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Editorial

GRAIL 2017 is the first international workshop on GRaphs in biomedicAl Image anaLysis,
organized as a satellite event of the 20th International Conference on Medical Image Computing and
Computer Assisted Intervention (MICCAI 2017) in Quebec, Canada. With this workshop we aim
to highlight the potential of using graph-based models for biomedical image analysis. Our goal is
to bring together scientists that use and develop graph-based models for the analysis of biomedical
images and encourage the exploration of graph-based models for difficult clinical problems within
a variety of biomedical imaging contexts.

Graph-based models have been developed for a wide variety of problems in computer vision
and biomedical image analysis. Applications ranging from segmentation, registration, classifica-
tion, and shape modeling, to population analysis have been successfully encoded through graph
structures, demonstrating the versatile and principled nature of the graph based approaches. Graphs
are powerful mathematical structures which provide a flexible and scalable framework to model
objects and their interactions in a readily interpretable fashion. As a consequence, an important
body of work has been developed around different methodological aspects of graph including, but
not limited to, graphical models, graph-theoretical algorithms, spectral graph analysis, graph di-
mensionality reduction, and graph-based network analysis. However, new topics are also emerging
as the outcome of interdisciplinary studies, shedding light on areas like deep structured models and
signal processing on graphs.

The GRAIL proceedings contain 7 high quality papers of 8 to 11 pages that were pre-selected
through a rigorous peer review process. All submissions were peer-reviewed through a double-blind
process by at least 3 members of the program committee, comprising 18 experts in the field
of graphs in biomedical image analysis. The accepted manuscripts cover a wide set of graph
based medical image analysis methods and applications, including probabilistic graphical models,
neuroimaging using graph representations, machine learning for diagnosis and disease prediction,
and shape modeling.

The proceedings of the workshop are published as a joint LNCS volume alongside other
satellite events organized in conjunction with MICCAI. In addition to the LNCS volume, to
promote transparency, the papers’ reviews are publicly available on the workshop website
(https://biomedic.doc.ic.ac.uk/miccai17-grail/) alongside their corresponding optional response to
reviewers.

We wish to thank all the GRAIL 2017 Authors for their participation and the members of
the Program Committee for their detailed feedback and commitment to the workshop. We are very
grateful to our sponsors CentraleSupelec and INRIA for their valuable support.

Enzo Ferrante, Sarah Parisot, Aristeidis Sotiras
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Classifying phenotypes based on the community
structure of human brain networks

Anvar Kurmukov1, Marina Ananyeva2, Yulia Dodonova1, Boris Gutman3, Joshua
Faskowitz3, Neda Jahanshad3, Paul Thompson3, and Leonid Zhukov2

1 Kharkevich Institute for Information Transmission Problems, Moscow, Russia
2 National Research University Higher School of Economics, Moscow, Russia

3 Imaging Genetics Center, Stevens Neuroimaging and Informatics Institute, University of
Southern California, Marina del Rey, USA

Abstract. Human anatomical brain networks derived from the analysis of neu-
roimaging data are known to demonstrate modular organization. Modules, or
communities, of cortical brain regions capture information about the structure
of connections in the entire network. Hence, anatomical changes in network con-
nectivity (e.g., caused by a certain disease) should translate into changes in the
community structure of brain regions. This means that essential structural dif-
ferences between phenotypes (e.g., healthy and diseased) should be reflected in
how brain networks cluster into communities. To test this hypothesis, we pro-
pose a pipeline to classify brain networks based on their underlying community
structure. We consider network partitionings into both non-overlapping and over-
lapping communities and introduce a distance between connectomes based on
whether or not they cluster into modules similarly. We next construct a classifier
that uses partitioning-based kernels to predict a phenotype from brain networks.
We demonstrate the performance of the proposed approach in a task of classi-
fying structural connectomes of healthy subjects and those with mild cognitive
impairment and Alzheimer‘s disease.

1 Introduction

Understanding disease-related changes in human brains has always been a challenge
for neuroscience. A growing field of network science provides a powerful framework
to study these changes [5]. This is because any shifts in brain anatomy or functioning
are rarely confined to a single locus but rather affect the entire network system.

Human brain networks have been extensively studied in a recent decade. These
networks, called connectomes, are constructed from neuroimaging data and represent
either anatomical or functional connectivity between cortical brain regions. Several as-
pects of typical brain network organization have been described, including their mod-
ular structure. Modular structure of a network means that its nodes tend to group into
modules, or communities, with close within-group connections and sparse between-
group connectivity. Meunier et al. [10] discuss why it is reasonable for human brains to
be modular, and also review studies on the community structure of human connectomes.
Alexander-Bloch et al. [1] demonstrate that brain network community structure differs
between phenotypes (healthy subjects and those with childhood-onset schizophrenia).
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2 A.Kurmukov, M.Ananyeva, Y. Dodonova, et al.

This suggests that brain network community structure captures enough information
about network topology to classify phenotypes associated with certain diseases. To test
this hypothesis, one needs a framework to classify networks based on similarity in their
partitions into communities. Recently, Kurmukov et al. [8] proposed such an algorithm.
Its basic idea was to detect non-overlapping brain network communities, measure pair-
wise distances between the obtained network partitions and use these distances in a
kernel classification framework. However, [8] only considered non-overlapping brain
network communities and demonstrated the performance of the proposed method on a
small dataset.

Although non-overlapping communities are more commonly studied in network
neuroscience, a model of community structure that allows for overlapping offers a more
realistic model of brain-network organization [13]. Some cortical areas are known to
be heteromodal and to have a role in multiple networks; consistently with this, cur-
rent theories on brain organization suggest that cognitive functions are organized into
widespread, segregated, and overlapping networks. Thus, clarifying the overlapping
structure of brain network communities remains a challenging and relatively unexplored
research area.

In this study, we generalize the classification approach [8] by considering both non-
overlapping and overlapping communities of cortical brain regions. We show how both
types of partitions may be used to estimate distances between brain networks and run a
kernel classifier on these distances. Based on a large Alzheimer‘s Disease Neuroimag-
ing Initiative dataset, we question whether similarity in brain modular structure can
help to differentiate subjects with different diagnoses and tackle this question with the
proposed approach.

2 Similarity of brain network community structures

Clustering networks into communities has attracted much attention in graph theory.
Here, we only briefly describe the algorithms that we used for partitioning brain net-
works into communities (both non-overlapping and overlapping), and discuss how com-
munity structures of different brain networks may be quantitatively compared.

2.1 Detecting communities in structural brain networks

We use two approaches to detect brain network community structure. Both approaches
aim to identify communities, or groups of tightly anatomically connected cortical re-
gions. The major difference is that the first approach separates brain network regions
into unique, non-overlapping modules, while the second algorithm allows for nodes be-
longing to more than one community. Algorithms of the former type are much more
common in graph theory, and hence much more widely used in applications includ-
ing brain network analysis [10]. However, as discussed above, overlapping community
structures offer more powerful description of human brain organization, although they
are much rarer evaluated [13].

In this study, we use the Louvain method [2] to produce non-overlapping partitions
of structural connectomes. Given a graph G(E,V ) with a set of edges E, a set of nodes
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Community structure of human brain networks 3

V , and the adjacency matrix A, the algorithm divides nodes V into groups {V1,V2, ...Vk}
so that V1 ∪V2 ∪ ...∪Vk = V . Similarly to many other graph partitioning methods, it
optimizes the so-called modularity by maximizing the number of intra-community con-
nections and minimizing the number of inter-community links. The Louvain algorithm
is a two-step iterative procedure. It starts with each node assigned to a separate cluster.
In the first step, it moves each node i to a cluster of one of its neighbors j so that the
gain in modularity is maximal. Once there is no such move that improves modularity,
the algorithm proceeds to the second step, builds a new graph wherein nodes are clus-
ters from the previous step, and reapplies the first step. Importantly, the Louvain method
does not require any a-priori defined number of communities to be detected.

Second, we aim to estimate overlapping communities of structural brain networks.
Two types of algorithms can accommodate this, differing in whether they use crisp or
fuzzy assignment of nodes into communities. The former means that each node either
belongs to each of the possible clusters or not, while the latter allows for a strength of
belonging to a community. We detect fuzzy communities based on non-negative matrix
factorization (NMF) [7]. Given a non-negative graph adjacency matrix A of size n× n
(n being the number of nodes in brain network), we find its low-rank approximation

A'WH, (1)

where W is of size n× k and H is k× n. A parameter k is usually selected to be much
smaller than n and stands for a number of communities to be detected. Elements hi j of
a normalized matrix H denote probability of a node i being in a community j. Unlike
the first method, the NMF algorithm requires specifying the number of communities.
In our computational experiments, we show results obtained for different values of k.

2.2 Measuring distance between community structures

We aim to evaluate similarity in community structure of brain networks stemming from
different subjects, possibly with different diagnoses. Hence, we need to introduce a
measure of distance between two partitions obtained from different brain networks. This
becomes possible because nodes in connectomes (i.e., cortical regions) are uniquely
labeled, and the set of labels is the same across connectomes obtained with the same
parcellation atlas.

To estimate pairwise similarity of partitions of different brain networks we use
two modifications of mutual information (MI) score. Let U = {U1,U2, · · ·Ul} and V =
{V1,V2, · · ·Vk} be partitions of two networks GU and GV with the same sets of node
labels, l and k be the number of clusters in the partitions U and V , respectively. MI
between the partitions U and V is defined by:

MI(U,V ) =
l

∑
i=1

m

∑
j=1

P(i, j) log
P(i, j)

P(i)P′( j)
, (2)

For brain network partitions into non-overlapping communities, we use adjusted
mutual information, AMI [12]. We measure similarity between partitions into overlap-
ping communities based on normalized mutual information (NMI, [9]). A property of
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4 A.Kurmukov, M.Ananyeva, Y. Dodonova, et al.

the latter measure is that it only accepts partitions into overlapping modules with crisp
node assignment. To accommodate this, we binarize the community membership matrix
H (1) using a threshold parameter; we demonstrate how the results of our computational
experiments change depending on this parameter.

Both measures take values in [0,1], with the value of 1 indicating exactly the same
partitions. We thus define a distance ω(GU ,GV ) between the community structures of
networks GU and GV by:

ω(GU ,GV ) = 1− I(U,V ), (3)

where I(U,V ) is the index of similarity (AMI or NMI). Networks with the same com-
munity structure now have zero distance, and the maximum distance is close to 1.

3 Classifying connectomes based on their community structure

Since we obtained an optimal partition of each brain network into communities and
introduced a measure of difference between community structures, we can proceed to
the question of whether community structure of cortical brain regions provides enough
information for differentiating between phenotypic classes. This question can be ad-
dressed in a machine learning framework.

Given a set of brain networks Gi (each with known community structure), class la-
bels yi, a training set of pairs (Gi,yi) and the test set of input objects G j, the task is to
make a best possible prediction of the unknown class label y j. Provided that we already
defined a matrix of pairwise distances ω(GU ,GV ) (3), the most straightforward ap-
proach to classification is to convert the obtained distance matrix into a kernel and feed
it to a kernel classifier. We accommodate this by exponentiating the obtained distances:

K(GU ,GV ) = e−αω(GU ,GV ), (4)

and run the support vector machines (SVM) classifier with the obtained kernel.

4 Experiments: network-based Alzheimer’s disease classification

We argue that if the community structure of anatomical brain networks is affected by a
disease in a certain manner, it should be possible to differentiate between healthy and
diseased brain networks solely based on similarity in their community structures. In
other words, brain networks stemming from the same class (e.g., obtained for healthy
participants) should be more similar in their community structure than brain networks
from different phenotypic classes (e.g., normal and diseased brains). Using the ap-
proach described in the previous sections, we test this hypothesis in a task of classifying
Alzheimers disease (AD), late- and early-stage mild cognitive impairment (LMCI and
EMCI), and healthy participants (normal controls, NC).
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Community structure of human brain networks 5

4.1 Data and network construction

We use the Alzheimer‘s Disease Neuroimaging Initiative (ADNI2) database which
comprises a total of 228 individuals (756 scans), with a mean age at baseline visit
72.9±7.4 years, 96 females. Each individual has at least 1 brain scan and at most 6
scans. The data include 47 people with AD (136 AD scans), 40 individuals with LMCI
(147 LMCI scans), 80 individuals with EMCI (283 EMCI scans), and 61 healthy par-
ticipants (190 scans).

Corrected T1-weighted images were processed with Freesurfer‘s [4] recon-all pipeline
to obtain a triangle mesh of the grey-white matter boundary registered to a shared spher-
ical space, as well as corresponding vertex labels per subject. We used cortical parcel-
lation based on the Desikan-Killiany (DK) atlas [3] which includes 68 cortical brain re-
gions. T1w images were aligned (6-dof) to the 2mm isotropic MNI 152 template. These
were used as the template to register the average b0 of the DWI images, in order to ac-
count for EPI related susceptibility artifacts. DWI images were also corrected for eddy
current and motion related distortions. Rotation of b-vectors was performed accord-
ingly. Tractography for ADNI data was then conducted using the distortion corrected
DWI in 2-mm isotropic MNI 152 space. Probabilistic streamline tractography was per-
formed using the Dipy [6] LocalTracking module and implementation of constrained
spherical deconvolution (CSD) [11] with a spherical harmonics order of 6. Streamlines
longer than 5 mm with both ends intersecting the cortical surface were retained.

Edge weights in the original cortical connectivity matrices were proportional to the
number of streamlines detected by the algorithm. We binarize these weights by:

abinarized
i j =

{
1 if ai j > 0
0 otherwise

(5)

Thus, we only work with non-weighted graphs throughout the paper.

4.2 Experimental setup

We obtain the best partition of each network into non-overlapping communities using
the Louvain algorithm and compute a matrix of pairwise distances between partitions
with the AMI metric. In parallel, we cluster each network into overlapping commu-
nities based on NMF and produce a matrix of pairwise NMI distances between these
clusterings. This second algorithm requires two parameters (the number of communi-
ties and the cluster membership threshold), we report how the results of the overall
pipeline change depending on their particular values. For purposes of comparison, we
also compute pairwise distances between connectomes using the L2 (Frobenius) norm.

For each of the three distance matrices, we compute a kernel by (4) and run an SVM
classifier with this kernel. We vary the values of α in (4) from 0.01 to 10 and the penalty
parameter of the classifier from 0.1 to 50; we only report the results obtained for the
optimal values of these technical parameters.

We consider four binary classification tasks: AD versus NC, AD versus LMCI,
LMCI versus EMCI, EMCI versus NC. We find optimal values for all parameters in
the simplest task of classifying AD versus NC and keep them fixed in the remaining
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6 A.Kurmukov, M.Ananyeva, Y. Dodonova, et al.

tasks. We use 10-fold cross-validation to train SVM on a subsample and make predic-
tions for an unseen part of a sample. As the data include several networks for each
subject, we use subjects rather than networks to split data into train and test and put all
networks of the same subject into a respective category (thus avoiding data leakage).

Fig. 1. Left: Classification results. Right: Results of classifying AD versus NC based on the over-
lapping community detection algorithm, depending on the number of components and the mem-
bership threshold; colorbar shows average ROC AUC values.

We train the models on networks and next make a subject-based prediction as an
average of predictions obtained for individual networks; this method of evaluation
(subject-based rather than network-based) does not affect the reported results in any
systematic way. We repeat the procedure 50 times with different data splits and report
ROC AUC as a quality metric. All scripts are available at https://github.com/
kurmukovai/GRAIL2017-communities.

4.3 Results and discussion

Figure 1 (left) shows the results of classifying AD, LMCI, EMCI and healthy controls
based on L2-distance between the structural connectivity matrices of brain networks
and on the distances representing similarity in brain community structures.

As expected, classifying AD versus NC was the simplest task, while for EMCI ver-
sus LMCI all algorithms only performed at chance level. For the tasks with reasonable
overall classification quality, an algorithm based on overlapping community structures
slightly outperformed the other algorithms. For AD versus NC, the model with over-
lapping communities provides an ROC AUC of 0.840± 0.010; the one based on non-
overlapping communities gives an ROC AUC 0.828± 0.013. For this task, Figure 1
(right) shows how the outcomes of the best-performing algorithm depend on the prede-
fined number of clusters and the threshold of cluster membership used in computing the
NMI distance. The best classification results are obtained with the community structure
of six overlapping components, with membership probability thresholded at 0.25.

Figure 2 illustrates the obtained community structure based on a single example
graph. Figure 3 compares the non-overlapping and the simplified overlapping commu-
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Community structure of human brain networks 7

Fig. 2. Six overlapping communities: an example of a single network (healthy subject) with the
nodes shown in their original 3D coordinates (axial view); color intensity is proportional to the
strength of belonging to the respective community

Fig. 3. Comparison of the non-overlapping (left) and overlapping (right) community structures
obtained for the same example graph as in Figure 3; node size is proportional to its degree (the
number of edges coming from the respective node). Right plot is produced by selecting a single
community for each node based on the maximal membership probability.
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8 A.Kurmukov, M.Ananyeva, Y. Dodonova, et al.

nity structures obtained for the same graph. The two algorithms seem to identify sim-
ilar communities, but the outcome of the overlapping community detection algorithm
retains more information on the underlying brain network structure.

5 Conclusions

Human brain networks show modular structure which arises based on the entire system
of connections between cortical brain regions. Systematic shifts in connectivity pat-
terns, for example those caused by a brain disease, may be expected to induce changes
in the community structure of the macroscale brain networks. If true, that would pro-
duce similar modular structure in brain networks of individuals with the same pheno-
type (e.g., Alzheimer‘s disease) and different community structures in brain networks
from different phenotypes (e.g., patients versus healthy controls).

In this study, we explored whether the community structure of anatomical human
brain networks provides enough information to differentiate phenotypes of the respec-
tive individuals. We proposed a framework to compare both overlapping and non-
overlapping community structures of brain networks within the machine learning set-
tings. We demonstrated the performance of the proposed pipeline in a task of classifying
Alzheimer‘s disease, mild cognitive impairment, and healthy participants. Algorithms
based on the distances between partitions of brain networks slightly outperformed the
baseline. Models that made full use of overlapping community structures performed
slightly better than those based on non-overlapping community structures.

To sum up, the modular structure of anatomical brain networks seems to capture
important information about the underlying network structure and can be useful in clas-
sifying phenotypes. Further studies are needed to study this idea on other phenotypic
categories, and to specifically explore overlapping community structure of cortical re-
gions in human anatomical brain networks.
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Autism Spectrum Disorder Diagnosis Using
Sparse Graph Embedding of Morphological

Brain Networks

Carrie Morris and Islem Rekik?

BASIRA lab, CVIP group, School of Science and Engineering, Computing, University
of Dundee, UK

Abstract. Autism Spectrum Disorder (ASD) is a neurodevelopmental
disorder involving a complex cognitive impairment that can be difficult to
diagnose early enough. Much work has therefore been done investigating
the use of machine-learning techniques on functional and structural con-
nectivity networks for ASD diagnosis. However, networks based on the
morphology of the brain have yet to be similarly investigated, despite
research findings that morphological features, such as cortical thickness,
are affected by ASD. In this paper, we first propose modelling morpho-
logical brain connectivity (or graph) using a set of cortical attributes,
each encoding a unique aspect of cortical morphology. However, it can
be difficult to capture for each subject the complex pattern of relation-
ships between morphological brain graphs, where each may be affected
simultaneously or independently by ASD. In order to solve this problem,
we therefore also propose the use of high-order networks which can bet-
ter capture these relationships. Further, since ASD and normal control
(NC) high-dimensional connectomic data might lie in different mani-
folds, we aim to find a low-dimensional representation of the data which
captures the intrinsic dimensions of the underlying connectomic man-
ifolds, thereby allowing better learning by linear classifiers. Hence, we
propose the use of sparse graph embedding (SGE) method, which allows
us to distinguish between data points drawn from different manifolds,
even when they are too close to one another. SGE learns a similarity
matrix of the connectomic data graph, which then is used to embed the
high-dimensional connectomic features into a low-dimensional space that
preserves the locality of the original data. Our ASD/NC classification re-
sults outperformed several state-of-the-art methods including statistical
feature selection, and local linear embedding methods.

1 Introduction

Autism Spectrum Disorder (ASD) is a neurodevelopmental disorder character-
ized by varied impairments in cognitive function, including difficulties with social
communication and interaction, language, and restricted, repetitive behaviours.
This has made diagnosing the disorder a challenging task [1]. However, aided by

? Corresponding author: irekik@dundee.ac.uk, www.basira-lab.com
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recent technological and methodological advances in neuroimaging tools, there
has been growing interest in understanding how ASD can alter the connectiv-
ity between different regions within the brain, and how this information may
be leveraged to help diagnose the disorder with greater accuracy [2]. The two
most widely used measures of brain connectivity used for investigating ASD in
the literature are functional connectivity and structural connectivity, derived
from functional magnetic resonance imaging (fMRI) and diffusion tensor imag-
ing (DTI) respectively, with literature reviews available for both types of data [3,
4]. For example, all 77 studies discussed in [5]’s review of using machine learning
on connectomes (networks of the brain) to predict clinical outcomes used func-
tional and/or structural connectivity networks to do so. Despite this growing
body of research on such networks, however, there is still a gap in the literature
where morphological networks have not been explored to the same degree. This
gap needs to be filled, considering there are studies that indicate morphological
features of the brain, such as cortical thickness, can be affected in neurological
disorders, including ASD [6, 7]. As such, the use of networks based on morpholog-
ical data in neurological disorder diagnosis, using machine learning, could prove
fruitful. Further, such networks have not been used to investigate ASD in the
literature so far. In this study, we will therefore aim to define several networks
based on the morphology or geometry of the cortical surface of ASD and NC
subjects, and investigate their use in diagnosing ASD using machine learning
techniques.

Different morphological views of the cortical surface (e.g. cortical thickness
and mean curvature) may also have different relationships between them, where
they could be affected simultaneously or independently in different regions of
the brain by ASD. As a result, there could be a very complex pattern of how
ASD affects the different morphological views of the brain. The easiest and
most commonly employed method for exploring such relationships is simply to
concatenate the multiple networks together so that the data from each view is
included in the overall set of data for each subject, unaltered [5]. However, recent
research on Alzheimer’s Disease has found better results when using High Or-
der Networks (HONs) [8]. These are constructed from low-order (e.g. functional
connectivity) networks by, for each view or network, extracting the correlations
between different pairs of brain regions, then calculating the correlation between
these values across all views, for each pair of brain regions. This method there-
fore better allows us to capture the higher-order relationships between different
views of the brain. However, it has yet to be applied to ASD data in machine
learning research, and so, with this study, we also aim to contribute to the liter-
ature on the use of such HONs when investigating ASD. One potential problem
with the use of HONs, however, is that the networks produced are very large
and, as a result, computationally expensive. To mitigate this, feature selection or
dimensionality reduction is necessary. Noting that ASD morphological changes
between brain regions might be very subtle, the manifolds where both ASD and
healthy connectomic data lie might be very close and challenging to embed into
a low-dimensional space. To address this problem, we further propose a classifi-
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cation framework based on a sparse graph embedding of connectomic data using
the method developed in [9]. Specifically, we use graph embedding of the HONs,
which would allow us to (1) explore the high-order relationships without having
to deal with overly large networks, (2) learn the features that are most discrimi-
native in classifying and diagnosing ASD, and (3) investigate the effectiveness of
SGE as a dimensionality reduction technique on our data, as compared to other
state-of-the-art methods.

Fig. 1: High-order sparse graph embedding (SGE) of high-order brain networks
for classifying autism spectrum disorder (ASD) and healthy brains. (A) For each
subject i, we construct na low-order morphological networks for each cortical
attribute. Then, we merge these into a high-order network represented by a
feature vector hi. (B) Given the high-order feature matrix of all subjects, we use
sparse graph embedding [9] to learn a sparse similarity matrix W of a graph G
which models the relationship between data points lying in different connectomic
manifolds. Next, we embed the graph into a low-dimensional space where a linear
SVM classifier is trained.

2 Proposed Sparse Graph Embedding of High-Order
Morphological Brain Networks for Autism classification

In this section, we present our sparse graph embedding (SGE) of high-order
morphological brain networks for ASD classification using the SMCE method
proposed in [9]. We denote matrices by boldface capital letters, e.g., X, and
scalars are denoted by lowercase letters, e.g., x. For easy reference, we have
summarized the major mathematical notations in Table 1. Fig. 1 illustrates the
proposed pipeline for ASD/NC classification in four major steps: (1) construction
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Table 1: Major mathematical notations used in this paper.
Mathematical notation Definition

Ca
i = (VC , EC) low-order brain network graph Rnr×nr of a single subject i for cortical attribute a

VC nodes or brain ROIs of size nr

EC edges connecting pairs of brain ROIs in a single subject
na number of cortical attributes

Hi = (VH , EH) high-order brain network graph of a single subject i
VH a node represents a pair of brain ROIs
EH edges connecting two pairs of brain ROIs in a single subject

hi high-order connectomic feature vector ∈ RD of subject i derived from brain graph Hi

N number of training subjects
K number of manifolds
Ml manifold where similar connectomic data points lie
dl intrinsic dimension of manifold Ml

G = (VM, EM) similarity graph of connectomic data points nested in different manifolds {Ml}Kl=1

Ďi normalized distance matrix in RD×N−1 between current data point hi and other data points
Qi positive-definite diagonal proximity inducing matrix
αi a sparse vector whose dl + 1 nonzero elements correspond to dl + 1 neighbours of hi ∈ Ml

wi weight vector in RN associated with the i-th point

W similarity matrix in RN×N of graph G

of low-order morphological networks, 2) construction of high-order morpholog-
ical network, 3) connectomic feature extraction, and 4) sparse graph learning
and embedding to reduce the dimension of the extracted features for our target
classification task.

Low-order morphological network construction. For each subject i
and each cortical attribute a (e.g., cortical thickness), we build a brain graph
Ca
i = (VC , EC), where each node in VC represents a cortical region of interest

(ROI), and each edge in EC connecting two ROIs Rp and Rq is defined as
Ci(p, q) = |x̂p − x̂q|, where x̂p denotes the average of the cortical attribute
across all vertices in region Rp. Given na cortical attributes, we generate for
each cortical hemisphere na morphological brain graphs {Ca}na

a=1.
High-order morphological network construction (HON). We note

that ASD might affect not only region-to-region morphological brain connec-
tions on a low-order level, but also high-order relationships between pairs of
ROIs, where complex interactions between sets of ROIs might be affected. Hence,
we propose constructing a high-order morphological network to integrate into a
single, larger brain graph Hi = (VH , EH) all low-order brain graphs {Ca}na

a=1 of
both hemispheres. Each node in VH denotes a pair of ROIs and each edge in EH
connecting two pairs or ROIs (p, q) and (p′, q′) denotes the Pearson Correlation
coefficient between vectors ypq and yp′q′ , where ypq corresponds to the connec-
tivity strength between the p-th and q-th ROIs across all 2na brain networks in
both hemispheres.

Feature Extraction. We propose two types of features: high-order fea-
tures (HON), and concatenated low-order features (CON). Noting that all brain
graphs are symmetric, for each subject i, we represent its high-order brain graph
as a matrix Hi, then concatenate its upper triangle elements into a long feature
vector hi. The weights on the diagonal are set to zero to avoid self-connectedness.
For low-order brain graphs {Ca}na

a=1, we simply concatenate the upper triangle
elements across all cortical attributes into a feature vector (termed as CON). To
address the issue of ‘high-dimensional features vs.a low sample size’ in classifi-
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cation, we propose embedding our high-dimensional connectomic features into a
low-dimensional space where we can efficiently train a linear classifier through
learning a sparse graph.

Sparse graph embedding (SGE) using connectomic brain features
for ASD classification. Since ASD and NC high-dimensional connectomic data
might lie in different manifolds, we aim to find a low-dimensional representation
of the data which captures the intrinsic dimensions of the underlying connec-
tomic manifolds, thereby allowing better learning by classifiers. However, since
morphological brain changes can be very subtle in autistic subjects compared
with healthy brains, their data manifolds can be very close to each other. Hence,
estimating a low-dimensional embedding that allows us to distinguish between
data points drawn from different manifolds is challenging. To solve this prob-
lem, Elhamifar et al. proposed a robust algorithm for sparse manifold clustering
and embedding (SMCE) that efficiently handles multiple manifolds that are very
close to each other [9]. This is achieved through encouraging a sparse selection
of nearby connectomic points that lie in the same manifold and spanning a low-
dimensional affine subspace. Unlike typical dimensionality reduction methods
such as local linear embedding (LLE), which builds a neighbourhood graph by
connecting each data point to a fixed number of nearest points, SMCE learns a
graph neighbourhood automatically, thereby allowing the neighbourhood size on
the manifold to vary. This better handles variation in the density of data points
on the manifold.

Leveraging the strengths of the SMCE method, we then propose our sparse
graph embedding (SGE) framework for the low-dimensional representation of
the high-order connectomic brain manifolds of ASD and NC subjects (Fig. 1).
Given N training high-order feature vectors {hi ∈ RD}Ni=1 lying in K different
manifolds {MK

l=1} of intrinsic dimensions {dl}Kl=1, we build a similarity graph
G = (VM, EM), where each node in VM represents a feature vector h derived
from a brain graph H. Our goal is to learn sparse connections in graph G through
connecting each point to a few neighbouring points with appropriate weights
such that the selected neighbouring points are from the same manifold. This is
achieved through solving a sparse optimization function that selects for each con-
nectomic point hi ∈Ml a few neighbouring points that span a low-dimensional
affine subspace passing near hi:

min
αi

λ||Qiαi||1 +
1

2
||Ďiαi||22 s.t. 1Tαi = 1, (1)

where αTi , [αi1 . . . αiN ] denotes a solution whose dl+1 nonzero elements cor-
respond to dl + 1 neighbours of hi ∈Ml. Ďi represents the normalized distance
matrix between current data point hi and other points: Ďi , [ h1−hi

||h1−hi||2 . . .
hN−hi

||hN−hi||2 ] ∈
RD×N−1. L1 sparsity penalty constrains points closer to hi to be less penalised
than points that are further away. Qi is a proximity inducing positive-definite
diagonal matrix, which favours the selection of close points to the current point
hi through assigning smaller weights to them. We define its diagonal elements as
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Table 1. ASD/NC classification results using our method and different comparison
methods.

||hj−hi||2∑
t6=i ||ht−hi||2 ∈ (0, 1]). The trade-off parameter λ balances the sparsity solution

(first term) and the affine reconstruction error (second term).
After solving Eq. 1, we define a weight vector wT

i = [wi1 . . . wiN ] ∈ RN

associated with the i-th point as: wii = 0 and wij , αij/||hj−hi||2∑
t 6=i αit/||ht−hi||2 , j 6=

i. Ideally, non-zero elements of wi will correspond to sparse neighbours of hi
which belong to the same manifold. Next, we use these weights to define edges
in the similarity graph G where a node hi connects to node hj with weight
|wij|. Ideally, points in the same manifold will belong to the same connected
component in the learned graph G. Ultimately, we define the similarity matrix
W , [|w1| . . . |wN |] in RN×N of the manifold graph G, which groups points from
the same manifold into a block-by-block matrix structure. We then generate the
local embedding of the connectomic features by taking the last eigenvectors of the
normalized Laplacian matrix associated with each cluster in W. In the training
stage, we learn Wtr for all training subjects. Then we use the produced low-
dimensional features to train a linear support vector machine (SVM) classifier.
In the testing stage, we map the testing subject to a low-dimensional space
(with same dimension) through estimating a new Wts that includes training
and testing samples.

3 Results and Discussion

Evaluation dataset and method parameters. We used leave-one-out cross
validation to evaluate the proposed classification framework on 102 subjects (59
ASD and 43 NC) from Autism Brain Imaging Data Exchange (ABIDE I)1 public
dataset, each with structural T1-w MR image [10]. We used FREESURFER to

1 http://fcon 1000.projects.nitrc.org/indi/abide/
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reconstruct both right and left cortical hemispheres for each subject from T1-
w MRI. Then we parcellated each cortical hemisphere into 35 cortical regions
using Desikan-Killiany Atlas. For each subject, we generated na = 4 cortical
morphological networks: C1 denotes the maximum principal curvature brain
view, C2 denotes the mean cortical thickness brain view, C3 denotes the mean
sulcal depth brain view, and C4 denotes the mean of average curvature. For SGE
parameters, we set λ = 10. For both LLE and SGE, we used nested grid-search
to estimate the low dimension of the feature embedding (9 for SGE and 50 for
LLE).

Method evaluation and comparison methods. We compared our method
with three state-of-the-art methods: (RAW) where we directly input the raw
connectomic brain features, (t-test) where we perform dimensionality reduction
using statistical feature selection, and (LLE) where we perform a local linear em-
bedding of the connectomic features to produce a compact and low-dimensional
representation of feature vectors. Since both CON and HON feature vectors
are high-dimensional, we propose a preliminary dimensionality reduction step
through representing each network by a clustering coefficients (CC) feature vec-
tor. This will allow us to benchmark our method against the recent connectomic
classification framework proposed in [8] where they first concatenated the clus-
tering coefficients of the functional HON (CC(HON)) and CON features (i.e.,
CC(HON) + CON), then performed t-test for feature selection to train an SVM
classifier for Alzheimer’s disease diagnosis. We further evaluated all methods us-
ing combinations of different feature types: (1) HON, (2) CON, (3) CC(HON),
(4) HON + CON, and (5) CC(HON) + CON. All results are presented in Table
1 and Fig. 2. Our method produced the best ASD/NC classification accuracy
(61.76%) when using (CC(HON) + CON) features, which largely outperformed
t-test using (CC(HON) + CON) as in [8].

4 Conclusion

We proposed a sparse graph learning framework for classifying disordered brain
connectivities based on the morphology of cortical hemispheres. Specifically, we
estimated a local embedding of high-order and low-order morphological brain
networks for distinguishing between autistic and healthy brains. Given that mor-
phological brain changes are subtle in ASD patients, our results are promising.
Instead of performing the local embedding of data points for each feature type
independently, we will further extend our method to jointly embed different
feature types nested in multiple views of the same manifold (e.g., ASD data
manifold).

References

1. Lord, C., Cook, E.H., Leventhal, B.L., Amaral, D.G.: Autism spectrum disorders.
Neuron 28 (2000) 355 – 363

17



Fig. 2: ASD/NC classification accuracies for our method (SGE) and other com-
parison methods using combinations of different connectomic feature types. We
compared our method with three state-of-the-art methods: (RAW) where we
directly input the raw connectomic brain features, (t-test) where we perform
dimensionality reduction using statistical feature selection, and (LLE) where
we perform a local linear embedding of the connectomic features to produce a
compact and low-dimensional representation of feature vectors. Our method pro-
duced the best ASD/NC classification accuracy when using (CC(HON) + CON)
features, which significantly outperformed t-test using (CC(HON) + CON) as
in [8].

2. Anagnostou, E., Taylor, M.J.: Review of neuroimaging in autism spectrum disor-
ders: what have we learned and where we go from here. Molecular Autism 2 (2011)
4

3. Philip, R.C., Dauvermann, M.R., Whalley, H.C., Baynham, K., Lawrie, S.M., Stan-
field, A.C.: A systematic review and meta-analysis of the fmri investigation of
autism spectrum disorders. Neuroscience Biobehavioral Reviews 36 (2012) 901 –
942

4. Stanfield, A.C., McIntosh, A.M., Spencer, M.D., Philip, R., Gaur, S., Lawrie, S.M.:
Towards a neuroanatomy of autism: A systematic review and meta-analysis of
structural magnetic resonance imaging studies. European Psychiatry 23 (2008)
289 – 299 Neuroimaging.

5. Brown, C., Hamarneh, G.: Machine learning on human connectome data from
MRI. arXiv:1611.08699v1 (2016)

6. Cauda, F., Costa, T., Nani, A., Fava, L., Palermo, S., Bianco, F., Duca, S., Tatu, K.,
Keller, R.: Are schizophrenia, autistic, and obsessive spectrum disorders dissociable
on the basis of neuroimaging morphological findings?: A voxel-based meta-analysis.
Autism Research (2017)

7. Khundrakpam, B.S., Lewis, J.D., Kostopoulos, P., Carbonell, F., Evans, A.C.: Cor-
tical thickness abnormalities in autism spectrum disorders through late childhood,
adolescence, and adulthood: A large-scale mri study. Cerebral Cortex 27 (2017)
1721

8. Chen, X., Zhang, H., Gao, Y., Wee, C.Y., Li, G., Shen, D., the Alzheimer’s Disease
Neuroimaging Initiative: High-order resting-state functional connectivity network
for mci classification. Human Brain Mapping 37 (2016) 3282–3296

9. Elhamifar, E., Vidal, R.: Sparse manifold clustering and embedding. (2011) 55–63
10. Mueller, S.G., Weiner, M.W., Thal, L.J., Petersen, R.C., Jack, C., Jagust, W.,

Trojanowski, J.Q., Toga, A.W., Beckett, L.: The Alzheimer’s Disease Neuroimaging
Initiative. Neuroimaging Clinics of North America 10 (2005) 869–877

18



Topology of surface displacement shape feature
in subcortical structures
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Abstract. The shape of anatomical structures in the brain has been
adversely influenced by neurodegenerative disorders. However, the shape
feature covariation between regions (e.g. subfields) of the structure and
its change with disease remains unclear. In this paper, we present a first
work to study the topology of the surface displacement shape feature via
its persistence homology timeline features and model the polyadic inter-
actions between the shape across the subfields of subcortical structures.
Specifically, we study the caudate and pallidum structures for Shape
Topology change with Parkinson’s disease. The shape topology features
show statistically significant group level difference and good prediction
performance in a repeated hold out stratified training experiment. These
features show promise in their potential application to other neurologi-
cal conditions and in clinical settings with further testing on larger data
cohorts.

Keywords: Topological data analysis, shape topology, Parkinson’s dis-
ease, caudate, pallidum

1 Introduction

Neurodegeneration in Parkinson’s disease (PD) has shown morphology change
in subcortical (deep gray matter, substantia nigral area) structures where shape
[4, 2] of the structures was found to be adversely affected in Parkinson’s patients.
Additionally, topology of functional and structural networks has shown strong
differences in Parkinson’s patients in comparison to healthy individuals. How-
ever, little is known for the covariation of shape across the subfields of anatomical
structures in the brain. This highlights the need to study the topology of the
shape networks in brain subcortical structures. In this work, we study the topol-
ogy via a novel topology data analysis method and test the features for their
ability to differentiate between groups, and utility as a disease marker. Addition-
ally, we compare these novel features with classical network features commonly
studied in the scientific literature. On the lines of our previous work [2] we study
the caudate and pallidum structures in both hemispheres.

The shape of an object is the geometry information retained after removal
of position, orientation, and scaling (size) of an object. The change in shape of
anatomical structures has been previously observed in our work with Parkin-
son’s disease [2]. The structures inside the brain are closely located and often
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have touching boundaries. The shape change or deformation on one surface (e.g.
medial boundary of caudate) is expected to influence the other surfaces (e.g.
lateral boundary of the caudate) of the structure. This leads us to question, Is
there an interaction of shape change between the surface subfields of a structure
?. We model this question as a topological data analysis problem where we study
the topology of the surface displacement (SurfDisp) shape feature indexed on
the geometry (nodes, group of vertices) on the structure. It is important to note
that we do not develop a new shape feature, rather, our focus is to study the
co-variation of shape and derive topological features for this information.

In this work, we address this question by studying the inter-regional co-
variation of shape in the subcortical (deep gray matter) structures in the brain
due to neurodegeneration. To this end, we apply the previously developed shape
analysis framework and further model the topology of the network of interac-
tion between subfields on the structure. The surface deformation based SurfDisp
shape feature is our signal of interest where the difference in SurfDisp is a mea-
sure of covariation (similarity) between two regions within the structure. We
compute the multiscale homology feature (persistence homology) of the induced
Vietoris-Rips simplicial complex on the underlying topology of the SurfDisp net-
work. We present experiments to test the ability of these features to differentiate
between the disease and healthy groups on a group level and correctly classify
previously unseen subjects.

2 Methods

The central aim of this work is to quantify the inter-regional covariation of
shape between the surface subfields within the subcortical structures via the
shape topology features. These features utilize the SurfDisp data as their signal
of interest and model the topology of shape in brain structures. Here we describe
each module of our pipeline followed by the statistical analysis and classification
experiments.

2.1 Shape feature

The SurfDisp shape feature is obtained via a template injection approach where
a population average template for each structure is injected into the surface of
corresponding structure in each subject via non linear registration. This results
in vertex wise correspondence between the surfaces of the template and target
subjects. Further, the vector between the vertices of the reference (template) and
the target surface is projected along the template surface normal to obtain the
SurfDisp feature. The complete mathematical details of the SurfDisp method are
available in our prior work in analysis of shape change in subcortical structures
[2]. Specifically, for a structure with m vertices we obtain a surface displacement
si at each vertex for a total of m values per subject.
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2.2 Shape topology

The shape topology models the polyadic (many-to-many) interaction between
the subfields on the surface of subcortical structures for covariation of shape
(SurfDisp). To obtain such information we first obtain a reduced dimensionality
representation of the shape data via adaptive parcellation, followed by a net-
work filtration computed for each structure to obtain the homology of the shape
topology space. The workflow is visually represented in the figure 1.

Adaptive Parcellation: The SurfDisp data inherently resides in a high dimen-
sional space with large number of vertices per structure in comparison to the
number of subjects in the data cohort. In order to mitigate the effects of curse
of dimensionality and retain the computational tractability of the persistent
homology features we perform adaptive parcellation by computing a patchwise
averaged representation of the surface. In this, we begin by computing n patches
(represented by their centroids) on the surface of the structure of the template
as clusters of neighbouring vertices where 3D coordinates of a vertex form the in-
put. The averaging is based on the assumption that neighbouring vertices exhibit
similar form of shape change which differs from far and distant vertices. For each
patch we compute the average SurfDisp value si resulting in n values per sub-
ject. As a result, m SurfDisp values (one per vertex) are converted into n << m
value (one per patch). The resultant matrix (subject × features) acts as an in-
put to the persistent homology computation pipeline as outlined below. For each
subject with n patches, we compute the distance dij = si − sj , i, j = 1, 2, · · · , n
resulting in a n × n square symmetric distance matrix D yielding a weighted
undirected graph G.

Network Filtration: In complex network analysis, the threshold to obtain a bi-
nary graph from a weighted graph is a parameter often selected based on the
suitability to the application at hand, thus, limiting its generalizability. To cir-
cumvent this issue, we construct a network filtration with a monotonically in-
creasing set of threshold values to obtain a set of binary undirected networks with
different levels of network sparsity. This approach has the advantage of provid-
ing a complete set of network topology characteristics from a fully disconnected
network to a fully connected network.

A weighted undirected brain graph G is thresholded at a value εk to yield
a binary undirected graph Gk. Upon changing the threshold ε1 < ε2 < · · · <
εk < · · · < εn we get a hierarchical sequence of n binary undirected graphs
G1 ⊆ G2 ⊆ · · · ⊆ Gk ⊆ · · · ⊆ Gn termed as a Network Filtration. A graph
originates from a distance matrix D where, each entry dij is the connection
strength between the nodes i and j. EachD is converted into an adjacency matrix
Ak where, {aij = 1|dij < εk, 0 otherwise} for a chosen threshold εk giving the
graph Gk. We compute the features of nodal degree, clustering coefficient and
local efficiency for each network in the filtration. For a detailed mathematical
description of these features, the reader is guided to the seminal work by Rubinov
and Sporns [7].

21



The inter-patch distance for each subject varies depending on the brain size
rendering the graph filtration generated based on the raw distance values in-
fluenced by the scale of the overall brain size in addition to the relative inter-
regional distances whose alterations with disease are of interest. Thus, in order
to overcome such scale-related differences, we normalize the values of the inter-
patch distance for each individual to the range of [0, 1] prior to the generation
of a graph filtration. This enables a comparison of the network and topology
features across subjects and groups by potentially reducing the affect of scale
variation of the brain size.

2.3 Persistent Homology

The central idea behind the theory of persistent homology (PH) is to build a
sequence of nested subsets on a space of simplicial complexes, studied at different
resolutions. For our work, the Vietoris-Rips (V R) complex completely defined by
the underlying 1-skeleton is induced on a symmetric distance matrix of pairwise
distances between points in a point cloud.

A V R complex is defined on a metric space M for a specific distance value
γ by forming a k-simplex for every finite set of k + 1 points that has diameter
at most γ. For a set of k nodes in the point cloud, the V R complex has at most
(k − 1) simplices, enabling the geometry networks to obtain higher dimensional
interactions limited in binary networks to 1-dimensional simplices (edges). Mono-
tonically increasing values of the scale parameter εk lead to a V R filtration where
V Rε1 ⊆ V Rε2 · · · ⊆ V Rεk · · · ⊆ V Rεn . For each filtered persistence module of
the V R complex we obtain the tuples (bi, di), with bi < di commonly known as
a birth-death pairs of a k-dimensional simplex in the filtration. The length di−bi
provides information of persistence of a k-simplex where long persistence times
are suggestive of signal and short persistence times indicate towards noise.

Persistence diagrams: A persistence diagram (PDia) is a two dimensional repre-
sentation of the birth and death times of the k-simplices in a given point cloud,
where the horizontal axis is the birth time bi and the vertical axis is the death
time di > bi. Each tuple (bi, di) for a simplicial complexes is represented as a
point in the 2-dimensional space. An overlay of persistence diagrams from two
different point clouds enables comparison of two point clouds where a strong
topological difference will be visible as a segregation of points in the PD space,
and a strong overlap of points would suggest a topological similarity between
the point clouds. Informally, a PD is a scatter plot of the persistence timelines
where the x-axis is the birth time and the y-axis is the death time.

Persistence Landscapes: A persistence landscape (PL) for each {(bi, di)}ni=1 is
a sequence of functions λk : R → [0,∞], k = 1, 2, 3, . . . where λk(x) is the k-th
largest value of {fbi,di(x)}ni=1 [1]. For every birth-death pair (b, d) we define a
piecewise linear function f(b,d) : R→ [0,∞] such as:
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f(b,d) =





0, ifx 6∈ (b, d),

x− b ifx ∈ (b, b+d2 ],

−x+ d ifx ∈ ( b+d2 , b).

For a set of persistence landscapes λ1, . . . , λN we compute the average land-
scape as λ̄ =

∑N
j=1

1
N λ

j .

Persistence Landscape Kernel: The distance between two persistence landscapes
L = {Lk} and L′ = {L′k} can be obtained as the Lp norms for 1 < p <∞ which
is defined as,

‖Lk − L′k‖p =

[
K∑

k=1

∫
‖Lk − L′k‖pp

] 1
p

(1)

and for p = 2, the L2 distance between two persistence landscapes acts as a
kernel metric between them named as a PL kernel [1].

Persistence Scale Space Kernel: The persistence scale space kernel (PSSK) [6]
represents the multiset of points in a persistence diagram as a sum of dirac
delta functions centered at each point. This enables the representation of points
in persistence diagrams in a Hilbert space thereby supporting computation of
a kernel between two point. Briefly, for two persistence diagrams F and G we
compute the PSSK kernel (kσ(F,G)) as:

kσ(F,G) =
1

8πσ

∑

p∈F,q∈G
exp−

‖p−q‖2
8σ − exp−

‖p−q̄‖2
8σ (2)

where each p = (bi, di) , q = (bj , dj) and q̄ = (dj , bj). For two persistence
timelines represented as persistence diagrams we can compute the kernel matrix
between all data groups.

2.4 Experiments

We tested the classical network features and persistence homology (PL & PDia)
features for group level difference and their ability to predict previously unseen
subjects in experiments as outlined below.

Group difference analysis: For the two groups of persistence landscapes L1, . . . ,LN
and L1, . . . ,LM , let δ be the true Lp distance between their average PLs, LN
and LM . We permute the group labels and compute the group level average
landscapes LN and LM and find the corresponding Lp distance between them.
The p-value of the statistical test equals the proportion of random permutations
in which the distance between LN and LM is greater than the true difference.

For the classical network features of nodal degree, local efficiency and clus-
tering coefficient for the graphs in the filtration for each subject, we test the
group level difference between the features in the two groups in a Hotelling’s T2
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Fig. 1. Method workflow for the shape topology networks.

test in a permutation testing experiment (2000 permutations) after PCA dimen-
sionality reduction into a reduced dimensionality space. The experiment tests
for the hypothesis that the feature values originate from two distributions with
same mean value, rejecting the hypothesis at α = 0.05 and p-value < 0.05.

Classification experiment: To test the ability of the network and PH features to
correctly classify unseen subjects, we trained a kernel support vector machine
classifier with a radial basis function (RBF) kernel for the complex network
features, the PL kernel for the PL features and the PSSK kernel for the PDia
features. The classifier was trained in a random and repeated holdout stratified
training experiment with parameter tuning for the RBF and PSSK kernels. Re-
sults for the accuracy, sensitivity, specificity and F1-measure are reported for
each classification experiment.

Computational tools: We input the distance matrices for the geometry networks
in the package Perseus with the parameter (distmat) to compute the PH of the
Vietoris-Rips complex for each brain point cloud from the inter-patch distance
matrices [5]. We obtain birth-death pairs (bi, di) for the k-dimensional simplices
for k = 0, 1, 2, 3. A recent persistence landscapes toolbox was released for re-
search use by [1] enabling computation and statistical inference of the persistence
landscapes. The number of landscapes λi varies dependent upon the underlying
persistence diagrams which inherently depend on the birth-death pairs (bi, di).
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Further, we perform permutation testing on the persistence landscapes in the
two groups for 2000 random group assignments.

2.5 Imaging and Demographics

Imaging data for this work was obtained from the publicly available database
provided under the Parkinson’s Progressive Markers Initiative (PPMI ). Detailed
protocol for image acquisition and quality control for the study is available at
the website www.ppmi-info.org. The two groups with De Novo PD patients (n
= 189, age = 68.02±4.77, 115M/74F) and healthy controls (CN) (n = 137, age
= 63.85±7.46, 75M/62F) were selected and analysed through the method as de-
scribed above. The original T1 MRI images were first preprocessed to obtain the
segmentation labels for the subcortical structures via a multi-template registra-
tion based segmentation method (FS+LDDMM [3]). The segmentation outlines
and surfaces were quality controlled prior to the computation of SurfDisp shape
feature.

3 Results

The homology of the SurfDisp feature only had 0-dimensional PH features,
higher dimensional homology features were not present in the SurfDisp networks
for all structures. The persistence landscapes showed statistically significant dif-
ference between the two groups for all structures (table 1). The local efficiency
(L-caud,L-Pall), clustering coefficient (R-caud) and nodal degree (L-pall) were
significantly different between the two groups. The PL kernel showed poor per-
formance in classification experiments, on the contrary, the PSSK kernel showed
good performance (ACC=74.9, 75.1) for left and right pallidum (table 2). The
classical network features were unable to correctly classify subjects in the two
groups (table 3).

Table 1. Group level difference performance of the surface displacement network fea-
tures in the permutation testing experiment to differentiate Parkinson’s disease and
healthy groups.

Feature Caudate Pallidum
L R L R

Persistence Landscape β0 0* 0* 0* 0*
Local Effficiency 0.030* 0.333 0.0064* 0.482
Clustering Coefficient 0.80 0.028* 0.121 0.261
Nodal Degree 0.231 0.003 0.049* 0.5829
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Table 2. Classification performance of persistence homology features of surface dis-
placement networks in Parkinson’s disease.

PL
Sens Spec F1 Accuracy

lcaud 0.495 0.510 0.615 49.753
rcaud 0.503 0.471 0.618 49.727
lpall 0.495 0.494 0.613 49.506
rpall 0.496 0.527 0.617 50.156

PSSK
Sens Spec F1 Accuracy

lcaud 0.533 0.473 0.642 52.195
rcaud 0.465 0.480 0.585 46.766
lpall 0.883 0.145 0.847 74.91
rpall 0.886 0.141 0.852 75.01

caud: caudate, pall: pallidum
PL: persistence landscape kernel,
PSSK: persistence scale space kernel,
Sens: sensitivity, Spec: specificity,
F1: F1-measure, Acc: accuracy.

Table 3. Classification performance of classical network features of surface displace-
ment networks in Parkinson’s disease.

Sens Spec F1 nPCs Acc

lc
a
u
d 2 0.603 0.425 0.661 63.920 55.524

3 0.568 0.466 0.611 8.420 54.095
4 0.567 0.553 0.653 50.850 56.333

rc
a
u
d 1 0.471 0.678 0.590 82.560 52.610

2 0.571 0.381 0.599 11.850 52.067
3 0.528 0.547 0.619 61.190 53.333

lp
a
ll

1 0.595 0.466 0.662 49.030 56.029
2 0.686 0.331 0.675 5.900 59.105
3 0.544 0.519 0.630 47.010 53.724

rp
a
ll

1 0.499 0.508 0.592 36.740 50.143
2 0.372 0.650 0.433 3 44.571
3 0.530 0.514 0.619 34.640 52.552

1) Clustering Coefficient, 2) Nodal Degree,
3) Local Efficiency
Sens: sensitivity, Spec: specificity,
F1: F1-measure, Acc: accuracy.

4 Discussion & Conclusion

In this work, we aimed to quantify the inter-regional covariation of shape between
subfields of subcortical structures. To this end, we computed the persistence ho-
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mology and classical network analysis features for SurfDisp data indexed on the
surface of the structures. It is interesting to note that the SurfDisp data on the
subcortical structures only showed a 0-dimensional homology, whereas, higher
dimensional homology was not present with the Vietoris-Rips complex. This can
be attributed to the small distribution of values in the surface displacement data,
where the 0-dimensional homology is present and the 1,2 &3 dimensional homol-
ogy components are not present. Additionally, we can infer that the SurfDisp
point cloud connectivity grows through the filtration in a single large connected
component, possibly attributable to small spread of SurfDisp values in the data
space.

The focus of this work was to test performance of the PH features in com-
parison to classical network features. In the statistical experiments, significant
group level difference was found in the persistence landscapes and some network
features for the structures. However, the classification performance was subpar
and was unable to correctly predict previously unseen subjects. However, the
PSSK kernel for the right and left pallidum showed good performance to cor-
rectly classify subjects. This suggests that the PL features contain information
that is distinguishable on a group level, however, share a strong overlap for
it to identify individual subjects. Thus, suggesting that the approximation of
the persistence diagrams to persistence landscapes potentially leads to loss of
information, which is otherwise captured by the PSSK kernel.

In this work our goal was to quantify and study the inter-regional co-variation
of shape change in subcortical structures with brain abnormalities. The topology
of the underlying data space was quantified in the persistence homology features
and studied for their strengths to identify group level and subject level differences
due to brain abnormalities. The results suggest a robust ability of the method and
its derived features to differentiate on a group level. The features did not show
a consistent and strong performance to predict individual subjects suggestive of
wide variability between subjects overpowering the differences between subjects.
Future work on bigger data cohorts is expected to enhance the subject level
prediction of disease conditions. The feature is sensitive to disease and brain
abnormalities as it is able to successfully differentiate between groups, where, on
average, large changes can be observed. However, the prediction of disease via
correct classification of individuals depends upon the sensitivity of the feature
to changes within a subject.

The PH features computed in the current work showed moderate perfor-
mance to predict individual subjects in a machine learning model. This can be
associated with the averaging of features into small number of patches to obtain
connectivity between SubCortical surface ROIs. Further, the surface displace-
ment feature has both outward (positive) and inward (negative) deformation of
the surface. Thus, smaller patches are needed to avoid the averaging affect on
large patches potentially reducing the sensitivity of the SurfDisp data. In the
current work, we limited to large patch size due to the limits of tractability of
the persistence homology computation. Further development of computation-
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ally efficient algorithms would greatly solve this limitation is expected to yield
state-of-the-art performance in prediction of disease.

This is a first work to study the persistence homology of a shape feature for
subcortical structures and can potentially benefit from newer methodological
extensions. We studied the SurfDisp shape feature, however, the general nature
of the Shape topology method enables its applicability to other shape features
such as spherical harmonics, initial momentum an the like. Further extensions
to include more complex distance functions or better homology features can
potentially improve it application in clinical settings.
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Abstract. Skin conditions represent an enormous health care burden
worldwide, and as datasets of skin images grow, there is continued in-
terest in computerized approaches to analyze skin images. In order to
explore and gain insights into datasets of skin images, we propose a
graph based approach to visualize a progression of similar skin images
between pairs of images. In our graph, a node represents both a clin-
ical and dermoscopic image of the same lesion, and an edge between
nodes captures the visual dissimilarity between lesions, where dissimi-
larity is computed by comparing the image responses of a pretrained
convolutional neural network. We compute the geodesic/shortest path
between nodes to determine a path of progressively visually similar skin
lesions. To quantitatively evaluate the quality of the returned path, we
propose metrics to measure the number of transitions with respect to
the lesion diagnosis, and the progression with respect to the clinical 7-
point checklist. Compared to baseline experiments, our approach shows
improvements to the quality of the returned paths.

Keywords: Graph geodesics, skin lesions, visualizing similar images

1 Introduction

Globally, skin conditions are the fourth most common cause of healthy years
lost due to disability [6], and represent the most common reason for a patient to
visit their general practitioner in studied populations [16]. Skin conditions such
as malignant melanoma, a common cancer, can be fatal [14]. Many groups rec-
ognize the potential for computerized systems to analyze skin lesions and help
reduce the burden on health care, and much work has gone into developing com-
puterized systems to diagnose skin disorders [13]. Typically, such systems take
as input a skin lesion image, and output either a discrete label or the probability
that this lesion has a particular diagnosis. For example, Estevan et al. [5] used a
human designed taxonomy to partition clinically similar images into classes that
have a similar number of samples. They fine-tuned a Convolutional Neural Net-
work pretrained over ImageNet [15] to classify skin lesions, and achieved results
comparable to human dermatologists. While knowing the probability that the
image contains a particular type of skin lesion is a worthwhile goal, a disadvan-
tage to this approach is that it is a “black box”, where the user gains no insights
into the automated diagnosis or of the underlying dataset of skin images.
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2 Graph Geodesics to Find Progressively Similar Skin Lesion Images

A different approach from classification that offers some insights into the
dataset or diagnosis is to adopt an image retrieval based approach. For example,
Bunte et al. [3] extracted colour features from clinical skin images, learned a
supervised transformation of these features, and retrieved images in a dataset
based on the k nearest neighbours to these features. These returned images can
be displayed to the user, giving insights into the appearance of similarly diseased
images and allow the diagnosis to be inferred. Kawahara et al. [10] displayed a
network graph visualization based on the nearest neighbours to a single query
image, which allow users to efficiently search the space of similar lesion images.

Another approach to visualize general images was proposed by Hegde et
al. [7], where rather than retrieving the k nearest images to a single query im-
age, their approach uses two query images (a source and target) to retrieve a list
of images that progress in visual similarity between the two images. They accom-
plish this by representing images as nodes in a graph, where the edges between
nodes indicate their pair-wise distance, and the geodesic (shortest path) between
source and target nodes represents a visually smooth progression of images. A
similar approach for general images was recently implemented online [12], which
is based on an experimental visualization tool as part of Google Arts and Cul-
ture [11]. In other works, representing images as nodes to find an optimal path
between nodes has been used to guide subject-template brain registration in MR
images [8].

In this work, we apply a similar method to find images of skin lesions that
visually progress between a source and target lesion. This visualization approach
may be useful for clinicians who wish to find reference images of hard to classify,
visually challenging “borderline” cases across types of skin diseases (e.g., note
the visually challenging aspects in distinguishing clark nevus from melanoma in
Fig. 1 bottom row). Another use may be to show or predict the visual progression
over time between a low-risk benign lesion to a malignant lesion (e.g., progression
in Fig. 3 bottom row). This may give insights into the progression of the disease
(e.g., Clark/Dysplastic nevi is potentially a precursor to melanoma and studies
estimate that 20-30% of melanomas come from nevi [4]), or serve as a useful
reference for patients to monitor and compare the progression of their own lesion.
In these potential applications, the target images could be from either a set
of predefined reference images, or the geodesics to each of the nearest unique
diseases could be automatically shown.

To the best of our knowledge, this is the first work that has applied geodesic
paths to visualize skin lesion images. In contrast to previous work [7,8,11,12], we
propose to let each node in our graph represent images from two modalities (a
dermoscopic and a clinical image), where the edge weights are influenced by both
types of images. We apply an exponential function to the pair-wise dissimilarity
measures, and show how this results in longer paths of higher quality without
risking disconnected graphs. Finally, we propose measures to quantitatively eval-
uate the quality of our paths, which is lacking in prior work. These proposed
quality measures are particularly important as without them, we would need to
qualitatively inspect each path.
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Graph Geodesics to Find Progressively Similar Skin Lesion Images 3

2 Methods

A skin lesion can be captured by both a dermatoscope (producing a dermoscopic
image xd), and a photo camera (producing a clinical image xc), where the der-
moscopic images show a more standardized view of the lesion, and the clinical
images are non-standardized and often show additional contextual information
(e.g., the body part the lesion is on) not available in the dermoscopic images.
Given a dataset of skin lesions, the i-th skin lesion is represented by a dermo-

scopic and clinical pair of images (x
(i)
d , x

(i)
c ). We create a graph where each pair

of images (x
(i)
d , x

(i)
c ) are represented by a single node v(i), and an edge e(ij) en-

codes the dissimilarity between nodes i and j. Our goal is to find a set of nodes

(v
(s)
0 , v

(i)
1 , . . . , v

(j)
R−1, v

(t)
R ) of an unknown length R such that the initial node v

(s)
0

is a given source node (the superscript identifies the lesion, and the subscript
indicates the position in the returned path), the R-th node is a given target node

v
(t)
R , and the intermediate nodes (v

(i)
1 , . . . , v

(j)
R−1) represent lesions that visually

progress between the source and target nodes. We find these intermediate nodes
using Dijkstra’s algorithm, which computes the geodesic between the source and
target and returns a path of nodes representing a progression of visually similar
lesions.

The key components that we now examine in detail are how to: extract
image features that capture the salient properties of skin images, compute local
dissimilarity between pairs of skin lesion images, weigh and connect the node
edges using multi-modal images, and quantitatively evaluate the quality of the
returned paths.

Skin Images as Deep Pretrained Neural Nets Responses. The responses
of skin images with deep convolutional neural networks pretrained over Ima-
geNet [15] have shown to be effective feature vectors for skin lesion classifi-
cation despite the differences in appearance between skin lesions and natural
images [9]. We use a similar approach to compute feature vectors as in [9], and
for a particular image, extract the responses from the first fully connected layer
of VGG16 [17], and average the responses over a set of predefined image aug-
mentations,

Φ(x)m =
1

|Π|
∑

π∈Π
φ(π(x− µ))m (1)

where π is a function to augment an image (e.g., left-right flip); Π is the set
of |Π| number of image augmentations; φ(·)m extracts the m-th response of the
first fully connected layer of VGG16; and, µ represent the mean pixel over the
training data from ImageNet, which is subtracted from the skin lesion image x.
The resulting feature vector Φ(x) represents a single lesion image by averaging
the augmented responses over a single image, without increasing the dimensions
of the feature vector.
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4 Graph Geodesics to Find Progressively Similar Skin Lesion Images

Fig. 1: An example random path (top) and geodesic returned from the proposed
method (bottom), where the leftmost and rightmost image represent the source
and target nodes, respectively. The dermoscopic image is shown above the clinical
image in each row. The magenta bar indicates the dissimilarity between adjacent
images, where a higher bar indicates that they are more dissimilar.

Local Image Dissimilarity. Given two feature vectors u,v ∈ RM (which rep-
resent the responses of two skin images), we compute the dissimilarity between
them as the cosine distance raised to the p-th power,

D(u,v) =


1−

∑M
i uivi√∑M

i u2i

√∑M
i v2i



p

(2)

where setting p 6= 1 non-linearly changes the dissimilarity between vectors. By
using a high p (e.g., p = 4), we assign very low values to edges connecting simi-
lar images, thus encouraging geodesics to pass through nearby nodes of similar
images, avoiding very short paths even in the case of complete graphs, i.e., fully
connected graphs (further discussed in the Results section). Other distance mea-
sures are possible (e.g., L1, L2), and we found them to give empirically similar
results. Fig. 1 shows the dissimilarity between pairs of images (dissimilarity is
displayed in magenta using p = 1 for clarity).

Multi-modal Edge Weights. We define the edge weight e(ij) between nodes
i and j as a weighted sum based on both the dermoscopic and clinical images,

e(ij) = αD(Φ(x
(i)
d ), Φ(x

(j)
d )) + (1− α)D(Φ(x(i)c ), Φ(x(j)c )) (3)

where D(·) is a function that computes the dissimilarity (Eq. 2) between the
feature vectors Φ(·) computed in Eq. 1; and α weighs the influence of the der-
moscopic and clinical images (0 ≤ α ≤ 1). Increasing α causes an edge to be
more influenced by the dermoscopic image than the clinical image, which may
be desired as dermoscopic images contain more salient lesion properties.
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Graph Geodesics to Find Progressively Similar Skin Lesion Images 5

Node Connectivity. To form the graph, we must decide on the connectivity of
nodes. This can be done by connecting the k nearest neighbours (where nearest is
defined via Eq. 2) to each node with an edge. However, choosing k is challenging
as a large k (e.g., a complete graph) increases computational complexity and can
lead to very short paths being returned when a direct edge exists between any
pair of source and target nodes. Too small a k can lead to disconnected graphs,
where no path exists between the source and target nodes. In the Results, we
experiment with different values of k and show that by setting a high value of p
in Eq. 3, the returned paths remain longer even in the case of complete graphs.

Surrogate Measures of Path Quality. While we provide qualitative results
through visualizing the returned paths (Fig. 3), we also propose the following
measures to quantitatively evaluate the quality of the returned paths. We define
a quality path as a smooth visual progression of images. However, this definition
is hard to precisely define and directly measure. Thus we propose a surrogate
measure that uses the diagnoses of the lesions, as skin lesion datasets are often
accompanied with a corresponding clinical diagnosis y(i) (e.g., melanoma, nevus),
indicating the disease type of the i-th lesion x(i), where y(i) is an attribute of
node v(i). Our assumption is that lesions with the same diagnosis will likely be
visually similar, and that a high quality path will have a smooth progression
with respect to the lesion diagnosis. In order to give a high cost to paths that
frequently change neighbouring labels, we define the transition cost as,

trans(v
(s)
0 , v

(i)
1 , . . . , v

(j)
R−1, v

(t)
R ) =

1

R− 1

R∑

r=1

(
1− δ(y(a)r − y(b)r−1)

)
(4)

where R is the number of nodes in the returned path; and y
(i)
r indicates the

skin lesion diagnosis for the r-th returned path node corresponding to node

v
(i)
r (e.g., y

(s)
0 and y

(t)
R correspond to the labels of the source and target nodes

v
(s)
0 , v

(t)
R respectively). The Dirac delta function δ(·) returns 1 if the two labels

have the same class, and 0 otherwise.

Our second surrogate quality measure quantifies the progression of the 7-
point score between the source and target nodes. The 7-point score is a clinical
measure of melanoma based on the visual presence of seven criteria (e.g., ir-
regular streaks) within a lesion. The weighted sum of these seven criteria form
the 7-point score ŷ ∈ Z [1], where ŷ(i) is an attribute of node v(i). We assume
that a quality path will have 7-point scores that smoothly progress from a low
to high score, as higher scores indicate the presence of lesion more indicative of
melanoma (and vice versa). We define the progression cost as,

progress(v
(s)
0 , . . . , v

(t)
R ) =

1

R

R∑

r=1

(
max

[(
sgn(ŷ

(s)
0 − ŷ

(t)
R )(ŷ(i)r − ŷ(j)r−1)

)
, 0
])

(5)
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6 Graph Geodesics to Find Progressively Similar Skin Lesion Images

where sgn(z) returns the sign of the difference between the source and target
node scores,

sgn(z) =

{
1, if z = 0
z
|z| , otherwise.

(6)

This measure returns a cost of 0 if the 7-point score consistently decreases,
increases, or remains constant along the path between the source and target
nodes, and penalizes by the magnitude of the change otherwise. This approach,
however, will always compute a 0 cost if the path only consists of the source
and target nodes. As this is a degenerate case, we ignore the progression costs
for paths of length two when computing results, and note that this measure is
biased to return lower costs for shorter paths, and is thus most informative when
comparing paths with the same number of nodes.

3 Results

Data. We test our proposed approach and surrogate measures using the Inter-
active Atlas of Dermoscopy [2] skin dataset. This dataset contains 1011 cases
of skin lesions, where all but four cases are captured by both a clinical xc and
dermoscopic xd image (in the four cases missing xc, we set xc = xd). Each
case has a class label y that represents a known lesion diagnosis, and a 7-point
score ŷ. The diagnosis y can take on one of the 15 class labels: basal cell car-
cinoma (BCC), blue nevus (BN), clark nevus (CN), combined nevus (CBN),
congenital nevus (CGN), dermal nevus (DN), dermatofibroma (DF), lentigo
(LT), melanoma (MEL), melanosis (MLS), miscellaneous (MISC), recurrent ne-
vus (RN), reed or spitz nevus (RSN), seborrheic keratosis (SK), and vascular
lesion (VL). The 7-point score ŷ ∈ Z ranges between 0 and 7 (in this dataset),
where a higher score indicates the lesion has visual properties more indicative
of melanoma. The lesion diagnosis and the 7-point score are only used to quan-
tify the quality of the returned paths, and are not used to form the graph. We
randomly select a set of 1000 pairs of source and target nodes which are used
across all experiments.

Recovering Synthetic Paths. We start by testing if our proposed approach
can recover the path of images created by a progressive synthetic transformation.
To do this, we crop the image by removing 15% of the pixels at the borders of the
images, and repeat this five times. This progressively enlarges the lesion over a
series of five images. We added these five synthetic images to our dataset, select
the original image as the source and the final synthetic image as the target (p = 4
and k = 30). We find our approach not only recovers all synthetic images, but
it recovers the correct sequence of synthetic images, i.e. in the order they were
synthesized (Fig. 2), indicating that this approach and the feature vectors are
sensitive to scale despite the CNN being trained on images at multiple scales.
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Graph Geodesics to Find Progressively Similar Skin Lesion Images 7

Fig. 2: Synthetic examples: Here the leftmost images represent the source nodes,
which belong to the original (non-enlarged) dermoscopic images in the dataset.
The rightmost images represent target nodes, which were the last of the progres-
sively enlarged images. The returned geodesic path is represented by the images
in between. Note that the returned geodesic included all five synthetic images,
in proper order of increasing enlargement.

Retrieving Paths from a Complete and Non-Complete Graphs. For our
first experiment, in Table 1 row 1.1 (complete graph with p = 1) we report re-
sults using a complete graph (i.e., k = 1011) using only the dermoscopic images
(i.e., α = 1 in Eq. 1) and setting p = 1 in Eq. 3. We observe that when using a
complete graph, the returned paths often consist of only the source and target
nodes as their shared edge yields the shortest path. This experiment highlights
the need to either prune the edges in the graph or modify the edge weights.
Following the approach of [12], we form a new graph where each node is con-
nected to its k = 30 neighbours. Row 1.2 (non-complete graph with p = 1)
shows that restricting the node connectivity increases the number of nodes in
the returned path and improves the transition cost (note that the progression
cost performs worse as it is biased towards paths with fewer nodes, and is thus
most informative when comparing paths with a similar number of nodes).

Paths with Exponential Edge Weights. While decreasing node connectivity
(i.e., lowering k) results in longer paths, care must be taken when choosing k,
as reducing k increases the risk of forming disconnected graphs where no path
exists between a source and target node. Thus instead of pruning edges, our
next experiment (row 1.3 complete graph with p = 4) shows how applying an
exponential function (i.e., p = 4 in Eq. 3) to the dissimilarity function results
in longer paths of higher quality even in a complete graph. By removing the
need to prune graphs (i.e., choose k), we guarantee a path to exist, while still
preventing short paths. If we are not concerned with disconnected graphs, we
can combine edge pruning using k neighbours with the increased p, to match the
computational efficiency of a pruned graph without penalty to quality (row 1.4
non-complete graph with p = 4). For the remaining experiments, we use p = 4
and non-complete graphs with k = 30, as our graphs remained connected.
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8 Graph Geodesics to Find Progressively Similar Skin Lesion Images

Table 1: Quantitative results of the returned paths using the proposed surrogate
quality measures. The Img. column indicates if the input was a dermoscopic
image xd, clinical image xc, or included both. k represents the number of nearest
neighbours used to form edges that connect nodes. Aug. indicates if the image
was augmented or not when forming the image feature vector. Trans., Progress.,
indicates the average and standard deviation transition and progression cost as
defined in the text. Num. Path shows the average and standard deviation number
of nodes in the computed path.

Exp. Img. Aug. p k Ordered Trans. Progress. Num. Path

1.1 xd 7 1 1011 min-path 0.76 ± 0.42 0.10 ± 0.19 2.02 ± 0.13
1.2 [12] xd 7 1 30 min-path 0.64 ± 0.34 0.23 ± 0.26 3.59 ± 0.85

1.3 xd 7 4 1011 min-path 0.56 ± 0.26 0.37 ± 0.20 8.11 ± 2.87
1.4 xd 7 4 30 min-path 0.56 ± 0.26 0.37 ± 0.20 8.12 ± 2.87

1.5 xd 3 4 30 min-path 0.55 ± 0.25 0.35 ± 0.17 9.16 ± 3.62
1.6 - - - - random 0.76 ± 0.19 0.54 ± 0.24 9.16 ± 3.62
1.7 xd 3 - - linear 0.58 ± 0.25 0.44 ± 0.21 9.16 ± 3.62

1.8 xc 7 4 30 min-path 0.65 ± 0.18 0.46 ± 0.20 10.64 ± 5.08

1.9 xd, xc 7 4 30 min-path 0.45 ± 0.24 0.34 ± 0.19 7.90 ± 3.27
1.10 xd, xc 3 4 30 min-path 0.45 ± 0.23 0.34 ± 0.17 8.86 ± 3.73

Comparing Random and Linearly Interpolated Path. In row 1.5 (aug-
mented images) we augment the feature vector with left-right image flips (Eq. 1),
which results in longer geodesics paths and minor improvements to the path
quality. We form a path with an equal number of nodes as those returned in the
geodesic path in the previous experiment (from row 1.5) by randomly sampling
nodes (without replacement). As the labels in our dataset are highly imbalanced,
these random paths give us a baseline quality score (row 1.6 random paths). We
also compare our method by ignoring the graph, and instead using linearly in-
terpolated feature vectors between the source and target feature vectors. These
interpolated feature vectors are uniformly separated to match the number of
returned nodes in row 1.5. The nearest unique neighbour to this interpolated
feature vector is used to form the path. Row 1.7 (linear paths) shows that this
approach yields paths of worse quality when compared to using graph geodesics.
We highlight that the graph geodesic approach has the additional advantage of
automatically determining the number of nodes in the path, whereas the linearly
interpolated approach requires this to be specified (we set it equal to the length
of the geodesic path).

Using Clinical Image Features. In row 1.8 (clinical images) we use only
the clinical image (i.e., α = 0 in Eq. 3) and notice a marked decrease in the
quality of the paths when compared to dermoscopic images. This is expected
since dermoscopic images are more standardized and focused on the lesion, while
clinical images have a non-standard field of view and can capture background
artifacts.
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Graph Geodesics to Find Progressively Similar Skin Lesion Images 9

Fig. 3: Visualizing Paths. The leftmost and rightmost dermoscopic images are the
given source (clark nevus) and target (melanoma) node, where the images in each
row in between them correspond to the computed geodesic/minimal path. Each
row, starting from the top to bottom row, correspond to the following experiments
in Table 1: 1.2 (non-complete graph with p = 1), 1.4 (non-complete graph with
p = 4), 1.5 (augmented images), 1.6 (random paths), 1.7 (linear paths), 1.9
(dermoscopic and clinical images), and 1.10 (full approach). The geodesic of
Experiments 1.9 and 1.10 incorporates clinical images, shown directly below the
dermoscopic images.
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10 Graph Geodesics to Find Progressively Similar Skin Lesion Images

Combining Dermoscopic and Clinical Image Features. In row 1.9 (der-
moscopic and clinical images) we include both the clinical and dermoscopic
images, weighting the dermoscopic images higher (i.e., α = 0.8 in Eq. 3) as
the dermoscopic images better capture the salient lesion features and avoid ir-
relevant background artifacts. The returned paths now respect both imaging
modalities, yielding improvements to the quality of the paths, most noticeable
with transition costs. Finally, in row 1.10 (full approach) we show the full pro-
posed approach, which uses augmented images from both modalities with the
dissimilarity measure raised to the power of p = 4 on a non-complete graph.
While the path quality measures remain similar to the previous experiment, the
total path length increases.

4 Conclusions

We proposed a method to visualize a smooth progression of similar skin lesion
images between two skin lesions. Our graph geodesic based approach applies
an exponential dissimilarity function and considers information from multiple
modalities (clinical and dermoscopic images) to form the graph edges, leading to
longer paths of higher quality. We proposed surrogate measures of path quality
based on the diagnostic labels of the skin lesions to quantitatively assess the
resulting paths. Future work would explore how to improve the feature vectors
that represent the skin images (e.g., fine-tuning the CNN over a skin dataset),
and examine how to make the progression quality measure less sensitive to the
length of the path.
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the donation of a Titan X GPU used in this research. Thanks to Sara Daneshvar
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Abstract. Reconstructing vascular networks is a challenging task in
medical image processing as automated methods have to deal with large
variations in vessel shape and image quality. Recent methods have ad-
dressed this problem as constrained maximum a posteriori (MAP) in-
ference in a graphical model, formulated over an overcomplete network
graph. Manual control and adjustments are often desired in practice and
strongly benefit from indicating the uncertainties in the reconstruction or
presenting alternative solutions. In this paper, we examine two different
methods to sample vessel network graphs, a perturbation and a Gibbs
sampler, and thereby estimate marginals. We quantitatively validate the
accuracy of the approximated marginals using true marginals, computed
by enumeration.

1 Introduction

Vessel segmentation and centerline extraction is a longstanding problem in com-
puter vision [1]. From a medical perspective, segmenting and tracking vessels is
crucial for planning and guiding several types of interventions. Several recent
methods, however, have focussed on reconstructing vessel network graphs [2, 3,
4, 5, 6]. Analysing vascular graphs is expected to give insights into various bi-
ological properties, e.g. the relation between vascular remodeling processes and
neurological diseases or pharmaceutical treatments [7]. These methods formulate
the task as MAP inference in a constrained probabilistic model over a (super-
)graph of candidate vasculature, where the solution encodes the subgraph that is
most likely to represent the underlying vasculature. Variations of this approach
include joint-tasks such as anatomical labeling of vasculature [6] or artery-vein
separation [5].

As in many applications, exploring multiple solutions or even marginal dis-
tributions would be preferable over mere point estimates – either to present
local uncertainty to the end user or to pass it over to the next stage of the pro-
cessing pipeline. An automated reconstruction can be inspected and, if needed,
edited by an expert. In such a workflow, the controlling expert benefits from
an indication of the uncertainty in the presented reconstruction (cf. Fig. 1). To
this end, recent work investigated how to find the m-best diverse solutions to
the MAP problem in conditional random fields (CRFs) to explore a variety of
highly probable assignments [8, 9]. This approach, however, increases the compu-
tational complexity of the discrete optimization further. Alternatively, Markov
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Fig. 1. Illustration of the uncertainty quantification in vasculature graphs from a 2D
retinal image (left). Recent methods reconstruct the network from an overcomplete
graph of candidate vessels (second, graph in green) by calculating the MAP state
(third, graph in red) in a probabilistic model. Approximating marginal distributions
(right) enables us to quantify the uncertainty in the network graph, which is valuable
information for manual inspection and correction. Two examples are indicated with
black arrows: In the first, the model is uncertain whether it is a furcation or a crossing,
while in the second, a connection is not contained in the MAP but still has a high
marginal probability.

chain Monte Carlo (MCMC) methods can be used to sample from probabilis-
tic models [10, 11]. While being well established for many statistical inference
tasks, they are often considered expensive and difficult to parametrize for typ-
ical problems in computer vision. Papandreou and Youille [12] presented the
idea to introduce local perturbations and solve for the MAP estimate of the
perturbed model repeatedly to generate samples. They identify a perturbation
distribution which allows to estimate marginal densities of the original Gibbs
distribution while leveraging the computational efficiency of available discrete
solvers. This idea was extended to a broader problem class in [13], while the
theoretical framework was further developed in [14, 15, 16, 17]. A few empiri-
cal studies investigated the effectiveness of such perturbation models in typical
segmentation problems [15, 18, 19].

In this paper, we extend recent graph-based methods for reconstructing vas-
cular networks that rely on integer progamming. We adapt two sampling ap-
proaches for the underlying probabilistic model, a perturbation sampler based
on [12, 14, 15, 13] and a Gibbs sampler based on [10, 20]. They enable estimates
of marginal distributions and a straight-forward way to quantify uncertainty in
properties calculated from the resulting network graphs. To deal with the diffi-
culty of validating the quality of the approximated marginals, we compare the
approximated marginals to the true marginals, calculated by enumeration.

2 Background

Several recent methods for vessel network reconstruction pose the problem as
MAP inference in a (constrained) probabilistic model over a supergraph com-
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posed of candidate vessels [2, 3, 4, 5, 6]. In short, such a candidate supergraph
is typically constructed by detecting points that are likely to lie on a vessel cen-
terline, composing the nodes v ∈ V of the graph, and then inserting an edge
e ∈ E for each path that connects two nodes in close proximity. The MAP state
then encodes a subgraph and thereby represents which parts of the candidate
supergraph are present in the reconstruction. Calculating this MAP state can be
formulated as an integer linear program (ILP) and solved by a branch-and-cut
procedure. In the remainder of this section, we first describe such probabilistic
model for vessel graphs and its MAP estimator. Details on the particular choice
of candidate graph construction used in this study can be found in Sec. 4.

Probabilistic Model. Given a (directed) candidate graph G = (V,E), we
define a measure of probability P (X = x|Ω, I,Θ) over possible vessel networks
within G, encoded by x ∈ {0, 1}E . These indicator variables then encode whether
an edge e is present in the solution (xe = 1) or not (xe = 0). We denote the set
of feasible solutions as Ω, the image evidence as I and the model parameters as
Θ. The measure of probability can be defined as:

P (x|Ω, I,Θ) ∝ P (Ω|x)
∏

ij∈E
P (xij |I,Θ)

∏

C∈C(G)

P (xC |Θ) , (1)

where P (Ω|x) ∝
{

1 if x ∈ Ω,
0 otherwise

. (2)

We identify three parts: First, P (Ω|x) is the uniform prior over all feasible
solutions. Second, P (xe|I,Θ) is the local evidence for an edge, i.e. the unaries.
Third, P (xC |Θ) corresponds to joint-events C that form higher-level potentials,
and C(G) denotes the set of all events at any possible location within G. xC = 1
indicates that the particular event C occurred.

In [2, 3, 4, 5, 6], these different parts have been chosen depending on the par-
ticular image datasets and target application of the reconstructed vasculature.
For this study, we will impose the following constraints: each node can have at
most one incoming edge and at most two outgoing edges. Furthermore, we do
not allow the solution to contain circles. These three types of constraints define
our Ω. As higher-level events xC , we consider appearance, termination and bi-
furcation in each node, leaving us with at most 3|V | possible events in C(G).
These events can be represented with binary indicator variables xC and a set
of 3|V | auxiliary constraints that tie their state to the original edge variables
x upon which they depend. Note that the number of involved edge variables
of a particular type of event varies with its location within G: For example, a
bifurcation event at node v involves all xe of potential outgoing edges e ∈ δ−(v).
We denote the set of auxiliary constraints necessary for higher-level events as
ΩA in the remainder of this section. The description of both Ω and ΩA in terms
of linear inequalities can be found in the supplement.
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MAP Estimator. Using the bilinear representation of the pseudo-boolean
probability functions P (xij |I,Θ) and P (xC |Θ), we can formulate the MAP
estimator to (1) as ILP:

minimize
∑

(i,j)∈E
wijxij +

∑

C∈C(G)

wCxC (3)

s.t. x ∈ Ω, [x,xC ] ∈ ΩA, x ∈ {0, 1} , (4)

where wij = − log
P (xij=1|I,Θ)

1−P (xij=1|I,Θ) and wC = − log P (xC=1|Θ)
1−P (xC=1|Θ) . The constraint

x ∈ Ω is due to P (Ω|x) and [x,xC ] ∈ ΩA ties auxiliary variables for the events
to the edge variables x. Finally, all variables are binary. This ILP can be opti-
mized with the branch-and-cut algorithm. Certain types of constraints contained
in Ω may consist of an extensive number of inequalities (e.g. the cycle-free con-
straint). In this case, we employ a lazy constraint generation strategy: Whenever
the solver arrives at an integral solution x′, we check for violated constraints in
the corresponding solution, add them if required and reject x′. If no violation
is found, i.e. x′ is already a feasible solution, then it is accepted as new current
solution x∗. For our set of constraints Ω, we use this scheme for the cycle con-
straints, where we identify strongly connected components efficiently with [21]
and add the violated constraints for the cycles within them. All other constraints
for incoming and outgoing edges, as well as auxiliaries can be added to the op-
timization model from the start.

3 Uncertainty Estimation by Means of Sampling

3.1 Perturbation Sampler

Following the work of [12, 14, 15], a perturbation model is induced by perturbing
the energy function of a random field and solving for its (perturbed) MAP state:

P (x̂|I,Θ) = Pγ
(
x̂ ∈ arg min

x∈Ω
E(x; I,Θ) + γ(x)

)
, (5)

where E(x, I,Θ) is the energy function of the random field and γ (x) is the
perturbation. It was shown that if the full potential table is perturbed with IID
Gumbel-distributed samples of zero mean, then the perturbation model and the
Gibbs model coincide [12]. In practice, this is not feasible. The full potential table
may be too large and it destroys local Markov structure, rendering optimization
difficult. However, it was shown in several studies that even first order Gumbel
perturbations yield sufficiently good approximations [12, 15]. In this case, only
the unary potentials are perturbed and hence, the perturbation γ (x) becomes:

γ (x) =

N∑

i=1

∑

l∈L
γli1(xi = l) , (6)

with γki being IID samples from the Gumbel distribution [22] with zero mean and

variance π2

6 , and 1(.) is the indicator function. Sampling from the perturbation
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model then boils down to drawing a new perturbation γ (x) and determining
the new MAP state. Having a procedure to sample efficiently from the model
enables us to estimate marginal distributions of variables (and variable subsets)
as well as derived measures of uncertainty. We refer the interested reader to [12,
13, 14, 15, 16] for further information on perturbation models.

We next derive the first-order perturbed objective for the MAP estimator
in (3). First, we note that two states will need two independent gumbel samples
γ1ij , γ

0
ij according to (6). Our MAP estimator, however, uses only one binary

variable to encode both states. We use again the bilinear representation of the
pseudo-boolean functions to find that perturbing the unaries adds a difference
of the two independent gumbel samples, i.e. ∆γij = (γ1ij − γ0ij), to the original
weight wij . The first-order perturbed objective of (3) is thus:

∑

(i,j)∈E
(wij +∆γij)xij +

∑

C∈C(G)

wCxC . (7)

Drawing a sample from our probabilistic model therefore boils down to con-
structing a new perturbed objective (with a new set of ∆γij) and optimizing the
according ILP with the original constraints (4) and (7) instead of (3). This can
be implemented by changing the coefficients of the optimization problem for each
new perturbation. We note that we can warm-start the optimization with the
previous solution and that we can keep previously generated constraints since
they are not depending on the weights but only on the structure of G and thus,
remain valid.

3.2 Gibbs Sampler

As alternative to the perturbation sampling, we employ a Gibbs sampler [10], a
method of the MCMC family. We apply the following two modifications described
in [20] to obtain a metropolized variant of the Gibbs sampler, which is expected
to be more efficient for discrete problems. 1) variables are sampled in random-
scan fashion within each sweep, and 2) the acceptance probability is replaced
with the Metropolis-Hastings acceptance probability

α = min

(
1,

1− π(xe|x\e)
1− π(x′e|x\e)

)
, (8)

where π(xe|x\e) and π(x′e|x\e) are the conditional probabilities of current and
proposed state. To cope with the extra constraints of Ω, we can employ the
same procedures to identify violated constraints as within the branch-and-cut
algorithm. In this case, however, it suffices to check only those constraints which
involve the changed variable(s). Changes that render the state infeasible with
respect to Ω have a zero probability and will thus always be rejected. Auxiliary
variables xC for higher-level events need not to be sampled but can be determined
directly from the current state x using the relationship encoded by the auxiliary
constraints ΩA. After a burn-in period of 1000 sweeps, we run one sweep for
each sample.
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4 Experiments & Results

We conduct our experiments on retinal images [23]. In the first part of this sec-
tion, we detail on the preprocessing, i.e. the candidate vessel graph construction.
In the second part, we then present both quantitative and qualitative results of
the two sampling approaches. We address the difficulty of validating marginal
distribution estimates by computing exact marginals on smaller problem in-
stances, where brute-force enumeration of all states is computationally possible.

Candidate Graph Construction. As a first step, we need to propose vascu-
lature in terms of an overcomplete candidate graph G = (V,E). We rely on the
following scheme to achieve this, which is mainly based on [2, 3, 24]:

1. Centerline detection. We compute a centerline score fcl(I) for the entire im-
age using a regression approach based on [24]. High centerline scores indicate
the presence of the centerline of the vessel.

2. Candidate node selection. We construct a collection of candidate nodes V
by iteratively selecting the locations with the highest value in the centerline
measure map and suppressing its neighbourhood within a radius rsup until
no more locations with a value larger than θT are left.

3. Connection of candidates. Next, we reconnect previously selected candidate
nodes to its N closest neighbours using Dijkstra’s algorithm on the centerline
score map. A connection between two nodes i, j ∈ V then forms an edge
(i, j) ∈ E in the vessel candidate graph. Connections that pass through
a third candidate node are discarded as they would introduce unnecessary
redundance. To save computation time, we limit the maximum search radius
to rs.

In these experiments, we set rsup = 5 px and θT = 0.3 max fcl(I) for the candi-
date selection, and N = 4 and rs = 30 px for the edge construction. We use a
discriminative path classifier to estimate P (xij = 1|I), i.e. how likely edge ij ∈ E
belongs to the graph or not, which is then used to calculate the weights wij . To
this end, we use gradient boosted decision trees with 5 features calculated along
the path: length, tortuosity, cumulative fcl, min fcl and standard deviation of
fcl. Additional details on both centerline regressor and path classifier can be
found in the supplement. For each class of events, appearance, termination and
bifurcation, we introduce one parameter θa, θt and θb as constant weight for the
respective event happening at a given node, and set them to θa = 0.5, θt = 0.1
and θb = 0.1.

Comparison. In order to quantitatively validate the marginals that we ap-
proximate by using the perturbation sampler, we set up a series of 15 small test
graphs with |E| ≤ 20 from the test images of [23], such that we are able to
enumerate all feasible states and thereby obtain exact marginals by brute force.
We then compare these exact marginals to the approximate marginals obtained
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Fig. 2. Comparison of the approximated marginals Q(xi) with the exact marginals
P (xi) calculated by brute force enumeration of all states. Approximates are obtained
from the perturbation sampler (blue), from the Gibbs sampler (red), and from the
raw classifier probability (orange). The figure shows deviation P (xi) − Q(xi) (top
row) and absolute deviation |P (xi)−Q(xi)| (bottom row) of the marginal estimate
with increasing number of samples n. Boxplots denote the median with a black bar, the
mean value with a black dot and outliers with a grey cross. Right column: Scatter
plot of exact marginal probabilities P (xi) versus approximated marginal probabilities
Q(xi). We observe that the perturbation sampler converges to an absolute bias of
about 0.032 on average and has the tendency to overestimate the marginal probabilites
slightly. The Gibbs sampler does not exhibit such a systematic bias, but needs more
samples to reduce its variance. Using the probabilistic output of the local classifier
as an approximate to the marginals is considerably less accurate than both sampling
approaches.

by both perturbation and Gibbs sampler. We solve the ILP of our MAP estima-
tor by the branch-and-cut algorithm of [25] and implement the lazy constraint
generation as callback. We use the default relative optimality gap of 10−4.

In Fig. 2, we compare the approximated marginals from our perturbation
sampler with exact marginals. We sample 10000 samples per case in total and
repeat the experiment 5 times. We observe that the absolute deviation of the
approximated from the exact marginals converges already at about 1000 samples
to an absolute error of |P (xi)−Q(xi)| ≈ 0.032 on average and the perturbation
sampler shows a tendency to overestimate the marginal probabilities. Such a
systematic bias is to be expected, as we apply a low-order perturbation instead
of the (intractable) full perturbation. The Gibbs sampler does not exhibit such
systematic bias, yet shows a larger variance when fewer samples are aquired.
With 10000 samples, its mean absolute approximation error is 0.012 and there-
fore better than the perturbation sampler. Wilcoxon signed-rank tests for each
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Fig. 3. Visualisation of the vascular network graphs overlaid on the (grey-scale) input
image. From left to right: Pixel-based centerline obtained by skeletonizing the ground
truth segmentation, MAP reconstruction, approximated marginals using the perturba-
tion sampler, and the Gibbs sampler. The colorbar applies only to the marginals of two
right columns, where we show the marginal P (xij = 1∨xji = 1), i.e. the probability of
either edge being active, for better visibility. We find that the marginals of the pertur-
bation sampler indicate uncertainty in small bifurcations and point out the (possible)
presence of weak terminal branches, which would be discarded if we only consider the
MAP solution. The Gibbs sampler displays overall a higher uncertainty on such large
graphs.

fixed number of samples n indicate that the approximation errors of perturba-
tion and Gibbs sampler are significantly different (p < 0.001), with the exception
of n = 1000 where both show similar errors. Using the probabilities of the path
classifier directly as an approximate marginal is considerably worse than both
sampling approaches. Note that the exact marginals for our test cases do not
exhibit very high values (cf. Fig. 2, right column) due to the fact that for these
small graphs, often no direction is strongly dominating and thus, several solutions
that contain similar physical paths but in different orientations are competing.

A qualitative visualisation of the approximated marginals on complete graphs
is given in Fig. 3. We draw 100 perturbation samples, which we found a reason-
able trade-off between computation time and informativeness of the marginals,
and slightly increase the relative optimality gap to 5·10−3 to prevent the branch-
and-cut solver from spending too much time proofing optimality. From the Gibbs
sampler, we draw 10000 samples after a burn-in period of 1000. We find that
the marginals from the Gibbs sampler display overall a higher uncertainty in
the graph than the perturbation samples, which could be due to more difficult
transitions between different modi of the distribution and would likely require
adapted sampling parametrization or even an extension of the set of allowed
transformations. In both cases, thresholding the marginal distributions P (xe)
has no guarantee to satisfy all constraints and is therefore not recommended for
obtaining a single reconstruction. To improve a reconstruction, an interactive
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procedure using the uncertainties (and individual samples) would be advisable,
and for downstream analysis, metrics of interest should be calculated on each
sample. Regarding computation time, the average runtime per sample is 7.85 s for
the perturbation and approximately 0.01 s for the Gibbs sampler (not including
any additional overhead caused by the burn in period). The perturbation sam-
pler spends on average 0.5 % of its runtime in the lazy constraint generation
where violated cycle inequalities are identified.

5 Conclusion

We adapted two sampling approaches for vascular network graph reconstruc-
tion models, a perturbation sampler and a Gibbs sampler. Our experiments
confirm the expected systematic bias of the perturbation sampler due to the
computationally cheaper low-order perturbations. The Gibbs sampler, on the
other hand, exhibits an unbiased behaviour but instances with varying proper-
ties might require an appropriately adapted parametrization. The perturbation
approach benefits from not having a burn in period, which renders it consider-
ably easier to use on large instances. Both approaches were shown to be more
informative than the predictive probabilities of local classifier and can be used
to approximate marginals or determine the uncertainty in network graph prop-
erties. Beyond this, the two sampling procedures could be employed within a
Bayesian model selection framework or for maximum-likelihood hyperparameter
estimation.
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6. Robben, D., Türetken, E., Sunaert, S., Thijs, V., Wilms, G., Fua, P., Maes, F.,
Suetens, P.: Simultaneous segmentation and anatomical labeling of the cerebral
vasculature. Medical Image Analysis 32, 201–215 (2016)

7. Klohs, J., Baltes, C., Princz-Kranz, F., Ratering, D., Nitsch, R.M., Knuesel, I.,
Rudin, M.: Contrast-enhanced magnetic resonance microangiography reveals re-
modeling of the cerebral microvasculature in transgenic arcaβ mice. Journal of
Neuroscience 32(5), 1705–1713 (2012)

8. Batra, D., Yadollahpour, P., Guzman-Rivera, A., Shakhnarovich, G.: Diverse m-
best solutions in Markov Random Fields. In: ECCV 2012, LNCS, vol. 7576, pp.
1–16. Springer Berlin Heidelberg (2012)

9. Kirillov, A., Savchynskyy, B., Schlesinger, D., Vetrov, D., Rother, C.: Inferring
m-best diverse labelings in a single one. In: IEEE International Conference on
Computer Vision (ICCV). pp. 1814–1822 (2015)

10. Geman, S., Geman, D.: Stochastic relaxation, Gibbs distributions, and the bayesian
restoration of images. IEEE Transactions on Pattern Analysis and Machine Intel-
ligence PAMI-6(6), 721–741 (1984)

11. Koller, D., Friedman, N.: Probabilistic graphical models: principles and techniques.
MIT press (2009)

12. Papandreou, G., Yuille, A.L.: Perturb-and-MAP random fields: Using discrete op-
timization to learn and sample from energy models. In: International Conference
on Computer Vision 2011. pp. 193–200 (2011)

13. Tarlow, D., Adams, R.P., Zemel, R.S.: Randomized optimum models for structured
prediction. In: Proceedings of the Fifteenth International Conference on Artificial
Intelligence and Statistics, vol. 22, pp. 1221–1229 (2012)

14. Hazan, T., Jaakkola, T.: On the partition function and random maximum a-
posteriori perturbations. In: Proceedings of the 29th International Conference on
Machine Learning (ICML-12), pp. 991–998 (2012)

15. Hazan, T., Maji, S., Jaakkola, T.: On sampling from the gibbs distribution with
random maximum a-posteriori perturbations. Advances in Neural Information Pro-
cessing Systems pp. 1268–1276 (2013)

16. Orabona, F., Hazan, T., Sarwate, A., Jaakkola, T.: On measure concentration
of random maximum a-posteriori perturbations. In: International Conference on
Machine Learning. pp. 432–440 (2014)

17. Gane, A., Hazan, T., Jaakkola, T.: Learning with maximum a-posteriori pertur-
bation models. In: Artificial Intelligence and Statistics. pp. 247–256 (2014)

18. Alberts, E., Rempfler, M., Alber, G., Huber, T., Kirschke, J., Zimmer, C., Menze,
B.H.: Uncertainty quantification in brain tumor segmentation using CRFs and
random perturbation models. In: 2016 IEEE 13th International Symposium on
Biomedical Imaging (ISBI). pp. 428–431 (2016)

19. Meier, R., Knecht, U., Jungo, A., Wiest, R., Reyes, M.: Perturb-and-MPM: Quan-
tifying segmentation uncertainty in dense multi-label CRFs. CoRR abs/1703.00312
(2017), http://arxiv.org/abs/1703.00312

20. Liu, J.S.: Monte Carlo strategies in scientific computing. New York: Springer (2001)
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Abstract. Segmenting tree structures is common in several image pro-
cessing applications. In medical image analysis, reliable segmentations of
airways, vessels, neurons and other tree structures can enable important
clinical applications. We present a framework for tracking tree structures
comprising of elongated branches using probabilistic state-space models
and Bayesian smoothing. Unlike most existing methods that proceed
with sequential tracking of branches, we present an exploratory method,
that is less sensitive to local anomalies in the data due to acquisition
noise and/or interfering structures. The evolution of individual branches
is modelled using a process model and the observed data is incorporated
into the update step of the Bayesian smoother using a measurement
model that is based on a multi-scale blob detector. Bayesian smoothing
is performed using the RTS (Rauch-Tung-Striebel) smoother, which pro-
vides Gaussian density estimates of branch states at each tracking step.
We select likely branch seed points automatically based on the response
of the blob detection and track from all such seed points using the RTS
smoother. We use covariance of the marginal posterior density estimated
for each branch to discriminate false positive and true positive branches.
The method is evaluated on 3D chest CT scans to track airways. We show
that the presented method results in additional branches compared to a
baseline method based on region growing on probability images.

Keywords: Probabilistic state-space, Bayesian Smoothing, Tree Seg-
mentation, Airways, CT

1 Introduction

Segmentation of tree structures comprising of vessels, neurons, airways etc. are
useful in extraction of clinically relevant biomarkers [1,2]. The task of extracting
trees, mainly in relation to vessel segmentation, has been studied widely using
different methods. A successful class of these methods are based on techniques
from target tracking. Perhaps the most used tracking strategy is to proceed
from an initial seed point, make local-model fits to track individual branches in

53



a sequential manner and perform regular branching checks [3,4]. Such methods
are prone to local anomalies and can prematurely terminate if occlusions are
encountered. The method in [3] can overcome such problems to a certain ex-
tent using a deterministic multiple hypothesis testing approach; however, it is a
semi-automatic method requiring extensive manual intervention and can be com-
putationally expensive. In [4], vessel tracking on 2D retinal scans is performed
using a Kalman filter. They propose an automatic seed point detection strat-
egy using a matched filter. From each of these seed points vessel branches are
progressively tracked using measurements that are derived from the image data.
A gradient based measurement function is employed which fails in low-contrast
regions of the image, which are predominantly regions with thin vessels. An-
other major class of tracking algorithms are based on a stochastic formulation
of tracking [5,6] using some variation of particle filtering. Particle filter-based
methods are known to scale poorly with dimensions of the state space [1].

In spirit, we propose an exploratory method like particle filter-based methods,
with a salient distinction that the proposed method can track branches from
several seed points across the volume. We use linear Bayesian smoothing to
estimate branch states, described using Gaussian densities. Thus, the method
inherently provides an uncertainty measure, which we use to discriminate true
and false positive branches. Further, unlike particle filter-based methods, the
proposed method is fast, as Bayesian smoothing is implemented using the RTS
(Rauch-Tung-Striebel) smoother [7] involving only a set of linear equations.

2 Method

We formulate tracking of branches in tree structures using probabilistic state-
space models, commonly used in target tracking and control theory [7]. The
proposed method takes image data as input and outputs a collection of discon-
nected branches that taken together forms the tree structure of interest. We first
process the image data to obtain a sequence of measurements and track all pos-
sible branches individually using Bayesian smoothing. We then use covariance
estimates of individual branches to output a subset of the most likely branches
yielding the tree structure of interest. Details of this process are described below.

2.1 Tracking individual branches

We assume the tree structure of interest, X, to be a collection of T indepen-
dent random variables X = {X1,X2, . . . ,XT }, where individual branches are
denoted Xi. Each branch Xi of length Li is treated as a sequence of states,
Xi = [x0,x1, . . . ,xLi

]. These states are assumed to obey a first-order Markov
assumption, i.e.,

p(xk|xk−1,xk−2, . . . ,x0) = p(xk|xk−1). (1)

The state vector has seven random variables,

xk = [x, y, z, r, vx, vy, vz]T , (2)
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xk−1 xk xk+1

yk−1 yk yk+1

Fig. 1: Bayesian network view of the relation between the underlying true states,
xi, and the measurements, yi, for a single branch.

describing a tubular segment centered at Euclidean coordinates [x, y, z], along
an axis given by the direction vector [vx, vy, vz] with radius r.

The observed data, image I, is processed to be available as a sequence of vec-
tors. We model the measurements as four dimensional state vectors consisting
only of position and radius. This is accomplished using a multi-scale blob detec-
tor [8]. The input image I with Nv voxels is transformed into a sequence of N
measurements, with position and radius information, denoted Y = [y0, . . . ,yN ],
where each yi = [x, y, z, r]T . This procedure applied to the application of track-
ing airway trees is described in Section 2.5.

2.2 Process and Measurement Models

Transition from one tracking step to another within a branch is modelled using
the process model. We use a process model that captures our understanding
of how individual branches evolve between tracking steps and has similarities
with the model used in [4]. We assume first-order Markov independence in state
transitions from (1), captured in the process model below:

xk = Fxk−1 + q =




1 0 0 0 ∆ 0 0
0 1 0 0 0 ∆ 0
0 0 1 0 0 0 ∆
0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1







xk−1
yk−1
zk−1
rk−1
vxk−1
vyk−1
vzk−1




+ q (3)

where F is the process model function and q is the process noise. q is assumed
to be a zero mean Gaussian density, i.e, q ∼ N(0,Q), with process covariance,
Q7×7, acting only on direction and radius components of the state vector,

Q[4:7,4:7] = σ2
q∆× I4×4, (4)

where only the non-zero part of the matrix is shown and σ2
q is the process

variance. The parameter ∆ can be seen as step size between tracking steps. As (3)
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is a recursion, the initial point (seed point), x0, comprising of position, scale and
orientation information is provided to the model. Seed points are assumed to be
described by Gaussian densities, x0 ∼ N(x̂0,P0), with mean x̂0 and covariance
P0. We present an automatic strategy to detect such initial seed points in 2.5.

The measurement model describes the relation between each of the 4-D mea-
surements, yk in the sequence, Y = [y1, . . . ,yN ], and the state vector, xk, as
shown in Figure 1. A simple linear measurement model captures this relation,

yk = Hxk + m =




1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0
0 0 0 0
0 0 0 0







xk
yk
zk
rk
vxk

vyk

vzk




+ m (5)

where yk are observations generated by true states of the underlying branch at
step k, H is the measurement function. m ∼ N(0,R) is the measurement noise
with covariance R that is a diagonal matrix with entries, [σ2

mx
, σ2

my
, σ2

mz
, σ2

mr
],

which correspond to variance in the observed position and radius, respectively.
All possible measurement vectors obtained from the image are aggregated into
the measurement variable Y.

2.3 Bayesian Smoothing

The state-space models presented above enable us to estimate branches using the
posterior distributions, p(Xi|Y)∀i = [0, . . . , T ], using standard Bayesian meth-
ods. We employ Bayesian smoothing as all the measurements are available at
once, when compared to sequential observations that are more common in object
tracking applications. Due to a linear, Gaussian process and measurement mod-
els, Bayesian smoothing can be optimally performed using the RTS smoother [7].
RTS smoother uses two Bayesian filters to perform forward filtering and back-
ward smoothing. Forward filtering is identical to performing Kalman filtering
and consists of sequential prediction and update with observed information of
the state variable. Once a branch is estimated using forward filtering, the saved
states are used to perform backward smoothing using a Kalman-like filter which
improves state estimates by incorporating additional information from future
steps. Standard equations for an RTS smoother are presented below [7].

Forward Filtering Equations in the first column of Table 1 are used to perform
prediction and update steps of the forward filtering. In the prediction step, pro-
cess model is used to predict states at the next step. Mean x̂k|k−1 and covariance
Pk|k−1 estimates of the predicted Gaussian density, i.e, of state k conditioned on
the previous state, denoted with subscript k|k − 1, are computed in (6),(7). In
the update step, described in (8) – (12), predicted density is associated with a
measurement vector to obtain posterior density. First, the new information from
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Table 1: Standard RTS Smoother Equations

Forward Filtering

x̂k|k−1 = Fx̂k−1|k−1 (6)

Pk|k−1 = FPk−1|k−1F
T + Q (7)

vk = yk −Hx̂k|k−1 (8)

Sk = HPk|k−1H
T + R (9)

Kk = Pk|k−1H
TS−1

k (10)

x̂k|k = x̂k|k−1 + Kkvk (11)

Pk|k = Pk|k−1 −KkSkK
T
k (12)

Backward Smoothing

Gk = Pk|kF
TP−1

k+1|k (13)

x̂k|L = x̂k|k + Gk(x̂k+1|L − x̂k+1|k)
(14)

Pk|L = Pk|k −Gk(Pk+1|k −Pk+1|L)GT

(15)

measurement yk is computed using (8) and is aptly called the “innovation”, de-
noted as vk. Uncertainty in the new information, innovation covariance Sk, is
computed in (9). Then, predicted mean is adjusted with weighted innovation and
predicted covariance is adjusted with weighted innovation covariance to obtain
the posterior mean and covariances, in (11) and (12), respectively. The weighting
computed in (10), denoted as Kk, is the Kalman gain which controls the extent
of information fusion from process and measurement models.

We continue estimation of the posterior density (described by posterior mean
and covariance) in a sequential manner for the branch until no new measurements
exist for updating. After the final update step, a sequence of posterior mean
estimates [x̂0|0, . . . , x̂Li|Li

] and posterior covariance estimates [P0|0, . . . ,PLi|Li
],

obtained from the forward filter are saved, for further use by the backward
smoother.

Backward smoothing The smoothed estimates are obtained by running a
backward filter starting from the final tracked state of the forward filter. The
intuition behind backward smoothing is that the uncertainty in making predic-
tions in the forward filtering can be alleviated using information from future
steps. It is implemented using the equations in the second column of Table 1.

Gating When performing the RTS smoother recursions, the forward filter ex-
pects a single measurement vector for the update step. We employ rectangular
and ellipsoidal gating to reduce the number of measurements handled during the
update step [9].

First, we perform simple rectangular gating which is based on excluding
measurements that are outside a rectangular region around the predicted mea-
surement Hx̂k|k−1 in equation (8) using the following condition:

|yi −Hxk|k−1| ≤ κ× diag(Sk),∀yi ∈ Y (16)

where Sk is the covariance of the predicted measurement in equation (9). The
rectangular gating coefficient, κ, is usually set to a value ≥ 3 [9]. Rectangular
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gating localises the number of candidate measurements relevant to the current
tracking step. To further narrow down on the best candidate measurement for
update, we follow rectangular gating with ellipsoidal gating [9]. With ellipsoidal
gating we accept the measurements within the ellipsoidal region of the predicated
covariance, using the following rule:

(Hxk|k−1 − yi)
TS−1k (Hxk|k−1 − yi) ≤ G (17)

where G is the rectangular gating threshold, obtained from the gating probability
Pg, which is the probability of observing the measurement within the ellipsoidal
gate,

Pg = 1− exp
(
− G

2

)
. (18)

2.4 Tree as a Collection of Branches

Once a branch is smoothed and saved using Bayesian smoothing described pre-
viously, we process new seed points and start tracking branches until no further
seed points remain to track from. This procedure yields a collection of discon-
nected branches. The next task is to obtain a subset of likely branches that
represent the tree structure of interest by discarding false positive branches.

Validation of Tracked Branches An advantage of using Bayesian smoothing
to track individual branches is that apart from estimating the branch states
from the image data (using the smoothed posterior mean estimates), we can
also quantify the uncertainty of the estimation at each tracking step (using
the smoothed posterior covariance estimates). Thus, we have the possibility of
aggregating this uncertainty over the entire branch to validate them. We explore
this notion to create a criterion for accepting or rejecting branches.

By aggregating variance for all tracking steps in each branch, we obtain a
measure of the quality of branches. A straightforward approach is to use total
variance, obtained using the trace of each of the smoothed posterior covariance
matrices. We average the sum total variance over the length of each branch, li,
to obtain a score, µi, which is then thresholded by a cut-off µc to qualify the
branches,

µi =

∑li
k=1 Tr(Pk|k)

li
. (19)

2.5 Application to Airways

The proposed method for tracking tree structures can be applied to track air-
ways, vessels or other tree structures encountered in image processing applica-
tions. We focus on tracking airways from lung CT data and present the specific
strategies used to implement the proposed method.
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(a) Intensity image (b) Probability image (c) Multi-scale blob image

Fig. 2: The pipeline of image representations, ultimately showing the multi-scale
representation.

Multi-scale representation The measurement model discussed in Section 2.2
assumes a 4-D state vector as measurements to the RTS smoother. This is
achieved by first computing an airway probability image using a k-Nearest Neigh-
bour voxel classifier trained to discriminate between airway and background,
described in [11]. Blob detection with automatic scale selection [8] for different
scales, σs = (1, 2, 4, 8, 12)mm, is performed on the probability image to obtain
the 4D state measurements as blob position and radius. Indistinct blobs are re-
moved if the absolute value of the normalized response at the selected scale, σ∗s ,
is less than a threshold [8]. This makes the representation sparse, N << Nv,
and the tracking more efficient than if performed at voxel-level. An example of
the sparse representation can be found in Figure 2.

Initialisation of Branches The multi-scale representation of the image data
discussed above also provides a response corresponding to the best scale. As this
response is normalised for scales, we incorporate this information in selecting
the initial seed point for every branch. We start tracking from the seed point
with the largest scale and the largest response. The initial direction information
is obtained from eigen value analysis of the Hessian matrix computed at the cor-
responding scale provided in the measurement vector. Once a branch is tracked
along the initial direction, we track from the same seed point but in the opposite
direction. Thus, if a seed point is obtained from the middle of a branch we can
track it bidirectionally. After tracking in both directions, all the involved mea-
surements including the seed point are removed from the measurement vector,
and the next best candidate seed point is chosen and tracking commences from
there. The tracking procedure on the entire image is complete when no more
seed points are available.

3 Experiments and Results

3.1 Data

The evaluation was carried out on 32 low-dose CT chest scans from a lung cancer
screening trial [10]. Training and test sets comprising of 16 images each were ran-
domly obtained from the data set. All scans have a resolution of approximately
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(a) (b) (c)

Fig. 3: Visualisation of the centerlines extracted using the proposed method be-
fore and after thresholding to discard false positive branches overlaid on the
reference segmentation, shown in (a) and (b) respectively. The combined results
from the proposed method and region growing on probability is shown as the
blue centerline in (c).

1mm × 0.78mm × 0.78mm. The reference segmentations consist of expert veri-
fied union over the results of two previous methods [11,12]. The proposed method
is compared with region growing on the probability images.

3.2 Error Measure, Initial Parameters and Tuning

We use an error measure defined as the average of two distances, derr = (dFP +
dFN )/2. The first distance, dFP , captures the false positive error and is the
average minimum Euclidean distance from segmentation centerline points to
reference centerline points. dFN similarly defines the false negative error, as
the average minimum Euclidean distance from reference centerlines points to
segmentation centerline points.

There are several parameters related to the RTS smoother that need to be
initialised. These parameters were tuned using the training set and fixed for the
evaluation on the test set to: standard deviations of the process noise, σq = 0.3,
measurement noise on radius σmr

= 1 mm and measurement noise on position
(σmx

, σmy
, σmz

) = 2 mm. The initial covariance, P0 across branches was set
to I7×7. The most crucial parameter in the proposed method is the threshold
parameter µc presented in Section 2.4. The threshold to validate branches is
tuned to be µc = 2.0. The gating probability was set to a high value, Pg =
0.99 [9].

3.3 Results

Figure 3 illustrates features of the proposed method by visualising centerlines
overlaid on the reference segmentation. Influence of the threshold parameter
µc is illustrated with the segmentation results for a single volume without any
threshold (seen in Figure 3a) and after applying the tuned threshold (seen in Fig-
ure 3b). Evidently, thresholding the average total variance of a branch eliminates
false positive branches.
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The final output obtained from the method is a collection of disconnected
branches. While such collection of branches are still useful in extracting biomark-
ers, for evaluation purposes we merge the results obtained with the segmenta-
tions from region growing on probability images and extract centerlines from the
merged segmentation using 3D thinning, as seen in Figure 3a and 3b. This also
allows us to demonstrate the improvement our method provides by extracting
peripheral airway branches, which are typically the challenging ones. One such
combined result is shown in Figure 3c, where the yellow centerlines correspond
to region growing and blue one is the combined result.

Table 2: Performance comparison on the test set

Method dFP (mm) dFN (mm) derr (mm) Std.Dev. (mm)

RG 0.423 3.579 2.001 0.208

(RTS+RG)1 0.449 2.102 1.276 0.187

(RTS+RG)2 0.401 2.658 1.529 0.165

Performance on the test set for two different scenarios of the proposed method
is reported in Table 2 along with the numbers for region growing on probability
images. The result for the best performing region growing on probability images
is denoted with RG and those obtained by combining the proposed method with
region growing are denoted as RTS+RG. We first combine the proposed method
with the best performing region growing case (with minimum derr) results and
it is denoted as (RG+RTS)1. We observe an improvement of about 36% on derr.
It is to be noted, there is substantial reduction in dFN , indicating that many
branches missed by region growing are now segmented. There is a very small
increase in false positives which could also be due to the missing branches in
the reference segmentation; however, the net result is a large improvement. To
test whether the proposed method can simultaneously reduce the number of
false positives and false negatives compared to region growing, we merge the
proposed method with the region growing result that yields non-optimal derr,
and do observe a reduction in both dFP and dFN when compared to the best
performing RG as seen in the entries for (RG+RTS)2.

The computational expense for running the proposed method is small. The
largest chunk of it is used in generating the multi-scale representation of the
images, which is in the range of 10-15s per volume. Tracking using the RTS
smoother and obtaining the segmentation takes about 4s on a laptop with 8
cores and 32 GB memory running Debian operating system.

4 Discussion and Conclusions

We presented an automatic method for tracking tree structures, in particular
airways, using probabilistic state-space models and Bayesian smoothing. We
demonstrated that branches can be tracked individually from across the vol-
ume, starting from several seed points. This approach of tracking branches from
across the volume has the advantage that even in the presence of occlusions,

61



such as mucous plugging or image acquisition noise, the chances of detecting
branches beyond the occlusions are higher. An inherent measure of uncertainty
in the branch estimates has been presented due to the Bayesian nature of the
method. We demonstrated the use of thresholding this uncertainty measure to
discriminate detected branches. The use of sparse representation of voxels in the
image using blob detection makes the method computationally efficient.

A possible limitation with the proposed method is that it yields a discon-
nected tree structure. For applications where this is an issue, one can enforce a
global connectivity constraint on the disconnected set of branches to obtain fully
connected tree as done in [13] or similar. It is also possible to derive biomarkers
directly from the disconnected branches, as shown in [14].

We performed an evaluation of the results obtained from the proposed method
by combining it with the results from region growing on probability images. We
showed that there is substantial improvement in the segmentation results, indi-
cating that the exploratory approach taken up in our method has potential in
improving tree segmentations.
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Abstract. The detection and localization of single or multiple landmarks
is a crucial task in medical imaging. It is often required as initialization
for other tasks like segmentation or registration. A common approach
to localize multiple landmarks is to exploit their spatial correlations,
e.g., by using a conditional random field (CRF) to incorporate geometric
information between landmark pairs. This CRF is usually applied to
resolve ambiguities of a localizer, e.g., a random forest or a deep neural
network. In this paper, we apply a random forest / CRF combination
to the task of jointly detecting and localizing 6 landmarks in the lower
extremities, taken from a dataset of 660 X-ray images. The dataset is
challenging since a significant number of images does not show all the
landmarks. Furthermore, 11.3 % of the target landmarks are altered by
prostheses or pathologies.
To account for this, we introduce a “missing” label for each landmark
(represented by a node in the CRF). Moreover, instead of manually spec-
ifying the CRF model by selecting suitable potential functions and the
graph topology, we suggest to automatically optimize both in a learning
framework. Specifically, we define a pool of potential functions and learn
their CRF weights (relative contributions), in addition to the potential
values in case of missing landmarks. Potentials with a low weight are
removed, thus optimizing the graph topology. Detailed evaluations on
our database show the feasibility of our approach. Our algorithm removed
on average 23 of the initial 51 CRF potentials, and correctly detected and
localized (within 10 mm tolerance) on average 92.8 % of the landmarks,
with individual rates ranging from 90.0 % to 97.4 %.

1 Introduction

The automatic localization of landmarks in medical images is a crucial task. It
is clinically required, inter alia, for the purposes of diagnosis, surgical planning,
and post-operative assessment. Because of the large amount of variability and
outliers in medical data, the automatic and accurate localization of landmarks
is comparably hard. It becomes harder, when a landmark’s presence is not guar-
anteed (e.g., due to a restricted field of view). In this case, each landmark has
to be detected before it can be localized.
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Many approaches have been proposed to solve the task of localizing spatially
correlated landmarks. Often, first a “landmark localizer” is used to generate a
(pseudo) probability map for each landmark over the image domain. To this end,
e.g., random forests [6, 7, 14, 18], decision trees [2], deep convolutional neural
networks [15], and the discriminative generalized Hough transform [16] have
been used. Then, a conditional random field (CRF) is often applied to select
the globally optimal configuration for all landmarks, characterized by the largest
joint posterior probability [2, 6, 14,18]. The posterior probability of the CRF is
generally expressed by an energy, which is parameterized by potential functions
(often unary or binary). The unary potentials of the CRF are related to the
locations of individual landmarks and are defined based on the localizer output.
Binary potentials model the spatial relations between two landmarks, assuming a
specific topology (i.e., graph connectivity). Both the potentials (e.g., distance [2],
vector [6], vector field profiles [5], etc.) and the topology are often selected in
a heuristic manner. Potentials of higher arity are possible, but seldomly used
due to computational complexity [12, 19]. Only few papers explicitly learn the
weights of the CRF potentials, i.e., their relative contribution to the joint posterior
probability, let alone address the possibility of missing landmarks due to, e.g., a
restricted field of view. Among them [2], which includes a heuristic penalty for
a false miss. To compute the globally optimal landmark configuration based on
the CRF model, various inference algorithms [19] can be applied.

In this paper, we automatically learn essential components of a CRF – includ-
ing the possibility of missing landmarks – to automatically detect (i.e., determine
whether a landmark is present in the current image) and localize (i.e., specify
the position of a landmark present in the current image) six landmarks of the
lower extremities in a database of 660 X-ray images with significant fractions of
missing landmarks due to restricted field of view. Specifically, we define a pool
of potential functions, the weights of which are – together with the values of
potentials in case of missing landmarks – automatically learned. Starting from
a fully connected graph, potentials with low weights are removed. In this way,
the graph topology can be automatically optimized. Applying our method, on
average 23 of the initially 51 CRF potentials were removed, and (on average)
92.8 % of the landmarks were correctly detected and (if present) localized within
10 mm tolerance.

2 Related Work

Various approaches have been proposed to detect and localize a set of landmarks.
Here, we briefly summarize the contributions that are closest to our work. Ran-
dom forests have been used to generate landmark localization hypotheses, e.g.,
in [6, 14, 18]. Donner et al. [6] use a random forest / Hough forest combination
to first classify the image into candidate regions for each landmark, which are
then aggregated by the Hough forest to generate precise location hypotheses. In
contrast, [14, 18] use the random forest to directly regress (pseudo) probability
maps for the location of each landmark, based on local and global [18] or only
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local [14] image features, followed by a non-maximum suppression (NMS). Other
approaches include decision trees based on a set of image features [2], deep con-
volutional networks [15] and the discriminative generalized Hough transform [16].
The CRF is generally based on unary potentials (based on the localizer output)
and heuristically motivated binary potentials, e.g., distance [2], vector [6], vector
field profiles [5], etc. Bergtholdt et al. [2] associate the CRF potentials with
weights which are automatically learned using maximum likelihood (ML) based
on the posterior probabilities of the training data. They also account for missing
landmarks by assigning heuristically motivated values for the corresponding po-
tentials, the weights of which are also learned (involving a heuristic parameter
for false misses). However, the ML criterion may stress the influence of out-
liers, requiring corresponding weightings in case of a large amount of incorrect
localization hypotheses. Moreover, a ML approach quickly becomes infeasible
with increasing number of combinations in terms of computational complexity.
Bergtholdt et al. [2] uses a fully connected graph, and thus does not exploit the
potential of simplifying the graph topology for a reduced computational complex-
ity. In contrast, [6] defined the CRF graph topology heuristically based on the
differential entropy of the distribution of relative landmark distances calculated
on the training data. This may not be optimal if other features than the relative
distance are used to characterize landmark pairs.

In this work, we define a pool of CRF potential functions (currently unary
and binary, but generally of any arity) and associate a weight with each potential
function and each landmark pair (generally each landmark subset). Starting from
a fully connected graph, we automatically learn the potential weights together
with the values of the potentials in case of missing landmarks. Potentials with low
weights are removed, thus optimizing the CRF graph topology. In contrast to [2],
we use a max-margin approach (considering only the best incorrect configuration
of all landmarks in addition to the correct configuration) in an energy-based
formulation [13]. For efficiency reasons (short training and test times, moderate
number of annotated training images required), our landmark localizer is based on
regression trees [14]. However, any other localizer generating (pseudo) probability
maps for each landmark can be used instead (including a deep neural network).

The task of localizing six landmarks of the lower extremities has been ad-
dressed before in [8,16,17] using the discriminative generalized Hough transform.
However, they only addressed the localization task, i.e., only considering land-
marks known to be contained in the image. Thus, they are not able to cope with
missing landmarks.

3 Methods

The task is to detect and localize – if present – up to N different landmarks in an
image. We solve this problem in two steps: First, landmark-specific regression tree
ensembles rating local image features are used to generate n localization hypothe-
ses X̂i = {x̂i,1, . . . , x̂i,n} for each landmark i ∈ {1, . . . , N}. Second, the unary
information of the localizer is combined with binary information rating spatial fea-
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tures between landmarks and jointly modeled in a CRF. An additional “missing”
state is introduced to solve the detection problem and all required parameters are
automatically learned in a gradient descent optimization. Finally, a common CRF
inference technique is applied to find the best selection Ŝ ∈ {0, 1, . . . , n}N out of
all possible selections S. For each landmark, one or no localization hypothesis is
selected, effectively solving the detection and localization in one inference step.

Section 3.1 introduces the regression-tree-ensemble-based localizer, followed
by the joint formulation of weighted knowledge sources in a CRF in Section 3.2.
Finally, the optimization step used to learn all CRF parameters and to reduce
the number of necessary potential functions is illustrated in Section 3.3.

3.1 Landmark Localization using Regression Tree Ensembles

The goal of the first step is to predict (as accurately as possible) candidate
positions for each landmark based on local context only. At this stage we tolerate
confusions as long as any (not necessarily the first) of the n = 15 best localization
hypotheses is correct, since they will be resolved in the second step. The basic
idea is to transform an image I : R2 → R into a pseudo (not normalized)

probability map P̃i : R2 → R+ in which the location of the highest value
x̂i,1 = arg maxx P̃i(x) corresponds to the most likely predicted position of the
target landmark i. For efficiency reasons, we use random forests, which only
need a small or moderate number of annotated training images. As in [14], for
each landmark i, an ensemble of K = 96 decision tree regressors [4] is used to
transform feature vectors fki (x), computed for a certain position x in image I for
the k-th regression tree, into pseudo probabilities p̃ki (x). This is done for all pixels
in the image and averaged over all trees k to form the pseudo probability map
P̃i. Finally, NMS with a minimal distance between peaks of 3 pixels is applied to
find local maxima. The n best local maxima are used as localization hypotheses
X̂i = {x̂i,1, . . . , x̂i,n} for each landmark i.

To extract the feature vector fki (x) for a certain pixel x we use a BRIEF-
like [3] approach. Each tree in the ensemble is associated with an individual
sampling mask to extract F = 128 pixel intensity values from a local patch.

The mask is obtained by sampling locations from X ∼ i.i.d. N
(
0, 1

25

(
A2

1 0

0 A2
2

))

with A = (a1 a2) being the patch size; in our experiments A = (351 351) to
capture the target object’s size. Finally, the masks origin is placed at x and the
intensity value at x is subtracted from the marked pixel intensities, resulting in
our F -dimensional feature vector fki (x).

Boostrapping is used to train the regression trees in a discriminative fashion
by iteratively growing a set Ok

i ⊆ RF × R of feature vectors and corresponding
target values over all training images. We start out by collecting “positive” sam-
ples for each training image by computing feature vectors fki (x) for all M = 317
pixels within a circle with radius R = 10 (corresponding to the localization crite-
rion) around the respective annotated landmark position x∗i . We allow for some

ambiguity by introducing a Gaussian distribution Ni

(
x∗i ,

1
9R

2
(

1 0
0 1

))
around

x∗i and use the density values computed at position x as regression targets. All
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“positive” samples are added to the set Ok
i and an intermediate tree is trained on

them. After that, “negative” samples are generated by iterating over all train-
ing images and applying the intermediate tree to the training image in order
to find the most offending responses. NMS is used to select the M pixels with
the largest pseudo probabilities outside the circle located at x∗i . For those M
“negative” pixels, feature vectors are computed and added – with a target re-
gression value 0 – to the growing set of samples Ok

i . After each iteration, a new
intermediate and more discriminative tree is trained on the larger set of samples
Ok

i and used in the next iteration. The final tree is then added to the ensemble.
All parameters of the regression tree ensemble have been optimized on a

previous task [14] and were adapted to the current one. Some parameters (like
the sampling mask) were intuitively chosen to match the dataset, while others
(e.g., the number of trees) were chosen to match the hardware constraints.

3.2 CRF with Pool of Potential Functions and “Missing” Label

To compensate for incorrect first best localization hypotheses x̂i,1 for arbitrary
landmarks i, we use a CRF to model geometric relationships between landmarks.
For notational simplicity, we introduce an index si ∈ {0, 1, . . . , n} for each land-
mark i to denote the “missing” label si = 0 and the selection si > 0 of one
of the localization hypotheses X̂i. For instance, si = 2 means that the second
localization hypothesis x̂i,2 is assigned to the i-th landmark in the CRF. We
apply an energy-based formulation [13], where a low energy E(S) of a config-
uration S = (s1, . . . , sN ) of localization hypotheses over all landmarks implies
a large posterior probability. The energy E(S) of the CRF is parameterized by
a set of T potential functions Φ = {φ1(·), . . . , φT (·)} (of arbitrary arity) with
corresponding weights Λ = (λ1, . . . , λT ) scaling each term, and missing potential
values β = (β1, . . . , βT ):

E(S) =

T∑

j=1

λj ·
{
βj if si = 0 for any i ∈ Scope(φj)
φj(S) else

. (1)

The explicit inclusion of the missing potential values β is necessary to allow
computation of E(S) in case of missing landmarks and to automatically learn

their values. In inference, the task is to find the selection Ŝ amongst all (n+ 1)N

possible selections S that minimizes the energy from Eq. (1):

Ŝ = arg min
S∈S

E(S) . (2)

The search problem depicted in Eq. (2) becomes intractable very fast with a
growing number of states and landmarks, which might require the usage of ap-
proximate inference. However, in our case we can still use exact inference in form
of the A* search algorithm by Bergtholdt et al. [1], which uses an admissible
heuristic to find the global optimum.

The idea of our approach is to define a “pool” Φ of potential functions φj(S)
(motivated clinically, anatomically, by geometric considerations or by “helpful”
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image features) and to automatically learn their weights λj w.r.t. the detection
and localization criterion. Potentials with a low weight can then be removed.
To illustrate this principle, we define one unary potential for each landmark
and three – in this work purely geometrically motivated – binary potentials per
landmark pair in Φ.

Unary localizer potential Let Ui = (ui,1, . . . , ui,n) be the regressed scores

for the localization hypotheses X̂i. We define the unary localizer potential for
the i-th landmark as

φloci (S) = − log(ui,si) . (3)

Binary distance potential The first binary potential uses a Gaussian dis-
tribution to model the distance between two landmarks i and j. Assuming we
estimated the empirical mean µdist

i,j and variance σ2
i,j of distances on training anno-

tations, and that f(·) is the probability density function of a normal distribution,
we define the binary distance potential as

φdisti,j (S) = − log
(
f(‖x̂i,si − x̂j,sj‖ | µdist

i,j , σ
2
i,j)
)
. (4)

Binary angle potential The second binary potential uses a von Mises distri-
bution to model the angle of the line spanned between two landmarks i and j
in relation to the x-axis. Similar to the previous distribution, we estimated the
distribution’s parameters µang

i,j and κi,j using training annotations. Finally, with
g(·) being the distribution’s probability density function and α(x) a function
computing the angle between the vector x and the x-axis, we define the potential
as

φangi,j (S) = − log
(
g(α(x̂i,si − x̂j,sj ) | µang

i,j , κi,j)
)
. (5)

Binary vector potential For the third binary potential, we use a multivariate
Gaussian distribution to model the vector between two landmarks i and j. This
includes distance and orientation. However, the vector potential is neither scaling
nor rotation invariant, whereas the distance and angle potentials are rotation
and scaling invariant, respectively. We include the vector potential to illustrate
the concept of a “pool” of potential functions. Again, we estimate the necessary
parameters µvec

i,j and Σi,j on training annotations. Finally, with h(·) being the
probability density function of a multivariate normal distribution, we define this
potential as

φveci,j (S) = − log
(
h(x̂i,si − x̂j,sj | µvec

i,j , Σi,j)
)
. (6)

Pool of potentials With these definitions, we define our pool of potential
functions for a fully connected graph as

Φ ={φloci (·) | i = 1 . . N} ∪
{φdisti,j (·), φangi,j (·), φveci,j (·) | i = 1 . . N, j = i+ 1 . . N} .

(7)
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The remaining tasks are to weight each potential (Λ), estimate the energies when
an involved landmark is missing (β) and to remove unnecessary potentials. Note
that in principle our approach works with potentials of arbitrary arity.

3.3 Learning of Parameters and Removing Potentials

There exist heuristics [2] to estimate the potential weights as well as the missing
energies, but a more common approach is to learn those parameters from data.
We follow the latter path by defining an appropriate loss function over data D
and use a gradient descent scheme to optimize it. The probabilistic approach is
to use maximum likelihood, which has the drawbacks that one must compute
the partition function, which gets intractable quickly, and that it stresses the
influence of outliers. Thus, we follow a max-margin approach [12,13] and try to
increase the margin between the correct selection S∗ and the best (lowest energy)
incorrect selection S−. This requires appropriate inference for which we again
use the A* algorithm.

A well known loss function is the hinge loss, which tries to increase the energy
gap between S∗ and S− until a certain margin m = 1 is satisfied. The intuition is
that a margin m improves generalization and that only samples not satisfying the
margin continue to contribute to the parameter updates. Let our loss function
be defined as

L(Λ,β) =
1

K

K∑

k=1

max
(
0,m+ E(S∗k)− E(S−k )

)
+ θ ·

T∑

j=1

|λj | . (8)

In addition to the data term over all K training samples, we added a θ-weighted
L1 regularization term w.r.t. Λ to further accelerate the sparsification of terms.
I.e., instead of defining a topology and manually selecting appropriate potential
functions, our idea is to start with a fully connected graph and a pool of different
potentials Φ and to learn which of those potentials are meaningful. Once we opti-
mized Λ, we can simply remove all zero-weighted (λj = 0) potentials. This solves
the problem of defining a topology as well as selecting meaningful potentials.

To optimize the loss function from Eq. (8), we apply a variant of stochastic
gradient descent in form of the Adam algorithm by Kingma and Ba [11]. We use
a global step-size of α = 0.01 and leave all remaining parameters as proposed
in [11]. Furthermore, we use a mini-batch size of K = 40 samples per iteration,
which greatly improves the time until convergence, which is usually reached after
∼ 200 iterations. To improve generalization, we optimize the potential weights Λ
and missing energies β on a different portion of training examples than used to
train the potential functions themselves (i.e., probability distribution parameters,
localizers, etc.). Once all parameters are estimated, we remove all unnecessary
potentials where λj = 0 to reduce the runtime and complexity of the system.

4 Results

We evaluated the proposed approach on an in-house dataset of 660 images showing
the lower extremities of 606 patients with an age in the range of 19 to 100 years.
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(a) Full lower body (b) Restricted field of view (c) Missing

Fig. 1: A few samples including annotations of the 660 images showing (a) full
lower bodies, (b) a restricted field of view and (c) a full lower body with missing
limbs. Note the two knee prostheses. The small circle annotations in the second
image correspond to the area in which a localization is assumed correct.

The task is to detect and localize (if present) up to 6 different landmarks, namely
the femur, knee and ankle of both legs. A few sample images are shown in
Fig. 1. We downsampled the images to an isotropic resolution of 1 mm/px to
speed up the processing. Due to a restricted field of view and missing limbs in
a subset of images, not all landmarks are present in all images. Only 73.4 % of
the images contain all landmarks, while 8, 78, 77, and 10 images only contain
5, 4, 3, and 2 landmarks, respectively. Hence, the task is to detect whether a
landmark is present in conjunction with the task to localize it, if present. We
consider two kinds of results to be correct. First, the landmark is missing and the
algorithm predicted it to be missing. Second, the landmark is not missing and
the algorithm detected it and predicted a position with an Euclidean distance
to the true position below 10 mm. The tolerance of 10 mm has been chosen by
Ruppertshofen et al. [17] and is illustrated in the third image in Fig. 3a.

We used patient-grouped 5-fold cross validation in our experiments, which
provided us with, on average, 530 training images per fold. 30 % of the training
images of each fold were used to train the localizer (Section 3.1) and to estimate
the parameters of the probability distributions (Section 3.2), while the remaining
70 % were used to learn the weights and missing potential values (Section 3.3).
Note that we exclusively used 15 % of the latter training images as validation set
to properly select a regressor weight θ. The final results over all folds in terms
of correct detection and localization (as described above) are shown in Fig. 2a.
The localizer itself, i.e., always using the first best localization hypothesis, shows
mediocre performance with on average 81.2 %. First, it assumes a landmark is
always present and thus the numbers are biased. Second, it performs significantly
worse when the landmarks are close to the image’s border, i.e., for the femur and
ankle landmarks due to only partly available information. In contrast to previous
works [6,14,18], we have to properly estimate the CRF weights. Without learning
the parameters Λ and β, just setting them to 1, we obtain an accuracy of only
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Fig. 2: (a) Amount of correct images in percent w.r.t. the different landmarks;
100 % corresponds to 660 images. (b) Distribution of errors across detection and
localization over all images in percent for the localizer with learned CRF weights.
The two bottom-most bars correspond to the rates of our approach depicted in
(a), followed by three bars for the three different sources of errors.

52.9 %. In contrast, after learning all parameters we handle 92.8 % of the samples
correctly, averaged over the different landmarks. Furthermore, our approach is
also very robust against altered target objects in form of prostheses. 97.5 % of
the 319 prostheses were properly detected and localized. The performance of our
approach is broken down in Fig. 2b. We see that the detection task was solved
on average in 82.5 % TP + 10.3 % TN + 5.3 % mis-loc. = 98.1 % of the images.
The largest amount of errors is due to mis-localization with 5.3 %, in contrast to
mis-detection with only 0.7 % FP + 1.3 % FN = 2.0 %.

Looking at resulting images (see examples in Fig. 3a), the localization toler-
ance of 10 mm appears to be quite strict, which is also illustrated in the second
image in Fig. 1. This is addressed in Fig. 3b, where the amount of correct images
w.r.t. a certain number of errors per image in relation to the localization toler-
ance is plotted. Increasing the tolerance from 10 mm to 20 mm, the percentage
of images where all 6 landmarks are handled correctly increases by 12.3 percent
points to 85.3 %; the average detection and localization rate for a single land-
mark increases to 96.2 %. Depending on the application, e.g., if the localization
hypothesis is further refined by post-processing on a small crop of the image, a
less strict localization tolerance might be sufficient.

A quantitative comparison to [16] is difficult due to different evaluation setups
(cross-validation in our work and a single unknown training and test split in [16])
and a different objective (namely localization only, not detection). However, if
we only consider cases where an existing landmark was detected (true positives),
we can quantify the localization performance of our approach. Note, due to the
above reasons we refrain from drawing any conclusions. Using the same tolerance
of 10 mm as used by Ruppertshofen et al., we achieved to correctly localize
91.7 %, 98.1 % and 92.0 % of the femur, knee and ankle landmarks, respectively,
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Fig. 3: (a) Illustration of the three different kinds of errors: The first two images
illustrate mis-localization due to the error tolerance of 10 mm. However, note the
accurate localization despite the prostheses. The third image shows a landmark
(left femur) not being detected. The fourth image illustrates a falsely detected
landmark. (b) Distribution function of landmark errors per image (between 0
and 6) for different localization tolerance levels.

averaged over both legs. In contrast, Ruppertshofen et al. achieved a respective
performance of 73.9 %, 93.7 % and 86.6 %.

By dropping all zero-weighted potentials, we were able to remove on average
45.5 % of 6 + 3 · 6·52 = 51 CRF potentials: All unary potentials remained, while 3,
7, and 13 of the angle, distance and vector potentials were removed, respectively.
This reduced the inference time on average by 20.1 %.

5 Discussion and Conclusions

In this paper, we proposed an automatic approach for learning the weights of
potentials as well as the values of the potentials for missing landmarks in a
conditional random field using a max-margin hinge loss and gradient descent.
In particular, we suggested to define a pool of potential functions for the CRF,
learn their weights and remove all potentials which were assigned a weight of 0
by employing an L1 sparsity prior. This allows to automatically select the most
appropriate potential functions and to define the CRF graph topology, starting
from a fully connected graph, in a single optimization framework. We investigated
our approach to localize six landmarks of the lower extremities on a dataset of 660
X-ray images with significant fractions of missing landmarks due to restricted field
of view. Although on average 45.5 % of the CRF potentials have been removed,
we detected and localized (within 10 mm) on average 92.8 % of the different
landmarks while being very robust against prostheses. Increasing the localization
tolerance to 20 mm further improved the performance to 96.2 %. Our approach
can be extended to use different (and additional) landmark localizers (e.g., deep
convolutional neural networks), further binary potentials (e.g., incorporating
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gray value profiles along edges [5]) or potentials of higher arity (e.g., the relative
position of landmark triples), where higher order clique reduction techniques [10]
seem promising. Also, a zooming approach [9] could be added to further refine
the landmark positions. Since our approach is fairly general, we can apply it to
different landmark localization tasks with limited manual effort.
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