Journal article Open Access

Superconductivity in lithium below 0.4 millikelvin at ambient pressure

Tuoriniemi, Juha; Juntunen-Nurmilaukas, Kirsi; Uusvuori, Johanna; Pentti, Elias; Salmela, Anssi; Sebedash, Alexander

Dublin Core Export

<?xml version='1.0' encoding='utf-8'?>
<oai_dc:dc xmlns:dc="" xmlns:oai_dc="" xmlns:xsi="" xsi:schemaLocation="">
  <dc:creator>Tuoriniemi, Juha</dc:creator>
  <dc:creator>Juntunen-Nurmilaukas, Kirsi</dc:creator>
  <dc:creator>Uusvuori, Johanna</dc:creator>
  <dc:creator>Pentti, Elias</dc:creator>
  <dc:creator>Salmela, Anssi</dc:creator>
  <dc:creator>Sebedash, Alexander</dc:creator>
  <dc:description>Elements in the alkali metal series are regarded as unfavourable for
superconductivity due to their monovalent character. The superconducting
transition at temperatures as high as 20 K recently found in compressed lithium,
the lightest alkali element, is considered to occur due to pressure induced changes
in the conduction-electron band structure. The condition at the ambient
pressure in lithium had remained unresolved, both theoretically and
experimentally. Here we report that lithium is a superconductor also at zero
pressure at extremely low temperatures below 0.4 mK. This is the lowest
superconducting transition temperature for any pure metal ever observed.
Lithium, as a particularly simple host for the conduction electron system,
represents an important case for any attempts to classify the superconductors and
transition temperatures, especially in judging if any nonmagnetic configuration
can be assumed to exclude superconductivity down to zero temperature. Such a
fundamental system provides a stringent test case for already highly developed
computational methods in predicting the transition temperatures from first
principles. Furthermore, the combination of extremely weak superconductivity
and relatively strong nuclear magnetism in lithium would evidently lead to mutual
competition between these two ordering phenomena under suitably prepared
  <dc:title>Superconductivity in lithium below 0.4 millikelvin at ambient pressure</dc:title>
Views 960
Downloads 514
Data volume 214.3 MB
Unique views 932
Unique downloads 494


Cite as