Estimation of curvature from volume fractions using parabolic reconstruction on two-dimensional unstructured meshes (Supporting Data)

Fabien Evrard, Fabian Denner and Berend van Wachem

Department of Mechanical Engineering, Imperial College London Exhibition Road, London SW7 2AZ, United Kingdom

26th September 2017

The data presented in Section 5 of the manuscript [1] is gathered in 12 text files named:

$errors_{#}_{.}$

- {\$} corresponds to the test-case under consideration (see Fig. 9 of the manuscript):
 - circle for the circular interface
 - ellipse for the elliptical interface
 - sinwave001 for the sin wave with an amplitude to wavelength ratio $\eta/\lambda = 0.01$
 - sinwavw025 for the sin wave with an amplitude to wavelength ratio $\eta/\lambda=0.25$
- {#} corresponds to the type of mesh employed (see Fig. 10 of the manuscript):
 - hex for a Cartesian mesh
 - tri for a triangular mesh
 - poly for a polygonal mesh

Each file contains the following columns:

- RDX: ratio $1/\kappa_{\rm ref}\Delta x$ defined in the manuscript
- NCONVERGED: amount of interfacial cells where the parabolic reconstruction problem has converged
- NINTERPP: amount of interfacial cells where curvature was integrated from neighbour parabolas
- NINTERPAVG: amount of interfacial cells where curvature was interpolated from the neighbour cells
- LINF: maximum curvature error using the method proposed in the manuscript
- LINFCSF: maximum curvature error using the convoluted volume fraction method [2]
- LINFRDF: maximum curvature error using the reconstructed distance function method [3]
- LINFHF: (only in hex files) maximum curvature error using the height-function method [4]
- L2: rms of the curvature errors using the method proposed in the manuscript
- L2CSF: rms of the curvature errors using the convoluted volume fraction method [2]
- L2RDF: rms of the curvature errors using the reconstructed distance function method [3]
- L2HF: (only in hex files) rms of the curvature errors using the height-function method [4]

^{*}Email: f.evrard13@imperial.ac.uk, fa.evrard@gmail.com

References

- [1] F. Evrard, F. Denner and B. van Wachem, Estimation of curvature from volume fractions using parabolic reconstruction on two-dimensional unstructured meshes, J. Comput. Phys. (2017).
- [2] F. Denner and B. van Wachem, Fully-coupled balanced-force VOF framework for arbitrary meshes with least-squares curvature evaluation from volume fractions, Numer. Heat Transf., Part B, Fundam. 65 (2014) 218–255.
- [3] S. Cummins, M. Francois and D. Kothe, Estimating curvature from volume fractions, Comput. Struct. 83 (2005) 425–434.
- [4] S. Popinet, An accurate adaptive solver for surface-tension-driven interfacial flows, J. Comput. Phys. 228 (2009) 5838–5866.