
v

Handbook of Hardware/Software Codesign
Soonhoi Ha and Jürgen Teich

Contents

23 CPA - Compositional Performance Analysis . 1
Robin Hofmann and Leonie Ahrendts and Rolf Ernst
23.1 Motivation . 1
23.2 Fundamentals . 3

23.2.1 Timing Model . 3
23.2.2 Analysis . 10

23.3 Extensions . 21
23.3.1 Shared Resources . 21
23.3.2 Mode Changes . 22
23.3.3 Impact of Errors and Error Handling 24
23.3.4 Task Chains . 26
23.3.5 Weakly-Hard Real-Time Systems . 27
23.3.6 Further Contributions . 28

23.4 Conclusion . 29
References . 29

Index . 33

vii

Acronyms

ACK Acknowledgement
ARQ Automatic Repeat Request
BCET Best Case Execution Time
BCRT Best Case Response Time
CAN Controller Area Network
CPA Compositional Performance Analysis
COTS Commercial/Components Off-The-Shelf
DAG Directed acyclic graph
DMA Direct Memory Access
ECU Electronic Control Unit
FIFO First In First Out
MCR Mode Change Request

SPP Static Priority Preemptive
SPNP Static-Priority Non-Preemptive
TWCA Typical Worst Case Analysis
TWCRT Typical Worst Case Response Time
WCET Worst-Case Execution Time
WCRT Worst-Case Response Time
CAN Controller Area Network
DMA Direct Memory Access

ix

Chapter 23
CPA - Compositional Performance Analysis

Robin Hofmann and Leonie Ahrendts and Rolf Ernst

Abstract In this chapter we review the foundations Compositional Performance
Analysis (CPA) and explain many extensions which support its application in design
practice. CPA is widely used in automotive system design where it successfully
complements or even replaces simulation based approaches.

Acknowledgements The project leading to this overview has received funding from the European
Union’s Horizon 2020 research and innovation programme under grant agreement No 644080
as well as from the German Research Foundation (DFG) under the contract number TWCA
ER168/30-1.

23.1 Motivation

Despite the risk of overlooking critical corner cases, design verification is for the
most part based on execution and test using simulation, prototyping, and the final
system. Formal analysis and verification are typically used in cases where errors
are particularly expensive or may have catastrophic consequences, such as in safety
critical or high availability systems. Such formal methods have considerably im-
proved in performance and usability and can be used on a broader scale to improve
design quality, but they must cope with growing hardware and software architecture

Robin Hofmann
Institute of Computer and Network Engineering, Hans-Sommer-Straße 66, 38106 Braunschweig,
e-mail: rhofmann@ida.ing.tu-bs.de

Leonie Ahrendts
Institute of Computer and Network Engineering, Hans-Sommer-Straße 66, 38106 Braunschweig,
e-mail: ahrendts@ida.ing.tu-bs.de

Rolf Ernst
Institute of Computer and Network Engineering, Hans-Sommer-Straße 66, 38106 Braunschweig,
e-mail: ernst@ida.ing.tu-bs.de

1

rhofmann@ida.ing.tu-bs.de
ahrendts@ida.ing.tu-bs.de
ernst@ida.ing.tu-bs.de

2 Robin Hofmann and Leonie Ahrendts and Rolf Ernst

complexity.
The situation is similar when we consider system timing verification. Formal tim-
ing analysis methods have been around for decades, starting with early work by Liu
and Layland in the 70s [24] which provided schedulability analysis and worst-case
response time data for a limited set of task system classes and scheduling strategies
for single processors. In the meantime, there were dramatic improvements in the
scope of considered tasks systems, architectures and timing models. One of the key
analysis inputs is the maximum execution time of a task, the Worst-Case Execu-
tion Time (WCET), where there has been similar progress [51]. As in the case of
function verification, progress in hardware and software architectures made analy-
sis more challenging. In particular the dominant trend focusing commercial com-
ponents (Commercial/Components Off-The-Shelf (COTS)) on average or typical
system performance has impaired system predictability forcing analysis to resort
to more conservative methods (i.e. methods that overestimate the real worst case).
While architectures with higher predictability have been proposed [51, 29], design
practice currently has to live with the ongoing trend.

In some respect, efficient formal timing verification is even harder than function
verification because of systems integration. Today, a vehicle, an aircraft, a medi-
cal device, and even a smartphone integrates many applications sharing the same
network, processors and run-time environment. This leads to potential timing inter-
ference of seemingly unrelated applications. The Integrated Modular Architecture
(IMA), standardized as ARINC 653 [45] for aircraft design, and even more the au-
tomotive AUTOSAR standard are perfect examples for such software architectures.
They also stand for different philosophies. While ARINC 653 takes a constructive
approach and uses scheduling to obtain application isolation at the cost of resource
efficiency, AUTOSAR does not constructively prevent timing interference, but the
related automotive safety standard ISO 26262 requires proof of “freedom from in-
terference” for safety critical applications.

However, even with extensive runs on millions of cases, simulation and prototyp-
ing remain an investigation of collections of use cases with decreasing expressive-
ness for large integrated systems. Therefore, there is a strong incentive to use formal
timing analysis methods at least on the network level. E.g., there are formal meth-
ods for some protocols such as the automotive Controller Area Network (CAN) bus
which is the dominant automotive bus standard today [10]. Unfortunately, current
automotive systems are not only large but heterogeneous combining different proto-
cols and scheduling and arbitration strategies. To make things worse, the component
and network technology incrementally develops over time challenging flexibility
and scalability of any formal timing analysis.

In this situation, the introduction of modular timing analysis methods which sup-
port composition of analyses for different scheduling and arbitration strategies as
well as different architectures and application systems with a variety of models-of-
computation was considered a break-through. Today, most automotive manufactur-
ers and many suppliers use formal timing analysis as part of their network devel-
opment. A corresponding tool, SymTA/S, has been commercialized and is widely
used. The original ideas which led to that tool can be found in [37].

23 CPA - Compositional Performance Analysis 3

This chapter presents the general concept of the Compositional Performance
Analysis (CPA) and extensions of the last couple of years. Since this is an overview
chapter, it stays on the surface to keep readability. For more details, the reader is
referred to the large body of related scientific papers covering compositional per-
formance analysis and a related approach based on the RTC (real-time calculus)
[49].

23.2 Fundamentals

CPA is an analysis framework which serves to formally derive the timing behavior
of embedded real-time systems.
From a hardware perspective, an embedded real-time system consists of a set of
interconnected components. These components include communication and com-
putation elements as well as sensors and actuators which act as the connection to
the system environment. The interconnected components represent the platform on
which software applications with real-time requirements are executed. A software
application is composed of tasks, entities of computation, which are distributed over
and executed on different components of the system.
The execution order of tasks belonging to one application is constrained, for in-
stance, the read of a sensor must be performed before the computation of a control
law and the control of an actuator. Moreover, if several tasks are executed on one
component, the tasks have to share the processing service the component offers. This
has obviously an impact on the timing behavior of each task. As a result, in order to
determine the timing behavior of the system it is not sufficient to focus on isolated
tasks. Apart from the interaction of tasks which are caused by functional dependen-
cies (imposed execution order), non-functional dependencies (share of component
service) have also to be taken into consideration.
In the following, the system model used for CPA is described, and then the com-
positional analysis principle is deduced. Following the above argumentation, CPA
structures its system model with respect to three aspects: (1) the individual tasks,
(2) the individual components with intra-component (local) dependencies between
mapped tasks, and (3) the system platform with inter-component (global) depen-
dencies between mapped tasks. The analysis is structured according to the local and
global aspects, and it is compositional in the sense that the timing properties of the
system can be conclusively derived from its constituting components.

23.2.1 Timing Model

In the following the timing model of a real-time embedded system is described as
it is used in CPA. The timing model is layered and includes the task timing model,

4 Robin Hofmann and Leonie Ahrendts and Rolf Ernst

system

T

sensor
ECU

ECU
sensor
ECU

ECU
actuator
ECU

data
bus

T

T

T

T TT T

system
timing
model

component
timing
model

task
timing
model

addition of task-to-
resource mapping

addition of
intra-component task
dependencies
and propagation of
activation event models

composition of
components

addition of inter-
component
task dependencies
and propagation of
activation event
models

bo
tto

m
-u

p
m

od
el

 c
om

po
si

tio
n

data bus

Figure 23.1: System timing model. The system timing model used in CPA com-
prises three aspects: (1) individual tasks, (2) individual components with mapped
tasks and local task dependencies, and (3) the entire platform with mapped tasks
and global task dependencies.

the component timing model, and the system timing model. All three layers are
explained in detail below and are illustrated in Figure 23.1.

23.2.1.1 Task Timing Model

In this section the timing behavior of an individual task τi is presented which is char-
acterized completely by its execution time Ci. The execution time Ci is the amount
of service time which a component has to provide in order to process task τi. The
actual execution time of a task τi does not only heavily depend on the task input
and the task state but also on the execution platform. For instance, the processor
architecture, the cache architecture, and the Direct Memory Access (DMA) policy
impact the execution time. As a result, a task τi does not have a static but rather
a varying execution time Ci as illustrated in Figure 23.2. For the CPA, the lower
and the upper bound on the task execution are of interest because they include ev-
ery intermediate timing behavior. The lower bound on the task execution time is
called Best Case Execution Time (BCET) denoted as C−i , whereas the upper bound
is called the WCET denoted as C+

i .
Different methods exist to derive the BCET and WCET of a task τi. One method
is to simulate the task execution under different scenarios and observe the required
execution time. Since the number of test cases is naturally limited, the simulation

23 CPA - Compositional Performance Analysis 5

is bound not to cover all corner cases thus under-estimating the WCET and over-
estimating the BCET. Formal program analysis, on the other hand, evaluates the
source or object code associated with a task τi and takes into account the architec-
tural properties of the execution platform. Program analysis is capable of deriving a
safe upper bound on the WCET of a task τi, relying on worst-case program config-
uration and worst-case program input in order to cover all behavioral corner cases.
Apart from static WCET bounds, parametric WCET bounds have been proposed [9].
Tools for the derivation of WCET bounds like aiT [1] are available. As programs can
be become arbitrarily complex, program analysis makes conservative assumptions
leading to significant WCET over-estimations and BCET under-estimations. This
is the reason why program analysis for BCET/WCET-estimation is often only used
for tasks with high criticality, i.e., with high impact on system safety. While there is
extensive research dedicated to the WCET analysis [52], it is not part of CPA itself.
Therefore, the BCETs and WCETs are assumed to be known as safe but possibly
conservative values.

actual
BCET

observed
BCET

bounded
BCET

actual
WCET

observed
WCET

bounded
WCET

observed task
execution time

relative
frequency

Figure 23.2: Relative frequency of the observed execution time of a task. Ob-
served execution times from simulations can in general not bound the actual best-
case and worst-case behavior. In contrast, a formal bound tends to overestimate the
actual WCET and to underestimate the actual BCET.

23.2.1.2 Local View: Component Timing Model

The component timing model represents a locally restricted view on the system. It
focuses on the timing behavior in the scope of individual system components.
Once a set of tasks is mapped to a component, the timing behavior of each task
can no longer be treated in isolation. On the one hand, tasks interact due to non-
functional dependencies, i.e., the share of component service which is determined
by the local scheduling policy. On the other hand, tasks interact due to functional
dependencies. All tasks belonging to one application have activation patterns and an
execution order imposed by the application which per definition specifies the high-
level functional context and the functional interaction of tasks.
The derivation of a task activation pattern and the realization of the required ex-
ecution order of tasks is done by the propagation of activation events in the CPA

6 Robin Hofmann and Leonie Ahrendts and Rolf Ernst

component timing model. Assume a precedence-constrained execution order of a
set of tasks which are mapped to a component as illustrated in Figure 23.1 for the
component timing model layer. The activation pattern of a task τi which represents
the first element in the execution order of tasks (head of a task chain), is determined
by the behavior of an event source outside of the component. Such an event source
can either be located in the system environment or at another system component. A
task τ j which directly succeeds task τi in the task chain is activated by the termina-
tion events of task τi. This propagation of activation events applies for all elements
in the task chains. Note that the event propagation in CPA timing model implies that
the activation patterns of tasks are derived from high-level functional constraints,
and do not represent a direct property of the individual task.
In this section, first the component abstraction and then the component scheduler is
introduced which organizes the share of component service. Hereafter, in order to
reason about service demand and event propagation among precedence-constrained
tasks, the principles of activation/termination traces and activation/termination event
models are explained.

Component Abstraction

System components are also called resources, and are characterized by their prop-
erty to provide processing service to tasks. A component can either be a computation
resource or a communication resource, and depending on the kind of resource a task
can either represent an algorithm to be computed or a data frame to be transmitted.
For instance, an Electronic Control Unit (ECU) is a computation resource which
may provide processing service to tasks computing a control law. A data bus, in
contrast, can be modeled as a communication resource transmitting data frames.

Scheduler

A resource can only serve one task at a time, hence if more than one task is ready to
execute it has to be decided which task will be processed next. The decision process
is performed by the scheduler of the resource. It specifies when to start and pause
the execution of pending tasks. Commonly used scheduling policies for embedded
real-time systems are static priority preemptive (Static Priority Preemptive (SPP))
and Static-Priority Non-Preemptive (SPNP) scheduling. We will use these policies
as important examples throughout the chapter, noting that CPA is not limited to
static priority policies.

Activation Traces and Termination Traces

A task is activated by an activation event, where activation means that the task is
moved from a sleeping state to a ready-to-execute state. Such an activation event

23 CPA - Compositional Performance Analysis 7

can either be time-triggered or event-triggered. A time-triggered activation occurs
according to a predefined time pattern, whereas an event-triggered activation is a
reaction to a certain true condition in the system or the system environment. Ad-
ditionally to being activated by an activation event, a task produces a termination
event when it has finished.
An activation trace of a task τi describes the set of instants at which an activation
event for a task τi takes place. A similar definition applies to the termination trace.
An activation event for a task τi originates either from an event source which is trig-
gered by the system environment or another external event source like a timer, or it
is produced by a predecessor task τ j if a precedence constraint with respect to the
execution order exists between two tasks in the form of τ j→ τi (τ j precedes τi). The
termination event of the predecessor task τ j, produced at the end of its execution,
then represents the activation event for task τi. If the predecessor task is not local
to the component, an external event source with a conservative activation pattern is
initially assumed in the CPA component timing model, see Section 23.2.2.2 .
Activation event traces from event sources and predecessor tasks can be combined
to form a joint activation event trace. The join of two event traces can either follow
an AND or an OR logic. An AND logic implies that only if an event from both
incoming event traces is available at a given time, an event is produced on the joint
event trace. An OR logic requires an event from only one of the two incoming event
traces to produce an event on the joint trace. It is also possible for a single event
trace to fork, i.e. to serve as an activation trace for multiple tasks. Figure 23.3 illus-
trates how activations events propagate through the system. Note that activation and
termination events do not include any information on data, rather the event concept
is agnostic of the concrete processed and transferred data and focuses on the timing
behavior of tasks.

resource

T

T

T

T

time-triggered
event source

event-triggered
event source

AND or OR
semantics

T

Figure 23.3: Event traces. Tasks are activated by activation events from time-
triggered or event-triggered event sources as well as by the termination events of
predecessor tasks. The arrows connecting event sources and tasks as well as tasks
among each other indicate the flow of events through the system. The small arrows ↓
indicate individual activation events which occur regularly in case of time-triggering
and irregularly in case of event-triggering and propagate through the system.

8 Robin Hofmann and Leonie Ahrendts and Rolf Ernst

Event Models

An event trace of a task τi captures the sequence of event occurrences with respect
to task τi for a given system trajectory in the system state space. Due to the countless
number of possible system trajectories, it is not feasible to perform a timing analysis
for all possible event traces. Rather, the timing analysis has to be restricted to corner
cases which bound the timing behavior of the task τi in all other cases. CPA uses for
this purpose arbitrary activation [termination] event models where arbitrary means
that an arbitrary activation [termination] behavior of a task τi can be bounded by the
event model [36].
An event model of a task τi is defined by the set of two distance functions
δ
−
i ,δ+

i : N0 → R+
0 , namely the minimum distance function δ

−
i and the maximum

distance function δ
+
i . The minimum distance function δ

−
i (n) describes the mini-

mum time distance between any n consecutive activation [termination] events of
task τi. The maximum distance function δ

+
i (n) describes the maximum time dis-

tance between any n consecutive activation [termination] events of task τi. The dis-
tance between zero and one events is defined for mathematical convenience as zero
so that δ

+,−
i (0) = δ

+,−
i (1) := 0.

Pseudo inverses of the distance functions are the arrival functions η
+
i ,η−i : R+

0 →
N0. The maximum arrival function η

+
i is the pseudo inverse of the minimum dis-

tance function δ
−
i , and the minimum arrival function η

−
i is the pseudo inverse of

the maximum distance function δ
+
i . The function η+(∆ t), resp. η−(∆ t), returns

the maximum, resp. minimum, number of activation [termination] events of task τi
within any half-open time interval [t, t +∆ t). For a time interval ∆ t = 0, the event
arrival functions η

−
i and η

+
i are defined as zero. The pseudo inverses are introduced

because they often allow a more elegant mathematical formulation of timing analy-
sis problems.
The pair of minimum and maximum distance functions, resp. arrival functions, de-
scribe the best-case and worst-case event trace of a task τi with respect to event
frequency. If distance functions, resp. arrival functions, cannot be formally derived,
it is possible to extract them from measured event traces [17].
A commonly used event model is the PJd event model [36] shown in Figure 23.4.
A PJd event model is applicable to a task τi which is activated periodically but may
experience bursts of activations once in a while. It can be characterized by the three
parameters period Ti, jitter Ji, and a minimum event distance di. Bursts occur if
the jitter of periodic activation events, i.e. the maximum relative deviation in time
from the exactly periodic activation instant, is larger than the task activation period.
In this case the task may receive multiple new activation events before the current
task invocation has terminated. The PJd event model is also of historical impor-
tance because it was the basis for the description of activation patterns before the
more general distance functions and arrival functions were introduced [18, 36]. It
has the advantage that it can be described by a limited set of parameters and shows
a periodic behavior for larger time intervals. In contrast, arbitrary event models may
potentially extend indefinitely without showing a repetitive pattern. This complicat-
ing property of arbitrary event models has to be handled by an appropriate analysis

23 CPA - Compositional Performance Analysis 9

approach which is able to extract relevant limited time windows for the investigation
of the system timing behavior, see the busy period concept in Section 23.2.2.

1

1
 t

 η(t)

η+(t)

 η-(t)

(a) Arrival functions.

1

2
n

 δ (n)

 δ- (n)

 δ+ (n)

10

(b) Distance functions.

Figure 23.4: PJd event model. Figure 23.4(a) illustrates the maximum arrival function
η+(∆ t) = min

{⌈
∆ t
d

⌉
,
⌈

∆ t+J
T

⌉}
and the minimum arrival function η−(∆ t) = max

{
0,
⌈

∆ t−J
T

⌉}
for

a PJd event model with T = 3,J = 6,d = 1. Figure 23.4(b) illustrates for the same PJd model the
minimum distance function δ−(∆ t) = max{(n−1) ·d,(n−1) ·T − J} and the maximum distance
function δ+(∆ t) = (n−1) ·T +J with n≥ 2. For small time intervals, the burst behavior dominates
where the minimum event distance d bounds the maximum event frequency during the burst. For
large time intervals, the periodic behavior with jitter dominates.

23.2.1.3 Global View: System Timing Model

From a global perspective, the system is composed of a set of interconnected com-
munication and computation resources which constitute the processing platform.
Tasks are mapped to the resources and interact with each other forming larger func-
tional entities, so called applications.
In the global perspective, inter-component interactions between tasks as defined by
applications become visible, see Fig. 23.1. Inter-component interactions between
tasks are, like intra-component interactions, modeled by event propagation in CPA.
To account for a dependency between two tasks τi, τ j mapped on two different
components where task τi precedes task τ j, the termination event model of the pre-
decessor task τi is propagated as activation event model to the successor task τ j.
The required termination event model of a task is determined iteratively during the
system analysis procedure described in the following section.

10 Robin Hofmann and Leonie Ahrendts and Rolf Ernst

23.2.2 Analysis

CPA is a systematic timing analysis method which serves to verify the timing prop-
erties of complex distributed real-time systems with heterogeneous components.
The major challenge in analyzing such a system is to take into account the numerous
inter-dependencies of task executions which result both from direct task interaction
and indirect task interaction due to the share of resources.
CPA follows a compositional approach which first performs a local component-
related timing verification step and then, in a global timing verification step, sets the
local verification problems in a system context where inter-component dependen-
cies are considered. The inter-component dependencies relate the local verification
problems in such a manner that their inputs and outputs are linked. The relation of
the local verification problems leads to a fixed-point problem which converges if
the propagation of outputs to inputs between related verification problems does not
change the verification results any more. If the system is overloaded, the fixed-point
problem does not converge and an abort criterion, e.g. the detected miss of a task
deadline, is used to stop the iteration process.
In this section, first the local analysis is presented and then the superordinate global
analysis is introduced.

23.2.2.1 Local Analysis

Local analysis refers to the analysis of timing properties of an individual system
resource which processes tasks according to a given scheduling policy. The local
analysis is based on the component timing model.

Resource Utilization

The utilization U of a resource is defined as the quotient of the execution request
which the resource receives and the available service time which it can provide.
It is computed by accumulating the utilization Ui that each task τi with i = 1 . . .N
mapped to this resource imposes. The maximum utilization U+

i that an individual
task τi can impose on a resource is given if the task requests its maximum execution
time C+

i at its maximum activation frequency

U+
i = lim

n→∞

n ·C+
i

δ
−
i (n)

. (23.1)

The maximum utilization of a resource U+ = ∑
N
i=1 U+

i is an important variable to
determine whether the resource is overloaded, and consequently the tasks are not
schedulable. Apparently, it is impossible to schedule tasks sets with a resource uti-
lization larger than one. In this case, the local analysis will be stopped. While being
a necessary (under some conditions even sufficient) indicator for the schedulability

23 CPA - Compositional Performance Analysis 11

of a task set, the utilization is not an appropriate means to describe the system tim-
ing behavior in detail. The utilization of a resource does not give any insight into the
sequence of execution and suspension phases during the processing of a task which
are determined by the applied scheduling policy.

Worst-Case Response Time

Since tasks which are allocated to the same resource have to share its service, the
processing of a task τi is preempted if other tasks with higher priority are activated.
This is illustrated in Figure 23.5. The time interval between the activation and the
termination of a task τi, including all suspension phases, is defined as the response
time of task τi denoted as Ri. The minimum response time of task τi, denoted as
R−i , and the maximum response time of task τi, denoted as R+

i , serve to bound the
response time behavior of task τi.
The decisive property of hard real-time systems is that no task τi is allowed to miss
its deadline Di. In other words, it is required that the deadline Di is an upper bound
on the worst-case response time R+

i . A major purpose of timing analysis like CPA
is to verify this system property which is crucial for safe operation of real-time
systems.

τ1

τ2

D2
R2

t

t
C2,1 C2,2

Figure 23.5: Response time and relative deadline. Task τ2 is preempted during
execution by task τ1 which is of higher priority. Therefore, the response time R2 is
larger than the execution time C2 =C2,1 +C2,2. The response time R2 is still smaller
than the deadline D2.

Determining the Worst-Case Response Time

In order to verify whether the real-time requirement R+
i ≤Di for a task τi is fulfilled,

the worst-case response time R+
i needs to be determined. Obviously, it is not pos-

sible to explore the entire system state space for this purpose. Rather a worst-case
scenario has to be derived which allows to find the worst-case response time R+

i in
a limited time window.
The limited time window of system behavior comprising the worst-case response
time behavior of task τi is called the longest level-i busy period [23]. The longest
level-i busy period is initiated by the so called critical instant. The critical instant

12 Robin Hofmann and Leonie Ahrendts and Rolf Ernst

describes the alignment of task activations and the execution times which lead to
the maximum interference with respect to task τi and consequently to the worst-
case response time R+

i . The longest level-i busy period closes if the investigation of
a longer time interval is known not to contribute any new information to the worst-
case response time analysis. In the following, first the concept of the level-i busy
period is explained. Then the multiple activation scheduling horizon as well as the
multiple activation processing time processing time are introduced. Both of those
variables serve to formally describe the processing behavior of a local resource with
respect to task τi within the level-i busy period.

Busy Period

A level-i busy period [23] is a time interval during which a resource R is busy
processing a task τi or tasks of higher priority than task τi under a fixed priority
scheduling policy. Directly before and after the level-i busy period the resource R is
idle with respect to task τi and tasks of higher priority.
The level-i busy period is an elegant means to perform a worst-case response time
analysis by investigation of a limited time window. The idea is that the response
time behavior of task τi in a level-i busy period is completely independent of events
outside of this time interval. A level-i busy period is separated from the preceding
and succeeding level-i busy periods by idle phases of the resource R. An idle phase
implies that the resource R is virtually reset to an initial state being ignorant of pre-
vious execution requests of task τi or tasks of higher priority. It is thus sufficient to
investigate in the timing analysis the level-i busy period which comprises the worst-
case response time behavior of task τi. This so called longest level-i busy period
is initiated by the critical instant, which creates the maximum possible interference
with respect to task τi so that the worst-case response time of task τi can be observed
within the longest level-i busy period. It is a skillful task to derive this critical align-
ment of task activations and service requests for a given system configuration.
In the following, the longest level-i busy period and the initiating critical instant are
derived for an SPP-scheduled task set on a single processing resource R with no
restrictions on the task activation event models. Assume that at an instant t− ε , the
resource R is idle with respect to task τi and all tasks with higher priority. Shortly
after at instant t, task τi is activated for the first time and requests its maximum ex-
ecution time C+

i . The activation causes the creation of the first task instance, also
called job, which is denoted as τi(1). If all tasks with higher priority than task τi are
activated simultaneously with τi(1) at t and request their maximum execution time
at the highest possible frequency, then the maximum interference with respect to
task τi(1) is evoked. This alignment of activations is the critical instant, the starting
point of the longest level-i busy period. The level-i busy period generally comprises
more than one job of task τi. The reason is that before job τi(1) terminates, a second
activation of task τi may occur. Consequently the resource stays busy processing job
τi(2) even if job τi(1) terminated, and incoming jobs of tasks with priority higher
than task τi will preempt τi(2) from time to time. The same may of course happen
before job τi(2) terminates etc., and only when a job of task τi finishes before a new

23 CPA - Compositional Performance Analysis 13

activation for task τi comes in and no tasks with higher priority are processed, the
level-i busy period closes.
The critical instant for a task τi scheduled under an SPNP policy occurs (1) if task
τi is activated simultaneously with all tasks of higher priority, (2) if task τi and all
tasks of higher priority request their maximum execution times at highest possible
frequency, and (3) if a task τ j of lower priority, which has the largest execution time
among all tasks with a priority lower than task τi, started execution just previously
to the first activation of task τi.
In the formal response time analysis, the closure of the level-i busy period is rep-
resented by the solution of a fixed-point problem. In order to be able to formulate
a formal response time analysis, the multiple activation scheduling horizon and the
multiple activation event processing time have to be introduced as done in the fol-
lowing paragraphs. Both variables mathematically describe the timing behavior of
task τi within the level-i busy window.

Multiple Activation Scheduling Horizon

The q-activation scheduling horizon Si(q) of task τi is defined as the maximum half-
open time interval which starts with the arrival of the first job τi(1) of any sequence
of q consecutive jobs τi(1),τi(2), . . .τi(q). The scheduling horizon closes at the (not
included) point in time when a theoretical activation of task τi with an infinitesi-
mally short execution time ε could be immediately served by the resource R after
the processing of the q consecutive jobs. This theoretical activation is independent
from the actual activation model of task τi since it is never actually executed [11].
The q-activation scheduling horizon generalizes the idea of the level-i busy period
for a number q of activations. During the q-activation scheduling horizon, the re-
source R is busy processing task q jobs of τi and tasks of higher priority. The con-
dition, that a theoretical activation with infinitesimally short execution time ε could
be potentially served at the end of the scheduling horizon, enforces an idle time with
respect to q jobs of task τi and all tasks of higher priority at the end of the scheduling
horizon. The scheduling horizon for q = q+i corresponds to the longest level-i busy
period, where q+i is the maximum number of activations of task τi which fall into
the scheduling horizon of their respective predecessor jobs

q+i = min
{

q≥ 1 | S(q)< δ
−
i (q+1)

}
. (23.2)

For the SPP scheduling policy, the q-activation scheduling horizon Si(q) is the solu-
tion to the following fixed point equation

Si(q) = q ·C+
i + ∑

j∈hp(i)
C+

j ·η
+
j (Si(q)). (23.3)

As can be seen in Eq. 23.3, the scheduling horizon Si(q) is composed of two parts.
Firstly, it contains the maximum time interval which is required to service q jobs
of task τi. And secondly, it comprises the maximum interference caused by tasks
of higher priority than task τi (hp(i)). The maximum interference is evoked if ev-

14 Robin Hofmann and Leonie Ahrendts and Rolf Ernst

ery task τ j with j ∈ hp(i) is activated according to its maximum arrival curve η
+
j

and every job requests the worst-case execution time C+
j during Si(q). At the end

of Si(q), a hypothetical q+ 1st activation of task τi with ε execution time could
immediately be served because all q jobs of task τi are processed and no jobs of
higher priority are pending. In case of the SPNP scheduling policy, the q-activation
scheduling horizon Si(q) has to take into account the worst-case one-time blocking
caused by a task of lower priority than task τi

Si(q) = q ·C+
i + max

j ∈ l p(i)

{
C+

j

}
+ ∑

k ∈ hp(i)
η
+
k (Si(q)) ·C+

k . (23.4)

Therefore, Si(q) is composed of (1) the maximum processing time of q jobs of task
τi, (2) the maximum one-time blocking of task τi by a task of lower priority than
task τi due to non-preemption, and (3) the maximum interference of tasks with a
higher priority than task τi.

Multiple Activation Processing Time

The q-activation processing time Bi(q) is defined as the time interval starting with
the arrival of the first job τi(1) and ending at the termination of job τi(q) for any
q consecutive activations of task τi which fall into the scheduling horizon of their
respective predecessors.
The maximum q-activation processing time B+

i (q) serves as basis for the worst-case
response computation. By definition, the maximum response time of the qth task in-
stance, denoted as R+

i (q), is the difference of the maximum q-activation processing
time of and its earliest possible time of activation

R+
i (q) = B+

i (q)−δ
−
i (q). (23.5)

The worst-case response time of a task τi, denoted as R+
i , is the maximum response

time of task τi within the longest level-i busy period, respectively the q+i -activation
scheduling horizon, thus

R+
i = max

1≤q≤q+i
R+

i (q). (23.6)

For the SPP policy, the maximum q-activation processing time B+
i (q) is identical to

the q-activation scheduling horizon Si(q) so that

B+
i (q) = q ·C+

i + ∑
j∈hp(i)

C+
j ·η

+
j (B

+
i (q)). (23.7)

The identity of the q-activation processing time and the q-activation scheduling hori-
zon is due to the sub-additive behavior of the SPP scheduling policy with respect
to the processing times [39] [11]: B+

i (q+ p) ≤ B+
i (q)+B+

i (p). This property is,
however, not fulfilled for the SPNP scheduling policy. The maximum processing

23 CPA - Compositional Performance Analysis 15

time B+
i (q) under the SPNP policy is the sum of the maximum queuing delay with

respect to job τi(q), denoted as Q+
i (q), and the maximum execution time of job τi(q)

B+
i (q) = Q+

i (q)+C+
i . (23.8)

The maximum queuing delay Q+
i (q) is the time a job τi(q) has to wait before it

is selected for execution by the SPNP scheduler. Activations of tasks with a higher
priority than task τi which occur during the execution of the job τi(q) do not prolong
its processing time as by definition of the scheduling policy it cannot be preempted
once it has started executing. The queuing delay can be bounded from above by [10]

Q+
i (q) = (q−1) ·C+

i + max
j ∈ l p(i)

{
C+

j

}
+ ∑

k ∈ hp(i)
C+

k ·η
+
k (Qi(q)+ ε) . (23.9)

The maximum queuing delay accounts for (1) the maximum execution demand of
all jobs of task τi activated prior to job τi(q), (2) the longest one-time lower priority
blocking due to non-preemption, and (3) the longest higher priority blocking during
queuing. The infinitesimally long time interval ε added to the queuing delay serves
to check whether another job interfering with task τi(q) could start exactly at the
end of the iteratively computed queuing delay, thus it extends the investigated time
window. Note that Eq. 23.8-23.9 and Eq. 23.4 are not identical since the fixed point
iteration for B+

i (q) accumulates higher priority interference only during the queuing
delay plus ε , whereas Si(q) takes also into account interference of higher priority
during the execution of the qth job.

Example

Consider the timing diagram in Figure 23.6 which illustrates the concept of the mul-
tiple activation scheduling horizon and the multiple activation processing time. The
timing diagram shows three tasks τ1, τ2 and τ3 which are scheduled on a common
resource under an SPNP policy, where task τ1 is of higher priority than task τ2 and
task τ2 is of higher priority than task τ3. The scenario represents the worst-case with
respect to the response time of task τ2 since (1) task τ3 is activated just prior to tasks
τ1 and τ2 with maximum execution demand, (2) task τ1 causes maximum interfer-
ence of higher priority, and (3) task τ2 always requests its maximum execution time
at highest possible frequency.
In the timing diagram, the multiple activation scheduling horizons and the multiple
activation processing times are indicated. All scheduling horizons and processing
times start at time 0. The termination of job τ2(1) marks the end of B+

2 (1). The
scheduling horizon S2(1) is longer than B+

2 (1) due to the higher priority interfer-
ence which prevents that a hypothetical activation of task τ2 with an infinitesimally
short execution time ε could be immediately served after the first job τ2(1). Note
that the scheduling horizon is defined as a half-open interval, and thus does not
take interference of higher priority into account which arrives exactly at the interval
boundary of S2(1). Since the activation of τ2(2) falls into the scheduling horizon
S2(1) of job τ2(1), B+

2 (2) exists. Again, the scheduling horizon S2(2) is longer than

16 Robin Hofmann and Leonie Ahrendts and Rolf Ernst

the processing time B+
2 (2), but the activation of job τ2(3) does not fall into the

scheduling horizon S2(2). Thus, S2(2) is the longest scheduling horizon and rep-
resents the longest level-2 busy period. Note that the depicted scenario illustrates
the non-subadditive behavior of the processing times: B+

2 (2) > B+
2 (1) + B+

2 (1).
The maximum processing time of job τ2(1) is B+

2 (1) = 11, and its worst-case re-
sponse time equals R+

2 (1) = B+
2 (1)− δ−(1) = 11− 0 = 11. The maximum pro-

cessing time of job τ2(2) is B+
2 (1) = 25, and its worst-case response time equals

R+
2 (2) = B+

2 (2)−δ−(2) = 25−15 = 10. Thus, a worst-case response time analysis
yields the result R+

2 = max
1≤q≤q+i

R+
2 (q) = 11.

τ1

τ2

B+
2(1)

t

t

B+
2(2)

τ3 t

0 105 15 20 25

S2(1)

longest scheduling horizon S2(2)

30

ε→0

Figure 23.6: Scheduling horizons and processing times for SPNP scheduling.

Best-Case Response Time

The best-case response time R−i and the worst-case response time R+
i serve to bound

the response time behavior of task τi. A simple approximation of the best-case re-
sponse time R−i relies on the following assumptions: (1) the absence of interference
by tasks with equal or higher priority, and (2) the request of the minimum execution
time C−i .

R−i =C−i . (23.10)

Even though this approximation does not necessarily represent a tight bound, it is
usually acceptable as timing analysis aims to provide real-time guarantees and thus
focuses particularly on worst-case behavior.

23 CPA - Compositional Performance Analysis 17

Jitter

Jitter represents the maximum time interval by which the occurrence of a given event
may deviate from the expected occurrence of the event. The response time jitter of
a task τi can hence be calculated as the difference between the best-case response
time R+

i and the worst-case response time R−i

Ji,resp = R+
i −R−i . (23.11)

Backlog

It is possible that an activation event for a task τi arrives before the previously ac-
tivated task instance has been processed, e.g., due to high interference or jitter. In
this case, a backlog of activation events with respect to task τi arises. To prevent any
loss of information, all activation events are queued until they are processed. The
queue semantics in CPA is characterized by a First In First Out (FIFO) organization
and a non-destructive write to and a destructive read from a queue storing activation
events. The determination of an appropriate queue size for pending activation events
of task τi is important both to avoid dropping of events and over-dimensioning. The
maximum activation backlog for task τi, denoted as b+i , is bounded by

b+i = max
1≤q≤q+i

{
0, η

+
i (B+

i (q)+oi,out)−q+1
}
. (23.12)

The expression η+(∆ t) represents the maximum possible number of task instances
which can be activated in ∆ t, here with ∆ t = B+

i (q)+ oi,out . The first term B+
i (q)

is the maximum processing time for the task instance q of τi, the second term oi,out
represents the maximum overhead required to remove a finished task instance from
the activation queue [13]. The term −q+ 1 accounts for the fact, that previously
activated task instances have already been finished. In other words, Eq. 23.12 com-
putes the difference between the number of occurred activation events and processed
ones, hence returning the number of pending activation events.

23.2.2.2 Global Analysis

In the previous section on the principle of the local analysis, we have shown how
to compute the worst-case and best-case response times, the output jitter and the
maximum activation backlog for a task with a given activation model. The local
analysis is resource-related, and does not consider any interaction between tasks on
different resources. However, in reality many real-time applications are composed
of multiple tasks which are distributed over several resources. For instance, a typi-
cal real-time application performs a control function which evaluates and processes
sensor data in order to control an actuator according to a given control law. An ex-
emplary mapping of such a real-time application to a platform with communication

18 Robin Hofmann and Leonie Ahrendts and Rolf Ernst

and computation elements is illustrated in Figure 23.7.
In this section, it is shown how the global analysis integrates the dependencies of
tasks on different resources into the analysis.

RTE

ECU

Basic SW

RTE

Sensor
SWC SWC

ECU #2

Basic SW

RTE

SWC

ECU #3

Basic SW

#1 #3#2

Actuator

Basic SW

RTE

SWC SWC
SWC SWC SWC Actuator

Basic SW

RTE

SWC SWC
Actuator

Bus #1

Bus #2

Sensor Actuator Actuator

● ● ●

Sensor ECU Actuator ECU

Figure 23.7: Real-time application distributed over multiple computation and
communication resources. ECU: electronic control unit, SWC: software compo-
nent, RTE: runtime environment

Consideration of Global Precedence Constraints

Tasks in an application can generally not be executed in an arbitrary order but have
to be executed in a function-related order. The functional restrictions on the pos-
sible execution orders of tasks are expressed in form of precedence constraints.
Precedence constraints can be described by a directed graph, the nodes representing
the tasks and the directed edges representing the directed execution dependencies.
Paths in a precedence graph describe linear, branched or even cyclic structures of
dependencies.
If two dependent tasks are mapped to two different resources, the timing behavior
of those tasks is no longer exclusively determined by the local parameters. Conse-
quently, the local view of a resource is no longer sufficient. To appropriately con-
sider the precedence constraints of a pair of tasks where τi precedes τ j (τi → τ j)
in CPA, the termination event model of the predecessor task τi is used as the input
event model of its successor task τ j, i.e., the completion of one task triggers the
activation of another. The termination behavior of task τi is bounded by the mini-
mum output distance function, denoted as δ

−
i,out , and the maximum output distance

function, denoted as δ
+
i,out . The distance functions naturally depend on the input

(activation) event model (δ−i,in,δ
+
i,in) of task τi and the processing behavior of the

resource [36, 11]

23 CPA - Compositional Performance Analysis 19

δ
−
i,out(n) = max

{
δ
−
i,in− Ji,resp,(n−1) ·di,min

}
(23.13)

δ
+
i,out(n) = δ

+
i,in(n)+ Ji,resp (23.14)

where di,min is the minimum distance between any two terminations of task τi. A
refined computation of the output models can be found in [43].
With the definition of inter-resource precedence constraints and the derivation of the
best-case and worst-case output event models, the global analysis of the system can
be performed.

Analysis Strategy

The global analysis is a timing verification step which sets the local verification
problems in a system context where inter-resource precedence constraints are taken
into account. As explained above, these inter-resource precedence constraints relate
the local verification problems in such a manner that their input and output event
models are linked. The relation of the local verification problems leads to a fixed-
point problem which converges if the propagation of outputs to inputs between re-
lated verification problems does not change the verification results any more. There-
fore, the CPA procedure consists of two parts: First, the local analysis of the individ-
ual resources is performed in order to generate the initial output event models. Then
in a global analysis step, the output event models are propagated through the sys-
tem to the tasks which utilize them as input event models due to global precedence
constraints. The local analysis is repeated under updated input parameters comput-
ing best-case and worst-case response times, jitter and required queue sizes. Due
to possible circular dependencies between activation models, it might be necessary
to repeat this process multiple times. This propagation of output event models and
update of input event models is continued until the analysis results converge.

In the following, the detailed procedure of the global analysis is presented which
is also illustrate in Figure 23.8:

1. For every task τi which is activated by events in the system environment, the input
event model (δ−i,in,δ

+
i,in) is initialized with the input event model of the respective

external event source.
2. For every task τ j which is part of a precedence path, the input event model

(δ−j,in,δ
+
j,in) corresponds to the output event model of the predecessor task. If in

the initial analysis run no output event model of the predecessor task is available,
then the input event model (δ−j,in,δ

+
j,in) is initialized with the input event model

of the predecessor task.
3. A local analysis is performed for each resource with the objective of deriving the

task output event models. Additionally, it is checked if the local analysis results
violate any constraints, for instance, the required absence of system overload or
the guarantee of all task deadlines.

20 Robin Hofmann and Leonie Ahrendts and Rolf Ernst

4. The computed task output event models are propagated through the system to
the tasks which utilize them as input event models due to respective precedence
constraints.

5. If the propagated output event models are identical to the input event models
used in the previous local analysis, a global fixed point has been reached and
the analysis terminates [46]. All timing constraints, particularly task deadlines
and end-to-end path latencies, are checked. The classical approach to compute
the (worst case) end-to-end path latencies, is to accumulate the individual (worst
case) response times for each task along the path [39, 47, 21]. If any constraint is
violated, the system is not schedulable.
Otherwise, if no fixed-point has been reached yet, the local analysis is repeated
with the updated input event models.

If the CPA has successfully terminated, the Best Case Response Time (BCRT)s and
Worst-Case Response Time (WCRT)s of each task are known such that the response
time behavior of every task can be safely bounded. Moreover, maximum required
queue sizes are derived. Further system performance results can be derived using
the supplementary analysis modules of CPA presented in section Section 23.3.

Figure 23.8: In the system level analysis, the local analyses are combined with a
step to propagate updated output event models. This is repeated until the analysis
converges or terminates due to abort criteria, e.g. constraint violation.

23 CPA - Compositional Performance Analysis 21

23.3 Extensions

In the previous section, the basic CPA approach has been presented. It can be ex-
tended to cover more complex system models or to improve the analysis to compute
tighter bounds for task response times or path latencies. In this section, CPA ex-
tensions are introduced which are able to deal with the usage of shared resources,
the change of operation modi and the use of error handling protocols. Moreover an
improved analysis for chained tasks is presented, and it is shown how CPA can be
used to give formal timing guarantees for weakly-hard real-time systems.

23.3.1 Analysis of Systems with Shared Resources

In multicore architectures several computational units have to share resources, such
as the memory or data buses. For many of these shared resources concurrent or
interrupted accesses are problematic, e.g. parallel write accesses to the same mem-
ory location can leave the accessed data corrupted or in an undefined state. Ac-
cesses to shared resources for which unconstrained accesses can be problematic
are called critical section. Therefore, accesses to critical sections have to be iso-
lated, i.e. locked by mutexes or semaphores. To ensure that only one process can
have access to a critical section at a time, the accesses have to be modelled as non-
preemptive sections [42]. If a task attempts to access a critical section, which has
already been entered by another task, it has to wait until the current access has fin-
ished. This blocking time is further delaying the waiting task’s response time as it
cannot continue executing. Simply locking resources can lead to deadlocks or the
priority inversion problem [22]. The automotive standard AUTOSAR, for instance,
specifies different protocols for accessing locally shared resources (LSR) and glob-
ally shared resources (GSR) [3]. LSRs can only be accessed by tasks mapped on
one computational resource, while GRSs can be accessed by any task in the system,
see Fig. 23.9. Taking the different interference scenarios into account, AUTOSAR
specifies to use the priority ceiling protocol for LSR and a spinlock mechanism for
GSR [3].

When computing the WCRT of a task, the worst case delay has to be assumed
when accessing a shared resource. The scenario in which the worst case delay occurs
depends on the protocol used to protect the critical section. Generally, the worst case
delay occurs if τi tries to access a shared resource which is currently locked, and
other tasks with a higher priority have accesses pending and continue to issue new
ones. If the duration and number of accesses from all tasks is known, the maximum
blocking a single access on a shared resource can be calculated [39]. Tasks often
need to access a shared resource more than once. Calculating the independent worst
case delay for each individual access and accumulating the delay can provide an
upper bound for the total blocking time a task can experience.

22 Robin Hofmann and Leonie Ahrendts and Rolf Ernst

Figure 23.9: Locally shared resources (LSR) can be only accessed by tasks from the
same resource, globally shared resources (GSR) are available for any resource. As
multiple tasks from different resources can attempt to access a GSR simultaneously,
GSR require a different protection mechanism compared to LSR.

However, doing so can largely overestimates the actual possible interference, as
the individual worst cases for each access are often mutually exclusive, i.e. blocking
that can happen once, is accounted for each single access.

To avoid this overestimation, the authors in [39] present a response time anal-
ysis combining arbitrarily activated tasks in multi-processor systems with shared
resources. Instead of the acculumlation of the individual worst case delays, they
bounded the maximum possible interference that could occur during a given time
interval, the task’s processing time. The authors in [42] provided an analysis frame-
work to calculate task timing behavior under the multicore priority ceiling protocol.
In [28] the authors improved on this by taking into account local scheduling de-
pendencies allowing to analyse sets of functional dependent tasks. The analysis has
been extended to allow non-preemptive scheduling for tasks in multi-core architec-
tures with shared resources in [25].

23.3.2 Analysis of Systems Undergoing Mode Changes

Some real-time systems have to execute in multiple different modi, being able to
adapt to the environment or the mission being executed in multiple stages. A plane
for instance, has to operate differently during start, landing or flight, while in a car
the engine control might turn off certain analysis features, depending on the engine
speed [26]. With the capability to change its configuration, the system is able to
run more efficiently as it only needs to execute tasks when necessary and disables
functions when no longer needed. Being able to deactivate unrequired functions
can prevent or reduce expensive hardware overdimensionation. Switching between
different configurations is called a mode change. This comes with the requirement
to analyze and verify the safety not only under one static configuration, but of the
different operational modes and also of the transition phases. For real-time systems,

23 CPA - Compositional Performance Analysis 23

this includes ensuring that the system satisfies all its deadlines during each possible
configuration.

A system is running in a steady state if it is executing in one mode without any
residing influence from a previous mode change, only executing the tasks from the
corresponding task set. If the system receives a Mode Change Request (MCR) the
set of running tasks has to be changed from the current mode to the new one. In order
to evaluate the transition phase, each task is classified according to the following
categories:

1. Old tasks are tasks which were present in the previous mode but not in the new
one. They are immediately terminated when the MCR occurs, i.e. any active or
pending task instances are removed from the system.

2. Finished or completed tasks are tasks which were present in the previous mode
but not in the new one. During the transition phase these tasks are allowed to
finish their active and pending task instances, but no new instances will be started.

3. New or added tasks are tasks which are present in the new mode, but not in the
old one. They can represent updated tasks from the old mode, e.g. with changed
execution time or activation pattern, or new functionalities.

4. Unchanged tasks are present during the old and new mode with identical proper-
ties, only in systems with periodicity.

If the system’s mode change protocol allows unchanged tasks it is referred to as
with periodicity, and without periodicity if all task sets are disjunct.

When a MCR occurs, the system has to change from the current mode to the
new one, remove old and finished tasks and add new tasks. If the system waits un-
til all finished tasks have completed their execution before starting to schedule new
tasks, the mode change protocol is called synchronous. Respectively, it is called
asynchronous, if it starts scheduling new tasks right after the MCR has occurred,
simultaneously with the last instances of finished tasks. Synchronous protocols en-
sure isolation between the modes and therefore do not require specific schedulability
analyses for the transition phase. However, due to the delay introduced by the sepa-
ration of the modes, synchronous protocols are not always feasible, if the transition
has to be performed as fast as possible [27]. Asynchronous protocols, on the other
hand, overcome this limitation and allow the simultaneous scheduling of tasks from
the old and new mode. With an asynchronous protocol the new tasks are added to the
set of scheduled tasks, hence possibly increasing the resource utilization. As simply
adding new tasks to the current set can lead to temporal overload on the resource,
asynchronous protocols require specific schedulability analyses [27, 34, 35, 50]. For
the remainder of this section the will focus be on asynchronous protocols.

The CPA approach provides functionality to analyze the WCRTs of tasks and
path latencies for a system in a certain mode.The transition periods can be modeled
conservatively, by assuming that all tasks from the two (previous and new) modes
are active simultaneously. In order to be able to model a transition phase, rules have
to be defined regarding which transition phases can occur. The CPA extension relies
on the assumption, that the system executes in a steady state when the MCR occurs,
i.e. new mode changes are not allowed to arise, while an older MCR is still exerting

24 Robin Hofmann and Leonie Ahrendts and Rolf Ernst

influence on the task activations. With this restriction, only tasks from exactly two
mode sets need to be considered for a transition phase. The outcome from this is
that not only the response times of tasks during steady states and the mode change
phases are relevant, but also the duration of these transition times. These transient
latencies determine the distance to the next possible mode change [27].

The authors in [27] have shown that due to complex task dependencies the effects
of a MCR are propagated delayed through the system, possibly causing feedback to
the source of the MCR. They have shown how to bound the transition latency, by
dividing it into local task transition latencies and global system transition latencies.
In [26] the authors evaluate options for the design of multi-core real-time systems
to minimize the impact of overly pessimistic measures taken in current practice.

23.3.3 Analysis of the Timing Impact of Errors and Error
Handling

Safety-critical computing systems are usually designed to be fault tolerant towards
communication and/or computation errors. However, each fault tolerance mecha-
nisms incurs some time penalty because errors need first to be detected, and then
an error correction or error masking measure has to be taken. To guarantee the cor-
rect timing behavior of a fault-tolerant safety-critical computing system, a formal
performance analysis has to take these error-related, additional timing effects into
account.
The consideration of timing overhead of fault tolerance mechanisms requires the
adaptation of the local CPA. The stochastic nature of errors involves the introduc-
tion of a stochastic busy period, this is described in Section 23.3.3.2. Apart from
timing overhead fault-tolerant systems have specific precedence constraints which
result, for instance, from redundant task executions. In Section 23.3.3.1, an adapted
worst-case response time analysis is briefly outlined for such fault-tolerant systems.

23.3.3.1 Computation Errors and Error Handling

A basic principle of detecting computational errors is to perform the same computa-
tion several times and to compare the results. A discrepancy in the computed results
is an evidence for an occurred fault. In a multi- or many-core processing system, it is
possible to parallelize the redundant computations or, respectively, the execution of
the redundant tasks. Such a fault tolerance approach leads to fork-join task graphs,
where forking means the parallel execution of replicated tasks and joining means
synchronization and the comparison of results. In [5] a strategy is presented how to
derive worst-case response times for tasks in a task set with fork-join precedence
constraints, so that the timing impact of replicated and parallelized computations
can be evaluated.

23 CPA - Compositional Performance Analysis 25

23.3.3.2 Communication Errors and Error Handling

Unreliable communication links in data buses or packet-switched networks intro-
duce bit errors in the digitally transmitted information. The occurrence of bit errors
can be modeled by stochastic processes which often use the average bit error rate
or packet error rate as an important parameter. If the assumption of independent bit
errors is justified, the Bernoulli process or its approximation as a Poisson process is
a classical modeling choice. If the probability of a bit error depends on past events,
a state-aware Markov process is more appropriate [44].
For multi-master data buses and point-to-point communication, the detection of bit
errors in transmitted frames at the receiver is typically based on error detecting
codes. If a an error has been detected and signaled, a retransmission of the the cor-
rupted or lost frame is initiated and the system is set back to a consistent state. Since
bit errors can occur arbitrarily often albeit with a very low probability, the computa-
tion of a worst-case response time which includes an excessive detection, signaling
and correction time overhead is meaningless. A probabilistic scheduling guarantee,
however, in the form of an exceedance function which specifies an upper bound on
the probability that a task instance exceeds a reference response time value, is far
more expressive. In [6], a probabilistic scheduling analysis is presented for a fault-
tolerant multi-master/point-to-point communication system with non-preemptive
fixed priority arbitration which is, for instance, applicable to CAN. The analysis
computes first the worst-case response time of a frame under 1 . . .K errors and the
corresponding probabilities, and then derives an exceedance function by summing
up the probabilities for all error scenarios which have a worst-case response time
smaller or equal than the reference response time. In [4], an improved approach is
presented which relies on stochastic frame transmission times. A stochastic frame
transmission time is composed of the error-free frame transmission time and the
stochastic overhead for error signaling and correction. Stochastic frame transmis-
sion times give rise to stochastic busy periods from which stochastic response times
and a less pessimistic exceedance function can be derived.
The performance analysis of switched real-time networks, both on-chip and off-
chip networks, is treated in [7]. The network switches are assumed to employ a
fixed priority-based arbitration scheme, and an end-to-end error protocol in form of
an Automatic Repeat Request (ARQ) scheme is investigated. In the ARQ scheme,
the sender buffers a sent packet until an Acknowledgement (ACK) message is re-
ceived. If no ACK arrives at the sender in a given time interval, a timeout occurs
and the buffered packet is retransmitted. The detection of corrupted packets at the
receiver is typically based on error detecting codes. Both corrupted and lost packets
are signaled to the sender by an omitted acknowledgement so that a retransmission
is implicitely triggered. Variants of this type of ARQ error handling protocol are
selective ARQ, stop-and-wait ARQ, and Go-back-N ARQ.

26 Robin Hofmann and Leonie Ahrendts and Rolf Ernst

23.3.4 Refined Analysis of Task Chains

Real-time applications are usually not implemented as single tasks, but rather as a
set of logical dependent tasks, as shown in Fig. 23.7. The tasks within an applica-
tion are typically ordered and presented as a Directed acyclic graph (DAG), repre-
senting the logical order of execution. Within such a graph any logical dependent
tasks form a task path or task chain. Sensor-actuator chains in automotive or avionic
systems, for example, are distributed within the system as the components are phys-
ically apart, or information needs to be gathered in a central instance to perform
decision making. Multi-media applications on the other hand, are often pipelined in
order to process media streams more efficiently. To be able to take advantage of the
parallelization of applications the analyses methods need to support task paths and
provide mechanisms to efficiently analyze the dependencies between tasks.

The basic CPA approach supports the latency analysis of task paths, as described
in section Section 23.2.2. The conservative approach is to compute the WCRT of
each task which is an element of the considered task path, and to derive the path
latency by accumulating the individual WCRTs [47, 21]. While this simple accu-
mulation provides an upper bound for the path latency, it is pessimistic if local
worst-case scenarios within the same path are mutually exclusive.

In [38] the authors consider the communication between application threads and
the corresponding precedence constraints in the resulting task graphs in order to
improve the local WCRTs. They exclude infeasible worst-case scenarios for logi-
cally dependent tasks on the same SPP-scheduled resource by extending the scope
of the busy-period approach. By leveraging the particular semantics - including the
distinction of synchronous and asynchronous communication - they were able to
significantly reduce pessimism and the analysis complexity, resulting in a faster ex-
ecution of the local analysis.

Another situation, which can lead to especially large local WCRTs, occurs when
a task is activated with a burst. Bursts can potentially occur anywhere within the
system, but the same burst cannot occur on all resources at once. Accumulating the
local WCRTs from a path with a bursty activation event model can therefore lead
to a significant overestimation. Pessimistically bounded WCRTs can translate into
over-dimensioning of the required hardware components and hence increased costs
[39, 41]. This issue is captured in the ’pay burst only once’ problem [15].

In order to reduce the impact of the pay burst only once problem, the authors in
[40] proposed a method to identify relevant combinations of local response times to
derive a tighter worst case path latency. They provided a methodology for computing
path latencies, considering pipelined chains of tasks with transient overload along
the path. This approach was extended in [41] by enabling the analysis of a wider
variety of system topologies and including functional cycles and non-functional de-
pendencies.

A similar method can be used to improve the analysis of Ethernet networks.
In Ethernet networks, different data streams often need to be transferred with the
same priority, as Ethernet switches only have a limited range of priorities. Streams
with the same priority are queued and transferred according to FIFO scheduling.

23 CPA - Compositional Performance Analysis 27

Figure 23.10: The analysis of Ethernet networks can be improved, if dependencies
between streams with the same priority - here stream 1 and 2 - are exploited. This
can be done, if these streams are lead through the same two consecutive switches.

Therefore, for the individual worst-case analyses, each other stream with the same
priority has be assumed to arrive simultaneously with the analyzed one but to be
served first [13].

In [48] the authors have shown how the analysis of Ethernet networks can be im-
proved by limiting the interference of tasks with the same priority that share more
than one consecutive switch. see Fig. 23.10. Streams with the same priority that
arrive simultaneously on one switch cannot arrive simultaneously on the follow-
ing switch, as only one stream can be transfer at a time. This dependency can be
exploited to provide tighter bounds for end-to-end path delays.

23.3.5 Timing Verification of Weakly-Hard Real-Time Systems

Hard real-time computing systems require per definition that each instance of a task
meets its deadline, whereas weakly-hard real-time systems tolerate occasional but
in number and distribution precisely bounded deadline misses of tasks [8]. For in-
stance, a weakly-hard system may require that a given task misses not more than
m deadlines in any sequence of k consecutive task activations. The tolerance to-
wards occasional deadline misses of tasks is usually based on the characteristics of
the implemented real-time applications. Prevalent real-time applications like control
functions, monitoring functions, and multimedia functions have shown to be robust
against occasional but bounded sample or frame losses which can be interpreted as
consequences of missed task deadlines. This robustness allows real-time applica-
tions to continue in safe operation even in the presence of limited transient overload
[8, 16]. The analysis of weakly-hard real-time systems which is implemented as
an extension of CPA, called Typical Worst Case Analysis (TWCA) [31, 32, 53, 2],
provides formal guarantees for the compliance with weakly-hard real-time require-
ments for a wide range of system configurations. It scales to real-sized systems and
provides a good computational efficiency [30].

TWCA assumes that each task has a typical behavior, e.g. a periodic activation
pattern, which is captured in a typical activation model. In rare circumstances, a
task may additionally experience non-typical activations, e.g. sporadic activations

28 Robin Hofmann and Leonie Ahrendts and Rolf Ernst

[31] or sporadic bursts [32], and then can be described by its worst-case activation
model. The distance between the typical and the worst-case activation model of a
task is captured by the so called overload model. In the typical worst case, which
occurs if all tasks show their densest pattern of typical activations and demand their
maximum execution time, no deadlines are missed. In the worst case, which occurs
if all tasks show their densest pattern of typical and non-typical activations and
demand their maximum execution time, deadlines will be missed due to overload.

In two classical CPAs, the worst-case response times for both the typical worst
case and the worst case behavior of the system are computed: Typical Worst Case
Response Time (TWCRT) and WCRT for all tasks. If the WCRT of a task τi exceeds
its deadline, a deadline miss model is computed which indicates the maximum num-
ber of observable deadline misses m in any sequence of k of consecutive instances
of task τi. The computation of the deadline miss model relies on three main im-
pact factors which need to be derived for each task interfering with task τi. Firstly,
the overload model which is an indicator for how often non-typical activations can
be encountered in a given time interval. Secondly, the longest time interval during
which overload activations can impact the behavior of a sequence of k of consecu-
tive instances of task τi. And thirdly, the maximum number of deadline misses of
task τi that can be traced back to one overload activation. The computed deadline
miss model for a task τi can be tightened if the number and distribution of overload
activations, which induce the maximum number of deadline misses of task τi in any
sequence of k consecutive instances, are bounded as precisely as possible [53].

23.3.6 Further Contributions

This chapter could only introduce the main functions of CPA. There are many more
contributions that exceed the availalbe space and should only be mentioned.
The robustness of a system, for instance, determines how sensitive the system re-
acts to changes in e.g. execution and transmission delays, input data rates or CPU
clock cycles. A sensitivity analysis determines the influence of input data or system
configurations on the system robustness. The authors of [33, 20, 19] have shown,
how to identify critical components for the system robustness and how to optimize
the platform. In many embedded systems, such as automotive systems, sensors are
measuring the system behaviour with a set period. If data is accessed periodically,
but the communication path, e.g. a Flexray bus, is transmitting the data with a dif-
ferent period, additional delay can occur due to the period mismatch. In [14] the
authors discuss different end-to-end timing scenarios with a focus on register based
communication, taking different aspects of end-to-end delays into account.

23 CPA - Compositional Performance Analysis 29

23.4 Conclusion

In this chapter the compositional performance analysis approach has been presented.
CPA provides a scalable framework to perform timing analysis of distributed em-
bedded systems. It is widely used in the industrial development processes of real-
time systems, especially in the automotive field where it is extensively proven in
practice but also in avionics and even in networks-on-chip [12]. Numerous exten-
sions exist to cover more complex applications, different applications of timing anal-
ysis in sensitivity and robustness as well as error analysis.

References

1. AbsInt: ait. http://www.absint.com/ait/. ’Accessed:2016-02-24
2. Ahrendts, L., Hammadeh, Z. A. H., Ernst, R.: Guarantees for Runnable Entities with Het-

erogeneous Real-Time Requirements (to appear). In: Design, Automation & Test in Europe
Conference & Exhibition (DATE), 2016 (2016)

3. Autosar, http://autosar.org/download/R4.0/AUTOSAR_SWS_OS.pdf: Specification of Oper-
ating System, 5.0.0 edn. (2011)

4. Axer, P., Ernst, R.: Stochastic response-time guarantee for non-preemptive, fixed-priority
scheduling under errors. In: Design Automation Conference (DAC), 2013 50th
ACM/EDAC/IEEE, pp. 1–7 (2013). DOI 10.1145/2463209.2488946

5. Axer, P., Quinton, S., Neukirchner, M., Ernst, R., Dobel, B., Hartig, H.: Response-Time Anal-
ysis of Parallel Fork-Join Workloads with Real-Time Constraints. In: Real-Time Systems
(ECRTS), 2013 25th Euromicro Conference on, pp. 215–224 (2013). DOI 10.1109/ECRTS.
2013.31

6. Axer, P., Sebastian, M., Ernst, R.: Probabilistic response time bound for CAN messages with
arbitrary deadlines. In: Design, Automation Test in Europe Conference Exhibition (DATE),
2012, pp. 1114–1117 (2012). DOI 10.1109/DATE.2012.6176662

7. Axer, P., Thiele, D., Ernst, R.: Formal timing analysis of automatic repeat request for switched
real-time networks. In: Industrial Embedded Systems (SIES), 2014 9th IEEE International
Symposium on, pp. 78–87 (2014). DOI 10.1109/SIES.2014.6871191

8. Bernat, G., Burns, A., Liamosi, A.: Weakly Hard Real-Time Systems. Computers, IEEE
Transactions on 50(4), 308–321 (2001). DOI 10.1109/12.919277

9. Bygde, S.: Static wcet analysis based on abstract interpretation and counting of elements
(2010)

10. Davis, R.I., Burns, A., Bril, R.J., Lukkien, J.J.: Controller area network (can) schedulability
analysis: Refuted, revisited and revised. Real-Time Systems 35(3), 239–272 (2007). DOI
10.1007/s11241-007-9012-7

11. Diemer, J.: Predictable network-on-chip for general-purpose processors – formal worst-case
guarantees for on-chip interconnects. Ph.D. thesis, Technische Universität Braunschweig,
Braunschweig, Germany. URL N/A. To appear

12. Diemer, J., Ernst, R.: Back suction: Service guarantees for latency-sensitive on-chip networks.
In: Proceedings of the 2010 Fourth ACM/IEEE International Symposium on Networks-on-
Chip, NOCS ’10, pp. 155–162. IEEE Computer Society, Washington, DC, USA (2010). DOI
10.1109/NOCS.2010.38

13. Diemer, J., Rox, J., Ernst, R., Chen, F., Kremer, K.T., Richter, K.: Exploring the worst-case
timing of ethernet avb for industrial applications. In: Proc. of the 38th Annual Conference of
the IEEE Industrial Electronics Society. Montreal, Canada (2012). URL http://dx.doi.
org/10.1109/IECON.2012.6389389

http://www.absint.com/ait/
N/A
http://dx.doi.org/10.1109/IECON.2012.6389389
http://dx.doi.org/10.1109/IECON.2012.6389389

30 Robin Hofmann and Leonie Ahrendts and Rolf Ernst

14. Feiertag, N., Richter, K., Nordlander, J., Jonsson, J.: A compositional framework for end-to-
end path delay calculation of automotive systems under different path semantics. In: Proceed-
ings of the IEEE Real-Time System Symposium — Workshop on Compositional Theory and
Technology for Real-Time Embedded Systems, Barcelona, Spain, November 30, 2008 (2008)

15. Fidler, M.: Quality of Service in Multiservice IP Networks: Second International Workshop,
QoS-IP 2003 Milano, Italy, February 24–26, 2003 Proceedings, chap. Extending the Network
Calculus Pay Bursts Only Once Principle to Aggregate Scheduling, pp. 19–34. Springer Berlin
Heidelberg, Berlin, Heidelberg (2003). DOI 10.1007/3-540-36480-3-2

16. Frehse, G., Hamann, A., Quinton, S., Wöhrle, M.: Formal Analysis of Timing Effects on
Closed-loop Properties of Control Software. In: 35th IEEE Real-Time Systems Symposium
2014 (RTSS). Rome, Italy (2014). URL https://hal.inria.fr/hal-01097622

17. GmbH, S.: Symta/s and traceanalyzer. https://www.symtavision.com/
products/symtas-traceanalyzer/. Accessed: 2016-01-29

18. Gresser, K.: An Event Model for Deadline Verification of Hard Real-Time Systems. In: Real-
Time Systems, 1993. Proceedings., Fifth Euromicro Workshop on, pp. 118–123 (1993). DOI
10.1109/EMWRT.1993.639067

19. Hamann, A., Racu, R., Ernst, R.: A formal approach to robustness maximization of complex
heterogeneous embedded systems. In: Proc. of International Conference on Hardware - Soft-
ware Codesign and System Synthesis (CODES). Seoul, Korea (2006)

20. Hamann, A., Racu, R., Ernst, R.: Multidimensional robustness optimization in heterogeneous
distributed embedded systems. In: Proc. of the 13th IEEE RealTime and Embedded Technol-
ogy and Applications Symposium (2007)

21. Henia, R., Hamann, A., Jersak, M., Racu, R., Richter, K., Ernst, R.: System level performance
analysis - the symta/s approach. IEE Proceedings - Computers and Digital Techniques 152(2),
148–166 (2005). DOI 10.1049/ip-cdt:20045088

22. Lampson, B.W., Redell, D.D.: Experience with processes and monitors in mesa. Commun.
ACM 23(2), 105–117 (1980). DOI 10.1145/358818.358824

23. Lehoczky, J.P.: Fixed priority scheduling of periodic task sets with arbitrary deadlines. In:
Proceedings of the 11th Real-Time Systems Symposium, pp. 201–209 (1990). DOI 10.1109/
REAL.1990.128748

24. Liu., J.W.: Real-Time Systems. Prentice Hall, New Jersey (2000)
25. Negrean, M., Ernst, R.: Response-time analysis for non-preemptive scheduling in multi-core

systems with shared resources. In: Proc. of 7th IEEE International Symposium on Industrial
Embedded Systems (SIES). Karlsruhe, Germany (2012)

26. Negrean, M., Ernst, R., Schliecker, S.: Mastering timing challenges for the design of multi-
mode applications on multi-core real-time embedded systems. In: 6th International Congress
on Embedded Real-Time Software and Systems (ERTS). Toulouse, France (2012)

27. Negrean, M., Neukirchner, M., Stein, S., Schliecker, S., Ernst, R.: Bounding mode change
transition latencies for multi-mode real-time distributed applications. In: 16th IEEE Interna-
tional Conference on Emerging Technologies and Factory Automation (ETFA1́1). Toulouse,
France (2011). URL http://dx.doi.org/10.1109/ETFA.2011.6059009

28. Negrean, M., Schliecker, S., Ernst, R.: Response-time analysis of arbitrarily activated tasks in
multiprocessor systems with shared resources. In: Proc. of Design, Automation, and Test in
Europe (DATE). Nice, France (2009). URL http://ieeexplore.ieee.org/xpls/
abs_all.jsp?arnumber=5090720

29. Pellizzoni, R., Schranzhofer, A., Chen, J.J., Caccamo, M., Thiele, L.: Worst case delay analysis
for memory interference in multicore systems. In: Design, Automation Test in Europe Con-
ference Exhibition (DATE), 2010, pp. 741–746 (2010). DOI 10.1109/DATE.2010.5456952

30. Quinton, S., Ernst, R., Bertrand, D., Yomsi, P.M.: Challenges and new trends in probabilistic
timing analysis. In: Design, Automation & Test in Europe Conference & Exhibition (DATE),
2012, pp. 810–815 (2012). DOI 10.1109/DATE.2012.6176605

31. Quinton, S., Hanke, M., Ernst, R.: Formal analysis of sporadic overload in real-time systems.
In: Design, Automation Test in Europe Conference Exhibition (DATE), pp. 515–520 (2012).
DOI 10.1109/DATE.2012.6176523

https://hal.inria.fr/hal-01097622
https://www.symtavision.com/products/symtas-traceanalyzer/
https://www.symtavision.com/products/symtas-traceanalyzer/
http://dx.doi.org/10.1109/ETFA.2011.6059009
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5090720
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5090720

23 CPA - Compositional Performance Analysis 31

32. Quinton, S., Negrean, M., Ernst, R.: Formal Analysis of Sporadic Bursts in Real-Time Sys-
tems. In: Design, Automation Test in Europe Conference Exhibition (DATE), pp. 767–772
(2013). DOI 10.7873/DATE.2013.163

33. Racu, R., Hamann, A., Ernst, R.: Sensitivity analysis of complex embedded real-time systems.
Real-Time Systems 39, 31–72 (2008)

34. Rafik Henia, R.E.: Scenario aware analysis for complex event models and distributed systems.
In: Proceedings Real-Time Systems Symposium (2007)

35. Real, J., Crespo, A.: Mode change protocols for real-time systems: A survey and a new pro-
posal. Real-Time Systems 26(2), 161–197. DOI 10.1023/B:TIME.0000016129.97430.c6

36. Richter, K.: Compositional scheduling analysis using standard event models. Ph.D. thesis, TU
Braunschweig, IDA (2005)

37. Richter, K., Jersak, M., Ernst, R.: A formal approach to mpsoc performance verification. Com-
puter 36(4), 60–67 (2003)

38. Schlatow, J., Ernst, R.: Response-time analysis for task chains in communicating threads. In:
22nd IEEE Real-Time Embedded Technology & Applications Symposium (RTAS 2016).
Vienna, Austria (2016)

39. Schliecker, S.: Performance analysis of multiprocessor real-time systems with shared
resources. Ph.D. thesis, Technische Universität Braunschweig, Braunschweig, Ger-
many (2011). URL http://www.cuvillier.de/flycms/de/html/30/
-UickI3zKPS76fkY=/Buchdetails.html

40. Schliecker, S., Ernst, R.: Compositional path latency computation with local busy times. Tech.
Rep. IDA-08-01, Technical University Braunschweig, Braunschweig, Germany (2008)

41. Schliecker, S., Ernst, R.: A recursive approach to end-to-end path latency computation in
heterogeneous multiprocessor systems. In: Proc. 7th International Conference on Hardware
Software Codesign and System Synthesis (CODES-ISSS). ACM, Grenoble, France (2009).
URL http://doi.acm.org/10.1145/1629435.1629494

42. Schliecker, S., Negrean, M., Ernst, R.: Response time analysis in multicore ecus with
shared resources. IEEE Transactions on Industrial Informatics 5(4) (2009). URL http:
//ieee-ies.org/tii/issues/iit09_4.shtml

43. Schliecker, S., Rox, J., Ivers, M., Ernst, R.: Providing accurate event models for the analysis
of heterogeneous multiprocessor systems. In: Proceedings of the 6th IEEE/ACM/IFIP interna-
tional conference on Hardware/Software codesign and system synthesis, pp. 185–190. ACM
(2008)

44. Sebastian, M., Axer, P., Ernst, R.: Utilizing Hidden Markov Models for Formal Reliability
Analysis of Real-Time Communication Systems with Errors. In: Dependable Computing
(PRDC), 2011 IEEE 17th Pacific Rim International Symposium on, pp. 79–88 (2011). DOI
10.1109/PRDC.2011.19

45. Service, A.S.C.: Arinc 600 series. http://store.aviation-ia.com/cf/store/
catalog.cfm?prod_group_id=1&category_group_id=3. Accessed: 2016-03-
16

46. Stein, S., Diemer, J., Ivers, M., Schliecker, S., Ernst, R.: On the convergence of the symta/s
analysis. Tech. rep., TU Braunschweig, Braunschweig, Germany (2008)

47. Sun, J., Liu, J.W.S.: Bounding the end-to-end response time in multiprocessor real-time sys-
tems. In: Parallel and Distributed Real-Time Systems, 1995. Proceedings of the Third Work-
shop on, pp. 91–98 (1995). DOI 10.1109/WPDRTS.1995.470502

48. Thiele, D., Axer, P., Ernst, R.: Improving formal timing analysis of switched ethernet by ex-
ploiting fifo scheduling. In: Design Automation Conference (DAC). San Francisco, CA, USA
(2015)

49. Thiele, L., Chakraborty, S., Naedele, M.: Real-time calculus for scheduling hard real-time
systems. In: 2000 IEEE International Symposium on Circuits and Systems. Emerging Tech-
nologies for the 21st Century. Proceedings, pp. 101–104 (2000). DOI 10.1109/ISCAS.2000.
858698

50. Tindell, K.W., Burns, A., Wellings, A.J.: Mode changes in priority preemptively scheduled
systems. In: Real-Time Systems Symposium, 1992, pp. 100–109 (1992). DOI 10.1109/REAL.
1992.242672

http://www.cuvillier.de/flycms/de/html/30/-UickI3zKPS76fkY=/Buchdetails.html
http://www.cuvillier.de/flycms/de/html/30/-UickI3zKPS76fkY=/Buchdetails.html
http://doi.acm.org/10.1145/1629435.1629494
http://ieee-ies.org/tii/issues/iit09_4.shtml
http://ieee-ies.org/tii/issues/iit09_4.shtml
http://store.aviation-ia.com/cf/store/catalog.cfm?prod_group_id=1&category_group_id=3
http://store.aviation-ia.com/cf/store/catalog.cfm?prod_group_id=1&category_group_id=3

32 Robin Hofmann and Leonie Ahrendts and Rolf Ernst

51. Wilhelm, R., Engblom, J., Ermedahl, A., Holsti, N., Thesing, S., Whalley, D., Bernat, G.,
Ferdinand, C., Heckmann, R., Mitra, T., Mueller, F., Puaut, I., Puschner, P., Staschulat, J.,
Stenstrom, P.: The worst-case execution time problem - overview of methods and survey of
tools. ACM Transactions on Embedded Computing Systems 7(3), Art. 36 (2008)

52. Wilhelm, R., Engblom, J., Ermedahl, A., Holsti, N., Thesing, S., Whalley, D., Bernat,
G., Ferdinand, C., Heckmann, R., Mitra, T., Mueller, F., Puaut, I., Puschner, P., Staschu-
lat, J., Stenström, P.: The worst-case execution-time problem—overview of methods
and survey of tools. ACM Trans. Embed. Comput. Syst. 7(3), 36:1–36:53 (2008). DOI
10.1145/1347375.1347389

53. Xu, W., Hammadeh, Z., Quinton, S., Kröller, A., Ernst, R.: Improved Deadline Miss Models
for Real-Time Systems Using Typical Worst-Case Analysis. In: 27th Euromicro Conference
on Real-Time Systems (ECRTS). Lund (2015)

Index

A

acronyms, list of ix
act./term. trace, CPA 7
activation/termination event model, CPA 8
activation/termination event, CPA 6
analysis of weakly-hard real-time systems,

CPA 27
arrival function, CPA 8

B

backlog, CPA 17
busy period, CPA 11, 12

C

component timing model, CPA 5
CPA, extensions 21
CPA, method 3, 10
critical instant, CPA 11

D

distance function, CPA 8

E

event propagation, CPA 6
execution time, CPA 4

F

functional inter-task dependencies, CPA 5,
18

G

global analysis, CPA 18, 19

J

jitter, CPA 17

L

local analysis, CPA 10

M

mode change analysis, CPA 22

N

non-functional inter-task dependencies, CPA
5

P

platform, CPA 9

Q

q-activation processing time, CPA 14
q-activation scheduling horizon, CPA 13
queuing delay, CPA 15

R

resources, CPA 6
response time, CPA 11, 14, 16

S

scheduler, CPA 6
shared resource analysis, CPA 21
system timing model, CPA 4

T

task chain analysis, CPA 26
task timing model, CPA 4
timing impact of errors, CPA 24

U

utilization, CPA 10

33

	CPA - Compositional Performance Analysis
	Robin Hofmann and Leonie Ahrendts and Rolf Ernst
	Motivation
	Fundamentals
	Timing Model
	Analysis

	Extensions
	Shared Resources
	Mode Changes
	Impact of Errors and Error Handling
	Task Chains
	Weakly-Hard Real-Time Systems
	Further Contributions

	Conclusion
	References

	Index

