
YEROTH_QVGE-user-guide 2

YEROTH_QVGE-intro 7

YEROTHr&d | user’s guide for YEROTH_QVGE

User’s Guide for the

Design and Testing System

YEROTH_QVGE (YR_QVGE)

Figure 1: Portrait of PROF. DR.–ING. DIPL.–INF. XAVIER NOUMBISSI NOUNDOU .
Contact: yeroth.d@gmail.com

Table 1: STATE DIAGRAMMEALYMACHINE SPECIFICATION KEYWORDS in YEROTH_QVGE

scientific keywords engineering keywords

STATE STATE

START_STATE BEGIN_STATE

FINAL_STATE END_STATE / ERROR_STATE

IN_PRE IN_BEFORE

IN_POST IN_AFTER

IN_SET_TRACE IN_SQL_EVENT_LOG

NOT_IN_PRE NOT_IN_BEFORE

NOT_IN_POST NOT_IN_AFTER

NOT_IN_SET_TRACE NOT_IN_SQL_EVENT_LOG

Figure 2: A motivating example, as previous bug found in YEROTH–ERP–3.0.
Q0 :=NOT_IN_BEFORE(YR_ASSET, department.department_name).

Q1 := IN_AFTER(YR_ASSET, stocks.department_name).

D

Q0
start

E

Q1

[in_sql_event_log(’DELETE.department.YR_ASSET’, STATE(D))] / ’SELECT.department’

Figure 3: ASAMPLE state diagrammealymachine file.

1. yr_sd_mealy_automaton_spec yr_missing_department_NO_DELETE

2. {

3. START_STATE(d):NOT_IN_BEFORE(YR_ASSET,department.department_name)

4. ->[in_sql_event_log(’DELETE.departement.YR_ASSET’,STATE(d))]/’SELECT.department’->

5. ERROR_STATE(e):IN_AFTER(YR_ASSET,stocks.department_name).

6. }

Page 1. | Version of – October 12, 2023 –

YEROTH_QVGE user’s guide YEROTHr&d

Figure 4: A SCREENSHOT OF YEROTH_QVGE.

Figure 5: A SCREENSHOTOF YR-DB-RUNTIME-VERIF

SQL EVENT LOG.

1 Introduction

Figure 6: SOFTWARE ARCHITECTURE OF YR-DB-
RUNTIME-VERIF.

OPERATING SYSTEM (OS)

LIBRARY − PLUGIN

yr−db−runtime−verif

A RUNTIME MONITOR

SUT source code instrumented

QT socket calls (via Qt−Dbus)

MYSQL library methods calls

OS system calls

SUT (system under test)

This user’s guide helps briefly and concisely how to create
a binary executable of the runtime monitoring testing tool
YR-DB-RUNTIME-VERIF having user defined runtime monitors.
The guide also specifies keywords allowed within runtime
monitor specifications as State DiagramMealy Machines.

YEROTH_QVGE (YR_QVGE) could be used for the following
automatic generation, analysis, verification, and validation
tasks:

1. Automatic generation of runtime monitoring module
program for any software that can emit DBus messages.

Such runtime monitoring modules are for interest for
special LTL model checking properties that cannot get
a definite answer through use of a conventional model
checker.

2. Software design properties with SQL

3. Software design properties including event sequences
over different layers of software system architecture

4. Class diagramwith sequence diagram.

2 YEROTH_QVGE (YR_QVGE) Short
Overview

Figure 7: YEROTH_QVGE software library dependencies.

YR_SD_RUNTIME_VERIF_LANG

YR_SD_RUNTIME_VERIF_LANG_COMP

YR−DB−RUNTIME−VERIF

YR_SD_RUNTIME_VERIF_UNIT_TESTS

YEROTH_QVGE is a CASE (Computer-Aided Software
Engineering) design tool to generate "domain-specific
language (DSL) YR_SD_RUNTIME_VERIF_LANG

1" files, to be
inputted into the "compiler YR_SD_RUNTIME_VERIF_LANG_COMP

", so to generate C++ files for the "runtime verifier tester
YR-DB-RUNTIME-VERIF

2" that allows for manual verification
of SQL correctness properties of Graphical User Interface
(GUI) software.

Figure 8 illustrates a workflow diagrammatically of the
afore described process.

Figure 7 show a diagram of the afore described process;
The step of the unit tests is colored in gray because it is only
for developers of YEROTH_QVGE intended.

YR-DB-RUNTIME-VERIF inputs SQL correctness properties
expressed using the formalism "state diagram mealy
machine (YR_SD_RUNTIME_VERIF_LANG)". Figure 6 illustrates
a software system architecture of YR-DB-RUNTIME-VERIF ,
together with the monitored program under analysis. The
Free Open Source Code Software (FOSS) tool-chain of
development testing is located as follows for free, EXCEPT

1https://github.com/yerothd/yr_sd_runtime_verif
2https://github.com/yerothd/yr-db-runtime-verif

Author: PROF. DR.–ING. DIPL.–INF. XAVIER NOUMBISSI NOUNDOU Page 2. | Version of – October 12, 2023 –

https://github.com/yerothd/yr_sd_runtime_verif
https://github.com/yerothd/yr-db-runtime-verif

YEROTH_QVGE user’s guide YEROTHr&d

for "YEROTH_QVGE" that is aClosedSourceCodeSoftware
(CSCS):

• COMPILER (i.e.: YR_SD_RUNTIME_VERIF_LANG_COMP):
https://github.com/yerothd/yr_sd_

runtime_verif_lang

• RUNTIME VERIFIER TESTER (i.e.: YR-DB-RUNTIME-VERIF):
https://github.com/yerothd/

yr-db-runtime-verif

• state diagrammealy machine UNIT TESTS CODE (i.e.:
YR_SD_RUNTIME_VERIF_UNIT_TESTS):
https://github.com/yerothd/yr_sd_

runtime_verif_UNIT_TESTS

• state diagram mealy machine (i.e.:
YR_SD_RUNTIME_VERIF_LANG):
https://github.com/yerothd/yr_sd_

runtime_verif

3 YEROTH_QVGE (YR_QVGE) Project
Dependency

Table 2: YEROTH_QVGE Design and Testing System
Dependencies

PROJECT Required Library

1) YR_SD_RUNTIME_VERIF_LANG

2) YR_SD_RUNTIME_VERIF_LANG_COMP 1)

3) YR_SD_RUNTIME_VERIF_UNIT_TESTS 1)

4) YR-DB-RUNTIME-VERIF 2)

Table 2 illustrates for each library project, which others it
depends on.

4 Advantages of YEROTH_QVGE

A sample state diagrammealymachine is shown in Figure 3.

WITH manual drawing of SQL CORRECTNESS PROPERTY
MODEL, you are freed from manually writing "state
diagrammealy machine text files" that could be tedious and
lengthy. Also, editing state diagram mealy machine files
manually could be more error-prone than letting a compiler
(YR_SD_RUNTIME_VERIF_LANG) do it for you.

5 State Diagram Mealy Machine
(SDMM)

TABLE 1 depicts scientific keywords and their engineering
counterpart that canbeused indescribingNOTDESIRABLE 3

SQL 4 call sequence state diagram mealy machine in
YEROTH_QVGE Design and Testing System.

A STATE DIAGRAM mealy machine specification is
compiled into C++ code that describes a runtime monitor
to be executed in the runtime monitoring tester YR-DB-

RUNTIME-VERIF . Figure 3 depicts a sample State Diagram
Mealy Machine specification on a NOT DESIRABLE SQL call
sequence.

5.1 HOWTOREADA "SDMM"

Figure 2 shows a finite automaton representation of the
mealy machine description in Figure 3. It shall be read as
follows:

• The program is in a start state D; state D is a start state
since there is incoming "START" arrow into it.

• (Pre-) ConditionQ0: "department name’YR_ASSET’
is not in table column ’department_name’ of
database table ’department’"; applies in state D.

• Whenever GUARD CONDITION :
in_sql_event_log(’DELETE.department.YR_ASSET’,
STATE(d)) : "event’DELETE.department.YR_ASSET’
appears in SQL event log (trace) leading to state D";
applies in state D, system under test (SUT) event
’SELECT.department’ could occur.

• When SUT event ’SELECT.department’ occurs,
SUT is now in state E; state E is an error state because
the node that represents it in Figure 2 has 2 circles on
it.

• (Post-) Condition Q1: "department
name ’YR_ASSET’ is in table column
’department_name’ of database table
’stocks’"; applies in state E.

This shall not be the case since department
’YR_ASSET’ is no more defined in SUT database
table ’department’.

5.2 "SDMM"WITHMORETHAN 2 STATES

State Diagram Mealy Machines (SDMM) with more than 2

states have following characteristics, as detailed in scientific
and engineering journal paper [Nou23] in preparation:

• Only the first transition has a pre-condition
specification

• Each other transition only has a post-condition
specification

• Since each state only has 1 outgoing state transition,
the post-condition of the previous (incoming) state
transition acts as the pre-condition of the next
transition.

6 YEROTH_QVGE (YR_QVGE)
Workflow

Figure 8: Workflow.
3Scientific: fail (forbidden) trace.
4Structure Query Language.

Author: PROF. DR.–ING. DIPL.–INF. XAVIER NOUMBISSI NOUNDOU Page 3. | Version of – October 12, 2023 –

https://github.com/yerothd/yr_sd_runtime_verif_lang
https://github.com/yerothd/yr_sd_runtime_verif_lang
https://github.com/yerothd/yr-db-runtime-verif
https://github.com/yerothd/yr-db-runtime-verif
https://github.com/yerothd/yr_sd_runtime_verif_UNIT_TESTS
https://github.com/yerothd/yr_sd_runtime_verif_UNIT_TESTS
https://github.com/yerothd/yr_sd_runtime_verif
https://github.com/yerothd/yr_sd_runtime_verif

YEROTH_QVGE user’s guide YEROTHr&d

user project directory:

"$USER_PROJECT_DIR/sd−mealy−machine−specs".

copy ".spec_sd_mealy" generated

file into YR−DB−RUNTIME−VERIF

YR−DB−RUNTIME−VERIF

Instrument SUT (system uder test)

with QtDbus calls to

safety property with
YR_QVGE.

draw SQL temporal

GENERATE A SINGLE

yr−db−runtime−verif executable

"$YR−DB−RUNTIME−VERIF".

using bash scripts in folder

The "Design and Testing System" YEROTH_QVGE works
with following workflow, as illustrated graphically in
Figure 8:

1. Draw Structure Query Language (SQL) temporal safety
property using drawing tool YEROTH_QVGE;

2. copy the generated ".spec_sd_mealy" files into a user
project directory in YR-DB-RUNTIME-VERIF home
development folder: "$YR–DB–RUNTIME–VERIF";

3. follow the steps described in Section 7 so to gather
a single executable that defines all specified runtime
monitors.

7 Custom User Project (YR–DB–
RUNTIME–VERIF)

Table 3: YR-DB-RUNTIME-VERIF Directories
Variable for illustration purposes Meaning

$YR–DB–RUNTIME–VERIF root directory of YR-DB-RUNTIME-VERIF

$YR–DB–RUNTIME–VERIF/$USER_PROJECT root directory of user project

Table 3 illustrates directories that will be used to describe a
process to generate a single binary executable for a user’s
custom project with several runtime monitor specifications.

Figure 5 illustrates a screenshot of the Graphical User
Interface (GUI) of YR-DB-RUNTIME-VERIF . You can get a copy of
YR-DB-RUNTIME-VERIF using the following command:

git clone https://github.com/yerothd/yr-db-runtime-verif

Creating a binary executable for State Diagram Mealy
Machine (SDMM) specifications consists of the following
elements:

1. ’MariaDB’ database connection configuration file:
this file defines settings to connect to the system under
test (SUT) application database; it is located in path:
"$YR–DB–RUNTIME–VERIF/YR-DB-RUNTIME-VERIF-GUI-ELEMENTS-

SETUP/yr-db-runtime-verif-database-connection.properties".

A database connection to the SUT application
database is required in order to check LTL
property through the SDMM application library
YR_SD_RUNTIME_VERIF_LANG .

2. Property configuration file: this file defines environment
variables necessary for building a binary executable
for the user; it is located in path: "$YR–DB–RUNTIME–

VERIF/$USER_PROJECT/bin/configuration-properties.sh".

3. "$YR–DB–RUNTIME–VERIF/$USER_PROJECT/sd-mealy-machine-specs":
this directory contains user defined State Diagram
Mealy Machine (SDMM) specifications to generate
Corresponding runtime monitors within a single binary
executable.

4. Generate an executable for a user defined runtime
monitor:

a) execute following command in directory "$YR–DB–
RUNTIME–VERIF":

. ./YR-create-executable-for-user-SDMM.sh -d $USER_PROJECT

b) modify the LTL verification code part within the
generated source code files.

Then execute following command in directory "$YR–DB–
RUNTIME–VERIF":

./yr_db_runtime_verif_BUILD_DEBIAN_PACKAGE.sh

c) uninstall YR-DB-RUNTIME-VERIF with following command
in directory "$YR–DB–RUNTIME–VERIF":

./yr_DB_RUNTIME_VERIF_uninstall.sh

d) re–install YR-DB-RUNTIME-VERIF with following command
in directory "$YR–DB–RUNTIME–VERIF":

./yr_DB_RUNTIME_VERIF_INSTALL.SH

8 HOW TO START YR-DB-RUNTIME-
VERIF

• The "ELF-x64" binary executable, in the source
development directory is located in full path: "$YR-
DB-RUNTIME-VERIF/bin".

• The DEBIAN–LINUX icon () of YR-DB-RUNTIME-

VERIF is located in "Applications" menu under section
"Programming", and section "Accessories".

• The "ELF-x64" binary executable, after installation
of the DEBIAN–LINUX package ’yr-db-runtime-
verif.deb’ is located in full path: "/opt/yr-db-runtime-
verif/bin".

Author: PROF. DR.–ING. DIPL.–INF. XAVIER NOUMBISSI NOUNDOU Page 4. | Version of – October 12, 2023 –

https://www.debian.org
https://www.debian.org

YEROTH_QVGE user’s guide YEROTHr&d

9 Formal Scientific and Engineering
Project Description

Detailed formal scientific and engineering contributions
of design and testing system YEROTH_QVGE can be
found in JOURNAL ARTICLE "Runtime Verification Of
SQL Correctness Properties with YR-DB-RUNTIME-
VERIF" [Nou23].

10 Conclusion

The graphical drawing tool YEROTH_QVGE (Figure 4) costs
only 3,000 EUROS. WE ONLY SUPPORT DEBIAN–LINUX
(https://www.debian.org).

References

[Nou23] Xavier N. Noundou. Runtime Verification Of SQL
Correctness Properties with YR-DB-RUNTIME-
VERIF. https://zenodo.org/record/

8381187, October 2023.

Author: PROF. DR.–ING. DIPL.–INF. XAVIER NOUMBISSI NOUNDOU Page 5. | Version of – October 12, 2023 –

https://www.debian.org
https://www.debian.org
https://zenodo.org/record/8381187
https://zenodo.org/record/8381187

YEROTHr&d | information brochure of YEROTH_QVGE

Information Brochure of the

Design and Testing System

YEROTH_QVGE (YR_QVGE)

PROF. DR.–ING. DIPL.–INF. XAVIER NOUMBISSI NOUNDOU
CONTACT: yeroth.d@gmail.com

Table 1: EQUIVALENCES

scientific literature engineering acronym

PRE BEFORE

POST AFTER

A TRACE AN EVENT LOG

A FINAL STATE AN ERROR STATE

Figure 1: A motivating example, as previous bug found in YEROTH–ERP–3.0.
Q0 :=NOT_IN_BEFORE(YR_ASSET, department.department_name).

Q1 := IN_AFTER(YR_ASSET, stocks.department_name).

D

Q0
start

E

Q1

[in_sql_event_log(’DELETE.department.YR_ASSET’, STATE(D))] / ’SELECT.department’

Figure 2: ASAMPLE state diagrammealymachine file.

1. yr_sd_mealy_automaton_spec yr_missing_department_NO_DELETE
2. {
3. START_STATE(d):NOT_IN_BEFORE(YR_ASSET,department.department_name)
4. ->[in_sql_event_log(’DELETE.departement.YR_ASSET’,STATE(d))]/’SELECT.department’->
5. ERROR_STATE(e):IN_AFTER(YR_ASSET,stocks.department_name).
6. }

Figure 3: A SCREENSHOT OF YEROTH_QVGE.

Figure 4: A SCREENSHOTOF YR-DB-RUNTIME-VERIF

SQL EVENT LOG.

Page 1. | Version of – October 13, 2023 –

YEROTH_QVGE: a design tool for testing sql correctness properties YEROTHr&d

1 Developer Biography

Figure 5: Portrait of XAVIER.

PROF. DR.–ING. DIPL.–INF. XAVIER NOUMBISSI
NOUNDOU is a CHRISTIAN BY FAITH, Cameroonian,
born on September 16 1983 in DOUALA (LITTORAL region,
CAMEROON). Xavier has a ”Diplom–Informatiker (Dipl.–
Inf.)” qualification from the University of Bremen, Bremen,
Bremen, GERMANY (May 25, 2007). XAVIER NOUMBISSI
NOUNDOU IS A PHILOSOPHIAE DOCTOR (PH.D.) from
THEUNIVERSITYOFWATERLOO(ON,CANADA);DECEM-
BER 20, 2011 !

PROF. DR.–ING. DIPL.–INF. XAVIER NOUMBISSI
NOUNDOU hasworked togetherwithPROF.DR.RER.NAT.
HABIL. JAN PELESKA, at AGBS–University of Bremen (and
at spin–off VERIFIED SYSTEMS INTERNATIONAL GmbH),
GERMANY; and 2 years later at WatForm–University of
Waterloo, ON, Canada, with PATRICK LAM, PH.D. (MIT,
BOSTON,MA, USA), P.ENG. (Ontario, CANADA).

Xavier could successfully work with DR. FRANK TIP
at The University ofWaterloo (Waterloo, ON, Canada) on his
first JAVA dynamic program analysis.

Xavier also had the great opportunity through DR.
MARCEL MITRAN and PATRICK LAM, PH.D., P.ENG.;
to work as a graduate intern in Markham (Toronto, ON,
CANADA) at IBM TORONTO SOFTWARE LABORATORY;
in the JAVA–J9 Just–In–Time Compiler Optimization Team,
together with VIJAY SUNDARESAN.

Xavier has following academic and professional en-
gineering research contributions:

1. ’Statistical test case generation for reactive systems’
at RTT-MBT at VERIFIED SYSTEMS INTERNATIONAL
GmbH (https://www.verified.de).

2. ’Context-Sensitive Staged Static Taint Analysis For C
using LLVM’

1. source code in C++:
https://github.com/sazzad114/saint

2. full text: https://zenodo.org/record/8051293 .

3. ’YEROTH-ERP-3.0’:

1. source code in C++:

a. YEROTH–ERP–3.0:
https://github.com/yerothd/
yeroth-erp-3-0

b. YEROTH–ERP–3.0 SYSTEMDAEMON:
https://github.com/yerothd/
yeroth-erp-3-0-system-daemon

2. full text (ongoing publication):
https://zenodo.org/record/8052724 .

2 Introduction

Figure 6: SOFTWARE ARCHITECTURE OF YR-DB-
RUNTIME-VERIF.

OPERATING SYSTEM (OS)

LIBRARY − PLUGIN

yr−db−runtime−verif

A RUNTIME MONITOR

SUT source code instrumented

QT socket calls (via Qt−Dbus)

MYSQL library methods calls

OS system calls

SUT (system under test)

YEROTH_QVGE is a CASE (Computer-Aided Software Engi-
neering) design tool to generate "domain-specific language
(DSL) YR_SD_RUNTIME_VERIF_LANG

1" files, to be inputted into the
"compiler YR_SD_RUNTIME_VERIF_LANG_COMP ", so to generate
C++ files for the "runtime verifier tester YR-DB-RUNTIME-VERIF
2" that allows for manual verification of SQL correctness
properties of Graphical User Interface (GUI) software.

YR-DB-RUNTIME-VERIF inputs SQL correctness properties ex-
pressed using the formalism "state diagram mealy machine
(YR_SD_RUNTIME_VERIF_LANG)". Figure 6 illustrates a software
system architecture of YR-DB-RUNTIME-VERIF , together with the
monitored program under analysis. The Free Open Source
Code Software (FOSS) tool-chain of development testing is
located as follows for free, EXCEPT for "YEROTH_QVGE "
that is a Closed Source Code Software (CSCS):

• COMPILER (i.e.: YR_SD_RUNTIME_VERIF_LANG_COMP):
https://github.com/yerothd/yr_sd_runtime_
verif_lang

• RUNTIME VERIFIER TESTER (i.e.: YR-DB-RUNTIME-VERIF):
https://github.com/yerothd/
yr-db-runtime-verif

• state diagrammealy machine UNIT TESTS CODE (i.e.:
YR_SD_RUNTIME_VERIF_UNIT_TESTS):
https://github.com/yerothd/yr_sd_runtime_
verif_UNIT_TESTS

• state diagram mealy machine (i.e.:
YR_SD_RUNTIME_VERIF_LANG):
https://github.com/yerothd/yr_sd_runtime_
verif

1https://github.com/yerothd/yr_sd_runtime_verif_lang
2https://github.com/yerothd/yr-db-runtime-verif

Author: PROF. DR.–ING. DIPL.–INF. XAVIER NOUMBISSI NOUNDOU Page 2. | Version of – October 13, 2023 –

https://www.mathgenealogy.org/id.php?id=291560
https://www.verified.de/products/model-based-testing
https://www.verified.de
https://www.verified.de
https://github.com/sazzad114/saint
https://zenodo.org/record/8051293
https://github.com/yerothd/yeroth-erp-3-0
https://github.com/yerothd/yeroth-erp-3-0
https://github.com/yerothd/yeroth-erp-3-0-system-daemon
https://github.com/yerothd/yeroth-erp-3-0-system-daemon
https://zenodo.org/record/8052724
https://github.com/yerothd/yr_sd_runtime_verif_lang
https://github.com/yerothd/yr_sd_runtime_verif_lang
https://github.com/yerothd/yr-db-runtime-verif
https://github.com/yerothd/yr-db-runtime-verif
https://github.com/yerothd/yr_sd_runtime_verif_UNIT_TESTS
https://github.com/yerothd/yr_sd_runtime_verif_UNIT_TESTS
https://github.com/yerothd/yr_sd_runtime_verif
https://github.com/yerothd/yr_sd_runtime_verif
https://github.com/yerothd/yr_sd_runtime_verif_lang
https://github.com/yerothd/yr-db-runtime-verif

YEROTH_QVGE: a design tool for testing sql correctness properties YEROTHr&d

3 YEROTH_QVGE (YR_QVGE) Project

Dependency

Table 2: YEROTH_QVGE Design and Testing System De-
pendencies

PROJECT Required Library

1) YR_SD_RUNTIME_VERIF_LANG

2) YR_SD_RUNTIME_VERIF_LANG_COMP 1)

3) YR_SD_RUNTIME_VERIF_UNIT_TESTS 1)

4) YR-DB-RUNTIME-VERIF 2)

Table 2 illustrates for each library project, which others it de-
pends on.

Figure 7: YEROTH_QVGE software library dependencies.

YR_SD_RUNTIME_VERIF_LANG

YR_SD_RUNTIME_VERIF_LANG_COMP

YR−DB−RUNTIME−VERIF

YR_SD_RUNTIME_VERIF_UNIT_TESTS

Figure 7 show a diagram overview of the presentation in Ta-
ble 2. The step of the unit tests is colored in gray because it
is only for developers of YEROTH_QVGE intended.

4 Potential Uses of YEROTH_QVGE

YEROTH_QVGE (YR_QVGE) could be used for the follow-
ing automatic generation, analysis, verification, and valida-
tion tasks:

1. Automatic generationof runtimemonitoringmodulepro-
gram for any software that can emit DBus messages.

Such runtimemonitoringmodules are for interest for spe-
cial LTLmodel checking properties that cannot get a defi-
nite answer through use of a conventionalmodel checker.

2. Software design properties with SQL

3. Software design properties including event sequences
over different layers of software system architecture

4. Class diagramwith sequence diagram.

5 Advantages of YEROTH_QVGE

A sample state diagrammealymachine is shown in Figure 2.

WITH manual drawing of SQL CORRECTNESS PROPERTY
MODEL, you are freed from manually writing "state dia-
gram mealy machine text files" that could be tedious and
lengthy. Also, editing state diagram mealy machine files
manually could be more error-prone than letting a compiler
(YR_SD_RUNTIME_VERIF_LANG_COMP) do it for you.

6 Conclusion

YEROTH_QVGE costs only 3,000 EUROS. WE ONLY SUP-
PORT DEBIAN–LINUX (https://www.debian.org).

Author: PROF. DR.–ING. DIPL.–INF. XAVIER NOUMBISSI NOUNDOU Page 3. | Version of – October 13, 2023 –

https://www.debian.org
https://www.debian.org

	YEROTH_QVGE-user-guide
	YEROTH_QVGE-intro

