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Abstract—The notion of a BPaaS is currently taking a mo-
mentum as many organisations attempt to move and offer their
business processes (BPs) in the cloud. Such BPs need to be
adaptively provisioned so as to sustain the service level promised
in the respective SLA. However, current cloud-based adaptation
frameworks cannot cover all possible abstraction levels and
usually rely on simplistic adaptation rules. As such, this paper
proposes a novel BPaaS adaptation framework able to orchestrate
actions on different abstraction levels so as to better address
the current problematic situation. This framework can support
the dynamic generation of adaptation workflows as well as the
recording of the adaptation history for analysis purposes. It is
also coupled with the CAMEL language which has been extended
to support the specification of cross-level adaptation workflows.

I. INTRODUCTION

In order to survive in such a dynamic business world,
organisations need to exploit service-based business processes
(BPs) which can adapt to the current situation as well as offer
suitable service levels to their customers. As such, the cloud
can be considered as one of the most suitable medium to
support such capabilities as apart from promising the supply
of infinite and cheap commodity resources, it also enables
organisations to focus mainly on their core business (as, e.g.,
technical administration can be outsourced). As such, we are
currently observing a trend of BP migration in the cloud which
leads to the notion of Business Process as a Service (BPaaS).

BPaasS indicates the delivery of BPs as on-demand services.
Its paradigm enables well the role of a BPaaS broker, an
entity able to either provide BPaaS products to potential
organisations to realise their core or support BPs or supply
consulting services to facilitate these organisations to move
their business to the cloud. Such a broker, while might have
great expertise in BP and workflow modelling, should be
supported with tools or technical platforms able to cover the
whole lifecycle [1] of the BPaaSes offered without requiring
from the broker to dig into quite specific cloud technicalities.

The BPaaS life cycle ranges from the BPaaS design by
business experts down to its technical operation on cloud
resources. In the European project CloudSocket!, the phases
of this life cycle were defined as: (i) Design BPs at the
highest level, (ii) Allocation as mapping from BPs to cloud
services, (iii) Execution of the BPs based on the allocated
cloud services, and (iv) Evaluation of the BPaaS instance
(see Figure 1). To cater for this, CloudSocket developed an
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architecture built on this paradigm with one environment per
life-cycle phase. The presented adaptation framework in this
paper was integrated into the Execution Environment, as this
is the phase were adaptation happens at run-time.

Design

Evaluation BPaa$S Allocation

Execution

Fig. 1. BPaaS life cycle and the environments of the CloudSocket project.

By focusing on the execution lifecycle phase, which in-
volves executing as well as dynamically provisioning a BPaaS,
there is a great need to support the adaptation of a BPaaS to
sustain the service level promised. Such an adaptation cannot
be simply in the form of simple event to scaling actions, a
current capability of existing cloud orchestration tools [2]. This
form might be suitable in simple cases but is not sufficient
to cover more sophisticated scenarios for BPaaS adaptation,
subject to the fact that adaptation might require to occur in
different abstraction levels, apart from the lower, infrastructure
one, including the platform, service and workflow levels.

By considering the service-oriented computing literature,
we can fortunately see some novel cross-level frameworks
able to support more composite adaptation scenarios. However,
such frameworks usually cover at most two levels and were
developed before cloud computing came into real play. In
addition, they usually employ level-specific adaptation mech-
anisms, triggered in an individual manner. In this way, the
same situation could be sensed by these mechanisms which
might attempt to react by performing respective adaptation
actions. Without a central orhestration of such actions, there
is a high risk that actions on one level might undo or interfere
with actions on another level. This results in over-spending of
resources as well as to vicious adaptation cycles.

To solve the above problem, this paper proposes a novel
BPaaS adaptation framework able to orchestrate level-specific
adaptation actions across levels and clouds. This framework
builds upon a novel extension of the CAMEL? cloud appli-
cation language [3], [4] able to support the specification of
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advanced adaptation rules that map event patterns to composite
adaptation workflows which comprise individual adaptation
actions on different levels. The proposed framework is an
integration of existing adaptation frameworks: (a) a cross-
layer service adaptation framework [5] and (b) a cross-cloud
adaptation framework [6]. By considering that each framework
focuses on different levels of abstraction, we can derive that
that all possible levels in the BPaaS hierarchy are covered.

The combined framework exploits the individual ones in
the form of web services that provide level-specific adaptation
methods. By relying on a service-oriented architecture, the
framework can support the dynamic concretisation of abstract
adaptation workflows by considering the current adaptation ca-
pabilities of the BPaaS management system. It also includes an
adaptation history record functionality on which analysis can
be performed to derive interesting knowledge, including the
successability of the adaptation rules, enabling the appropriate
moderation of the adaptation system.

The rest of the paper is structured as follows. Section II
focuses on the analysis of the related work. The adaptation-
oriented extension of CAMEL is explained in Section III. The
proposed framework is analysed in Section IV. A validation
of the proposed framework according to a particular use case
is supplied in Section V. Finally, the last section concludes
the paper and draws directions for further research.

II. RELATED WORK

This section focus on reviewing related work in service and
cloud-based application adaptation, as both research areas are
closely related to the proposed work.

A. Service Adaptation

1) Service Level Adaptation: Service adaptation work ini-
tially focused on covering just the service level. As such,
approaches focusing on substituting services or on service re-
composition were proposed which are analysed below.

An approach for BPEL process self-healing is presented
in [7]. It relies on the Dynamo monitoring framework along
with an AOP extension of ActiveBPEL and a monitoring
and recovery subsystem using Drools Event-Condition-Action
(ECA) rules. The problem of selecting alternative services and
dealing with interface mismatches, when forwarding a request
to an alternative endpoint, are not explicitly addressed. The
recovery rules cannot also be changed dynamically, as they
need to be compiled in an off-line manner.

The VieDAME environment [8] extends ActiveBPEL to en-
able BPEL process monitoring and partner service substitution
based on various strategies, while service selection relies on
defined selectors. It requires service registration to a repository,
marking services to be monitored and eventually substituted as
replaceable. It uses an engine adapter to extend ActiveBPEL
functionality, but does not explicitly address fault handling.

An architecture and a DSL, named MONINA, are intro-
duced in [9] to allow integrating functionality provided by
different components and defining monitoring and adaptation
functionality. Monitoring is carried out by complex-event

processing queries, while adaptation is performed by condition
action rules. This approach lacks cross-layer and multi-cloud
features, and has not been validated.

2) Cross-Level Service Adaptation: As services operate
under certain infrastructures and can be used to realise the
functionality of BPs, it became apparent that additional levels
had to be covered. This gave rise to cross-layer service
adaptation frameworks which are now analysed in more detail.

A methodology for dynamic and flexible adaptation of
multi-layer applications is proposed in [10]. This work advo-
cates the use of templates, i.e., executable BPEL processes
that encapsulate adaptation techniques, to handle specific
mismatch types. Cross-layer service adaptation is achieved by
directly (i.e., direct WSDL invocation) or indirectly linking
adaptation templates (i.e., via event generation). Compared to
our work, this approach does not handle all possible levels.
The interlinking of different templates seems also to be a rather
manual work, requiring high expertise and great effort from
the expert. On the contrary, our work requires just the manual
generation of simple rules by the expert while more complex
ones are automatically produced by the system itself, allowing
to cover more advanced adaptation scenarios.

An integrated multi-layer SBA monitoring and adaptation
methodology was proposed in [11]. It comprises four main
steps: (i) Monitoring and Correlation, where sensors capture
run-time data about the software and infrastructural elements,
(i1) Analysis of Adaptation Needs, where the anomalous situa-
tions and places for adaptation are identified, (iii) Identification
of Multi-layer Adaptation Strategies, where existing adaptation
capabilities within the system are used to define a multi-layer
adaptation strategy as a set of software and infrastructure
adaptation actions; and (iv) Adaptation Enactment, where
adaptation engines at the software and infrastructure layer
enact the multi-layer strategy’s actions. The main approach
drawbacks are that it does not feature proactive adaptation
and does not detail how cross-layer monitoring is performed.

The CLAM holistic service management framework [12]
can deal with cross- and multi- layer adaptation. This is
achieved by first identifying the application capabilities af-
fected by the adaptation actions and then by discovering an
adaptation strategy able to solve the adaptation problem by
properly coordinating a set of adaptation capabilities. The tree-
based approach employed for defining adaptation paths seems
very interesting but it can be time-consuming. During the
ranking process of the adaptation branches, cost is also not
taken into consideration. Cross-layer monitoring is also not
elaborated. Finally, this approach does not exhibit proactive
adaptation and does not deal with functional failures.

Our previous work includes a cross-layer service monitor-
ing and adaptation framework [5] that follows a rule-based
approach, where event patterns are mapped to adaptation
strategies. Such strategies are mapped to adaptation workflows
that can then be executed to address the current problematic
situation. This framework supports pro-active adaptation by
employing a logic-based mining approach [13] to mine pro-
active adaptation rules from the service execution history. It is



also able to cover many levels but not all cloud-based ones.

B. Cloud-based Adaptation

Cloud-based application adaptation has focused mainly on
horizontally scaling applications. A common approach fol-
lowed by many commercial cloud platforms (e.g., Amazon
EC2) is to support simple adaptation rules which trigger hor-
izontal scaling actions when simple events, such as violations
over CPU utilisation threshold, occur. The metrics mapping to
such events mainly concern the infrastructure level.

A state of the art analysis of cloud orchestration tools
was provided in [2]. The analysis outcome shows that the
adaptation capabilities focus only on the IaaS level. Hence, an
adaptation engine built on top of existing cloud orchestration
tools can enable more sophisticated adaptation actions by
integrating the PaaS and SaaS levels.

By considering hybrid and multi-cloud deployments,
promising to optimise application performance and avoid lock-
in issues, specific multi-cloud orchestration tools were pro-
posed for application re-configuration. One such sophisticated
framework [6] was developed in the PaaSage project [14].
This framework can support two adaptation types: (a) local or
cloud-based adaptation based on expressive adaptation rules
mapping to complex event patterns; (b) global adaptation
aiming to globally reconfigure the application to still sustain its
service level delivered. However, even in such a sophisticated
framework, adaptation still remains at the IaaS level.

The framework in [15] can deal with the specification, mon-
itoring and control of cross-level elasticity policies specified in
the SYBL DSL. A comparison between this DSL and CAMEL
can be found in [16]. The Elasticity Control Service deals
with the generation and enforcement of an elasticity plan.
As such, it consults information from the monitoring service
which indicates the possible result of an adaptation action in
the plan. Currently, elasticity actions can be operated over the
level of the cloud application, the service topologies of its
service components and the topologies’ service units. Thus,
the workflow and platform levels are not covered. In addition,
it is not explicated how the elasticity plans are generated.

C. Comparison

We now compare the aforementioned analysed adaptation
approaches with our work according to the following criteria:
(a) cross-layer: capability to enact adaptation strategies /
workflows that deal with more than one level. Please note
that a system might cover multiple levels but have single-
level strategies; (b) levels: the levels covered mapping to the
following evaluation values: “I” as infrastructure, “P” as plat-
form, “S” as service and “W” as workflow; (c) type: the type
of adaptation supported: pro-active denoted as “P”, re-active
denoted as “R”, while “A” denotes all types; (d) dynamic: the
capability to dynamically concretise the adaptation workflow
at adaptation time based on the current system adaptation
capabilities; (e) history: the capability to browse the adaptation
history of a BPaaS / cloud-based application. Criteria (a), (d)
and (e) take a yes (“Y”) or no (“N”) evaluation.

Table I depicts an overview of the comparison results, where
rows map to the adaptation approaches and columns to the
comparison criteria. As it can be seen, our work is the best
according to all the criteria considered. All frameworks, apart
from ours, do not cover all levels. When more than one level
is covered, most of the approaches do deal with the execution
of cross-level adaptation workflows. Pro-active adaptation is
an aspect mostly neglected with the sole exception of our
previous and new work. Dynamicity seems to be supported
mainly by some cross-layer service adaptation frameworks and
our current work. Finally, adaptation history browsing seems
to be fully supported only by our work with the sole exception
of PaaSage for which the respective modelling capability exists
but has never been realised in terms of actual functionality.

III. CAMEL EXTENSION

CAMEL is a multi-DSL based on Eclipse EMF that covers
multiple aspects in multi-cloud application specification, such
as deployment, requirement, metric, scalability and organisa-
tion. It has been built by exploiting existing DSLs, such as
CloudML, and by developing new ones, such as the Scalability
Rule Language (SRL)[16]. It includes OCL constraints to
validate the models produced based on the domain semantics.
CAMEL is also accompanied with a customised textual editor,
following a particular textual syntax, which enables devops
users to quickly model their cloud applications.

This section explains first the original SRL focus and then
the extensions performed on CAMEL over this sub-DSL.

Original Version. SRL originally focused on specifying
sophisticated scalability rules in the form of event patterns
mapping to scalability actions (both horizontal and vertical).
Event patterns were specified as composite events produced
from combining simpler ones according to logical or time-
based operators. This SRL part was motivated by event
pattern languages proposed in Complex Event Processing
(CEP) systems like Esper. Time-based operators included
both unary (e.g., repeat — event to occur multiple times)
and binary operators (e.g., precedes). Simple events were
specified via conditions over non-functional metrics which
included a comparison operator and a certain threshold, while
they were also clarifying the condition context. The latter
was explicating details like which application component is
measured and what is the measurement schedule and window
of the concerned metric. SRL was also able to specify all
possible metric aspects, including sensor, computation formula
and unit information. In this sense, SRL was deemed as a quite
complete and rich language, beyond the state-of-the-art with
respect to other scalability languages in the cloud.

New Version. To extend its scope to cover additional levels
as well as adaptation action workflows, SRL is now extended
to become a complete adaptation and not just a scalability
language. The extensions focused on allowing the language
to specify cross-level adaptation workflows independently of
any workflow specification language. This enables a flexibility
in the application of SRL and its realisation in respective
cloud adaptation systems. They also focused on extending the



TABLE I

EVALUATION TABLE OVER SERVI

CE AND CLOUD ADAPTATION WORK.

Work Cross-Layer
[7] N
[8] N
[9] N
[10] N*
[11] Y
[12] Y
[5] Y
Amazon EC2 N
PaaSage [6] N
[15] Y
Our Framework Y

Levels | Type | Dynamic | History
S R N N
S R N N
S R N N
ISW R Y* N
ISW R Y N
ISW R Y N
1IN A N N
1 R N N
1P R N N*
IS R N N
IPSW A Y Y

current set of adaptation actions that can be specified both on
the infrastructural as well as higher abstraction levels. In the
following, we analyse the main SRL meta-model, capturing
its abstract syntax, depicted in Figure 2.

The Adaptation Rule concept represents an adaptation rule,
mapping Events (simple or event patterns) to an Adaptation
Task. Adaptation tasks can be simple or composite. Simple
tasks map to single, level-specific adaptation actions.

Composite adaptation tasks are adaptation workflows, i.e.,
control flow-based combinations of other adaptation tasks. By
focusing on simplicity and the satisfactory coverage of most
control flows, we have considered capturing the most widely-
known control flow constructs in workflow specification, in-
cluding sequence, parallel, conditional and switch constructs.
Respective sub-concepts of CompositeAdaptationTask have
been created to denote the type of flow imposed. Sequence
and parallel adaptation tasks just include a reference to the
adaptation tasks being composed.

A conditional adaptation task also specifies an event. When
this event occurs, then the first adaptation sub-task in the
composition will be executed; otherwise, the second adaptation
sub-task will be performed.

In case we need to map different evaluation values on a
greater set of adaptation tasks, then a SwitchAdaptationTask
can be used, mapping a set of dynamic variable values to
respective adaptation sub-tasks. The semantics is that when
the respective variable value is encountered, then only the
corresponding adaptation task mapping to this value will
be executed. This mapping is captured via the ValueToTask
concept. A dynamic variable maps to referring to a Met-
ricFormulaParameter, which covers both metrics as well as
mathematical expressions over them.

Simple adaptation tasks have been sub-classed into con-
cepts focusing on covering either level-specific actions (e.g.,
workflow modification) or a logical group of actions in a
certain level (e.g., scaling). Currently, almost all levels are
covered apart from the platform one, for which an extension
is under-way. Workflow modifications are currently covered
by task modifications and the WorkflowRecomposition action,
which attempts to recompose a part in the (BPaaS) workflow
specification, determined by a start and end element, by
substituting it with a new sub-workflow specification.

Various task modification actions have been modelled. All
such actions determine the control flow element in the BPaaS
workflow which should include the affected task in a certain
position. A task omit action declares that the affected task
should not be executed, when its turn in the execution order
arrives. A task addition action clarifies that a new task, whose
specification is given, should be added after the affected
task within the same enclosing control flow element. A task
replacement indicates that a new task, whose specification is
supplied, should replace the affected task.

The service / software level is currently covered by a service
replacement action which indicates that a service realising a
task in the BPaaS workflow should be replaced by a new one.
It includes the specification of the following information: (a)
a reference to a Component in the BPaaS deployment model,
which can be an internal service component or an external
SaaS, that has to be replaced; (b) attributes newService and
serviceSpecification which should be supplied only when we
need to explicitly specify the replacement service; otherwise,
the adaptation system can decide itself which alternative
service to use for the replacement. The first from the attributes
denotes either the service’s endpoint or its identifier in a
service registry (part of the adaptation system). The second is
used for supplying the specification for a service composition
(as a service replacement) which does not take the form of a
composite service with a certain endpoint; (c) the identifiers
of the BPaaS tasks for which the replacement should occur.

At the infrastructure level, we have foreseen actions which
either scale, migrate or manage deployments in the BPaaS
deployment model. Scaling is covered via horizontal or vertical
scaling actions and always refers to the VM to be scaled. A
horizontal scaling action also indicates the components to be
scaled and as their amount of instances to be created. As such,
we also cover scenarios where not all components in a certain
VM need to be scaled but only a sub-set of them. A vertical
scaling action determines how the scaling is to be performed
via identifying the modifications needed in the corresponding
VM characteristics (e.g., number of cores or memory size).

A migration action explicates which components to migrate
from an old to a new VM. In addition, it includes a boolean
attribute which denotes the multiplicity of the migration. In
particular, this attribute indicates whether we need to migrate
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Fig. 2. The new SRL meta-model

all instances of the referred components from all instances of
the old VM or just the component instances from the affected
instance of the old VM.

Finally, we have specified two types of deployment man-
agement actions: component deployment and undeployment.
Component deployment highlights that we need to deploy one
or more instances of a component in a certain VM. This might
be needed in cloud bursting (e.g., deploy a new component
instance not in a private but a public VM) or load balanc-
ing scenarios (e.g., introduce load balancer over horizontally
scaled instances of a component). Component undeployment
is the opposite action of undeploying a component from a VM
which could be useful in scenarios where, e.g., internal service
components must be replaced by external SaaS services. In
the latter scenario, the service component has first to be
undeployed before being replaced by the external SaaS.

IV. PROPOSED FRAMEWORK

As Section II highlighted, our framework advances the state-
of-the-art by either exhibiting genuine features or combina-
tions of features that cannot be supported by a single related
adaptation framework. Moreover, the framework also caters
for better supporting the expert according to the following
novel features: (a) it allows the experts to edit adaptation
rules, either those which have been automatically produced
by the system or those which are newly modelled by them
based on their experience and skills; (b) it enables executing

manual adaptation workflows in case a problematic situation
cannot be covered by the adaptation rule set modelled; (c)
it allows retrieving the adaptation history for browsing and
adaptation analysis reasons. For instance, some problematic
adaptation rules can be detected, not able to confront the
problems triggering them, which can be automatically replaced
by other alternatives or can be manually edited by the expert.

Figure 3 depicts the architecture of the proposed frame-
work, which comprises 9 main components. The Transformer
component is responsible for transforming the CAMEL adap-
tation rules automatically derived from the BPaaS Evaluation
Environment into the format needed by the Rule Engine as
well as for transforming the rules’ consequent part mapping
to CAMEL adaptation workflows into BPMN for enabling
their execution by the Adaptation Engine. The adaptation rules
transformed cover both pro-active and re-active adaptation and
are produced according to the approach in [13], which employs
a logic-based mining method to derive event patterns mapping
to SLO / KPI violations and a semi-automatic method to map
the event patterns to adaptation workflows. The latter method
relies on the initial knowledge derived from the expert in the
form of simple event-to-adaptation action rules.

The Rule Engine is responsible for storing, in the Rule Base,
and triggering adaptation rules. The triggering relies on mon-
itoring facts, generated by the cross-layer Monitoring Engine
via assessing Service Level Objective (SLOs) conditions, and
fetched via a publish-subscribe mechanism, which enable the
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adaptation rules firing.

The Rule Engine also offers an interface via which rules
can be fetched and modified. This interface is exploited by
the Adaptation UI, the main visual component enabling the
expert to browse, edit, modify and store adaptation rules. This
component also depicts the successability of the adaptation
rules by processing the BPaaS adaptation history. This history
is retrieved from the Adaptation Service, a service-based
wrapper over the Adaptation DB. The Adaptation Ul also
connects to the Ul component of the Monitoring Engine to
enable the expert to observe the current BPaaS performance. In
case a problematic situation occurs which is not handled by the
adaptation rules injected into the system, the expert is allowed
to specify a manual adaptation workflow, initially expressed
in CAMEL and then mapped to BPMN by exploiting the
Transfomer, and to execute it by invoking the corresponding
method of the Adaptation Service.

The Adaptation Service does not actually execute the adap-
tation workflow but interacts with the Adaptation Engine for
this execution: it first registers the workflow in the Adaptation
Engine and then requests its execution. The latter component
has been realised in the form of a normal workflow engine.

In case of normal, automatic triggering of adaptation rules,
the consequent rule part maps to an adaptation workflow
template in CAMEL. This template needs then to be concre-
tised before being executed. As such, the workflow template
passes from the Rule Engine to the Workflow Concretiser
which takes care of mapping the workflow service tasks to
respective adaptation services. Such a mapping / selection
relies on the current system adaptation capabilities and on
adaptation preferences or constraints that can be posed by the
expert. The latter can be expressed either across all BPaaSes
or for one BPaaS or even per adaptation rule / template

basis. The selection is performed by considering our previous
work in composite service concretisation [17], able to produce
solutions even for over-constrained user requirements. Once
the adaptation workflow is concretised, it is mapped to a
BPMN workflow by the Transformer and then it is registered
and executed by the Adaptation Engine.

The system adaptation capabilities are offered in the form
of level-specific services, i.e., service-based libraries of adap-
tation actions able to confront specific problems in a certain
level. Currently, such adaptation capabilities are covered by
two services, mapping to 2 respective adaptation frameworks
that constitute our previous work: (a) the service adaptation
framework in [5] covering the workflow and service level;
(b) the cross-cloud adaptation framework in [6] covering the
platform and infrastructure level. The former framework can
modify the workflow by, e.g., performing individual editing
actions, such as, task skip, removal or addition, or even
more sophisticated ones, such as workflow re-concretisation.
It also includes well-known service adaptation capabilities,
like service substitution and recomposition. That framework
closely cooperates with the Workflow Engine in the BPaaS
Execution Environment and the Service Registry to support the
respective capabilities execution. The cross-cloud framework
offers infrastructural adaptation capabilities mapping to hor-
izontal scaling and migration as well as platform adaptation
capabilities, such as platform service replacement. This frame-
work closely cooperates with the Cloud Provider Engine in the
BPaaS Execution Environment. More details about the BPaaS
Execution Environment, i.e., the environment responsible for
BPaaS deployment, execution, monitoring and adaptation, as
well as the Service Registry can be found in [18].

Currently each new level-specific adaptation functionality
ends up as a method of a respective adaptation service. We



are currently investigating ways via which such functionality
could be automatically injected into the system without requir-
ing to disrupt the adaptation service from executing.

Adaptation workflow execution history is maintained by the
Adaptation Engine and stored in the Adaptation DB. This
history, apart from detailing which service was executed, also
clarifies some non-functional statistics over the performance
of the whole adaptation workflow and its constituent services.
It also explicates whether the workflow execution has been
successful or not in dealing with the problematic situation that
triggered it. Such adaptation history information is valuable for
improving and optimising the BPaaS behaviour as it can enable
reconfiguring the adaptation rules. As such, by wrapping this
information via a service, we enable its retrieval for the fol-
lowing purposes: (a) to allow immediately an expert to browse
the history parts and edit the problematic adaptation rules;
(b) to enable performing more sophisticated analysis over this
information via the BPaaS Evaluation Environment, which
could unveil even more interesting added-value knowledge
about the adaptation behaviour of a BPaaS or across BPaaSes.
To this end, the latter environment has been configured to
exploit the Adaptation Service to draw this information in
regular time intervals. The expert will have the capability to
either switch to the BPaaS Evaluation Environment to perform
the analysis or to request to perform and browse the results
of this analysis via the Adaptation UI.

A. Implementation Details

All components were realised in Java. The Adaptation Ul
relies on a combination of angular.js®> with Ajax. The Trans-
former was realised by exploiting the Epsilon* transformation
framework of Eclipse and its encompassing ETL’ language.
The Rule Engine was realised via the Drools  rule engine.
The Activiti’ framework was used to realise the Adaptation
Engine. The Adaptation DB is an extension of the H2 DB
supported by Activiti. In the future, we plan to move to another
relational DB like mysql. All service-based components were
implemented in Jersey®. Finally, the Concretiser is just a small
extension to our previous service concretisation work which
enables it to communicate with the Service Registry to discover
the current system adaptation capabilities.

V. VALIDATION

The cross-layer adaptation framework validation concerns
its application in a certain use case drawn from CloudSocket.
The framework has been developed in the context of this
project which deals with the cross-layer BPaaS management
and includes several environments handling each BPaaS man-
agement life-cycle activity. Our framework is part of the

BPaaS Execution Environment (cf. Figure 1). The use case
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applied relates to managing and adapting the Send Invoice
BPaaS. This BPaaS concerns the realisation of sending invoice
functionality, a support BP to an organisation. The SendInvoice
BPaaS has been designed in the form of an extensive work-
flow [19], shown in simplified form in Figure 4. It includes
using 2 main services: (a) an external CRM service called
YMENS CRM, provided by the YMENS marketplace and
service provider, to connect to the CRM of an organisation
and retrieve required information for the invoicing; (b) an
invoice management service enabling to create invoices and
send them via email to the respective customers. The latter
service is deployed in an internal VM, operating an ubuntu OS,
belonging to the private cloud of the organisation purchasing
the BPaaS and maps to the invoice ninja’ service component.
This service operates over an internal DB, also hosted in
another VM in the same private cloud.

To initially adapt the BPaaS behaviour at runtime, two
simple rules have been defined, now depicted in a logic-based
form. The first rule indicates that if the average CPU utilisation
becomes greater than 80% for the invoice ninja component,
then this component will have to be horizontally scale. The
second rule maps to re-running the service in the respective
VM when it is detected to be down. Such simple rule maps to
the general pattern that usually software bugs are temporary.

R1 : cpu_viol(i_ninja, send_invoice) = hscale(i_ninja)

R2 : down(i_ninja, send_invoice) = re — run(i_ninja)

workflow

layer
(b) invoice
management

i 1 2

Synergic
Cross-
Layer
Adaptation
Framework

cloud
layer

R3
execution

YMENS CRM
(SaaS)

Invoice Ninja
(laaS)

Fig. 4. Cross-layer adaptation scenario

While the BPaaS is running, the invoice ninja service
component becomes unavailable and the second rule is fired.
However, the component exhibits a permanent failure. As such,
the Adaptation UI alerts the expert who immediately prepares
an adaptation workflow by copying the consequent part from
an adaptation rule of another BPaaS. She then issues the
execution of this workflow to have the invoice ninja again up
and running. The workflow logic is quite simple: the invoice
ninja component has to be migrated to another VM (cf. step
(1) in Figure 4) and the respective BPaaS workflow needs to be
modified to include the new IP of the invoice ninja service (cf.
step (2) in Figure 4). As such, this logic comprises executing
2 adaptation actions: a component migration and a service

“https://www.invoiceninja.com



substitution, offered by the two adaptation services in the
architecture of the cross-layer BPaaS adaptation framework.

After executing the adaptation workflow, the expert observes
that the invoice ninja service component is running again. As
such, she has now the idea to express a new adaptation rule
to cover the new situation encountered as follows:

R3 : down (i_ninja, send_invoice) A failed (R2) =
seq (migrate (i_ninja) , s_replace (i_ninja, send_invoice))

Indeed, after incorporating this rule in the framework, she
can actually observe from the adaptation history that after
several executions of the SendInvoice BPaaS, the new rule
was fired multiple times and was 100% successful.

VI. CONCLUSIONS AND FUTURE WORK

This paper has presented a cross-layer, rule-based BPaaS
adaptation framework that advances the state-of-the-art by
covering all technical levels as well as both pro-active and
re-active adaptation. This framework can dynamic concretise
the adaptation workflows at runtime based on the current
system adaptation capabilities. It also enables the expert to
browse the adaptation history as well as edit, modify and store
adaptation rules. In case of problematic situations that cannot
be anticipated by the current adaptation rule set, the framework
enables the expert to execute manually-defined adaptation
workflows. The framework relies on a newly proposed ex-
tension of CAMEL able to specify advanced adaptation rules
comprising composite cross-level adaptation workflows. It also
relies on a BPaaS Evaluation Environment which, apart from
being able to generate new adaptation rules and feed them into
the system, will become capable to perform analysis over the
adaptation history to discover places for optimal adaptation
behaviour reconfiguration.

The following future work directions are planned. First, the
framework will be thoroughly validated based on real use
cases and extensively tested. Second, a more sophisticated
workflow concretisation algorithm will be devised able to
consider the alternative templates that can confront the current
situation as well as respective concretisation possibilities for
these templates in conjunction with the performance and suc-
cessability of the adaptation workflows used in the past based
on the adaptation history captured. Third, additional adaptation
capabilities will be developed and injected into the framework
spanning different levels plus alternative implementations for
existing ones with different cost and performance trade-offs. It
will be investigated how the injection mechanism can become
more automated to include such capabilities and implementa-
tions. Finally, various forms of adaptation history analysis will
be realised in the BPaaS Evaluation Environment.
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