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ABSTRACT 
Designing a reliable and highly accurate indoor localization 
system is challenging due to the non-uniformity of indoor 
spaces, multipath fading, and satellite signal blockage. To ad- 
dress these issues, we propose a Deep Neural Network-based 
localization system that combines passive Visible Light Posi- 
tioning (p-VLP) and Bluetooth Low Energy (BLE) technolo- 
gies to achieve stable, energy-efficient, and accurate indoor 
localization. Our solution leverages incremental learning 
to fuse data from visible light and BLE, overcoming their 
individual limitations and achieving centimeter-level local- 
ization accuracy. We build a prototype using low-cost S9706 
hue sensors for p-VLP and low-power nrf52830 BLE boards 
to collect data simultaneously from both technologies in a 
25m2 testbed. Our approach demonstrates a significant lo- 
calization accuracy improvement of approximately 47% and 
64% compared to individual p-VLP and BLE technologies, 
respectively, achieving a mean localization error of 20 cm. 

 

CCS CONCEPTS 
• Networks → Location based services; • Computing method- 
ologies → Neural networks. 
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1 INTRODUCTION 
Building smart indoor environments has intensified the need 
to design more accurate indoor localization systems. 

Difficult Commercialization & Limited Usable Range. 
One promising technology for highly-accurate indoor lo- 
calization is Visible Light Positioning (VLP), which utilizes 
light’s directive properties for precise indoor localization. 
However, existing VLP systems perform well only in con- 
trolled environments. In real-world scenarios, factors like ex- 
ternal ambient light sources, obstacles, and shadows, decline 

localization performance, ultimately restricting the e ective 
localization areas. Additionally, active VLP systems have lim- 
ited market adoption due to luminaire design changes [5]. 

Limited Accuracy. In contrast, RF technologies like Blue- 
tooth Low Energy (BLE) have gained popularity for indoor 
localization due to their ubiquity and low-cost hardware. 
However, BLE’s narrowband nature makes it susceptible to 
multipath fading, limiting ranging accuracy. The angle of 
arrival/departure techniques can utilize signal phase infor- 
mation to overcome this. However, they require multiple 
antennas, typically sized 16 × 16 cm, which are bulky, expen- 
sive, and challenging to acquire commercially [3]. 

Hybrid Localization? To address these challenges, this 
paper investigates combining BLE and VLP to design a re- 
liable, accurate hybrid localization system. We aim to over- 
come BLE’s low accuracy and VLP’s limited usage range by 
leveraging both technologies’ strengths. Our system utilizes 
unmodulated light sources’ inherent characteristics, specifi- 
cally the power at dominant wavelengths, via single-pixel 
hue sensors, without modifying existing lighting infrastruc- 
ture. Additionally, we leverage BLE 5.1 standard and employ 
Constant Tone Extension (CTE), a waveform with constant 
frequency and amplitude [1, 3], to collect Received Signal 
Strength (RSS) using a single antenna. Furthermore, we lever- 
age Deep Neural Networks (DNNs) to e ectively fuse signal 
features from both technologies. DNNs show promise in 
modeling the mapping between signal features and target lo- 
cations, addressing multipath complexity in indoor areas [3]. 
Our contributions are summarized as follows: 
i) We propose BLELight, a hybrid accurate localization sys- 

tem for large indoor spaces. BLELight fuses the intrinsic 
features of unmodulated light (the ratio of power at dom- 
inant wavelengths) with the BLE signal strength. 

ii) We propose an incremental learning-based approach to 
train the DNN model, leveraging the multimodality fea- 
tures for the purpose of localization. 

iii) We build a testbed using a single-pixel hue sensors for 
p-VLP and nrf528350 BLE board on a mobile target. We col- 
lect real-time data to experimentally validate BLELight. 

iv) Our preliminary experimental results demonstrate that 
BLELight achieves a mean localization error of ∼20cm, 
improving the localization performance of individual p- 
VLP and BLE by about 47% and 64%, respectively. 
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Figure 1: The proposed BLELight: (a) multi-modality model; (b) incremental learning scheme in which BLE and pas- 
sive-VLP features are fed into the DNN model at different training stages to improve the localization performance. 

the localization accuracy as shown in [4], and it enhances 
the learning capability of our ML model in BLELight. 
3 BLELIGHT: MULTI-MODAL FUSION 
Framework: BLELight focuses on the indoor environment 

Figure 2: The designed DNN architecture in BLELight. 

2 PRELIMINARIES 
To avoid modifying the lighting infrastructure for transmit- 
ting location beacons, our BLELight leverages the intrinsic 
hue characteristics of the lights to establish a distinct light 
signature. Specifically, we utilize the power ratios at dom- 
inant wavelengths (λÆ (red), λG (green), and λB (blue)) of 
white light sources. We define the unique light signature as 
< PB/PG, PG /PÆ, PB/PÆ >, detailed in [6]. While the light 
signature of a particular light source should remain consis- 
tent within its illuminated area, the presence of other light 
sources and amb ient light may introduce interference. How- 
ever, it is found that this added interference is not significant 
(often below 10% [6]), and does not provide substantial infor- 
mation to perform localization. This is due to the inherent 
intrinsic nature of the extracted light signature. Nevertheless, 
a Machine Learning (ML) model can learn these slight vari- 
ations over distance, o ering localization capabilities. This 
aspect serves as one of the motivations for BLELight. 

Furthermore, low light conditions or blocking of light sen- 
sors can disrupt the localization. To address this, we combine 
light measurements with BLE RSS measurements, especially 
utilizing BLE 5.1’s CTE feature. Moreover, to enhance the 
e ectiveness of the DNN model, we incorporate the BLE 
RSS measurements found in the beating spectrum (details 
provide in [4]). This provides us with pairwise contributions 
of the power amplitude of anchor nodes at target locations. 
For instance, let’s consider four BLE anchor nodes tuned at 
frequencies ƒ1, ƒ2, ƒ3, and ƒ4. At the mobile tag, we extract 
power amplitudes at these frequencies from both the signal 
frequency spectrum and the beating spectrum [4]. The beat- 
ing spectrum analysis yields power amplitudes at frequencies 
( ƒ1 − ƒ2, ƒ2 − ƒ3, ƒ1 − ƒ3, ƒ1 − ƒ4, ƒ2 − ƒ4, ƒ3 − ƒ4). This fine-grained 
RSS analyzed from beating spectrum significantly improves 

with multi-modality observations (see Figure 1a). Specifically, 
we fuse the modalities p-VLP and BLE, training a DNN model 
using an Incremental Learning (IL) approach. IL is a learn- 
ing paradigm that allows models to continuously adapt and 
update their knowledge when new data becomes available. 
Despite the di erences in BLE and p-VLP modalities, they 
both reflect the signal-location relationship or distribution 
within a specific indoor environment. Therefore, leveraging 
these two signal features jointly can enhance localization ac- 
curacy. Moreover, IL o ers the advantage of reducing feature 
interference or imbalance from di erent sources. By training 
the DNN model with one signal feature at a time during each 
stage, we can mitigate the interference caused by multiple 
sources and ensure a more focused learning process. 

Sytsem Design: Figure 1b illustrates the architecture of 
BLELight using an IL-based technique. In the training phase, 
the first step incorporates features from BLE, specifically 
those extracted from both signal and beating spectrums [4]. 
IL allows the DNN model to gradually improve its compre- 
hension of location-related features. In the second stage, the 
trained model continues to enhance its localization capabili- 
ties by leveraging the light signature features. The evaluation 
of localization performance can be conducted at each stage. 
The DNN model adopted in BLELight is a fully connected 
NN, whose architecture is shown in Figure 2. The input is a 
10 × 1 vector, and the output is the estimated location coor- 
dinates (x, y, z). SELU is adopted as the activation function 
in the layers between input and output. 

4 TESTBED & DATA COLLECTION 
Testbed: A LED network is built with 9 o -the-shelf white 
LEDs, covering a 10m2 area. LEDs are positioned with an 
inter-distance of ∼55cm from the center of each LED to in- 
duce interference (field of view of 36◦). Besides, we utilize 
four BLE anchors arranged in a square within a 25m2 area. 

Training feature 
Dim = 10*1 

(x,y,z) 

64 128 64 

Activation layer (SELU) Linear layer 
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Table 1: 3D Localization error (unit: meter). 
 

 

p-VLP BLE Joint Learning Our BLELight 

Mean localization error 0.369 0.556 0.48 0.20 
Median error 0.34 0.52 0.43 0.16 

80th-percentile error 0.54 0.80 0.75 0.29 

IL eliminates the general requirements of joint fusion-based 
approaches, such as maintaining an equal number of samples 
or features over time. Equalizing sample numbers is chal- 
lenging due to time synchronization from distinct crystal 

Figure 3: Evaluation: (a) BLELight experimental setup; 
(b) BLELight localization performance. 

Please refer to Figure 3a for visualization. Light sensors and 
a BLE tag are mounted on a mobile target, enabling simulta- 
neous data collection from both technologies. The testbed, 
located near windows, allows ambient noise interference for 
VLP, while its metallic materials create multipath for BLE. 

Features selection: Three light hue sensors (S9706 [6]), 
denoted as i = 1, 2, 3, collect light features including power 
at dominant wavelengths, resulting in light signatures: < 
PBi /PGi , PGi /PÆi , PBi /PÆi , PG1 − PÆ1 >. Thus, 10 light features 
are obtained per target location. For BLE, RSS measurements 
are taken using nrf52830 (please refer [2] for details), and for 
each collected packet, we extract 10 features. These features 
include received power at signal tones (ƒ1, ƒ2, ƒ3, ƒ4) & beating 
frequencies (ƒ1 − ƒ2, ƒ2 − ƒ3, ƒ1 − ƒ3, ƒ1 − ƒ4, ƒ2 − ƒ4, ƒ3 − ƒ4). 

Data Collection: To test the performance of each tech- 
nology individually, we collect data separately. We collect 
the p-VLP data all over the area considering the locations 
directly under the LEDs with no ambient light source, low- 
light conditions (near the walls) and blocking of the sensor 
(due to human or testbed metals). Further, for BLELight, we 
collect the data over di erent days, as the level of ambient 
light noise is di erent depending on weather conditions. A 
total of 5 datasets are collected with di erent target heights, 
comprising 8813 samples for the BLE and 4776 samples for 
the VLP. We adopt an 80%-20% data split, allocating 80% for 
training and the remaining 20% for testing. 

5 PRELIMINARY RESULTS 
We statistically evaluate BLELight using the Communicative 
Distribution Function (CDF) of localization error, as shown 
in Figure 3b. We compare the e ectiveness of BLELight with 
joint training, a widely employed technique for data fusion, 
wherein all features are simultaneously inputted into a model 
during a single stage. However, we observe limitations in 
feature learning and performance improvement with joint 
training, while BLELight demonstrates clear benefits (see 
Figure 3b). As IL-enabled continual learning adapts over 
time, it significantly improves accuracy. By incorporating 
new information and fine-tuning the model incrementally, 
we achieve a Mean Localization Error (MLE) of 0.20m, outper- 
forming the joint training method by up to 58%. Furthermore, 

oscillators and varying sampling rates between the tech- 
nologies. For simplicity in our comparison, we use equal 
features for joint training. Additionally, we train separate 
DNN models for BLE and p-VLP and evaluate their respective 
performances. Unsurprisingly, BLELight outperforms BLE 
and p-VLP by about 64% and 47%, respectively. However, it 
is worth noting that the MLE achieved for BLE is 0.556m, a 
notable improvement over classical BLE methods [1], albeit 
not matching the performance of p-VLP. For comprehensive 
results, please refer to Table 1. In the future, we will diver- 
sify environments and perform cross-validation & ablation 
studies to assess BLELight’s robustness and generalization. 

6 CONCLUSION 
We explored enhancing indoor localization & overcoming the 
limitations of BLE and VLP technologies through a hybrid 
localization system. To maximize the benefits of multimodal- 
ity features from both technologies, we proposed an incre- 
mental learning-based approach to train a DNN. Through 
experimental evaluation, we verified the e ectiveness of our 
method, achieving a mean localization error of 20cm. 
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