
 

J. of Bioprocessing and Chemical Engineering               Volume 1 / Issue 4                                              ISSN: 2348 –3768 1 

                                                                                                                                             
 
 
Application of Monte-Carlo Simulation to Estimate the Kinetic Parameters of n-Eicosane 
Pyrolysis and n-Heptane Catalytic Reforming 
 

Hafeez Allan Agboola1*, Lekan Taofeek Popoola2 and Alfred Akpoveta Susu3 
1*Department of Chemical and Polymer Engineering, Lagos State University, Epe, Lagos State, Nigeria. 
2Department of Petroleum and Chemical Engineering, Afe Babalola University, Ado-Ekiti, Ekiti State Nigeria. 
3Department of Chemical Engineering, University of Lagos, Lagos State, Nigeria. 
        *Corresponding author:  Hafeez Allan Agboola    E-mail: haphizo6@yahoo.com 
          Received: July 20, 2014,   Accepted: August 21, 2014,   Published: August 21, 2014. 
 
ABSTRACT 
      Pyrolysis of hydrocarbons and catalytic reforming of naphtha are important processes in petroleum refineries and 
petrochemical industries as they lead to production of light olefins, high octane gasoline, aromatics and so on. Thus, it is important 
to investigate their chemical kinetics in order to establish rate expressions or models for their reactions. In this research work, 
Monte-Carlo Simulation was applied to estimate kinetic parameters of two complex reactions: pyrolysis of n-Eicosane and 
catalytic reforming of n-Heptane. The rate models which were derived experimentally from previous work of Susu [18] were used 
directly as forward reaction models in the Monte-Carlo simulation model algorithm. This required the use of 
concentration-reaction rate data obtained from the experimental time-concentration data through a technique called Tikhonov 
regularization. The result revealed the values of rate constants ranging from 0.0138 – 48.301 hr-1 at different temperatures of 425, 
440 and 450oC with minimum objective function of 0.01730 for the 1st order kinetic of n-Eicosane pyrolysis. For the 2nd order 
kinetic of n-Eicosane pyrolysis, the values of rate constants ranged from 10.8348 – 261.691 cm3.gmol-1.hr-1 at different 
temperatures of 425, 440 and 450oC with minimum objective function of 0.0678. The n-Heptane catalytic reforming was examined 
at 460oC with rate constants ranging between 1.270 and 86.8126. The methodology used predicted accurately well as there was 
good agreement between the calculated values and the examined experimental values.  
  Keyword: Monte-Carlo simulation, Tikhonov Regularization, Catalytic Reforming, Pyrolysis, n-Heptane, n-Eicosane, Kinetics. 
 
 
INTRODUCTION 
Steam pyrolysis of hydrocarbons is an important process for the 
production of light olefins such as ethylene, propylene and 
butenes [1]. The catalytic reforming of naphtha is the best 
method for producing high octane gasoline and aromatics in 
petroleum refineries and petrochemical industries respectively 
[2]. Several research efforts have focussed on developing 
catalysts for pyrolysis and catalytic reforming. Limited data 
available on catalytic pyrolysis has been summarized elsewhere 
[3], [4]. However, there is need to investigate their chemical 
kinetics in order to establish the rate expressions or models for 
their reactions. The obtained rate expression relates the rate of 
reaction to the factors that control the reaction, namely, 
temperature, pressure or concentration. This is accomplished 
by identifying the reaction mechanism through a postulation of 
the sequence of elementary steps characterizing the reaction. 
Once a rate model is obtained for a reaction under study, it 
becomes necessary to determine the kinetic parameters (rate 
and equilibrium constants) in the model from experimental 
concentration-time data. Such kinetic parameters are important 
in sizing of reactors and pointing the direction of enhancing the 
reaction itself [5]. 

There are varieties of techniques developed to estimate kinetic 
parameters in a rate model from experimental data. The most 
popular of these, being the integration method where the rate 
equations are integrated to give the concentrations of the 
reactants and products as a function of time with the parameters 
appearing as unknowns. The unknown parameters are then 
obtained by matching the resulting concentration-time profile 
with experimental data using commercial software. However, 
this method suffers a setback when applied to reactions with 
complex rate expressions as integration becomes highly 
difficult. For instance, the rate expression arising from 
heterogeneous catalytic reactions are often formidable due to 
large number of elementary steps characterizing the reactions 
and so, obtaining concentration of any specie as a function of 
time and reaction parameters from such model becomes very 
hard. 
Furthermore, integrating the rate equations generally leads to 
complicated concentration-time profile thereby making it 
difficult to determine the set of parameters to a reasonable 
degree of accuracy. The time-concentration profile resulting 
from a pyrolysis reaction studied by Priyanka et. al. [6] is a 
clear example of such cases. Interestingly, the setbacks 
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highlighted above can be circumvented by using a technique 
known as Tikhonov regularization to convert the 
experimental–time concentration data into 
concentration-reaction rate data. Since the expressions for the 
reaction rate models are usually simpler than integrated 
time-concentration profiles, the parameters can be obtained 
with greater ease and possibly also with a higher degree of 
accuracy [7]. Once the form of data to be used has been 
identified, parameter estimation would then require least square 
fitting of the rate equation into the concentration-reaction rate 
curve or concentration-time profile. 
Several numerical minimization techniques have been 
developed to perform this task. These include simulated 
annealing, Nedler-Mead simplex method, differentiation 
evolution and random search method [8]. All these 
minimization computations entail the assumption of initial 
guesses and can be performed using commercial software. The 
general objective in optimization is to choose a set of values of 
variables (parameters) subject to the various constraints that 
produce the desired optimum response for the chosen objective 
function [9].  
Monte Carlo simulation is a type of simulation that relies on 
repeated random sampling and statistical analysis to compute 
the results [10]. This method of simulation is very closely 
related to random experiments, experiments for which specific 
result is not known in advance. In this context, Monte Carlo 
simulation can be considered as a methodical way of doing 
so-called what-if analysis. Mathematical models are used in 
engineering discipline to describe the interactions in a system 
using mathematical expressions. The models typically depend 
on a number of input parameters which when processed 
through the mathematical formula in the model, result in one or 
more outputs. The Monte Carlo simulation is a user-friendly 
technique and can be used to numerically represent a physical 
problem based on the deterministic model. This is achievable 
by utilizing random numbers generated on the basis of probable 
distribution of parameters as inputs. 
The use of Monte-Carlo simulation for parameter estimation 
has been observed by a number of researchers. Zhang et. al. 
[11] used the technique for adaptive parameter estimation for 
microbial growth kinetics. Marshal [12] used it for the least 
squares parameter estimation from multi-equation implicit 
models. The method was also used by Zhan et. al. [13] for the 
estimation of parameters for propylene amoxidation while 
Agarrwal et. al. [14] exploited the method in estimating kinetic 
parameters of reactive transport. Priyanka et. al. [6] used the 
Monte-Carlo simulation to estimate the kinetic parameters for 
pyrolysis of biomass. Recently, Popoola et. al. [15] applied 
artificial neural network-based Monte Carlo simulation in the 
expert system design and control of crude oil distillation 
Column of a Nigerian Refinery. In all the work mentioned, 
kinetic data were used in their raw form (i.e. 
time-concentration) but in the present work, kinetic data are 
used in their processed form (i.e. concentration-reaction rate). 
This work therefore, studies the suitability and accuracy of 
kinetic parameters estimation for complex reactions by 
Monte-Carlo simulation through Tikhonov Regularization 
technique. 
MATHEMATICAL MODELLING 

The derivation of the working equations of Tikhonov 
regularization is rather complicated, but the computational 
steps associated with the procedure are quite straightforward 
[16].  
The Governing Equation 
Generally, reaction rate r(t)  can be expressed in terms of 

concentration c(t)  as: 

dc(t)r(t)=
dt

                                  (1) 

Equation (1) can be re-written as: 

0

( ) ( )
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where oc  is the initial concentration. Equation (2) is a Volterra 

integral equation for the unknown reaction rate r(t)  and initial 

concentration 0c .  

Given a function f(t)  as: 

( )( ) dr tf t
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=                       (3) 

and integrating the RHS of equation (2) by parts as: 

  ' 0' 0 ' 0
( ') ' ' ( ') - ' ( ')

t tt

tt t
r t dt t r t t dr t

== =
=∫ ∫                (4) 

dr(t') from equation (3) can be substituted into equation 

(4) to have 
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Combining equations (2) and (5),     

  ' 0 ' 0
( ) ' ( ') ' ( ') '

ttC
ot t

c t t r t t f t dt c
= =

= − +∫                (6) 

where the superscripts C and M  are used to distinguish 
between the computed concentration Cc  and the 
experimentally measured concentration Mc . 
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From equation (3), 
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where 0r  is the initial rate of reaction.  
Combining equations (7) and (8), we have 
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Collecting like terms, we have 
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=
= − + +∫                        (10) 

Equation (10) is referred to as the Volterra integral equation 
which can be solved for the unknown function f(t)  and the 

constants 0c  and 0r . This equation is independent of reaction 

mechanism. Given the values of f(t) , 0c  and 0r ; r(t)  and 

c(t)  can be computed by direct numerical integration. Since 
numerical integration does not suffer from noise amplification, 
the r(t)  thus obtained is expected to be relatively free from the 
influence of experimental noise [7]. 
Discretization of the Volterra Integral Equation 
The discretized form of equation (10) is given thus: 

j i

j

t' =t
C
i 0 i 0 ij i j j

t' =0
c (t)= c +t r + a (t - t' )f Dt'∑            (11) 

where Di = 1,2,....,N  and Kj = 1,2,.....,N .                  (12) 

DN  is the number of data points, KN  is the number of 

discretization points and 
K1 2, 3, Nf , f f ......., f  are the 

discretized f(t) . The independent variable max'0 tt ≤≤  is 

divided into KN  uniformly spaced discretization points with 

step size )1(' max −=∆ KNtt , where 
Dmax Nt = t  is the 

largest it  in the data set. ijα
 is the coefficient arising from the 

numerical scheme used to approximate the integral in equation 

(10). For Simpson’s 1 3  rule, 
32=ijα

 for odd j (except 

311 =iα ) and 
34=ijα

 for even  j. 
The deviation of Cc  from Mc  is given by  
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i Dt ,i = 1,2,3......,N  are the times at which the concentration 

is measured and j Kt' , j = 1,2,3......,N  are the uniformly 

spaced discretized time max'0 tt ≤≤ .   
In matrix notation, equation (14) can be rewritten as 

AfBCc −−−= 00 rcMδ                   (17) 

       where, 
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C  and B  are DN ×1  column vectors, A  is a D KN × N  
matrix of coefficient of the unknown column vector 

K

T

1 2 3 Nf= f ,f ,f ,.....,f   . Since KN  generally exceeds the 

number of data points DN , A  is not a square matrix and 

equation (14) cannot be inverted to give a unique f , 0c  and 

0r . Instead, these unknowns are selected to minimize the sum 

of squares of iδ , 

( )TMT
N

i
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D

AfBCc −−−==∑
=

00
1

2 δδδ
 

( )AfBCc −−−× 00 rcM
                       (19) 

However, because of the noise in the experimental data, 

minimizing δδ T
 will not in general result in a smooth )(tf . 

Hence, to ensure smoothness, additional conditions have to be 
imposed, which is the minimization of the sum of squares of the 

second derivative 
22 'dtfd at the internal discretization 

points. In terms of the column vector f , this condition takes on 
the form of minimizing 
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where β  is the tri-diagonal matrix of coefficients arising from 

the finite difference approximation of 
22 'dtfd  and is given 

by 
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 (21) 
Tikhonov Regularization 

In Tikhonov regularization instead of minimizing δδ T
and 

ff ββ TT
separately, a linear combination of these two 

quantities ffR ββλδδ TTT += is minimized. λ  is 
an adjustable weighting/regularization factor that controls the 
extent to which the noise in the kinetic data is being filtered out. 
Minimizing R  requires the following conditions to hold: 
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These give rise to a set of linear algebraic equations for f , 0c  

and 0r  (assuming that both initial conditions are known). It can 

be shown that the f , 0c  and 0r  that satisfy equations (22) to 
(24) are given by [17]:  

( ) MTTT cAAAf '''''' 1−
+= βλβ                    (25) 

where 'f  denotes the column vector 

[ ]TN rcffff
K 00321 ,,,.....,,,

 incorporating 0c  and 0r  

into f . 'A  is the composite matrix ( )BCA ,,  derived from 

equations (15), (16) and (18) to reflect the inclusion of 0c  and 

0r  in 'f . Similarly, 'β  is the composite matrix ( )00,,β , 

where 0  is a ( ) 12 ×−KN  column vector of 0 to allow for 

the fact that 0c  and 0r  play no part in the smoothness 
condition in equation (20). Equation (25) is the operating 
equation of Tikhonov regularization computation. 
Mote-Carlo Simulation 
Monte-Carlo simulation is a general method to compute 
statistical characteristics of an output Y which is a function of a 
random variable set X: 

                        y = f (x)                                   (26) 
In equation (26), every random sample x of the random variable 
set X, yields a sample y of Y. Solving equation (26) N times 
yield a data set (y1, y2 ……. yn) of samples of Y. The following 
steps are involved in Monte-Carlo simulation of physical 
processes. 

• Static model generation 
Every Monte-Carlo simulation starts off with developing a 
deterministic model which closely resembles the real scenario. 
In this deterministic model, we apply mathematical 
relationships which use the values of the input variables, and 
transform them into the desired outputs. 

• Input Distribution Identification  
When we are satisfied with the deterministic model, we add the 
risk components to the model. Since risks originate from the 
stochastic nature of the input variables, we try to identify the 
underlying distributions, if any, which govern the input 
variable. There are standard statistical procedures to identify 
input distributions. 

• Random Variable Generation 
After we have identified the underlying distributions for the 
input variables, we generate a set of random numbers from 
these distributions. One set of random numbers, consisting of 
one value for each of the input variables, will be used in the 
deterministic model, to provide one set of output values. We 
then repeat this process by generating more sets of random 
numbers, one for each input distribution, and collect different 
sets of possible output values.     
The algorithm used for the process was developed using 
commercial software MATLAB and it is shown in Figure 1. 
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Figure 1: Flow Diagram of Model Algorithm 
APPLICATION TO KINETIC PARAMETERS 
ESTIMATION 
When there exist a number of experimentally observed values 
of input variables from a kinetic study of a particular reaction, 
Monte-Carlo simulation can be used to obtain the kinetic 
parameters (rate and equilibrium constants) that appear in a rate 
model. However, Monte-Carlo algorithm should incorporate 
the objective function which in this case will be to minimize the 
sum of square of errors between the experimentally observed 
values of input variables and their calculated values. 
Application to Pyrolysis of n-Eicosane 
For the initial first-order chain sequence the following free 
radical mechanism was proposed by Susu [18] for the 
decomposition of n-eicosane with a C-C bond scission at the 
α-isomer of iso-eicosane as the initiation step. 
Initiation:   

(CH3)2 CH(CH2)16CH3                   ĊH3+H3CĊH(CH2)CH3           
(27) 

Propagation:  

 ĊH3 + CH3(CH2)18CH3                  CH4 + H3CĊH(CH2)17CH3           
(28)  

H3CĊH(CH2)17CH3              H3CCH=CH2 + ĊH2(CH2)15CH3     
(29) 

 CH4 + ĊH2(CH2)15CH3                    ĊH3 + H3C(CH2)15CH3           
      

(30) 

Termination:        2ĊH3             C2H6           (31) 

 ĊH3 + H3CĊH (CH2)16CH3              (CH3)2CH(CH2)16CH3          
(32) 

Based on this mechanism the overall reaction rate is given as 
(Susu, 1982): 

 

This rate expression is considered as first order because the 
concentration of iso-eicosane  was constant throughout 
the decomposition reaction. The ks are the rate constants in   
hr-1. 
For the new second-order chain sequence resulting from the 
production of alkyl radicals from propylene the following 
mechanism was proposed [18]. 
Initiation:   

C3H6 + ĊH3                      Ċ3H5 + CH4                                     (34) 

Propagation:     

Ċ3H5 + CH3 (CH2)18                           C2H6 + H3CĊH (CH2)17CH3            
(35) 

 C2H6 + H3CĊH (CH2)17CH3                   Ċ3H5 + H3CĊH 
(CH2)15CH3

     (36) 

Termination:  ĊH3 + Ċ3H5                         C4H8       (37) 

The overall rate expression for this new mechanism is given as 
[18]: 

 

This is a second-order rate model where the ks are the rate 

constants in cm3.gmol-1hr-1. In terms of fractional conversion of 

n-Eicosane [nC20], equation (33) can be written as: 

 
Since √([iC₂₀])   in equation (39) is a constant, the expression 
can be re-written as 

 

Where K₂=k₂×√(iC₂₀) and k₁,k₂,and k₅ are in hr⁻ⁱ 

In terms of fractional conversion, equation (38) can be written 
as: 

 

The experimental data for this reaction reported by Susu [18] at 
three different temperatures of 425, 440 and 4500C are given in 
table 1.  The target function is an optimization procedure whose 
objective function is to minimize the sum of square of the errors 
(the difference between the calculated and observed rate values 
at each of the regularized concentration). 
 
                                       (42)      
 
The reaction rate versus conversion curves obtained by 
Tikhonov regularization for n-eicosane pyrolysis at reaction 
temperatures 4250C, 4400C and 4500C were presented 
elsewhere [19]. 
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Table 1: Experimental Data for the Pyrolysis of n-Eicosane 

Temperature 
(0C) 

Time 
(hr) 

Conversion 
of 
n-Eicosane 
(X) 

Yield of 
C3H6 
(mol 
C3H3/mol 
n-C20) 

 
 
 
425 
 
 
 
 
440 
 
 
 
 
450 

0.50 
0.75 
1.00 
1.25 
1.50 
1.75 
 
0.25 
0.50 
0.75 
1.00 
 
0.50 
0.75 
1.00 

0.06 
0.14 
0.20 
0.32 
0.42 
0.45 
 
0.08 
0.34 
0.40 
0.53 
 
0.29 
0.58 
0.72 

0.078 
0.088 
0.118 
0.046 
0.050 
0.047 
 
0.044 
0.049 
0.093 
0.139 
 
0.056 
0.063 
0.086 

Application to N-Heptane reforming on Platinum/Alumina 
Catalyst 
Susu [5] investigated the kinetics of reforming n-heptane on 
Platinum/Alumina catalyst. Six rate models were proposed 
based on two possible rate controlling steps and three different 
assumptions of hydrogen adsorption. The experimental data 
(time-concentration) were obtained using a pulse 
micro-catalytic reactor at a total pressure of 3918kpa and a 
temperature range of 420 - 5000C. The rate model that best 
described the process is given as: 

 

Where:  Cɴ=concentration of n-heptane         
             Cн=concentration of Hydrogen 
          Cт=concentration of Toluene        
            Cʙ=concentration of Benzene 
           Ccp=concentration of cracked products 
            Cm=concentration of Methane 
             Ks=equilibrium constants         
          k₄𝟋&k₄r=rate constants for forward&backward reactions 
of rate determining step 
The reaction rate – concentration data obtained from the time – 
concentration data for this reaction at various temperatures 
shown in table 2 was presented elsewhere [20]. 

 

Table 2: Regularized Concentrations of Reaction Species in Exit Stream at Different   Residence Times. 

Residence Time 

(mg.min/mml) 

n-C7H17 

(gmol/dm3) 

Cracked products 

(C2 – C6) (gmol/dm3) 

C6H5CH3 

(gmol/dm3) 

C6H6 

(gmol/d

m3) 

CH3 

(gmol/d

m3) 

H2 

(gmol/dm3) 

0.8333 0.1350 0.2480 0.2620 0.0118 0.0118 66.2017 

1.250 0.1256 0.2517 0.2661 0.0127 0.0127 66.2017 

1.580 0.1200 0.2539 0.2685 0.0131 0.0131 66.2017 

1.875 0.1115 0.2572 0.2721 0.0139 0.0139 66.2017 

2.500 0.0975 0.2628 0.2782 0.0151 0.0151 66.2017 

3.750 0.0694 0.2738 0.2904 0.0175 0.0175 66.2017 

 

The rate model stated as equation (43) is a very complex one 
which cannot be integrated analytically to obtain the 
concentration of n-heptane as a function of the kinetic 
parameters and time which will then be incorporated as a 
forward model in the Monte-Carlo algorithm. Thus, the 
concentration-reaction rate data obtained from the original 
concentration-time data through Tikhonov regularization 
technique by Omowunmi et. al. [20] was used. The 
concentration-reaction rate data and the rate model can directly 
be used as forward model in the Monte Carlo algorithm. The 
target function for this reaction is as stated as equation (42). 
 
  

RESULTS 
Table 3 shows the results of parameter estimation for 1st order 
kinetic of n-eicosane pyrolysis while table 4 indicates the 
results for its 2nd order kinetics. The results of parameters 
estimation and objective functions for n-heptane catalytic 
reforming are presented in table 5. Figures 2, 3 and 4 represent 
comparison between Monte-Carlo simulated data and 
experimental data for 1st order kinetics of n-eicosane pyrolysis 
at 425oC, 440oC and 450oC respectively. Boldface figures are 
parameter values obtained by Monte-Carlo simulation while 
lightface figures are experimental values obtained by 
Omowunmi et. al. [19] using the Nedler-Mead simplex method. 
Figures 5 and 6 represent the plots of rate constants versus 
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Table 3: Results of Parameter Estimation for 1st Order Kinetic 
of N-Eicosane Pyrolysis 

 temperature for n-Eicosane pyrolysis for its 1st order and 2nd 
order kinetics respectively. Figures 7 and 8 represent Arrhenius 

plot for n-Eicosane pyrolysis for its 1st order and second order 
kinetics respectively.  
Table 4: Results of Parameter Estimation for 2nd Order Kinetic 

of N-Eicosane Pyrolysis 

 

 

 

Table 5: Results of Parameter Estimation for n-Heptane Catalytic Reforming at 460oC 

k4f K1 
 
 

K2 K3 K5 K10 K11 K12 K14 k4r 

13.9193 
 

13.630 

1.8826 
 

1.270 

86.8126 
 

85.840 

61.6266 
 

67.600 

59.9638 
 

56.810 

53.2567 
 

53.660 

85.8923 
 

85.960 

52.9638 
 

57.100 

15.5236 
 

15.840 

4.1088 
 

4.755 
 

 

Figure 2: Comparison between Monte-Carlo Simulated Data 
and Experimental Data for 1st Order Kinetics of n-Eicosane 
Pyrolysis at 425oC 

 

 

 

Figure 3: Comparison between Monte-Carlo Simulated Data 
and Experimental Data for 1st Order Kinetics of n-Eicosane 
Pyrolysis at 440oC 

 

 

Rate 
Constants 

(hr-1) 

Temperature (oC) 
 

Activatio
n 

Energy 
(KJ/gmol

) 

425  440   450 

k1 

 
 

0.0138 
4.091 

 

0.0521 
5.486 

 

0.1097 
6.490 

 

349.07 
77.09 

 
k2 

 
 

5.6349 
18.045 

 

9.6349 
46.763 

 

13.4877 
48.301 

 

146.41 
171.63 

 
k5 
 
 

0.9296 
4.773 

 

1.9296 
7.782 

 

2.8154 
9.278 

 

187.07 
112.48 

 
OBJ.F 0.0173 

0.1471 
 

0.2381 
0.5935 

 

0.3969 
0.614 

 

- 
- 

Rate 
Constants 
(cm3.gmol
-1hr-1) 

Temperature (oC) 
 

Activation 
Energy 
(KJ/gmol) 425 440 450 

k9 

 
 

13.3937 
55.684 

 

18.3937 
  59.910 

 

24.0014 
104.946 

 

143.17 
98.79 

 
k10 

 
 

15.3024 
138.795 

 

20.6047 
145.432 

 

38.0033  
241.187 

 

94.77 
85.65 

 
k12 

 
 

10.8348 
138.184 

 

20.4174 
144.838 

 

29.0067 
261.691 

 

162.28 
98.83 

 
OBJ.F  1.2404 

0.0678 
 

0.4636 
1.8792 

 

0.0913 
1.6055 

 

- 
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Figure 4: Comparison between Monte-Carlo Simulated Data 
and Experimental Data for 1st Order Kinetics of n-Eicosane 
Pyrolysis at 450oC 

 
Figure 5: Rate Constants Versus Temperature for 1st order 
Kinetics of n-Eicosane pyrolysis  

 
Figure 6: Rate Constants Versus Temperature for 2nd order 
Kinetics of n-Eicosane pyrolysis  

 

Figure 7: Arrhenius Plot for 1st Order Kinetics of n-Eicosane 
Pyrolysis  

 
Figure 8: Arrhenius Plot for 2nd Order Kinetics of n-Eicosane 
Pyrolysis  
 
DISCUSSION OF RESULTS 
The Monte-Carlo simulation technique had been used to obtain 
the model parameters for the pyrolysis of n-eicosane and 
catalytic reforming of n-heptane. It was seen from the results 
presented in table 3 that the values of k1 ranges from 0.0138 at 
4250C to 0.1097 at 4500C while the values for k2 ranges from 
5.6349 at 4250C to 13.4877 at 4500C. The values for k5 ranges 
from 0.9296 at 4250C to 2.8154 at 4500C. Generally, it was 
observed that the values for k2 are much higher than those for k1 
and k5 at all temperatures reported. The least value of objective 
function was 0.01730, reported for parameter estimation at 
4250C. This means parameter values obtained at 4250C are 
most reliable as minimum sum of square errors were obtained 
at this temperature. 
The results from table 4 revealed the values of rate constants 
obtained for 2nd order kinetics of n-eicosane pyrolysis. Rate 
constant k9 had values ranging from 13.3937 to 24.0014 while 
k10 value ranged from 15.3024 to 38.0033. Rate constant k12 
also had values ranging from 10.8348 to 29.0067. It was 
observed that values for rate constant k10 were generally higher 
than those for k9 and k12 at all temperatures. The least value of 
objective function was 0.0913, lower than the least obtained for 
the 1st order kinetics and it was reported for parameter 
estimation at 4500C. This means that parameter values obtained 
at highest temperature 4500C were the most reliable. For 
n-heptane catalytic reforming, the parameters were reported in 
table 5 only at one reaction temperature of 4600C. The rate 
constants for the forward and backward reactions of the rate 
determining step were 13.9193 and 4.1088 respectively. On the 
other hand, the values for the equilibrium constants ranged 
from 1.8826 for K1 to 86.8126 for K2. The value of the 
objective function was estimated to be 0.0251. 
When the rate parameters obtained by Monte-Carlo simulation 
were compared with those reported by Omowunmi et. al. ([19], 
[20]) for 1st order kinetics of n-eicosane pyrolysis, significant 
difference was observed. The least difference between 
parameters was 68.8% for k2 at 4250C for 1st order kinetics 
while for 2nd order kinetics, the least difference between 
parameters was 69.3% for k9 at 4400C. This significant 
difference might be due to the superiority of Monte-Carlo 
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Simulation to Nedler-Mead simplex method. However, there 
was a good agreement between parameters obtained for 
n-heptane catalytic reforming with the largest difference being 
10% for K3.  
Figures 2, 3 and 4 show the plots of conversion of n-eicosane 
against time at different temperatures for its 1st order kinetics. 
These plots compared the model prediction to experimentally 
obtained conversion values for the pyrolysis of n-eicosane for 
its 1st order kinetics. It was observed that very little agreement 
existed between the n-eicosane conversion values. However, 
this little agreement could be taken as good in view of the 
values of the objective functions obtained. If more random 
value sets were generated, we could be sure of getting very 
small error (least objective function value) which would 
enhance the accuracy of the parameters obtained. Similar plots 
were not considered for pyrolysis of n-eicosane (2nd order 
kinetics) and n-heptane catalytic reforming because of the 
complex nature of their rate models which did not permit easy 
integration. The plots of rate constants against reaction 
temperature for n-eicosane pyrolysis were shown in figures 5 
and 6 while the Arrhenius plots for the same reaction were 
shown in figures 7 and 8. The activation energies obtained from 
the Arrhenius plots were displayed in tables 3 and 4. Since the 
data for n-heptane catalytic reforming were given only at one 
reaction temperature (4600C), we did not consider plotting an 
Arrhenius plot for the reaction. 
 
CONCLUSION 
The Monte-Carlo simulation technique had been applied to 
estimate kinetic parameters for pyrolysis of n-eicosane for both 
1st and 2nd order kinetics at different temperatures; and catalytic 
reforming of n-heptane. This methodology provides a reliable 
way of estimating the kinetic parameters of complex rate 
models via the Tikhonov regularization technique. MATLAB 
computer program was written for the model algorithm to 
perform multiple simulation procedure. The kinetic parameters 
of n-eicosane pyrolysis and n-Heptane catalytic reforming were 
estimated with relative ease and good accuracy. There was 
good agreement between experimental and calculated 
parameters for both pyrolysis of n-eicosane and catalytic 
reforming of n-heptane. 
  
REFERENCES 
1. Pant, K. K. and Kunzru, D. (2002), “Catalytic Pyrolysis of 

n-Heptane on Unpromoted and Potassium Promoted 
Calcium Aluminates”, Chemical Engineering Journal, 87, 
219-225.  

2. Mohaddecy, S. R. S., Sadighi, S. and Bahmani, M. (2008), 
“Optimization of Catalyst Distribution in the Catalytic 
Naphtha Reformer of Tehran Refinery”, Petroleum and 
Coal, 50 (2), 60-68. 

3. Pant, K. K and Kunzru, D. (1997), Ind. Eng. Chem. Res., 
36, 2059. 

4. Basu, B. and Kunzru, D. (1992), Ind. Eng. Chem. Res., 31, 
146. 

5. Susu A. A (1997), “Chemical Kinetics and Heterogeneous 
Catalysis”, CJC Press, Lagos, Nigeria. 

6. Priyanka, D. B.  and Jalal, A. S. (2012) “Application of 
Monte-Carlo Simulation to Estimate the Kinetic 
Parameters for Pyrolysis-Part 1”, The Canadian Journal of 
Chemical Engineering, 90, 163-170. 

7. Yeow, Y. L, Wickramasinghe, S. R., Binbing, H. and 
Leong, Y. (2003), “A New Method of Processing the 
Time-Concentration Data of Reaction Kinetics”, Chem. 
Eng. Sci., 58, 3601-3610. 

8. Lawson, C. L and Hanson, R. J. (1974), “Solving Least 
Squares Problems”, Englewood Cliffs, NJ: Prentice-Hall.  

9. Hansen, P. C. (1992), “Analysis of Discrete Ill-posed 
Problems by Means of the L-curve”, SIAM Reviews, 34, 
561–580. 

10. Raychaudhuri, S. (2008), “Introduction to Monte Carlo 
Simulation”, Proceedings of the 2008 Winter Simulation 
Conference, 978-1-4244-2708-6/08, IEEE. 

11. Zhang T. and Cuay, M. (2002), “Adaptive Parameter 
Estimation for Microbial Growth Kinetics,” AIChE J., 48, 
607-616.  

12. Marshall, S. L. (2003), “Generalized Least-Squares 
Parameter Estimation from Multi-equation Implicit 
Models,” AIChE J., 49, 2577-2594. 

13. Zhang T. and M. Cuay (2003), “Adaptive Parameter 
Estimation for Propylene Amoxidation,” AIChE J., 13, 
215-229. 

14. Aggarwal, M. and Carrayrou, J. (2006), “Parameter 
Estimation for Reactive Transport by Monte-Carlo 
Approach”, AIChE J., 52, 2281-2289. 

15. Popoola, L. T. and Susu, A. A. (2014), “Application of 
Artificial Neural Network Based Monte Carlo Simulation 
in the Expert System Design and Control of Crude Oil 
Distillation Column of a Nigerian Refinery”, Advances in 
Chemical Engineering and Science, 4, 266-283. Available 
online at: http://dx.doi.org/10.4236/aces.2014.42030 

16. Engl, H. W., Hanke, M. and Neubauer, A. (2000), 
“Regularization of Inverse Problems”, Dordrecht: Kluwer 
Academic Publishers.  

17. Shaw, W. T. and Tigg, J. (1994), “Applied Mathematica 
Reading”, MA, Addison-Wesley: Toledo.  

18. Susu, A. A. and Kunugi, T. (1980), “Novel Pyrolysis 
Decomposition of n-Eicosane with Synthesis Gas and 
K2CO3-Catalyzed Shift Reaction”, I&EC Process Design 
& Development, 19, 693-699. 

19. Omowunmi, S. C. and Susu, A. A. (2011), “Application of 
Tikhonov Regularization Technique to Kinetic Data of an 
autocatalytic Reaction: Pyrolysis of N-Eicosane”, Journal 
of Scientific Research Engineering, 3, 1161-1170. 

20. Omowunmi, S. C. and Susu, A. A. (2012), “Application of 
Tikhonov Regularization Technique to The Kinetic 
Analyses of N-Heptane, 2-Heptene and 3- Methylhexane 
reforming on Pt/Al2O3 Catalyst”, Prime Journal of  
Engineering and Technology Research, 1(1), 1-18. 

 
 

 
 

http://dx.doi.org/10.4236/aces.2014.42030


 

J. of Bioprocessing and Chemical Engineering               Volume 1 / Issue 4                                              ISSN: 2348 –3768 10 

Citation:  Hafeez Allan Agboola. et al (2014) Application of Monte-Carlo Simulation to Estimate the Kinetic Parameters of 
n-Eicosane Pyrolysis and n-Heptane Catalytic Reforming.  J. of Bioprocessing and Chemical Engineering. V1I4. DOI: 
10.15297/JBCE.V1I4.01 
 
Copyright: © 2014 Hafeez Allan Agboola.  This is an open-access article distributed under the terms of the Creative 
Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the 
original author and source are credited.  


