I., Rummel, N.: Towards a Theory of When and How Problem

Solving Followed by Instruction Supports Learning. Educational Psychology Re-
view 29(4), 693–715 (2017)

6. Loibl, K., Rummel, N.: The impact of guidance during problem-solving prior to
instruction on students’ inventions and learning outcomes. Instructional Science
42(3), 305–326 (2014)

7. Mayring, P., Fenzl, T.: Handbuch Methoden der empirischen Sozialforschung.
Springer Fachmedien Wiesbaden (2019)

8. Poole, M.S., Holmes, M.E.: Decision Development in Computer-Assisted Group
Decision Making. Human Communication Research 22(1) (1995)

9. Sanetti, L.M., Cook, B.G., Cook, L.: Treatment Fidelity: What It Is and Why It
Matters. Learning Disabilities Research and Practice 36(1) (2021)

10. Smith, S.W., Daunic, A.P., Taylor, G.G.: Treatment fidelity in applied educational
research: Expanding the adoption and application of measures to ensure evidence-
based practice. Education and Treatment of Children 30(4), 121–134 (2007)

11. Standl, B.: Solving everyday challenges in a computational way of thinking. Lecture
Notes in Computer Science (including subseries Lecture Notes in Artificial Intel-
ligence and Lecture Notes in Bioinformatics) 10696 LNCS(November), 180–191
(2017)

12. Steinhorst, P.: Investigating Productive Failure in Computer Science. In: ICER
2022 - Proceedings of the 2022 ACM Conference on International Computing Ed-
ucation Research. vol. 2 (2022)

13. Wing, J.M.: Computational thinking and thinking about computing. Philosophi-
cal Transactions of the Royal Society A: Mathematical, Physical and Engineering
Sciences 366(1881), 3717–3725 (2008)

14. Yin, R.K.: Case Study research and applications: design and methods. Sage Pub-
lications, Inc., Los Angeles, 6th editio edn. (2018)

15. Žanko, Ž., Mladenović, M., Krpan, D.: Analysis of school students’ misconceptions
about basic programming concepts. Journal of Computer Assisted Learning 38(3),
719–730 (2022)

214 F. Ritter and N. Schlomske-Bodenstein

Gender Differences in Problem Solving Observed
in Logo Novices

Jacqueline Staub1 and Angélica Herrera Loyo2

1 Fachbereich IV, University Trier, Behringstrasse 1, 54296 Trier, Germany
staub@uni-trier.de

2 ABZ, ETH Zürich, Universitätstrasse 6, 8092 Zürich, Switzerland
angelica.herrera@inf.ethz.ch

Abstract. Women are still underrepresented in particular fields, such as
science, technology, engineering and math (STEM). In computer science,
a particular aspect that is being investigated is the different approaches
boys and girls take to programming tasks. Existing hypotheses state that
boys are more inclined to unconventional solutions, while girls prefer to
take a more structured approach. This study investigates the validity
of this hypothesis, particularly in the context of novice programming
in Logo using Turtle Graphics. Through a comparative analysis of the
programs written by 42 children, a Chi-Square-Test shows no significant
difference between boys and girls (χ2 = 0.5046 in terms of creativity and
structurability); the Mann-Whitney U Test however shows a small gender
bias in favor of males on the creativity variable (p=0.06). Our next steps
consist in developing a more accurate measurement for structurability,
given that we reached an interrater realibility score of only 0.237 for
structuredness but 0.805 for creativity.

1 Introduction

As a central research topic, gender studies try to understand the inequalities,
practices and interactions between men and women. Statistics show that in many
areas, women’s participation is underrepresented, in particular in STEM (science,
technology, engineering and mathematics) [12,8,1]. Some studies show gender
differences in interest [10], confidence [11], and attitudes [13] in computer science.
One particular difference lies in the way boys and girls proceed when they are
programming. Several aspects point towards social factors that contribute to the
difference: Korkmaz and Altun [9] found that the low participation of women
in computer studies has a background of insecurity about the skills required for
programming. Hanström [7] found that, in order to apply the method of trial
and error, confidence in one’s own abilities is essential.

Other results point towards cognitive differences that affect the low represen-
tation of women in computer science. Programming is an activity that requires
several cognitive skills. Usually, emphasis is placed on: (1) logical thinking,
(2) abstraction, and (3) creativity. Gender studies suggest that men outper-
form women in logic and abstraction skills as well as in solving unconventional

CC BY 4.0, J. Staub and A. Herrera Loyo (poster description)
J.-P. Pellet and G. Parriaux (Eds.): ISSEP 2023 Local Proceedings, pp. 215–220, 2023.
https://doi.org/10.5281/zenodo.8431996

https://doi.org/10.5281/zenodo.8431996

problem statements [2,3]. In contrast, when it comes to learning languages or
solving conventional problem statements, women have been shown to outperform
men [3,4,6].

In this work, we focus on the two indicators structurability and creativity and
perform a qualitative study on whether novice Logo programmers show gender
differences in terms of these two indicators.

2 Study

The primary objective of this work is to analyze whether there are gender-specific
differences in terms of creativity and structurability. In order to answer this
question, the authors planned an intervention with two groups of eleven and
twelve year old students (N=49, 26 male, 23 female). Prior to the intervention,
both classes were introduced to the basics of Logo programming (i.e, sequence,
loops, procedures) for one school year with two hours every two weeks. The
subsequent intervention lasted for one week, with 12 lessons per group.

After a short repetition on the previously-covered concepts, the students
focused on the concepts, both framed within the topic of Logo animation. We
worked with a textbook that proposes a sequence of predefined task [5]. After
each day, the children’s solutions were downloaded and stored for subsequent
analysis. 7 children (4 boys and 3 girls) were excluded from the study since
no data was saved. In order to rate the student’s solutions on the spectrum of
creativity and structurability, we defined the following point-rating:

Creativity:

(2) The child uses concepts/approaches
that have not been discussed in
class. They develop custom tasks.

(1) The child uses some commands/ap-
proaches that have not been dis-
cussed in class. They develop some
programs without predefined tasks.

(0) The child follows the approaches
discussed in class. They rarely de-
velop their own tasks.

(-1) The child follows the approaches
discussed in class. They follow the
given tasks.

(-2) The child exactly follows the ap-
proaches as per instruction. They
strictly follow the given tasks.

Structurability:

(2) The child consistently and purpose-
fully uses loops, procedures and pa-
rameters to create short and concise
solutions.

(1) The child uses loops, procedures
and parameters mostly purpose-
fully.

(0) Sometimes the child uses loops, pro-
cedures and parameters.

(-1) Oftentimes the child does not use
loops, procedures and parameters
or they appear disorganized.

(-2) The child does not use loops, pro-
cedures and parameter. If used, the
concepts are not purposeful, hardly
understandable and appear disorga-
nized.

After conducting the intervention, the anonymized data was rated according
to the above point-rating system in regard of creativity and structurability. Both

216 J. Staub and A. Herrera Loyo

authors established an interrater agreement with regular discussions after every
ten students with the aim to ensure consistency in the rating scheme. First,
the data was anonymized in terms of gender information. Discrepancies existed
predominantly on the structurability variable where only a fair agreement was
reached (κ = 0.237). In contrast, the interrater reliability on the dimenision of
creativity yielded an almost perfect agreement (κ = 0.805).

3 Preliminary Results

The results of the interrater agreement is visualized below (see Figure 1). The
figure on the left presents the results for all male participants; the figure in the
middle shows the results for all female participants and the figure on the right
shows all results combined. Each dot represents a group of children with a specific
creativity-structurability score. The x-axis corresponds to the creativity score
while the y-axis corresponds to the structurability score.

Creativity

St
ru
ct
ur
ab
ili
ty

−2 −1 0 1 2

−2

−1

0

1

2
2

2

1

1

5

2

2

1

5

1

Creativity

St
ru
ct
ur
ab
ili
ty

−2 −1 0 1 2

−2

−1

0

1

2

2

4

2

1

6

3

2

Creativity

St
ru
ct
ur
ab
ili
ty

−2 −1 0 1 2

−2

−1

0

1

2
2

2

1

1

5

2

2

1

5

1

2

4

2

1

6

3

2

Fig. 1: The diagram illustrates the results for the 42 participants (left male
participants, middle female participants, right all participants).

The score roughly clusters children in four categories (quadrants in the
diagram): participants whose solutions are rated (i) creative and structured, (ii)
creative and not structured, (iii) not creative and structured, (iv) not creative
and not structured. Categories (i) and (ii) are reflected in the top and bottom
right quadrants whereas categories (iii) and (iv) are reflected in the top and
bottom left quadrants respectively. Appendix A presents some selected examples
for children’s programs that fall into these four categories.

The statistical chi-tests on a bias on gender were all insignificant (χ2 = 0.5045
for structuredness and χ2 = 0.5045 for creativity) on a level of alpha=5%. The
one-sided Whitney-Mann U test however showed a p-value of 0.06 on the creativity
variable, indicating that there is a slight gender bias in favor of male participants.
Under the assumption that gender plays no role for creativity, only in 6/100
similar experiments, we would have found such a result or a more extreme one.

Gender Differences in Problem Solving Observed in Logo Novices 217

4 Future Work
We analyzed programs from 42 students with an average of 8 programs per
students. In a second phase, we aim to gather and analyze data from more
students and different schools to conduct a more quantitative analysis. Moreover,
we aim to establish a more precise objective to measure structurability or separate
the variable into smaller segments that can be measured more easily. Finally,
we want to incorporate more variables (e.g., spatial orientation, abstraction,
socio-cultural aspects) to get a better understanding of gender-impact.

References
1. Bernhard Ertl, Silke Luttenberger, and Manuela Paechter. The impact of gender

stereotypes on the self-concept of female students in stem subjects with an under-
representation of females. Frontiers in psychology, 8:703, 2017.

2. Ann Gallagher, Jutta Levin, and Cara Cahalan. Cognitive patterns of gender
differences on mathematics admissions tests. ETS Research Report Series, 2002(2):i–
30, 2002.

3. Ann M Gallagher. Sex differences in the performance of high-scoring examinees on
the sat®-m. ETS Research Report Series, 1990(2):i–16, 1990.

4. Ann M Gallagher. Sex differences in problem-solving strategies used by high-scoring
examinees on the sat-m. ETS Research Report Series, 1992(1):i–35, 1992.

5. Heidi Gebauer, Juraj Hromkovič, Lucia Keller, Ivana Kosírová, Giovanni Serafini,
and Björn Steffen. Programmieren mit LOGO. ABZ, Ausbildungs-und Beratungszen-
trum für Informatikunterricht, 2015.

6. Diane F Halpern. A cognitive-process taxonomy for sex differences in cognitive
abilities. Current directions in psychological science, 13(4):135–139, 2004.

7. M.B. Hanström, Sverige. Kungl. Tekniska Högskolan. Jämställdhetsrådet, and
Tekniska högskolan i Stockholm. Studiemiljö och jämställdhet på Kungl. Tekniska
Högskolan: en intervjustudie med kvinnliga teknologer på Kemiteknisk och Farkost-
teknisk linje : rapport från KTHs jämställdhetsråd. Trita-FL. KTH, 1994.

8. Lizhi He, George Zhou, Geri Salinitri, and Lianrong Xu. Female underrepresentation
in stem subjects: An exploratory study of female high school students in china.
EURASIA Journal of Mathematics, Science and Technology Education, 16(1), 2020.

9. Ö Korkmaz and H Altun. Engineering and ceit student’s attitude towards learn-
ing computer programming. The Journal of Academic Social Science Studies
International Journal of Social Science, 6(2):1169–1185, 2013.

10. Elizabeth K Lawner, Diane M Quinn, Gabriel Camacho, Blair T Johnson, and
Bradley Pan-Weisz. Ingroup role models and underrepresented students’ per-
formance and interest in stem: A meta-analysis of lab and field studies. Social
Psychology of Education, 22:1169–1195, 2019.

11. David MacPhee, Samantha Farro, and Silvia Sara Canetto. Academic self-efficacy
and performance of underrepresented stem majors: Gender, ethnic, and social class
patterns. Analyses of Social Issues and Public Policy, 13(1):347–369, 2013.

12. Diana Starovoytova Madara and Sharon Cherotich. Female underrepresentation
in undergraduate education: Case study in school of engineering. Research on
Humanities and Social Sciences, 6(14):157–175, 2016.

13. Chao Xu and Renée E Lastrapes. Impact of stem sense of belonging on career
interest: The role of stem attitudes. Journal of Career Development, 49(6):1215–
1229, 2022.

218 J. Staub and A. Herrera Loyo

A Appendix

Listing 1.1: structured and creative
to cc :long :oban

lt :oban
repeat 90 [fd :long rt 1]

end

to petalo
setpc random 16
cc 3 0 rt 90 cc 3 0

end

to superflor
repeat 5 [

repeat 90/5 [
petalo rt 1 petalo

]
rt 72

]
end

Listing 1.2: not structured but creative
to jj

repeat 8 [fd 50 rt 45]
end

to hh
jj repeat 3 [fd 50 rt 45]
fd 50 rt 90

end

to flor :g :h
setpc 1 hh jj hh jj hh jj hh
jj hh jj hh jj hh jj hh jj hh
jj hh jj hh jj hh jj hh jj hh
jj hh jj hh jj hh jj hh jj hh
jj hh jj hh jj rt :g fd:h
rt 180 rt :g rt 45 fd :h
setpc 2 fd 200 fd :h
repeat 360 [fd 1 rt 1]

end

a: structured and creative b: not structured but creative

Gender Differences in Problem Solving Observed in Logo Novices 219

Listing 1.3: structured but not creative
to stairs :gr :anz

repeat :gr [
quad :anz
fd :anz rt 90
fd :anz lt 90

]
end

Listing 1.4: not structured not creative
to star8

repeat 8 [
fd 100 bk 100 rt 45
fd 100 bk 100 lt 45

]
end

a: structured but not creative b: not structured and not creative

220 J. Staub and A. Herrera Loyo

Teaching the Von-Neumann Model with a
Simulator

Martin Weinert, Jan Hendrik Krone, and Johannes Fischer

Technische Universität Dortmund, 44227 Dortmund, Germany
{martin.weinert,hendrik.krone,johannes.fischer}@cs.tu-dortmund.de

Abstract. An important goal of computer science education is the de-
mystification of computing machinery. The Von-Neumann-model can
help to achieve this goal, since it demonstrates how programs are ex-
ecuted.
Therefore we developed a simulator and an accompanying series of lessons
on the Von-Neumann-model. Such teaching series are already being used
in practice, but are often separated from related computer science top-
ics. We connected our lessons to the concepts of sequential logic systems,
(higher) programming languages and the IPO model.

Keywords: Von-Neumann-Model · IPO · Series of Lessons

1 Introduction

One of the core goals of computer science education is the demystification of
computing machinery. The Von-Neumann-model contributes to this [7,6] by pro-
viding a simple, yet precise description of a computer, which allows students to
understand how computers operate.

Because of the complexity of the topic, it is important to apply some sim-
plifications through the teaching material. It is a common idea to achieve this
by using simplified simulators. Such simulators are already in use. Examples are
Johnny [1,2] and MOPS [4] for use in schools or Microsim for university edu-
cation. The simulators were developed with several design principles in mind.
MOPS, for example, used the IPO model (Input-Processing-Output) as an orien-
tation [4]. Although the simulators are simplified and put emphasis on different
aspects, they still have difficulties to effectively teach the Von-Neumann-cycle [3].
In order to address these difficulties and to be able to focus program execution
as a teaching topic, we decided to develop and use a new simulator.

2 Simulator KUR2

An important design decision of the simulator is the arrangement of the com-
ponents. In contrast to other simulators like Johnny, MOPS or Microsim, we
consciously separated the input and output components and arranged them in a
way that resembles the IPO model. The user enters programs in machine code,

CC BY 4.0, M. Weinert et al. (poster description)
J.-P. Pellet and G. Parriaux (Eds.): ISSEP 2023 Local Proceedings, pp. 221–224, 2023.
https://doi.org/10.5281/zenodo.8432030

https://doi.org/10.5281/zenodo.8432030

Fig. 1: Screenshot of the Simulator

which are then stored in the memory unit and executed afterwards. Due to the
presentation of the internal registers, the flow of data can be followed.

We emphasized a very simplistic design, because we wanted to integrate the
simulator into a story about John von Neumann. Therefore we did not want to
include modern design elements into the graphical representation.

3 Lessons series and materials

In this section, we describe the lessons that we developed. They can be accessed
on the authors’ website [5] for further examination and usage.

3.1 Series of Lesson

The series of lessons is composed of six lessons:
Lesson 1: The students learn how the simulator is structured by puzzling

together its pieces on a worksheet.
Lesson 2: The students interact with the simulator for the first time. They

simulate first programs and learn how to write simple programs for basic calcu-
lations.

Lesson 3: The students see how the functions of the simulator can be imple-
mented with sequential logic. They interact with a logic simulator, which shows
how some of the functions of KUR2 can be performed with logic gates. They
learn how sequential logic and the Von-Neumann-model are connected.

222 M. Weinert et al.

Between NAND and makeTurtle()

Sequential logic

Machine language

Assembler

Higher programming
languages

Python
Scratch

Java
C

Binary
KUR2

Cake automaton

Assembler

Logic gatesHalf add
Full adder

Hardware

Software

C
o

m
p

iler

The abstraction layers in the computer

(a) Poster

The Von-Neumann-Model

Worksheet 1

P

O I

(b) Worksheet IPO-VNM

The Von-Neumann-model

Worksheet 3 Adding and loading in sequential logic

In the last lesson, you worked with the KUR2 simulator and performed calculations. In this
lesson we look at how the simulator can be built from logic gates.

1) Try to solve the following programs with the
Prototyp_KUR2 in LogicSim. Write down what
ACC contains in the end.

2) Compare the Prototyp_KUR2 in the LogicSim software with the KUR2 simulator. Fill
out the blanks with the proposed words and copy them to your notebook.

ACC:

Program 6:
21 6
30 7
1 0

 control unit command ALU memory
 operand full adder operand
ACC(Accumulator) execute machine instruction

Program 7:
21 10
30 12
1 0

ACC:

(c) Sequential logic

Fig. 2: Materials used in the lessons

Lesson 4: The students learn about jumps. First they formulate that programs
are stored as a linear sequence of commands. Then they see that execution can
deviate from this sequence through (conditional) jumps. At the end of the lesson
the students write down these insights as rules of the von-Neumann-model.

Lesson 5: The students see that programs and data are stored in the same
memory. They also learn how the memory is structured and addressed. These
insights are again written down as rules of the model.

Lesson 6: Finally there is a last lesson where the students can choose from
three activities. Those activities introduce connections to external (virtual) de-
vices and show how text and pixel displays can be accessed or how a simple guess
the number game can be played with the simulator. The activities are intended
to teach that the machine is independent of the problem.

3.2 Supporting materials and key features

During the development of the series of lessons some aspects emerged as espe-
cially important. The first of those aspects came from the realization that the
first contact with the simulator was quite overwhelming for the students. We
tried to make it easier for the students by introducing the puzzle (see fig. 2b) in
the first lesson, where they just put the simulator together and relate it to the
IPO model.

Next we tried to make it easier to see the connections to related topics and
build a coherent overall picture. To this end we created a poster (see fig. 2a)
that shows the different layers of abstraction and their connections. This poster
was presented in the computer lab to be visible at all times. These connections
were also emphasized by adding the activity where the students would see the
simulator implemented with logic gates (see fig. 2c).

Teaching the Von-Neumann Model with a Simulator 223

Finally we tried to tie all lessons together with an engaging backstory. The
idea is that someone has found a box containing John von Neumanns old belong-
ings. Since the notebook that contains information on the Von-Neumann-model
and the simulator KUR2 in partly destroyed and unreadable, the students have
to reconstruct its contents through the lessons and worksheets.

4 Future work

Our observations during the lessons indicate that the connection of the Von-
Neumann-model to underlying topics like sequential logic and the IPO model,
and to emphasize how it fits into the broader context might be substantial for
effective teaching. We will investigate how this affects the development of mental
models of computing machinery in the future.

The aforementioned connection was mainly established with the poster that
shows the connections between the Von-Neumann-model and other topics, as
well as the simulator itself. We will look for additional ways to improve the
connections.

All of the materials and the simulator are free to use for educational pur-
poses. The materials and simulator can be accessed on the authors’ website [5].
The simulator is implemented in Java and a JavaScript version is currently in
development. The source code can be accessed via GitHub [8].

References

1. Dauscher, P.: Johnny - A Simulator of a Simple von-Neumann Computer (2012),
https://sourceforge.net/projects/johnnysimulator/

2. Dauscher, P.: Aufbau und Funktionsweise eines Von-Neumann-Rechners - Ein
möglicher Unterrichtsgang mit dem Open-Source-Simulator Johnny. LOG IN 33(2)
(2013)

3. Göbel, L., Hellmig, L.: Die Von-Neumann-Prinzipien erleben - Ein enaktiver Zugang
zu einem abstrakten Thema. LOG IN 39(1) (2019)

4. Haase, M.: MOPS Modellrechner mit PseudoAssembler.
http://www.viktorianer.de/info/mops.html (2013)

5. Krone, J.H., Weinert, M.: Teaching materials for KUR2 (2023), https://ls11-www.
cs.tu-dortmund.de/staff/weinert/kur

6. Lautebach, U.: Vom Gatter zum Compiler: Im Unterricht durch sieben Ab-
traktionsebenen. In: Gallenbacher, J. (ed.) Informatik allgemeinbildend begreifen.
Gesellschaft für Informatik e.V., Bonn (2015)

7. Sorva, J.: Notional machines and introductory programming education. ACM Trans-
actions on Computing Education 13(2), 1–31 (jun 2013)

8. Weinert, M.: Code repositories for KUR2 (2019), https://github.com/kur2

224 M. Weinert et al.

An Approach to Introduce High-School Students
to the P-vs-NP Question

Jisoo Song1, Seoyeon Oh2, Soyeon Jeong2, and Seongbin Park2

1 LoadIT, Seoul, Korea
2 Korea University, Seoul, Korea

jisoo@loadit.co.kr, {oseo21320,jj2709,hyperspace}@korea.ac.kr

Abstract. In this poster, we are concerned with a way to introduce
high school students to the P vs NP question. It is intended to be used
in a one hour lecture of the high school credit system in the fall this
year. Our approach is novel in that the question is explained from the
perspective of imaginable worlds. While this may look abstract to high
school students who do not have mathematical backgrounds, it certainly
has an advantage in that students can have opportunities to stretch their
imaginations to understand different kinds of worlds. Since our goal of
giving a lecture about the P vs NP question is not to teach students
technical details but to help them understand different perspectives on
the hardness of computational problems, we believe that our approach
will be sufficient enough to achieve the goal.

Keywords: P vs NP question · a possible world · logical consequence.

1 Introduction

In this poster, we describe an approach that can be used to introduce high school
students to the P vs NP question. The approach is different from typical ways by
which the question is introduced in that structural properties of different worlds
in which the question is addressed are used. We believe that this approach will
help high school students become interested in the question because it does not
require mathematical backgrounds and it can possibly foster creative thinking.

2 A Proposed Approach

Many researchers believe that P and NP are not the same. A different way of
interpreting this belief is that it looks unlikely that a world exists in which
solving a problem and verifying the validity of a given solution are equally hard
[1]. Now, this question can be explained from the perspective of different worlds
as follows.

1. First, we start with a hypothetical world (World 1) in which the problem
of deciding whether an arbitrary quantified boolean formula is true or not
(TQBF problem) is solved by an oracle in one step [2].

CC BY 4.0, J. Song et al. (poster description)
J.-P. Pellet and G. Parriaux (Eds.): ISSEP 2023 Local Proceedings, pp. 225–227, 2023.
https://doi.org/10.5281/zenodo.8432016

https://doi.org/10.5281/zenodo.8432016

(a) To explain this world to students, it is necessary to point out that there
are different kinds of resources from the perspective of algorithms. Ex-
amples include time, space, network bandwidth, randomness, and inter-
action. In addition, we can emphasize that we need to pay some cost
in the form of any of these resources in order to compute something. In
other words, computation is not free.

(b) In World 1, P = NP. This implies that all NP complete problems can
be solvable efficiently. After consequences of the existence of an oracle
for the quantified boolean formula problem are explained, we may raise
the following question. Is this the world in which we live? Although the
answer seems to be no, no definite answer is known yet and it may be
possible to have an unconventional computer that serves as this oracle
in the future.

2. Second, we introduce Algorithmica [3] to students. Like World 1, P = NP
in this world. However, it is unlikely that Algorithmica and World 1 are the
same. The difference between these worlds lies in the existence of an oracle
that solves TQBF in constant time or not. In other worlds, even though
P = NP in Algorithmica, we do not know whether such an oracle exists in
this world. On the other hand, there are many structural similarities between
World 1 and Algoritmica because all logical consequences of P = NP are true
in both worlds. For example, inductive learning becomes an easy problem in
both worlds. In addition, the RSA algorithm is no longer safe in both worlds
[3].

3. Then, we can introduce a world in which P is not the same as NP. One such
world is Heuristica [3] where hard instances of NP complete problems exist,
but it is difficult to find such hard instances. At this stage, we can select
several structural properties of the worlds mentioned and raise the question,
“What are properties that look true in the world where we live?”.

3 Conclusion and Future Directions

In this poster, we described an approach that can be used to introduce high
school students to the P vs NP question. It is different from typical ways of in-
troducing the question in that possible worlds in which the question is addressed
are explained. We believe that our approach can serve as an eye opener for high
school students because they never have had such a perspective on the hardness
of computational problems. In other words, students may be adept at solving
mathematical problems taught in school, or they may be aware of physical laws
such as Newton’s laws of motion which govern our world, but they do not know
a possibility of combining a world and mathematical problems addressed in the
world. Once students get interested in the subjects, we can possibly mention
additional worlds such as Optiland, Obfustopia, and a quantum world [4, 5]. In
addition, it will be interesting to point out that a world can be analyzed in terms
of almost everywhere solvability [6].

226 J. Song et al.

Acknowledgements Seongbin Park is the corresponding author.

References

1. P, NP, and NP-Completeness: The Basics of Computational Complexity, Oded Gol-
dreich, Cambridge University Press, 2010

2. The nature of computation, Cristopher Moore, Stephan Mertens, Oxford University
Press, 2011

3. A personal view of average case complexity, Russell Impagliazzo, SCT ’95: Proceed-
ings of the 10th Annual Structure in Complexity Theory Conference (SCT’95)

4. Fifty Years of P vs. NP and the Possibility of the Impossible, Lance Fortnow, Com-
munications of the ACM, Vol. 65, No. 1, 2022

5. Obfustopia Built on Secret-Key Functional Encryption, Fuyuki Kitagawa, Ryo
Nishimaki & Keisuke Tanaka, EUROCRYPT 2018, Lecture Notes in Computer
Science, Vol. 10821

6. What one has to know when attacking P vs. NP, Juraj Hromkovic̆, Peter Ross-
manith, Journal of Computer and System Sciences, Vol. 107, 2020

An Approach to Introduce High-School Students to the P-vs-NP Question 227

Promoting Artificial Intelligence and Data
Literacy within Teacher Education

Valentina Dagienė1, Martin Kandlhofer2, Vaida Masiulionytė-Dagienė3,
Viktoriya Olari4, and Ralf Romeike4

1 Institute of Educational Science, Vilnius University, Lithuania
valentina.dagiene@mif.vu.lt

2 Austrian Computer Society (OCG), Vienna, Austria
martin.kandlhofer@ocg.at

3 Institute of Data Science and Digital Technologies, Vilnius University, Lithuania
vaida.masiulionyte-dagiene@mif.vu.lt

4 Computing Education Research Group Freie Universität Berlin, Germany
{viktoriya.olari,ralf.romeike}@fu-berlin.de

Abstract. With the rising emphasis on integrating Artificial Intelli-
gence (AI) and Data Literacy (DL) into school education within global
and European educational frameworks, the demand for training teach-
ers in DL and AI literacy has become pressing. Nonetheless, the cur-
rent landscape lacks comprehensive professional development programs
to address these needs. To address this gap and establish effective imple-
mentation of data and AI competencies in teacher training, we engaged
in a collaborative effort with policymakers from Germany, Austria, and
Lithuania. Our approach was rooted in action research, facilitating the
development of a tailored teacher training program. We propose an ini-
tial approach that employs the data lifecycle to contemplate on DL skills
pertinent to AI. The outcomes serve as a groundwork for constructing a
comprehensive strategy for training K-12 educators of all disciplines in
AI and DL. This work overviews the project “TrainDL - Teacher train-
ing for Data Literacy & Computer Science competences” objectives and
implementation.

Keywords: Artificial Intelligence Education · AI Literacy · Data Liter-
acy · Teacher Training · K-12 education

1 Introduction

Teacher training initiatives are actively underway in Austria, Germany, and
Lithuania, with a specific focus on cultivating Data Literacy, Computer Science
/ Informatics competences. The central objective is to enhance the transfer-
ability of digital education skills. The project TrainDL (https://train-dl.eu/en)
consortium’s immediate goal is to determine the optimal integration of Data
Literacy (DL) and Artificial Intelligence (AI) competences into teacher training
programs. This integration encompasses both university-level education and pro-
fessional development for in-service teachers, particularly Computer Science (CS)

CC BY 4.0, V. Dagienė et al. (poster description)
J.-P. Pellet and G. Parriaux (Eds.): ISSEP 2023 Local Proceedings, pp. 229–232, 2023.
https://doi.org/10.5281/zenodo.8432024

https://doi.org/10.5281/zenodo.8432024

teachers and also those within the STEAM fields, and primary school teachers.
Key stakeholders, including pre-service and in-service teachers, as well as policy-
makers in the education domain are actively engaged. Through a participatory
approach grounded in systems thinking and action research, the project is cur-
rently testing hypotheses, evaluating measures, and assessing their applicability
over three distinct project cycles. This collaborative process is fostering ongoing
knowledge exchange and establishing a metric to gauge the present status of DL
and AI literacy within Computer Science education, ultimately leading to the es-
tablishment of a European teacher education monitoring system. Building upon
these insights, the project will provide curriculum recommendations as well as
a policy monitor for DL and AI, aimed at directly impacting relevant national
and European stakeholders.

2 Data Literacy and Artificial Intelligence in School
Education

The research landscape in AI has more than doubled since 2010, with certain
areas like ethics experiencing a rapid surge in recent years [2]. In response to
the rapid pace of technological advancements and resulting societal shifts, re-
searchers, educators, and policymakers are increasingly acknowledging the im-
portance of introducing students to concepts such as data collection, under-
standing, evaluation, and the critical application of AI technologies from an
early stage [5]. Data Literacy can be defined as ”[...] the ability to collect, man-
age, evaluate, and apply data in a critical manner” [4]. Efforts to integrate data
and AI literacy into K-12 education have been ongoing for years, aiming to
equip young learners with the skills needed to excel in a data-driven world [3].
However, the key to effectively integrate AI and Data Literacy (AI&DL) into
school education lies in adequately preparing teachers as well as in the proper
curriculum support. UNESCO’s recent report highlighted that only 11 countries
approved K-12 AI curricula by 2021 [6]. While international frameworks exist,
such as OECD’s AI policy observatory and the EU’s DigComp/DigCompEdu,
European countries vary in implementation and may have their own policies.

3 Development of Teacher Training: Methodology

To comprehend the scarcity of teacher training programs in AI&DL and to
bridge this gap, we embraced an action research approach. Action research is
iterative, involving cycles of planning, action, observation, feedback, and reflec-
tion. The project protocol contains three phases iterated three times throughout
the project roadmap: The policy dialogue & building with a close integration of
public authorities (A), the intervention with the field research and experimen-
tation phase (B) and the evaluation on a micro (pedagogical), meso (organiza-
tional/structural) and macro (policy) level (C). The evaluation flows into the
policy dialogue and thus guide the intervention of the next phase (see Figure 1).
In this poster, we concentrate on the initial action research cycle on level B.

230 V. Dagienė et al.

Fig. 1. Project lifecycle phases

Phase 1 - Grasping Practice: We studied the incorporation of AI&DL in
school education and the availability of teacher training. Subsequently, we ana-
lyzed educational policies, engaging with policymakers and stakeholders in Ger-
many, Austria, and Lithuania to discern factors relevant to teacher education
in AI&DL. Phase 2 - Intentional Enhancements: Based on our findings, we de-
vised a one-day AI&DL training program specifically tailored for secondary-level
and primary-level. Phase 3 - Implementation and Observation: We executed the
training program across Germany, Austria, and Lithuania, gauging its effective-
ness through evaluation. Our approach remained reflective, fostering ongoing
discussions within the research group and stakeholders.

When designing the teacher training program, we carefully considered the
demands of policy requirements, insights gleaned from prior research in AI&DL
within school education, and the TPACK model [1]. Our primary focus was on
in-service teachers. In terms of content knowledge, which is the first facet of
the TPACK model, we concentrated on core concepts such as rule-based AI and
machine learning (ML) paradigms (including supervised, unsupervised, and rein-
forcement learning) and the essential data lifecycle. These concepts consistently
emerge as pivotal themes across AI literacy and data literacy frameworks. Fur-
thermore, we introduced educators to their national school curricula and AI&DL
guidelines, informed by our policy research. Addressing pedagogical knowledge,
the second aspect of the TPACK model, we structured the training around the
didactic biplane method, a widely adopted approach in German-speaking regions
for CS teacher training. Employing this technique, the facilitator assumes the role
of a classroom teacher, while participating educators embody students, engaging
with materials as they would in their own classrooms. Adhering to policy recom-
mendations, our training incorporates unplugged resources and computer-based
activities that teachers can seamlessly integrate into their teaching practices.
Our selected computer-based activity for the data lifecycle employs Orange3,
a user-friendly visual modeling tool that requires no programming skills, also
Google Teachable Machine, an online tool which helps to better understand how
AI based solutions can learn from data.

Promoting Artificial Intelligence and Data Literacy within Teacher Education 231

4 Conclusion

The TrainDL teacher training concept’s evolution was shaped by close engage-
ment with European policymakers, ensuring alignment with their perspectives.
The formulated teacher training framework was subsequently put into action and
quantitatively and qualitatively evaluated in Germany, Lithuania, and Austria.
A one-day teacher training program had a notable positive impact on perceived
and demonstrated AI competence. Across the three countries, quantitative find-
ings indicated improved classroom integration of AI content. While DL enhance-
ment varied, AI comprehension consistently improved. Teachers’ viewpoints for
incorporating AI&DL highlight a strong inclination towards integrating these
topics into framework curricula. It is observed across all countries that formal
curriculum anchoring is not a prerequisite for teaching these subjects. The pre-
vailing consensus, also among the policymakers, is that AI&DL should form a
part of teacher trainings. Additionally, there is a clear call to enhance and expand
professional development opportunities in this domain. Our journey provides in-
sights into multifaceted AI&DL teacher training, from stakeholder engagement
to policy alignment, training effectiveness, and content preferences.

Acknowledgement

This work has been funded through the Erasmus+ KA3 Policy Experimentation
project: “TrainDL - Teacher training for Data Literacy & Computer Science
competences”, 626145-EPP-1-2020-2-DE-EPPKA3-PI-POLICY.

References

1. Koehler, M., Mishra, P.: What is technological pedagogical content knowledge
(TPACK)? Contemporary issues in technology and teacher education 9(1), 60–70
(2009)

2. Lee, I., Zhang, H., Moore, K., Zhou, X., Perret, B., Cheng, Y., Zheng, R., Pu,
G.: AI Book Club: An Innovative Professional Development Model for AI Educa-
tion. In: Proceedings of the 53rd ACM Technical Symposium on Computer Science
Education-Volume 1. pp. 202–208 (2022)

3. Long, D., Magerko, B.: What is AI literacy? Competencies and design considera-
tions. In: Proceedings of the 2020 CHI conference on human factors in computing
systems. pp. 1–16 (2020)

4. Ridsdale, C., Rothwell, J., Smit, M., Ali-Hassan, H., Bliemel, M., Irvine, D., Kel-
ley, D., Matwin, S., Wuetherick, B.: Strategies and best practices for data literacy
education: Knowledge synthesis report (2015)

5. UNESCO: Beijing Consensus on Artificial Intelligence and Education.
https://unesdoc.unesco.org/ark:/48223/pf0000368303 (2021), access: 09/23

6. UNESCO: K-12 AI curricula: a mapping of government-endorsed AI curricula.
https://unesdoc.unesco.org/ark:/48223/pf0000380602 (2022), access: 09/23

232 V. Dagienė et al.

Exploring Students’ Preinstructional Mental
Models of Machine Learning:

Preliminary Findings

Erik Marx1,2[0000−0002−5918−804X], Thiemo Leonhardt1,2[0000−0003−4725−9776],
Nadine Bergner3[0000−0003−3527−3204], and Clemens Witt1[0009−0005−8160−4029]

1 TUD Dresden University of Technology, Germany
2 Center for Scalable Data Analytics and Artificial Intelligence (ScaDS.AI)

Dresden/Leipzig, Germany
3 RWTH Aachen University, Germany

Abstract. This poster proposal provides insights into research on school
students’ conceptions of machine learning (ML) and highlights the effec-
tiveness of interviews in exploring their mental models. In our study, we
use semi-structured interviews to explore the mental models students de-
velop prior to instruction on ML, outlining the advantages of this method
for obtaining detailed insight. Eight interviews with German school stu-
dents were conducted, revealing different perspectives. The preliminary
findings indicate that some students imbue artificial intelligence (AI)
with anthropomorphic qualities. Traditional concepts of computational
thinking are also referenced, but often do not match the realities of ML.
These findings contribute to computer science education by providing a
nuanced understanding of school students’ conceptions of AI and ML and
highlighting the need for accurate education in the evolving landscape
of AI and ML.

Keywords: Machine Learning · Mental Models · School Students’ Con-
ceptions · Preconceptions · Interview Study

1 Introduction

Considering the growing integration of artificial intelligence (AI) into students’
daily lives, it becomes crucial for them to acquire a fundamental understanding of
the functioning of this technology. Based on constructivist learning theories the
assimilation of new knowledge occurs through the adaptation of existing knowl-
edge structures [10, 2]. One concept that explains how individuals explain the
world, solve problems, or form hypotheses is that of mental models [1, 2]. Men-
tal models are cognitive representations of situations or domains that help in
understanding, learning, reasoning, or predicting [1, 2]. In educational research,
other terms are used that address students’ preinstructional understanding such
as preconceptions, alternative conceptions, or p-prims but with little consistency
as to how these terms relate to each other [10]. We understand student concep-
tions and related terms as the observable phenomena of the use of internal mental

CC BY 4.0, E. Marx et al. (poster description)
J.-P. Pellet and G. Parriaux (Eds.): ISSEP 2023 Local Proceedings, pp. 233–236, 2023.
https://doi.org/10.5281/zenodo.8432012

https://doi.org/10.5281/zenodo.8432012

models. The study of mental models is necessary because they provide us with
information about the learning process of students, for example, by explaining
typical errors and thus enabling us to design better learning experiences [1].

Students’ view on AI is influenced by a diverse array of sources. Media and
in particular science fiction wield substantial influence over students’ conceptu-
alizations of AI, often leading to anthropomorphism of AI, thereby conflicting
with accurate computational concepts [7]. Furthermore, in the field of computer
science education (CSE) machine learning (ML) presents distinctive characteris-
tics compared to conventional subjects within CSE. This contrast is elucidated
by Tedre et al., who argue that ML introduces a paradigm shift, challenging
established notions of computational thinking (CT). For instance, in the context
of imperative programming, correctness predominantly revolves around syntac-
tic accuracy or the generation of precise outputs. Conversely, within the domain
of ML an element of probability is introduced, indicating the likelihood of cor-
rectness for each generated output [11].

The primary objective of this interview study is to delve into the preinstruc-
tional mental models that school students employ in their attempts to elucidate
phenomena within ML. This investigation seeks to assess the potential implica-
tions of these mental models on the learning process and their potential conflicts
with correct computational concepts of ML.

2 Related Works

Some works already exist that delve into school students’ preconceptions about
AI. Mertala et al. used a qualitative questionnaire to inquire middle-school stu-
dents about their perceptions of how AI functions. The analysis primarily fo-
cuses on discerning how children conceptualize the type of technology AI rep-
resents and where AI finds application [9]. Kim et al. assessed middle school
students’ preconceptions about AI through video observations and learning arti-
facts, tracking their development across a summer camp [4]. Kreinsen & Schultz
conducted interviews with students on their understanding of AI [5]. These en-
deavors share the commonality of encompassing a general assessment of school
students’ conceptions of AI, without concentrating on specific technologies like
ML, which holds particular relevance for CSE research, given the fundamental
differences between some concepts of ML and traditional CS concepts. Addi-
tionally, we identify a lack of utilization of interview-based data collection meth-
ods, despite their capacity to pose follow-up questions, thereby faciliting deeper
understanding of students’ mental models. With our investigation, we aim to
narrow the focus onto the realm of ML, thereby exploring school students’ pre-
instructional mental models concerning ML via an interview study.

3 Methodology

To assess students mental models, we opted for the traditional semi-structured
interview, commonly used in mental model research [1]. A total of eight inter-

234 E. Marx et al.

views with German school students were conducted with a duration between 43
and 69 minutes. Of the children interviewed, 6 were in eighth grade, 1 was in fifth
grade, and 1 was in third grade. As Jones et al. found, interviewees’ responses are
more detailed and in-depth when they are directly exposed to the phenomena
about which they are being questioned [3]. Thus, the students were introduced
to two technologies to interact with during the interview: facial recognition on
smartphones and ChatGPT. After each of these interactions, the participants
were asked questions about how these technologies work. A semi-structured in-
terview guide was created, outlining topics of interest derived from literature
(such as correctness of AI [11]). Further detailed questions were formulated to
facilitate deeper discussions. In the interview the interviewer also had flexibility
to ask unlisted follow-up questions, aligning with the semi-structured interview
approach.

For the analysis, interviews were transcribed from audio recordings and aug-
mented with video footage to incorporate students’ gestures and facial expres-
sions, enhancing contextual understanding. Subsequently, the transcripts are to
be analyzed using qualitative content analysis according to Kuckartz [6], taking
into account Mayring & Fenzl’s recommendations [8]. In accordance with [6], the
analysis started with reading each interview and summarizing initial findings.
The preliminary findings presented in section 4 are derived from this step. An
inductive-deductive approach is planned post-initial text work to build the cod-
ing framework using the main categories from the interview guide. Open coding
will refine the category system, followed by coding all interviews and analyzing
thematic summaries.

4 Preliminary Findings and Implications

The initial analysis of the data demonstrates that the interviewed students pro-
vided a diverse range of explanations. Some students exhibited familiarity with
ML concepts, such as neural networks, or possessed a basic comprehension of how
facial recognition operates. In contrast, however, there were also more naive per-
spectives, like the notion that ChatGPT was simply some form of sophisticated
search engine. Particularly when dealing with less familiar technical intricacies,
students tend to anthropomorphize the technology, attributing human-like traits
to it. For instance, one student characterizes AI as striving for self-improvement
and perpetual learning. Another student draws a direct parallel between Chat-
GPT and humans, asserting that both make random decisions because humans
are inherently “random” as well.

However, it’s important to acknowledge that explanatory approaches rooted
in traditional CT concepts also emerge. For instance, students are well aware
of the pivotal role that data play and acknowledge its significance. However, a
noteworthy observation permeating all the interviews, which has yet to be ad-
dressed in related work, is that most students assume data is stored and that
AI makes decisions based on a comparison of input data with stored “training
data”; this notion directly contradicts the actual functioning of ML systems. In

Exploring Students’ Preinstructional Mental Models of Machine Learning 235

another instance, a student combines both anthropomorphic ideas and CT con-
cepts. He speculates that ChatGPT was coded by developers with an initial set of
handcrafted grammatical rules and vocabulary and subsequently independently
scoured the Internet for new data to enhance its vocabulary.

The preliminary results presented herein bear relevance to research in CSE
by offering an additional perspective on school students’ conceptions of AI. In
summary, it can be deduced that the conducted interview study proves effective
as a methodology for assessing the various explanations put forth by students.
The partially novel findings underscore the value of semi-structured interviews,
as they allow to ask specific follow-up questions and thus to render students’
mental models on the functionality of ML systems visible.

References

1. Gentner, D.: Mental Models, Psychology of. In: International Encyclope-
dia of the Social & Behavioral Sciences, pp. 9683–9687. Elsevier (2001).
https://doi.org/10.1016/B0-08-043076-7/01487-X

2. Greca, I.M., Moreira, M.A.: Mental models, conceptual models, and mod-
elling. International Journal of Science Education 22(1), 1–11 (Jan 2000).
https://doi.org/10/btgzg6

3. Jones, N.A., Ross, H., Lynam, T., Perez, P.: Eliciting Mental Models: A Com-
parison of Interview Procedures in the Context of Natural Resource Management.
Ecology and Society 19(1) (2014)

4. Kim, K., Kwon, K., Ottenbreit-Leftwich, A., Bae, H., Glazewski, K.: Exploring
middle school students’ common naive conceptions of Artificial Intelligence con-
cepts, and the evolution of these ideas. Education and Information Technologies
(Jan 2023). https://doi.org/10.1007/s10639-023-11600-3

5. Kreinsen, M., Schulz, S.: Students’ Conceptions of Artificial Intelligence. In: The
16th Workshop in Primary and Secondary Computing Education. pp. 1–2. ACM,
Virtual Event Germany (Oct 2021). https://doi.org/10/gqjsqq

6. Kuckartz, U., Rädiker, S.: Qualitative Content Analysis: Methods, Practice and
Software. SAGE Publications, Thousand Oaks, second edn. (2023)

7. Marx, E., Leonhardt, T., Bergner, N.: Brief Summary of Existing Research on Stu-
dents’ Conceptions of AI. In: Proceedings of the 17th Workshop in Primary and
Secondary Computing Education. pp. 1–2. WiPSCE ’22, Association for Comput-
ing Machinery, New York, NY, USA (Oct 2022). https://doi.org/10/gq2p2n

8. Mayring, P.: Qualitative Content Analysis: Theoretical Foundation, Basic Proce-
dures and Software Solution. Klagenfurt (2014)

9. Mertala, P., Fagerlund, J., Calderon, O.: Finnish 5th and 6th grade students’ pre-
instructional conceptions of artificial intelligence (AI) and their implications for
AI literacy education. Computers and Education: Artificial Intelligence 3, 100095
(Jan 2022). https://doi.org/10.1016/j.caeai.2022.100095

10. Taber, K.S.: The Nature of Student Conceptions in Science. In: Taber, K.S., Akpan,
B. (eds.) Science Education, pp. 119–131. New Directions in Mathematics and Sci-
ence Education, SensePublishers, Rotterdam (2017). https://doi.org/10.1007/978-
94-6300-749-8_9

11. Tedre, M., Denning, P., Toivonen, T.: CT 2.0. In: 21st Koli Calling International
Conference on Computing Education Research. pp. 1–8. ACM, Joensuu Finland
(Nov 2021). https://doi.org/10/gnqv9f

236 E. Marx et al.

Teachers’ Experience Regarding Digital Threats
for Children and Teenagers

Julian Taupe[0000−0002−9148−835X], Verena Knapp[0009−0005−0982−0472], and
Andreas Bollin[0000−0003−4031−5982]

Universität Klagenfurt, Universitätsstraße 65/67, 9020 Klagenfurt am Wörthersee,
Austria

Abstract. In a time embossed by increasing technology integration, dig-
ital security has become crucial, particularly for children and teenagers
in primary and secondary school levels who extensively use digital media
and devices on a daily basis. Austria’s cybercrime incidents have almost
been six-fold in the last ten years, highlighting the need for developing
competencies in the field of digital security. This study focuses on teach-
ers’ experience in regards of threats pupils have to cope with. The study
establishes a structured approach to address digital security concerns
among children and teenagers. This informs teachers about potential
threats and unveils possible competency gaps for pupils. An interesting
finding is the ranking of threats from teachers’ point of view based on
their experience in reference to digital threats for children and teenagers.

Keywords: Digital Threats · Research in Informatics Education · Cur-
riculum Gaps · Competencies for Children.

1 Introduction

Digital media and services are omnipresent in our society which has revolu-
tionized the way we access information, interact, and communicate with others.
These technologies have become a part of our daily routines and accompany
many of us in many areas like education, profession or leisure. At the same time
there is a significant increase in the frequency of individuals becoming involved
into criminal cases within the digital area [1]. With increasing and early inte-
gration, however, potential threats to children and teenagers also become more
relevant [2–6]. These threats range across various domains, such as inappropriate
or illegal content, social environment and interactions, data and its protection,
as well as potential addictive behavior. In order to determine the most signifi-
cant threats, these need to be examined from different perspectives. This article
focuses on taking a closer look at the perspective of teachers in regards of their
personal experience with digital threats children and teenagers have to cope
with.

CC BY 4.0, J. Taupe et al. (poster description)
J.-P. Pellet and G. Parriaux (Eds.): ISSEP 2023 Local Proceedings, pp. 237–240, 2023.
https://doi.org/10.5281/zenodo.8432020

https://doi.org/10.5281/zenodo.8432020

2 Study regarding Teachers’ Experience

In the course of this contribution, results of an empirical study with teachers in
Austria are demonstrated. During the study, conducted between April and May
2023, teachers were asked about their experiences with regard to selected threats
in the context of digital security among children and teenagers. In total 1.153
schools have been contacted to ask teachers for participation. Apart from the
federal state of Salzburg, teachers from all over Austria took part in the study.
The results reflect answers of 708 surveyed teachers of primary and secondary
school levels. Among other parts, the questionnaire covered questions regarding
threats in the digital realm. Based on their assessment, teachers were asked to
rank a set of predefined threats within four groups based on the frequency with
which young people are confronted with them. Furthermore, they were asked
how they experienced children and teenagers being exposed to specific threats.
In terms of experience, three options are distinguished. First-hand experience,
which means that teachers have personally experienced or witnessed that chil-
dren or teenagers have been confronted with digital threats. Indirect experience,
meaning teachers at least know someone who experienced such cases. Finally,
there is the possibility that teachers have not yet had such an experience or
know a person who has.

3 Discussion

Existing publications already mention many threats and problem areas in the
digital realm. These are already sufficiently documented, but they are scattered
across several publications. What is missing, however, is a ranking of these
threats in relation to the frequency with which children and teenagers are con-
fronted with them. This ranking can be used, for example, to prioritize defining
competencies. For this reason, this study was carried out to receive a sequence
of threats in the digital context from teachers’ point of view for the first time in
Austria. Regarding the number of threats collected, they have been divided into
four groups for easier ranking. In order to find suitable groups, threats were ana-
lyzed to determine any similarities. During the questionnaire teachers have been
asked about their personal experience in regards to selected threats in reference
to children and teenagers. The weighting of each threat is composed of teachers’
first-hand and indirect experience. Table 1 illustrates the ranking of the threats
according to teachers’ first-hand experience.

Some potential sources of bias concerning the internal validity of the col-
lected data have been considered. For instance, teachers may tend to pick their
responses in accordance with societal expectations, possibly leading to an over-
rated or underrated result for specific threat rating. Furthermore, teachers may
have difficulties recalling certain occurrences or events, especially those that took
place in the past. This could lead to distortions in responses respective to per-
sonal experiences with diverse threats. Furthermore, the distribution of teachers
across gender conforms to the population, which strengthens representativeness.

238 J. Taupe et al.

The circumstance that the education directorate of the state of Salzburg did not
permit teachers in Salzburg to participate in the study is not expected to be a
substantial source of error.

Moreover, in regards of the external validity some considerations have been
considered. First of all, the sample of teachers was randomly selected, encompass-
ing schools as well as individual teachers, with no targeted selection. Also, the
data indicates a corresponding distribution, particularly in regards of teachers’
gender, aligning with the general population. Hence, the sample is representa-
tive and applicable to the target audience. It is worth noting that voluntary
participation could introduce a bias, favoring teachers with specific opinion or
experience. To minimize systematic errors, the online questionnaire enforced ac-
tive response for all questions by not providing default values. Teachers were not
forced to participate at a specific time and no rewards have been promised for
taking part in the study.

Table 1. Threats ranked according to teachers’ first-hand experience (rounded to two
decimal places)

Threat First-Hand Experience Indirect Experience
Information Overload 47.32% 16.81%
Social Media Addiction 43.93% 30.37%
Gaming Addiction 40.54% 34.32%
Fake Information 38.42% 23.02%
Cyber Mobbing 36.16% 38.84%
Inappropriate Content 30.93% 32.20%
Computer/Data Damage 18.50% 20.20%
Illegal Content 17.37% 26.84%
Reputation 16.95% 29.38%
Copyright 15.82% 15.40%
Cyber Stalking 15.82% 30.65%
Data Breach 15.68% 19.63%
Violence/Crime Incitement 11.44% 23.31%
Injury Trivialization 10.17% 19.77%
Contact Strangers 8.62% 16.10%
Personal Privacy 8.19% 18.64%
Shopping Addiction 7.91% 19.21%
Purchase Illegal Substances 7.91% 15.11%
Happy Slapping 6.78% 18.08%

4 Conclusion and Outlook

The majority of existing publications mostly concentrate on digital threats, ex-
plaining their characteristics and implications. While a limited subset of these
address the topic of digital competencies, their focus primarily relates to com-
petencies required for using digital media, rather than encompassing strategies

Teachers’ Experience Regarding Digital Threats for Children and Teenagers 239

for mitigating threats within the realm of digital security. In the context of ed-
ucational curricula, regional differences become visible. Some countries follow
centralized while others prefer decentralized approaches in regards of responsi-
bilities for curricula. Consequently, a multitude of curricular frameworks result,
often characterized by loosely defined requirements in regards to competencies
in the area of digital security. These circumstances make it challenging when it
comes to evaluating the extent to which competencies addressing digital threats
are being considered. In any case, there is a need to catch up in this area, so
children and teenagers can improve and develop competencies in the field of
digital security. With this contribution, we want to comprehensively examine
digital threats for children and teenagers and point out that teachers are aware
that pupils are confronted with them. Our research findings confirm the presence
of a multitude of digital threats that children and teenagers encounter. More-
over, this study is the first of a kind engaging Austrian educators in a discourse
concerning threats within the realm of digital security. By disclosing their per-
spectives on the challenges confronting children and teenagers, a unique insight
was created. The next step is to ask children and teenagers as well as parents
about their experiences in subsequent studies. While this has already been par-
tially done by previous studies, these mostly covered only a small part related to
digital threats. The upcoming acquisition of complementary data is expected to
unveil the major threats children and teenagers have to cope with from different
perspectives. In the course of a dissertation, exploring this issue will involve in-
vestigating the relevant threats faced by children and teenagers across different
age groups. Furthermore, the focus will be on defining competencies required to
effectively encounter these threats.

References

1. Bundesministerium für Inneres, Bundeskriminalamt: Polizeiliche Kriminal-
statistik 2022: Die Entwicklung der Kriminalität in Österreich (2023),
https://bundeskriminalamt.at/501/files/2023/PKS_Broschuere_2022.pdf

2. Eichenberg, C., Auersperg, F.: Chancen und Risiken digitaler Medien für Kinder und
Jugendliche: ein Ratgeber für Eltern und Pädagogen. Hogrefe, Göttingen, Germany,
1 edn. (2018)

3. Gasser, U., Cortesi, S., Gerlach, J.: Kinder und Jugendliche im Internet: Risiken
und Interventionsmöglichkeiten. hep, Bern, Switzerland, 1 edn. (2012)

4. O’Keeffe, G.S., Clarke-Pearson, K., on Communications, C., Media: The Impact of
Social Media on Children, Adolescents, and Families. Pediatrics 127(4), 800–804
(04 2011). https://doi.org/10.1542/peds.2011-0054

5. Reid Chassiakos, Y.L., Radesky, J., Christakis, D., Moreno, M.A., Cross, C., COM-
MUNICATIONS, C.O., MEDIA, Hill, D., Ameenuddin, N., Hutchinson, J., Levine,
A., Boyd, R., Mendelson, R., Swanson, W.S.: Children and Adolescents and Dig-
ital Media. Pediatrics 138(5) (11 2016). https://doi.org/10.1542/peds.2016-2593,
e20162593

6. Smahel, D., Machackova, H., Mascheroni, G., Dedkova, L., Staksrud, E., Ólafsson,
K., Livingstone, S., Hasebrink, U.: EU Kids Online 2020: Survey results from 19
countries. EU Kids Online (2020). https://doi.org/10.21953/lse.47fdeqj01ofo

240 J. Taupe et al.

Exploring the Relationship between Digital
Competences and Understanding of Informatics
Education: A Study on Primary School Teachers

Gabrielė Stupurienė[0000−0001−5577−1054]

Vilnius University, Universiteto str. 9, Lithuania
gabriele.stupuriene@mif.vu.lt

Abstract. This study investigates the relationship between primary
school teachers’ digital competencies and their comprehension of the
purpose of Informatics education in primary school. The research col-
lected data through online questionnaires from both in-service and pre-
service teachers. The results reveal that while many experienced teachers
needed help correctly identifying the objectives of Informatics education,
a higher percentage of pre-service teachers demonstrated a better un-
derstanding. The study highlights a strong link between overall digital
competencies and the grasp of Informatics education’s purpose among
pre-service teachers, underlining the need for targeted training programs.

Keywords: Informatics education· primary education· pre-service and
in-service teachers · digital competences· SELFIE for TEACHERS tool.

1 Introduction

The Digital Education Action Plan (2021-2027) [1] identifies Informatics educa-
tion as one of the priorities to improve digital skills and competences for digital
transformation. Overall, Informatics education in primary and secondary schools
is crucial for preparing young students for a rapidly evolving digital world and
uncertain future [2]. In the renewed curriculum in Lithuania, the introduction
of Informatics subjects will start in primary school [3]. The Informatics curricu-
lum for primary schools includes six areas: algorithms and programming; digital
content creation; data mining and information; technological problem solving;
virtual communication and collaboration, and safe behavior [4].

The European Commission developed a tool called “SELFIE for TEACH-
ERS” to foster the development of teachers’ digital competence through self-
reflection. The tool is based on the DigCompEdu Framework and is designed to
help teachers reflect on and further use digital technologies [5]. The tool consists
of 32 statements in six areas. It is an online tool to help primary and secondary
teachers learn more about their digital competences and identify areas where
they can develop further.

The research aims to determine if there is a relationship between primary
school teachers’ digital competencies and their understanding of the purpose of

CC BY 4.0, G. Stupurienė (poster description)
J.-P. Pellet and G. Parriaux (Eds.): ISSEP 2023 Local Proceedings, pp. 241–245, 2023.
https://doi.org/10.5281/zenodo.8432033

https://doi.org/10.5281/zenodo.8432033

Informatics education in primary education. This poster presents brief results
from in-service and pre-service teachers who participated in the study to get a
broader perspective.

2 Method and Participants

The quantitative data were collected via online questionnaires from June 2022 to
February 2023. The Pearson correlation test was used to measure the strength
of the linear relationship between two variables.

For this study, it was essential to find out how teachers perceive the subject
of Informatics in primary education. In renewed curricula [3], the purpose of
Informatics is defined in terms of five objectives: (1) to promote the safe and
effective use of the various digital communication tools; (2) systematically de-
velop computational thinking; (3) to apply programming knowledge in practice;
(4) to improve students’ digital skills; (5) to encourage the creative use of digital
technologies to solve a wide range of problems. So, teachers were asked to an-
swer the question: “What do you think is the purpose of Informatics education
in primary education?”. Teachers had to choose all five provided statements to
show they understood the purpose of Informatics in primary education.

The “SELFIE for TEACHER” self-assessment tool was used to evaluate
teachers’ digital competences. Teachers were asked to provide their proficiency
levels (A1, A2, B1, B2, C1, and C2) overall and in each of the six areas set with
this tool. A1 means the lowest level, and C2 means the best level.

The study involved 17 future primary school teachers (3rd-year students)
from Vilnius University. The average age was 22.29 years, with a range of ages
from 21 to 30 years. All of them have an opportunity to do a traineeship: 59%
in both public and private schools, 35% only in public schools, and 6% only in
private schools.

Also, 72 primary education teachers working in primary education in different
regions of Lithuania were involved. The average age was 47.78 years, with a
range of ages from 22 to 66 years. 50% of teachers have experience teaching
Informatics and computational thinking in formal and non-formal education.
36% of respondents are only in formal education, and 11% are only in non-formal
education. Only 3% of respondents have no experience teaching Informatics at
school.

3 Results

The results show that only 39% (n=28) of in-service teachers correctly chose all
five statements describing the purpose of Informatics in primary education. 7%
(n=5) of teachers didn’t see the link to programming knowledge. 6% of teachers’
perception of Informatics is only related to digital technologies. The same other
6% of teachers see no relation to computational thinking and programming.

242 G. Stupurienė

Meanwhile, 65% (n=11) of the pre-service teachers chose all five statements cor-
rectly. 18% of students didn’t see the relationship with programming knowledge
and chose four statements out of 5.

It is also essential to show which statement describing the purpose of In-
formatics education must be clarified for teachers. Pre-service teachers and in-
service teachers perceived the statement “to apply programming knowledge in
practice” as the most related to Informatics education (Fig. 1). It means that
during teacher training, we need to pay more attention to programming activi-
ties and show teachers how it can be integrated during the lessons. Only 69% of
in-service teachers perceived the development of computational thinking skills
as part of Informatics education. The results of the collected overall proficiency

Fig. 1. Percentages of teachers who chose each statement.

levels of digital competences showed that pre-service teachers identified three
main levels B1-C2. When comparing within the in-service teacher group, they
identified to have main levels A2-B2.

When we compare results in six digital competencies areas, the results show
that in the Professional engagement area, pre-service teachers indicated at least
level A2, most of which achieved levels B1 and B2. In-service teachers indicated
all levels, but mostly B1 (31%). In the second area (Digital Resources), pre-
service teachers indicated at least level B1 (18%), and most of them level B2
(53%) as well as C1(24%). In-service teacher group, levels vary from A1 to C2,
with most teachers with level A2 (27%), B1 (28%), and B2 (21%). In the areas
of Teaching and learning (3rd) and Assessment (4th), the results of in-service
teachers were quite similar, with most teachers achieving levels of A2-B2. Pre-
service teachers mostly reached the same three levels of digital competences. In
the area of Empowering learners, pre-service teachers achieved better results in
levels B1-C2, and it can be assumed that they are more ready to engage students
actively and include learners with different needs. In the area of Facilitating
learners’ digital competence, the main level of pre-service teachers was B1 (47%),

Digital Competences and Understanding of Informatics Education 243

while in-service teachers reached mainly A2 (28%) and B1 (25%). Pre-service
teachers are more confident in incorporating learning activities by using digital
technologies.

In the group of pre-service teachers, the Pearson correlation coefficient of
0.497, observed at the 0.05 level, indicates a strong significant correlation [6]
between the variables (level of overall digital competencies and understanding
of the purpose of Informatics education in primary education). The Pearson
correlation coefficient of 0.233, observed at the 0.05 level, indicates a relatively
low degree of significant correlation between the variables in the group of in-
service teachers.

4 Conclusion

The results highlight several important findings. Firstly, it was found that only
part of in-service teachers (39%) correctly identified all five statements describing
the purpose of Informatics education. Some teachers needed to recognize the link
between Informatics education and programming knowledge, while others per-
ceived it solely in terms of digital technologies. In contrast, a higher percentage
(65%) of pre-service teachers correctly identified all five statements, indicating a
potential gap between the training and readiness of future educators compared
to their experienced counterparts. Additionally, the analysis of teachers’ digital
competences revealed variations in proficiency levels among both in-service and
pre-service teachers. Pre-service teachers generally demonstrated higher levels
of competence, suggesting their readiness to engage students with diverse needs
using digital tools. Furthermore, the study established a strong and significant
correlation between the overall level of digital competencies and understanding
the purpose of Informatics education for pre-service teachers. This indicates that
higher digital competency levels are associated with a more comprehensive grasp
of the objectives of Informatics education. In contrast, in-service teachers’ corre-
lation between these variables was relatively low, potentially indicating a more
diverse range of factors influencing their perception.

Acknowledgement

This project has received funding from European Social Fund (project No 09.3.3-
LMT-K-712-23-0083) under a grant agreement with the Research Council of
Lithuania (LMTLT).

References

1. The Digital Education Action Plan (2021-2027).
https://education.ec.europa.eu/focus-topics/digital-education/action-plan Last
accessed 20 Sep 2023

244 G. Stupurienė

2. European Commission / EACEA / Eurydice. (2022). Informatics education at
school in Europe. Eurydice report. Luxembourg: Publications Office of the European
Union.

3. Stupurienė, G., Gülbahar, Y.: Informatics at Primary Education: Teachers’ Motiva-
tion and Barriers in Lithuania and Turkey. LNCS, vol. 13488, pp. 27—39. Springer
International Publishing (2022).

4. Dagienė, V., Jevsikova, T., Stupurienė, G., Juškevičienė, A.: Teaching computational
thinking in primary schools: Worldwide trends and teachers’ attitudes. Computer
Science and Information Systems 19(1), 1–24 (2022).

5. Malagoli, C., Bocconi, S., Earp, J.: Contextual and Organisational Factors in the
Development of Teachers’ digital Competence. In: EDULEARN21 Proceedings, pp.
8240–8240 (2021).

6. Puth, M.-T., Neuhäuser, M., Ruxton, Graeme D.: Effective use of Pearson’s prod-
uct–moment correlation coefficient. Animal Behaviour 93, 183—189 (2014).

Digital Competences and Understanding of Informatics Education 245

Teaching an Elective Course about Quantum
Computing

Jihyun Kim1, Chaeyeon Lee2, Jisoo Song3, Chaeyoung Sim2, and Seongbin
Park2

1 University of Pennsylvania, Philadelphia, PA, USA
2 Korea University, Seoul, Korea

3 LoadIT, Seoul, Korea
jhkim10@seas.upenn.edu,lcycsh@korea.ac.kr,jisoo@loadit.co.kr,

{simcy1024,hyperspace}@korea.ac.kr

Abstract. In this poster, we report our experience about teaching a
one-semester elective course titled “Quantum computer and Computa-
tion” at a university in 2022. The course was intended to introduce 85
students from different disciplines ranging from liberal arts to engineering
to the basic ideas about quantum computation and the power of quantum
computing by exhibiting the existence of computational problems solv-
able efficiently by quantum algorithms, but not by classical algorithms.
Especially, the emphasis was placed on intuitive explanations about the
subjects in the course as much as possible because most students in the
course had little or no knowledge of quantum physics. This course is of-
fered annually and the objective of the course is to help students become
quantum literate.

Keywords: quantum computing · quantum litearcy · P vs NP.

1 Introduction

This poster is concerned with our experience about teaching an elective course
about quantum computing at a university. The objective of the course was to
provide students without background in quantum physics with basic ideas about
quantum computers as well as simple quantum algorithms that exploit quantum
mechanical properties. To motivate the power of quantum computers and the
limits of classical computation, we also explained the idea about computational
complexity, P versus NP question, and some of well-known classical algorithms.

As was argued in [1], we thought that knowledge of quantum physics would
not be necessary to understand basic ideas about quantum computers especially
since our goal was not to make experts, but to help students become quantum
literate so that they understand basic quantum algorithms and claims made
about applications of quantum technologies [2–4].

CC BY 4.0, J. Kim et al. (poster description)
J.-P. Pellet and G. Parriaux (Eds.): ISSEP 2023 Local Proceedings, pp. 247–250, 2023.
https://doi.org/10.5281/zenodo.8431971

https://doi.org/10.5281/zenodo.8431971

2 Ongoing and Current Work

The semester consisted of 16 weeks of lectures and the sequence of subjects
addressed were as follows.

1. The class started with a motivation to quantum computing by mentioning
the Moore’s law, quantum supremacy, and quantum parallelism [5–7]. Then,
core concepts such as a qubit, unitary transformations, superposition, en-
tanglement, reversible computing etc. were explained. Out of these subjects,
students had difficulty understanding entanglement and it was mentioned
that Einstein did not believe in entanglement, either even though physicists
believe that it is actually what is happening [8]. In addition, a concrete ex-
ample that illustrates how entanglement can help cut down the number of
steps for computation was explained [9]. This part of the course took about
four weeks.

2. Then, a typical structure of a quantum algorithm was explained. It was
mentioned that the description of a quantum algorithm is done by stational
changes over time. While this is similar in classical algorithms, from the
perspective of programmers or algorithm designers, it is different in that the
description of a quantum algorithm is not done by a sequence of instructions,
but by a sequence of unitary operations [10]. In addition to this, it was
mentioned that the result of a quantum algorithm is obtained by measuring
the state at the end. It took about a week for this part of the course.

3. For the following seven weeks or so, we explained both well-known quantum
algorithms as well as classical algorithms.
(a) More specifically, we started with Deutsch’s algorithm to point out that

for some specific problem, quantum computation is clearly better than
classical computation. Then, we explained Deutsch Jozsa algorithm that
addresses a more general situation than the one addressed by Deutsch’s
algorithm. In addition to these, Grover’s algorithm was explained in or-
der to emphasize that the algorithm outperforms classical algorithms
for the problem of unstructured database searching. Then, both Simon’s
algorithm and Shor’s algorithm were explained by mentioning their sim-
ilarity.

(b) In this part of the course, we also introduced computational problems
that are believed to be difficult. These included the integer factorization
problem, the graph isomorphism problem, etc. and it was mentioned
that Shor’s algorithm solves the integer factorization problem efficiently
although as of yet we do not know whether classical algorithms could
solve the problem efficiently or not.

This naturally leaded to the discussion of the P versus NP question
and the NP completeness of many well-known computational problems.
The graph isomorphism problem was mentioned because although many
problems believed to be hard are known to be NP complete, it is one
of few problems that are believed to be hard, but it is not known yet
whether it is NP complete or not. In addition, the status of the integer

248 J. Kim et al.

factorization problem is similar in that although it is believed to be hard,
we do not know yet whether it is NP complete or not. At this stage, some
classical algorithms that are relevant such as Miller’s algorithm, Fast
Fourier Transform algorithm, Euclid’s algorithm, etc were explained.

4. For the remaining part of the semester, we addressed two views on analyzing
algorithms. That is both of the worst case complexity and the average case
complexity were explained and differences of these were mentioned. The
reason that these were addressed lied in the following two facts. One is
that many quantum algorithms are probabilistic by nature [11]. The other
is that there are problems known to be hard in the sense that they are NP
complete, but these problems exhibit phase transitions [12]. While the latter
is not directly related to quantum computation, we thought that would be
relevant because the problem that exhibited a phase transition phenomenon
(in this case, it is the boolean satisfiability problem) has strange properties in
that while it is believed to be hard, for a lot of instances of the problem they
can be quickly answered correctly by classical algorithms. Yet, we do not
know yet whether it could be solvable efficiently by any quantum algorithm.

3 Conclusion and Future Directions

In this poster, we reported a sequence of subjects that we taught in a course
about quantum computing at a university. Students who enrolled in this course
had little or no knowledge of quantum physics, but most students wrote positive
feedbacks about the course in general, although a few students mentioned that
the contents were too difficult to follow. It appeared that some students thought
that the course was entirely for quantum computation, but there were actually
subjects that were not directly related to quantum computation. We believe that
it is important to point out that there are certain computational problems that
can be solvable by quantum algorithms efficiently, but not by classical algorithms
yet. And this inevitably brings up certain aspects of classical computation such
as P vs NP question as well as the average case complexity. Currently, we are
working on a way to organize the set of concepts and subjects used in the course
in a more streamlined fashion in the course to be offered in the fall semester of
this year. In addition, we are editing the course materials used in order to give
lectures about quantum computing in a high school as a part of lecture series in
a high school credit system.

Acknowledgements Seongbin Park is the corresponding author.

References

1. Recent progress in quantum algorithms, Dave Bacon, Wim van Dam, Communica-
tions of the ACM, February 2010, Vol. 53, No. 2

Teaching an Elective Course about Quantum Computing 249

2. Hands-on Lab Skills Key for Quantum Jobs, Katherine Wright, 2020,
https://physics.aps.org/articles/pdf/10.1103/Physics.13.163. Last accessed 11,
June 2023

3. Quantum Physics Literacy Aimed at K12 and the General Public, Caterina Foti,
Daria Anttila, Sabrina Maniscalco, Maria Luisa Chiofalo, Universe, 2021, 7(4)

4. The challenge and opportunities of quantum literacy for future education and trans-
disciplinary problem-solving, Research in science & technological education, 2023,
Vol. 41, No. 2

5. Technologies and Computing Paradigms: Beyond Moore’s law?, Daniel Etiemble,
https://arxiv.org/pdf/2206.03201.pdf. Last accessed 15, August 2023.

6. Quantum computing and the entanglement frontier, John Preskill,
https://arxiv.org/pdf/1203.5813.pdf. Last accessed 15, August 2023.

7. An introduction to quantum computing for non-physicists, Eleanor Rieffel, Wolfgang
Polak, ACM Computing Surveys, Vol. 32, No. 3, September 2000

8. Explorers of Quantum Entanglement Win 2022 Nobel Prize in Physics, Billings, Oc-
tober 4, 2022, https://www.scientificamerican.com/article/explorers-of-quantum-
entanglement-win-2022-nobel-prize-in-physics1/. Last accessed 15, August 2023.

9. Demonstration of essentiality of entanglement in a Deutsch-like quantum algorithm,
He-Liang Huang, Ashutosh K. Goswami, Wan-su Bao, Prasanta K. Panigrahi, Sci-
ence China, Physics, Mechanics & Astronomy, June 2018, Vol. 61, No. 6

10. Quantum computing classical physics, David A. Meyer, Philosophical Transactions:
Mathematical, Physical and Engineering Sciences, Vol. 360, No. 1792, 2002

11. Average case quantum lower bounds for computing the Boolean mean, A. Papa-
georgiou, Journal of Complexity, Vol. 20, No. 5, 2004

12. Computing Science: Can’t Get No Satisfaction, Brian Hayes, American Scientist,
Vol. 85, No. 2, 1997

250 J. Kim et al.

Teaching Quantum Computing at a
Middle School

Sunrim Lee1,2, Yuri Kim2, Soyeon Jeong2, and Seongbin Park2

1 Sehwa Girls Middle School, Seoul, Korea
2 Korea University, Seoul, Korea

{tjsfla1207,fhrml1004,jj2709,hyperspace}@korea.ac.kr

Abstract. The field of quantum computing has been progressing rapidly
recently and universities started to offer courses about quantum comput-
ing [1]. On the other hand, whether teaching quantum computing at a
middle school can be helpful or not has not been explored yet [2]. We be-
lieve that it will be certainly helpful because early exposure to quantum
computing will help students be quantum literate [3]. In this poster, we
report a preliminary result that supports our hypothesis which asserts
that teaching quantum computing at a middle school will help.

Keywords: quantum computing · quantum literacy · physical system.

1 Introduction

In this poster, we are concerned with whether it is appropriate to introduce
quantum computing to middle school students. It is true that many people are
aware of the importance of quantum computing [3] and well known companies
such as IBM, Google, Intel etc put efforts to make quantum computers with
many qubits, in which a qubit is the unit of information on a quantum computer
[4]. However, it may be too difficult for middle school students to understand
principles of quantum computation because it requires the knowledge about
matrices and other mathematical concepts that students do not learn in schools.

To investigate whether it can help if we introduce middle school students
to quantum computing, we organized an introduction course about quantum
computing that consisted of two sessions of 45 minutes each in May 2023. The
number of students participated in the course was 32 and based on the answers
to questionnaires from the participating students at the end of the course, we
came to believe that there certainly will be gains for students.

2 Current and Ongoing Work

In this section, we describe the sequence of subjects that were taught in the
course. The first session focused on basic ideas about quantum computing and
the subjects explained were as follows.

CC BY 4.0, S. Lee et al. (poster description)
J.-P. Pellet and G. Parriaux (Eds.): ISSEP 2023 Local Proceedings, pp. 251–254, 2023.
https://doi.org/10.5281/zenodo.8432008

https://doi.org/10.5281/zenodo.8432008

1. The session started with the general ideas about quantum technologies by
mentioning differences between classical physics and quantum physics. Al-
though students do not learn quantum physics in school, most students al-
ready heard of it because they knew the movie “Ant-man and the Wasp:
Quantumania” [5]. It was mentioned that there is a world that we cannot
experience. This naturally leaded to a discussion of differences of the two
worlds which are the world that is describable by classical physics and the
sub-atomic world that can be describable by quantum physics, respectively.

Then, Moore’s law [6] was mentioned in order to point out one of the reasons
why we need a new kind of a computer. It took about 20 minutes or so
for this part of the session and generally students did not have difficulty
understanding the subjects explained.

2. For the remaining 25 minutes of the first session, a comparison between
a classical computer and a quantum computer was made by pointing out a
similarity and a difference. They are similar in that both are physical systems
[7] whose operations are governed by physical laws. One of their differences is
the unit of information used in both types of computers. While students are
familiar with the notion of a bit, none of them heard of a qubit previously
and they had hard time understanding it.

It was mentioned that the implementation of quantum computers requires a
lot of qubits in general because as the number of qubits increases the num-
ber of different possibilities maintained by a quantum computer increases
exponentially, which is not possible on a classical computer.

At this stage, the concept of superposition as well as entanglement were
explained and there were questions from some students about why these
phenomena occur and how they could be exploited for quantum computation.

The second session focused on hands-on experiences with simple quantum
programs and the subjects addressed were as follows.

1. This session began with introducing different quantum operations that can
be used for quantum computation. These included Hadamard operation,
CNOT operation, and NOT operation.

Then, we used Azure quantum computing service [8] to run simple quantum
programs. Students had to register for the service using Azure for students
[9]. After registration, it was possible to run a sample program, “HelloWorld”
written in Q# programming language [10].

While students did not have any experiences about quantum programming,
the code was relatively straightforward and they could see the result of ex-
ecuting their first quantum program on their computers. It took about 20
minutes for this part of the session.

2. For the next 15 minutes, a second quantum program written in Q#, “Bell-
State” was explained. Unlike the first program, the code was relatively com-
plex and the teacher explained the code on a whiteboard. In addition, the

252 S. Lee et al.

result was shown on the teacher’s computer. This was a hardest part of the
entire sessions and we thought that it would be better to use a different
example to explain the idea of quantum entanglement.

3. For the remaining part of the session, we asked questions about whether
they got interested in quantum computing as well as whether they had in-
tentions to take a more comprehensive class about quantum computing. Most
students responded positively to the first question while a few students men-
tioned that they would like to learn more by taking a comprehensive class if
it is offered.

3 Conclusion and Future Directions

In this poster, we reported our experience about teaching quantum computing
at a middle school. Before we gave an introduction course, we thought that not
many students would be interested in knowing principles of quantum comput-
ing. On the contrary, what we found was that most students were interested
in the subjects that were explained during the course. It is expected that com-
puter science educators will play important roles to make quantum computing
technologies accessible to all levels of audiences [11]. In addition, a quantum
computing course can be a good example of STEM education [1]. Currently,
we are investigating ways by which the same subjects can be introduced with
more intuitive and simpler examples than what we used. For example, we may
adapt the CHSH game [12] to explain the concept of entanglement as a game. In
addition, we plan to explore how quantum computing fits into STEM education.

Acknowledgements Seongbin Park is the corresponding author.

References

1. Quantum Computing Is the Future, and Schools Need to Catch Up,
Olivia Lanes, https://www.scientificamerican.com/article/quantum-computing-is-
the-future-and-schools-need-to-catch-up/ Last accessed 12 August, 2023.

2. Research Proposal: Exploring Quantum Informatics for Middle School Students,
Giulia Paparo, ICER, 2022

3. The challenge and opportunities of quantum literacy for future education and
transdisciplinary problem-solving, Laurentiu Nitaa, Laura Mazzoli Smithb, Nicholas
Chancellora and Helen Cramman, Research in Science & Technological Education,
Vol 41, No 2, 2023

4. Assessing the Quantum Computing Landscape, Advait Deshpande, Communica-
tions of the ACM, October 2022, Vol 65, No 10

5. Ant-man and the Wasp: Quantumania http://https://www.imdb.com/title/tt10954600/
Last accessed 10 June, 2023.

6. Moore’s law https://www.intel.co.kr/content/www/kr/ko/history/museum-
gordon-moore-law.html Last accessed 10 June, 2023.

Teaching Quantum Computing at a Middle School 253

7. The Computer as a Physical System: A Microscopic Quantum Mechanical Hamilto-
nian Model of Computers as Represented by Turing Machines, Paul Benioff, Journal
of Statistical Physics, Vol 22, No 5, 1980

8. Azure quantum computing service https://learn.microsoft.com/en-
us/training/modules/get-started-azure-quantum/ Last accessed 10 June, 2023.

9. Azure for students https://azure.microsoft.com/en-us/free/students/ Last accessed
10 June, 2023.

10. The Q# quantum programming language user guide
https://learn.microsoft.com/en-us/azure/quantum/user-guide/ Last accessed
13 August, 2023.

11. Exploring Quantum Reversibility with Young Learners, Diana Franklin, Jen
Palmer, Wooring Jang, Elizabeth M. Lehman, Jasmine Marckwordt, ICER, 2020

12. A New Quantum Game Based on CHSH Game, Alan Bojić, JIOS, Vol 37, No 1,
2013

254 S. Lee et al.

From Verbalization in Problem Solving on
Computational Thinking Tasks to the Abstraction of

Block Programming Concept under Scratch

Karima Sayeh[0009-0002-6964-7155]

Al Awael School Group for Education and Learning, Algeria
Educational Museum of Mathematics and Computing

Lasmars@yahoo.fr

Abstract. Bebras challenge was introduced in Algeria since 2018, both of num-
ber of participants and schools are increasing, they use digital and pen and paper
version, all student’s categories are concerned by the challenge from 6 to 18 years
old. Computational thinking is taught in the school one or two hours for each
class during the week. The first-year students use only paper and pen activities.
The second year, middle school students (11 years) participate to an experimen-
tation, to prepare them in programming using Scratch, the teacher asks students
after they find the solution to describe each (raisoning) and actions of the activity,
we collect these steps on paper. This method is used by experimented persons
which is usually automated step by step how they achieve the solution, they ver-
balize the solution. Most of the students find difficulties in writing their steps
even the solution is correct. In this paper we analyse students’ verbalization and
we highlight the impact of this action on Scratch block. We used the concept of
scheme of Vergnaud to analyse students’ activity.

Keywords: Computational thinking, verbalization, scheme

1. Introduction

Bebras is an international initiative aiming to promote Informatics (Computer Science,
or Computing) and computational thinking among school students at all ages. Partici-
pants are usually supervised by teachers who may integrate the Bebras challenge in
their teaching activities. In Algeria, many schools attend the challenge even they don’t
teach computer science.
The experiment take place in middle school in Algeria, It should be noted that teaching
computer science in Algerian curriculum is only present in secondary school education
for two years. However, the mathematics curriculum in middle school presents activ-
ities in Excel. To prepare students to use the digital technologies, the school has intro-
duced computer science in all classes using one hour per week.
Since 2018, the content of the courses was changed and was focused on Bebras tasks
to introduce computer science concepts.

CC BY 4.0, K. Sayeh (poster description)
J.-P. Pellet and G. Parriaux (Eds.): ISSEP 2023 Local Proceedings, pp. 255–258, 2023.
https://doi.org/10.5281/zenodo.8431977

https://doi.org/10.5281/zenodo.8431977

2. For scheme to verbalization in Bebras computational
thinking problem solving

In our experiment, we use the concept of Vergnaud's scheme. Schemes are mental struc-
tures that evolve as students acquire new knowledge and skills. Applying this theory,
we examine how students approach computational thinking problems, what schemas
they use, how those schemas evolve, and how teachers can guide them to develop more
advanced schemas. This allows a better understanding of how students learn and solve
computational thinking problems. The principle of verbalization in problem solving
related to computational thinking describes out loud between students then writing each
reasoning (procedure, goals and action of the students’ activity) it allows to concretize
thoughts, actions and reasoning.
According to Vergnaud (1991) conceptual field theory, characterizes situations as tasks
“any complex situation can be analyzed as a combination of tasks”. Any solvable prob-
lem can be defined as an initial situation with a goal to achieve. Vergnaud (1991) de-
scribes “scheme” concept and encompasses it around its constituents: its goal, sub-
goals and anticipations, rules of action for taking information and controls, operational
invariants (concept-in-act and theorem-in-act) and possibilities of inferences, which he
generalizes through the organization of the activity.

3. Verbalization

The student (in computational thinking) describes aloud then transcribes each reasoning
(procedures, goals, problems) and action of his activity. This technique makes it possi-
ble to concretize thoughts, actions and reasoning. For its implementation, we consider
verbalization in activity where student expresses out loud each reasoning and action
carried out during his activity (real or remembered) then a cooperative verbalization
where two groups compare their intermediate transcriptions to refine transcription of
the solution. Faced with a task or problem solving in computational thinking, and to
help students making their verbalization, we use some questions: Verbalize thoughts
(what to do, what is/are the goals), verbalize his actions (how to do, what are the pro-
cedures), verbalize and justify his actions (why his actions and not others, what about
the evaluation and the solution). (See table 1).

Task name Description : be brief,-

use short sentences

Verbalize your thoughts (what to do, what are
the goals?)

Verbalize your actions (how to do, what are
the procedures) "

256 K. Sayeh

Verbalize and justify your actions (why these
actions and not others? What about the eval-
uation of the solution?) "

Table 1: Model table to guide students in their verbalizations

4. Methodology

A class of fourteen students divided into two groups took part in the experiment during
a term (one hour per week). The students are asked to solve Bebras tasks by performing
their written verbalization at the same time. All classes solve the same tasks. In the
second step, two groups from the class confront and discuss their verbalization to refine
it. The students follow a canvas pre-established by their teacher, however they are free
to fill it or not. For each task, the teacher collects three paper where the verbalization is
refined. Institutionalization is conducted by the teacher using student transcriptions, he
often proceeds to modify their transcription by conditions or by changing the initial
state of the solution. Students discover by themselves the concepts of scratch block
programming. In the experiment students, try to write on paper their steps to choose the
correct solution, we can see that this step start just after they find the solution, they do
that at first orally, discuss together and valid the solution.

This task allows teacher to introduce algorithmic concepts, notion of variables, af-
fectation, loops, and condition. The finality of the verbalisation is to make a bloc pro-
gram under SCRATCH. All Bebras tasks are a multiple choice questionnaire (MCQ),
the experience has shown that students often explain easily their steps for choosing the
right solution but they do not present steps to eliminate the other options. The teacher
then guide them with the opposite approach, by asking them for the same task: “Which
of these answers are wrong and why?” ". This approach encouraged the students to
provide a global solution to the task.

Task name Description : be brief,- use short sen-

tences

Verbalize your thoughts
(what to do, what are the
goals?)

بلطن انم روثعلا ىلع اصعلا ةحيحصلا روثعلاو ىلع

ةعاسلا ةحيحصلا
We ask us to find the correct stick and to
find the correct hour

From Verbalization to the Abstraction of Block Programming Concept 257

Verbalize your actions (how
to do, what are the proce-
dures) "

لواحنس ققحتلا نم كلذ مقر مقرب

We’ll try to check number by number

Verbalize and justify your ac-
tions (why these actions and
not others? What about the
evaluation of the solution?) "

 8 يطعتسف ، 6مقرلا يف ةدوقفملا اصعلا تناك اذإ
 6:35يواست لا يتلاو 8:39 وأ 08:33 دجن اننكل

 دجنو 3 نيب نم راتخن امبر ريغتن ،لمعي لا كلذل
 ىرخأ ةرم أطخ اذه ،!!!!!هوأ6:95

 9 ، ةبرجت اننكمي ثيح ، 5مقرلا ىلإ كلذ دعب لقتنن
 حيحصلا وه 9 مقرلا نوكيو ، 6وأ

If the missing stick is in number 6, it re-
sults 8 but our findings are 8:33 or 8:39
which is not equal to 6:35 therefore it
doesn’t work, we change.

We might choose 3 this will result in 6:95
ohhh!! it also not correct we will then
choose 5 and we will try 9 or 6 this will re-
sult in 9 which is correct

Table 1: Model table to guide students in their verbalizations

5. Conclusion

The experimentation of the verbalization of the solution to approach the programming
with the Scratch blocks was initially a difficult task for the students, the cooperative
work by discussing the solutions between peers however made this work quite moti-
vating, the students reached at the end to present fine, abbreviated transcripts and even
sometimes to use the same vocabulary in the different tasks. Institutionalization using
student’s verbalization favors access to the abstraction of the blocks of Scratch.

References

1. Vergnaud, G. (1991). La théorie des champs conceptuels. Recherches en didactique des ma-
thématiques 10 (2), 133-170.

2. Kovacs B., Gaunet F., Briffault X., Les techniques d’analyse de l’activité pour l’IHM,
Hermes, Lavoisier, Paris, 2004, 123-129.

258 K. Sayeh

From Tree to Forest: Determining the Probability
of Scoring a Goal in Football Games

Jan Hendrik Krone and Johannes Fischer

Technische Universität Dortmund, 44227 Dortmund, Germany
hendrik.krone@tu-dortmund.de

johannes.fischer@cs.tu-dortmund.de

Abstract. More and more teaching tools and materials on the topic of
decision trees are being developed, since they play a central role in the
field of artificial intelligence. We developed teaching materials that are
based on existing ones, which we extend with the Random Forest algo-
rithm [1]. This has the advantage that the algorithm can be embedded
in a group work. We used the calculation of goal probabilities in football
as an example, which many students are familiar with from television
and video games.

Keywords: Decision Tree · Random Forest · Machine Learning · Foot-
ball · Soccer · Lower Secondary School

1 Introduction

Fig. 1: Example of two playing cards. On the left for a goal and on the right for
no goal.

We present a learning approach using playing cards (see fig. 1)1 and videos
of real football scenes. The general motivating approach is to let the students
1 The material can be downloaded at the following link: https://tu-

dortmund.sciebo.de/s/xtkh1ZMtQ2kFK1X

CC BY 4.0, J. H. Krone and J. Fischer (poster description)
J.-P. Pellet and G. Parriaux (Eds.): ISSEP 2023 Local Proceedings, pp. 259–262, 2023.
https://doi.org/10.5281/zenodo.8432037

https://doi.org/10.5281/zenodo.8432037

watch football videos, stop the video just before the striker’s shot and use the
Random Forest algorithm to predict the outcome, which is verified afterwards by
continuing the video. Decision trees have been previously learned with the ID3
algorithm [4], using the playing cards containing training data from real football
scenes. The selection of a context from the students’ everyday life brings sev-
eral advantages, such as motivation and interest. Additionally, a context-based
approach makes it easier to understand abstract concepts such as algorithms [3].

2 Theoretical Background

Expected Goals: For the English Premier League, the statistics company
OPTA has published a first model of expected goals in 2012 to calculate goal
probabilities. For our lesson, we use the features distance (0-100), position goal-
keeper (0-5), pressure (0-11), player strength (0-100), goalkeeper strength (0-100),
angle (1-179 degrees), speed (0 km/h-35 km/h), and the binary feature head/foot
(see fig. 2).

Fig. 2: Visualization of features that are relevant for the goal probability.

ID3 and Random Forest: The teaching unit is based on the ID3 (Iterative
Dichometer 3) algorithm to construct a decision tree. Then the Random Forest
algorithm combines multiple trees.

ID3 is an algorithm to construct a simple decision tree [4]. The main idea is
to choose a random training set and form a decision tree that correctly classifies
all objects. To form a decision tree, one has to choose a feature for the root of the
tree. All features are tested for their information content, and the best feature
is picked as the root. Then the process is repeated with each new node.

The idea of the Random Forest algorithm [1] is to create multiple trees and
then make a prediction by a majority vote. When initializing each tree, random
features are used for its creation [2].

260 J. H. Krone and J. Fischer

3 Implementation in school

3.1 One Feature / One Dimension

The first lesson starts with some football scenes to motivate the students. The
teacher stops the video just before a player shoots. The students are asked about
the outcome of the game scene and for their reasoning. The features from the
explanations are collected and discussed. This results in the set of features, which
is present on the cards (see section 1).

Fig. 3: Test of the feature distance (number on the card) for the information con-
tent. Correctly classified cards are indicated by check marks. The best dividing
line is between distances 18 and 22.

When selecting the first feature in the decision tree, the first step is to find
the best feature. How this process is carried out in the lesson is shown in fig. 3.
The students each draw five cards from the goal deck and five cards from the no
goal deck. Each group sort different cards features, seeking optimal dividing lines
by exploring all options, counting correct classifications. They repeat this for all
positions until all dividing lines are tested. Finally, the students compare their
solutions and the best feature can be determined. This provides an opportunity
to talk about the concepts of overfitting and underfitting for the first time.

3.2 Two Features / Two Dimensions

To counteract the limitation of a single feature, multiple features are used. For
the extension, the students need to be able to represent two dimensions. They

From Tree to Forest 261

create a coordinate system to plot the data. Each student gets two random
features, which are used for the axes. With the help of the two-dimensional
representation, it is now relatively easy to construct the decision tree (see fig. 4).

Fig. 4: Example of a possible decision tree with two features.

3.3 Random Forest

In the third part we try to improve the method by using predictions with a
probability, instead of classifications. For this we use a group process to analyze
the goal scenes. The decision trees created in the previous part are used again.
All decision trees are evaluated simultaneously and the results are collected on
the board. This collection forms a probability distribution. This method helps
to predict a lot of game scenes correctly. Other scenes where goals are scored
from far away or where strikers look particularly unlucky cannot be predicted
correctly.

4 Future work

The units have been tested several times with different groups of lower secondary
students. The students and the teachers consistently gave positive feedback.
Teaching ML with the context of football is a suitable method. Next we will
evaluate the effectiveness of the materials on students.

References

1. Breiman, L.: Random forests. Machine Learning 45, 5–32 (2001)
2. Hastie, T., Tibshirani, R., Friedman, J.: The Elements of Statistical Learning.

Springer New York (2009)
3. Nijenhuis-Voogt, J., Bayram-Jacobs, D., Meijer, P.C., Barendsen, E.: Omnipresent

yet elusive: Teachers’ views on contexts for teaching algorithms in secondary edu-
cation. Computer Science Education 31(1), 30–59 (2020)

4. Quinlan, J.R.: Induction of decision trees. Machine Learning 1(1), 81–106 (1986)

262 J. H. Krone and J. Fischer

Workshops

List of Workshops

Interactive Workshop on Teaching Materials for AI literacy
Megumi Iwata, Jari Laru, and Kati Mäkitalo

Teach AI to K12 by Manipulating a Learning Robot and Visualizing
Deep Learning

Marie Martin, Morgane Chevalier, and Thomas Deneux

Reverse Engineering for Beginners in Programming Using micro:bit and
Sphero Bolt

Corinna Mößlacher, Kevin Wiltschnig, and Marcell Andexlinger

Teaching Science with BBC micro:bit
Martin Cápay and Magdaléna Bellayová

Experience and Express Contextual Games for Computational Thinking and
Multiple Perceptions

Ju-Ling Shih, Valentina Dagienė, and George Ghinea

Computer Science Competitions in Switzerland: Introduction and How to
Make Use of Them in Schools

Susanne Datzko-Thut and Charlotte Knierim

From Modelling To Your Own 3D Printed Object
Katharina Brugger, Daniel Dobernig, and Melanie Bostjancic

Explore Computer Magic Using the Oxocards
Thomas Garaio

Discover Diverse Pedagogical Activities, With or Without Robots
Sophia Reyes Mury and Seraina Betschart

	Artificial Intelligence in Primary and Secondary Education: a Review of Educational Activities Development
	Breaking Gender Barriers in Computer Science: Exploring the Impact of Digital Fabrication Workshops in Smart Environments
	Easy Coding in Biology: Combining Block-Based Programming Tasks with Biological Education to Encourage Computational Thinking in Girls
	Supporting Gender Equality in Computer Science Through Pre-Introductory Programming Courses
	Investigating Code Smells in K-12 Students' Programming Projects: Impact on Comprehensibility and Modifiability
	Supporting Non-CS Teachers with Programming Lessons
	MazeMastery – A Python Framework for Teaching Maze-Traversal in High School
	Computer Science Education with a Computer in the Background
	Effects of the Use of Robots on Algorithmization, Decentration and Locating in the Plane Skills
	Teaching Quantum Informatics at School: Computer Science Principles and Standards
	Measuring Didactical Competencies for Informatics Education among Prospective Primary School Teachers
	Computational Thinking from Preschool to University: The Versatility of UML Modeling in Education
	Identifying Computational Thinking Behaviors in the Robotics Programming Activity
	Computational Thinking Readiness of Incoming High School Students in Taiwan
	Insights and Conclusions from Analyzing the Hungarian Bebras Initiative in 2021-2022
	Integrating Computational Thinking with Mathematical Problem Solving
	A Constructionist Approach for Transitioning to College-Level Mathematics Education
	Enhancing Teacher Education Through STEAM Integration in Informatics
	GeNIUS: Conditions for Successfully Teaching Computer Science Infused Natural Science Classes in Schools
	From Wooden Blocks to Whimsical Robots: The “Programmieren spielend entdecken” Series to Nurture our Future Innovators
	Finding Patterns in Productive Failure Steps? An Explorative Case Study in a Teaching Learning Lab for Computer Science
	Gender Differences in Problem Solving Observed in Logo Novices
	Teaching the Von-Neumann Model with a Simulator
	An Approach to Introduce High-School Students to the P-vs-NP Question
	Promoting Artificial Intelligence and Data Literacy within Teacher Education
	Exploring Students' Preinstructional Mental Models of Machine Learning: Preliminary Findings
	Teachers' Experience Regarding Digital Threats for Children and Teenagers
	Exploring the Relationship between Digital Competences and Understanding of Informatics Education: A Study on Primary School Teachers
	Teaching an Elective Course about Quantum Computing
	Teaching Quantum Computing at a Middle School
	From Verbalization in Problem Solving on Computational Thinking Tasks to the Abstraction of Block Programming Concept under Scratch
	From Tree to Forest: Determining the Probability of Scoring a Goal in Football Games
	List of Workshops

