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THE STATISTICAL EVALUATION OF ECOLOGICAL INDICATORS1 
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Abstract. Ecological indicators are easily measured surrogates for underlying prop- 
erties or responses of a system that are difficult to measure accurately and reliably. Methods 
from signal detection theory can be used to assess the usefulness of such indicators, based 
on pilot data sets in which some "gold standard" of the underlying response has been 
measured. For responses that can naturally be dichotomized (e.g., absent vs. present, or 
acceptable vs. unacceptable), we can estimate an indicator's sensitivity (the probability of 
a positive indicator, given that the true response is positive) and specificity (the probability 
of a negative indicator, given that the true response is negative). These properties, together 
with the prevalence of the response in the population being studied, determine the indicator's 
predictive value (e.g., positive predictive value is the probability of a positive response, 
given that the indicator is positive). 

Applications of this methodology are described for two examples: the use of satellite 
imagery to infer oceanic pigment concentrations, and the use of baseline levels of acid- 
neutralizing capacity (ANC) to anticipate acidification episodes in lakes and streams. 

Key words: binary response; ecological indicator; lake and stream acidification; predictive value; 
receiver operating characteristic (ROC) curve; remote sensing; sensitivity; signal detection theory; 
specificity. 

INTRODUCTION 
Many ecological responses are complex and difficult 

to measure accurately and reliably. It is tempting to 
describe such responses in terms of surrogates that are 
more accessible and easier to measure. For example, 
increases in cyanobacteria often indicate lake eutro- 
phication (e.g., see Edmondson 1979); sedimentary di- 
atom remains reflect past trophic conditions in lakes 
(Agbeti 1992); the ratio of total dissolved solids to 
mean depth has been used to predict fish production in 
lakes (Ryder 1982); butterfly assemblages are indica- 
tors of topographic and moisture gradients (Kremen 
1992); and satellite images can be used to estimate 
oceanic pigment concentrations (Sullivan et al. 1993). 
Substantial effort is being devoted to the identification 
and development of indicators of environmental quality 
for use in monitoring programs, or as response vari- 
ables in ecological investigations (e.g., see National 
Research Council 1986, Noss 1990, Messer et al. 
1991). 

Often the ecological response of interest can be nat- 
urally dichotomized. For example, different levels of 
eutrophication in a lake might represent either accept- 
able or unacceptable water quality, or concentrations 
of phytoplankton in the ocean might be classified as 
blooms if they exceed a certain threshold. For such 
responses, we can compare the distribution of the in- 
dicator among units having a positive response to the 
distribution among units having a negative response, 
in order to get an idea of the ability of the indicator to 
discriminate between the two kinds of units. This ap- 

proach could be used, for example, to evaluate the as- 
sociation between remote-sensing data and ground- 
based classifications of semiarid regions as either shrub 
dieback areas or non-dieback areas (Price et al. 1992), 
or to assess the usefulness of body size and coloration 
in distinguishing the sexes of individual birds, known 
from behavioral observations (Ainley et al. 1985). 

I here describe methods from signal detection theory 
(e.g., see Green and Swets 1966, Swets 1988) that are 
useful for assessing the accuracy of an indicator in 
reflecting some underlying, dichotomous response. 
These methods have been widely used in medical ap- 
plications-for example, in evaluating tests for con- 
ditions that are difficult to diagnose definitively-and 
many reviews reflect that emphasis (e.g., see Hanley 
1989, Begg 1991). I show how these methods can be 
adapted for ecological applications, and suggest that 
this framework provides a rigorous standard that should 
help in the identification of useful surrogates for hard- 
to-measure ecological responses. 

SENSITIVITY, SPECIFICITY, AND ROC CURVES 

Theory 

Let Y be a random variable taking on the values 0 
and 1 for a negative and positive response, respectively, 
and X be a continuous random variable for the indicator, 
or marker, of interest. For example, Y = 1 might denote 
unacceptable water quality in a lake, and X might be 
the lake's Secchi transparency. Suppose we plan even- 
tually to use the marker, X, in the following way: if X 
takes on a value greater than some cutoff, c, then we 
will guess that Y = 1 for that unit, and, if X ' c, we 
will guess that Y 0. (If X and Y are negatively as- 
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sociated, as in the lake example, then the new marker, 
-X, can be used as described above). 

Assume that the distribution of X depends on the 
value of Y. In particular, define 

F(c)-P(X c Y = 0); and 

G(c)--P(X 'c| Y = 1). (1) 

Fig. 1 shows a hypothetical example of forms of the 
densities of F and G. For an indicator of pollution, for 
example, F and G might be the distributions of the 
marker variable in unstressed and stressed environ- 
ments, respectively (Patil 1991). 

Note that there are two situations in which the marker 
value correctly reflects the underlying value of Y: (1) 
when X ' c for an item having Y = 0, and (2) when 
X > c for an item having Y = 1. The accuracy of the 
marker can be summarized in terms of the frequencies 
of these two situations: 

Sensitivity 

H(c) 

= P(positive marker true response is positive) 

= P(X > c| Y = 1) = 1 - G(c); (2) 

Specificity 

=-P(negative marker true response is negative) 

=P(X<cIY=O)=F(c). (3) 

As the cutoff, c, increases (dashed vertical line in 
Fig. 1 moves to the right), sensitivity decreases and 
specificity increases. A plot of H(c) vs. F(c)-or, more 
traditionally, H(c) vs. 1 - F(c)-joining points cor- 
responding to all possible values of c is called a "re- 
ceiver operating characteristic" (ROC) curve. The 
ROC curve corresponding to the hypothetical marker 
depicted in Fig. 1 is shown in Fig. 2. The stronger the 
association between the marker and the response, the 
more bowed to the upper right the ROC curve is. The 
ROC curve expected for a marker having no association 
with the response would be a diagonal line connecting 
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FIG. 1. Hypothetical distributions of indicator values, X, 
when Y = 0 (left) and when Y = 1 (right). 
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FIG. 2. Receiver operating characteristic (ROC) curve for 

the hypothetical indicator (marker) shown in Fig. 1. The point 
on the curve indicates the specificity (0.84) and sensitivity 
(0.98) corresponding to a marker cutoff of 5 (cf. Fig. 1). The 
dashed line represents the curve expected for a marker having 
no association with the response. 

the points (0,1) and (1,0)-that is, H(c) + F(c) = 1 
for all c. 

Sometimes the response Y is a dichotomization of 
an inherently continuous random variable. For exam- 
ple, we might define a stressed lake as one having a 
total chlorophyll concentration exceeding some thresh- 
old value. In this case, sensitivity and specificity can 
be thought of as double integrals of the conditional 
density of the indicator, given the value of the contin- 
uous response (see the Appendix). Only when we are 
interested in the distribution of the indicator over a 
range of values of the continuous response does it make 
sense to collapse that response into the binary version 
used by the ROC approach. This is often the case in 
environmental monitoring and management, when con- 
cern or intervention is triggered only when the eco- 
logical indicator exceeds some usual, or "normal," val- 
ue. 

Estimation 

Suppose we have marker measurements on a set of 
N units, and the true response for each unit is known 
from measurement of a "gold standard" (i.e., the most 
accurate available measurement of the response). Typ- 
ically in such studies we try to collect equal-sized ran- 
dom samples of positive and negative units. Then, for 
any marker cutoff c, each of the N units can be clas- 
sified into one of four categories, based on its marker 
value and true response (Fig. 3). If TP, FP, TN, and FN 
denote the numbers of true positives, false positives, 
true negatives, and false negatives, respectively, then 
we can estimate sensitivity and specificity as 
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FIG. 3. Table for classifying subjects according to their 
values of X and Y, for a given marker cutoff, c. TP = true 
positive; TN = true negative; FP = false positive; and FN 
= false negative. 

H(c) = TP(c) H(C) =TP(c) + FN(c)' (4) 

= TN(c)(5 
F(c) TN(c) + FP(c) (5) 

The variances of H(c) and F(c) can be estimated from 
the theory of binomial random variables (e.g., see Metz 
1978): 

H(c)[Il - H1(c)] Var H(C) = TP(c) + FN(c) (6) 

A A 

F(c)[1 - F(c)] 
Var F(c) = 

TN(c) + FP(c) 
(7) 

Because they are based on separate samples of known 
positive and negative units, H(c) and F(c) are statis- 
tically independent. 

The above estimation methods give the ROC ap- 
proach a nonparametric flavor, in the sense that the 
parameters of the underlying distributions of the mark- 
er need not be estimated in order to obtain estimates 
of sensitivity and specificity. Sensitivity, specificity, 
and their variances can also be estimated under the 
assumption that the underlying marker distributions, 
conditional on the response, are Gaussian (e.g., see 
Greenhouse and Mantel 1950, McNeil and Hanley 
1984). 

A suitable nonparametric test of the overall associ- 
ation between the marker and response is a Wilcoxon 
rank-sum test comparing marker values between units 
with positive and negative responses. A useful sum- 
mary of the overall accuracy of the marker is the area 
under the ROC curve, which is expected to be -0.5 
for a non-informative marker and 1 for a perfect marker 
(Bamber 1975, Swets 1988). Statistical methodology 
has been developed to compare these areas for two 
markers measured under both paired and unpaired de- 
signs (Wieand et al. 1989). 

Predictive value 

Sensitivity and specificity express the probability of 
observing a particular range of marker or indicator val- 
ues, X, given a particular value of the underlying re- 
sponse, Y. In future applications of the indicator, how- 
ever, one will likely want to predict the value of Y, 
based on an observed value of the indicator. Bayes' 
theorem can be used to express the positive predictive 
value (PPV) and negative predictive value (NPV) of a 
marker in terms of its sensitivity and specificity and 
the overall prevalence of the condition it is supposed 
to indicate: 

PPV = P(Y = 1 Ix > c) 

= [P(X>cIY =1)P(Y= 1)] 

. [P(X> cj Y = 1)P(Y = 1) 

+ P(X> cI Y = 0)P(Y = 0)] 

- ~~~H(c).py (8) 
H(c)-py + [1 - F(c)].(1 -py) 

NPV = P(Y = olX ' c) 

F(c) (1 -Py) , (9) 
F(c)-(1 - py) + [1 - H(c)]. (py 

where py P(Y = 1) is the underlying prevalence of 
the response of interest (e.g., the frequency of lakes 
with unacceptable water quality in the study region). 
If the sampling scheme is designed to produce equal 
numbers of positive and negative units, an estimate of 
py cannot be obtained directly from those numbers, but 
could be based on previous studies or surveys of the 
target population. In some applications, the prevalence 
can be estimated from the sensitivity, specificity, and 
proportion of units having positive markers in the ob- 
served data (Rogan and Gladen 1978). 

The dependence of predictive value on the preva- 
lence of the response in the population being studied 
has important implications for the practical value of an 
indicator or marker (Gastwirth 1987). For example, a 
marker that has 99% sensitivity and 99% specificity, 
but that is used in a population having only a 1% prev- 
alence of the response of interest, will have a positive 
predictive value of just 50%-that is, on average, only 
half of the subjects testing positive for the marker will 
in fact be true positives. 

EXAMPLE 1: REMOTE SENSING OF OCEANIC 
PIGMENTS 

Sullivan et al. (1993) compared concentrations of 
plant pigments (chlorophyll a and phaeopigments) pre- 
dicted from satellite imagery with concentrations from 
in situ measurements taken around the Southern Ocean. 
Figs. 4-6 use data read off Fig. 2A of Sullivan et al. 
(1993), based on the "global processing" algorithm 
for converting water-leaving radiances into pigment 
concentrations. These data are circumglobal means of 
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thousands of satellite and in situ observations, calcu- 
lated for each degree of latitude between 300 and 650 
S. The operating characteristics estimated from this 
analysis, therefore, are not expected to be the same as 
those for satellite images used to predict pigment con- 
centrations on much smaller scales-for example, in 
individual parcels of water at specific locations. For a 
review of accuracy assessment in remote sensing, see 
Congalton (1991). 

There is a strong association between the pigment 
concentrations measured in situ and those predicted 
from the satellite imagery (Fig. 4). If we suppose that 
in practice the satellite data will be used to identify 
areas of "high" pigment concentration-say, greater 
than 0.5 mg/m3-then we can calculate the sensitivity 
and specificity of the satellite data in indicating high 
vs. low pigment concentration. Fig. 5 shows the dis- 
tributions of satellite scores for units (i.e., aggregates 
of data for individual degrees of latitude) having low 
and high pigment concentrations, and illustrates how 
sensitivity and specificity are calculated for a particular 
satellite score cutoff (0.284 in this illustration). 

In this example, there are 12 units for which the in 
situ pigment concentration exceeds 0.5 mg/m3. Of 
those, 10 units have a satellite score exceeding a cutoff 
of 0.284, so the estimated sensitivity at that cutoff is 
10/12 = 0.83. That is, we estimate that 83% of high- 
pigment units will have satellite scores exceeding 
0.284. Ninety-five percent confidence limits for the true 
sensitivity, based on the exact binomial distribution 
(e.g., see Rosner 1990:172), are (0.52, 0.98). 

Of the 22 units for which the in situ pigment con- 
centration is ?0.5 mg/m3, 16 units have a satellite score 
less than or equal to the cutoff of 0.284. The estimated 
specificity is therefore 16/22 = 0.73, with 95% con- 
fidence limits of (0.50, 0.89). That is, we estimate that 
73% of low-pigment units will have satellite scores not 
exceeding 0.284. 

When these calculations are done for cutoffs cor- 
responding to all of the observed values of the satellite 
score, the ROC curve shown in Fig. 6 results. The curve 
is positively bowed away from the diagonal, suggesting 
an informative marker. A Wilcoxon rank-sum test com- 
paring the values of the satellite score between the low 
and high pigment groups confirms that there is a sta- 
tistically significant association between satellite score 
and pigment group (P = 0.0001). 

If we use as an estimate of the prevalence of high 
pigment concentration (p) the observed prevalence in 
the data at hand (12/34 = 0.35) and a marker cutoff 
of 0.284, then we estimate a positive predictive value 
of 0.62 (Eq. 8) and a negative predictive value of 0.89 
(Eq. 9) for the satellite scores. Using p, estimated from 
the observed data in this way is equivalent to calcu- 
lating the positive predictive value as the proportion 
of positive-testing units having Y = 1, and negative 
predictive value as the proportion of negative-testing 
units having Y = 0. This is a sensible approach only 
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FIG. 4. Scatterplot of in situ pigment concentration vs. 
concentration predicted from the "global processing" algo- 
rithm applied to satellite data, from Fig. 2A of Sullivan et al. 
(1993). The dashed line is the linear fit presented by Sullivan 
et al. (1993), from a regression of satellite score against in 
situ concentration. 

if the sampling scheme used to generate the data gives 
unbiased estimates of the frequencies of units with pos- 
itive and negative responses, which may be roughly 
true in this example, given the circumglobal sampling 
and averaging used to generate the data. 

EXAMPLE 2: DETECTION OF AcIDIFICATION 

EPISODES IN LAKES AND STREAMS 

These data, compiled by the U.S. Environmental Pro- 
tection Agency, pertain to episodic acidification of 
lakes and streams in the northeastern United States. 
The indicator or marker of interest is "initial" acid- 
neutralizing capacity (ANC) in pwmolc/L-that is, the 
baseline or low-flow level of ANC in the lake or stream 
water. This relatively easily measured marker is hoped 
to be predictive of the depression of ANC (increase in 
acidity) that occurs during brief, hard-to-capture runoff 
events. The latter response is summarized as "mini- 
mum" ANC. The scientists are not interested in pre- 
dicting minimum ANC exactly, but rather would like 
to be able to guess whether minimum ANC will drop 
below zero, signifying an acidic episode in the lake or 
stream. The data considered here consist of measure- 
ments of initial and minimum ANC in 87 lakes and 
streams in the mid-Appalachian region of Pennsylvania 
and the Adirondack Mountains of New York State, 
from Wigington et al. (1 990, 1993). 

Fig. 7 shows a scatterplot of minimum ANC vs. ini- 
tial ANC, and Fig. 8 shows an ROC curve for initial 
ANC as an indicator of acidification episodes (mini- 
mum ANC < 0). For example, if we impose a cutoff 
of 40 w emolc/L-i.e., if we "guess" that a lake or stream 
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FIG. 5. Distributions of satellite scores for units with in situ pigment concentratson --O 5 mg/rn3 (left graphs) and for 
units with in situ concentration >0.5 mg/m3 (right graphs). Bottom left: proportion of low-pigment units with satellite score 
not exceeding the cutoff (i.e., the estimated specificity) vs. satellite score cutoff. Bottom right: proportion of high-pigment 
units with satellite score exceeding the cutoff (i.e., the estimated sensitivity) vs. satellite score cutoff. Dashed lines indicate 
the specificity and sensitivity corresponding to a cutoff of 0.284. 

with initial ANC <40 pmol,/L will have a negative 
value of minimum ANC-we find that 41 of 52 lakes 
or streams with negative minimum ANC are correctly 
categorized. Thus, the estimated sensitivity is 41/52 = 
0.79 (exact 95% confidence interval, 0.65 to 0.89). 
Twenty-nine of 35 lakes or streams not experiencing 
acidification episodes have initial ANC -40 jimol,/L, 
so the estimated specificity is 29/35 = 0.83 (exact 95% 
confidence interval, 0.66 to 0.93). 

Fig. 9 shows the predictive value of initial ANC as 
a function of the prevalence of lakes and streams with 
acidification episodes (minimum ANC < 0), for a cut- 
off of 40 limolc/L, calculated according to Eqs. 8 and 
9. Positive predictive value (the probability that the 
minimum ANC is negative, given that initial ANC is 
<40 pmolc/L) increases with the prevalence of lakes 
and streams with acidification episodes, and negative 
predictive value (the probability that the minimum 
ANC exceeds zero, given that initial ANC is >40 
Vtmolc/L) decreases with increasing prevalence. For ex- 
ample, for a prevalence of 0.2, the positive predictive 
value is 0.53, and the negative predictive value is 0.94. 

DISCUSSION 

The concepts of sensitivity, specificity, and predic- 
tive value provide a convenient framework for evalu- 
ating the usefulness of an easily measured indicator 
(marker) in reflecting some harder-to-assess underlying 
response. As pointed out by Patil (1991), a good in- 
dicator will be sensitive to the underlying condition of 
interest, and it will be insensitive to other extraneous 
conditions, i.e., it will be specific to the condition of 
interest. 

An advantage of the ROC (receiver operating char- 
acteristic) approach is that it is nonparametric, i.e., it 
is free of assumptions about the mathematical rela- 
tionship between response and indicator. For instance, 
if we were to use a linear regression approach in the 
two examples developed above, we would need to de- 
cide on an appropriate parametric model for the ap- 
parently curvilinear relationships between the re- 
sponses and indicators (Figs. 4 and 7), perhaps trans- 
forming the response to reduce heterogeneity of vari- 
ance (Fig. 7). In any case, the details of our inference 
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FIG. 6. Estimated ROC curve for satellite score as an 
indicator of in situ pigment concentration (less than or greater 
than 0.5 mg/m3). Error bars are exact 95% confidence inter- 
vals for the sensitivity and specificity corresponding to a cut- 
off of 0.284. 

would depend on the model chosen. A single ROC 
curve, on the other hand, is obtained for any monotonic 
transformation of the indicator variable. 

The ROC approach is best suited for responses that 
are naturally dichotomous, e.g., the occurrence or non- 
occurrence of acidification episodes in Example 2, or 
the classification of a region as a shrub dieback area 
or non-dieback area (Price et al. 1992). Collapsing an 
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FIG. 7. Minimum vs. initial ANC (acid-neutralizing ca- 

pacity, in pmol,/L) for 87 lakes and streams in the north- 
eastern United States. Horizontal line shows the threshold 
below which a lake or stream suffers an acidification episode. 
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FIG. 8. ROC curve for initial ANC as an indicator of lakes 
and streams with acidification episodes (minimum ANC < 
0). 

inherently continuous response into two values will 
likely sacrifice useful information. If the intent is mere- 
ly to estimate the indicator value corresponding to a 
particular response value (or vice versa), regression 
modeling is the suitable approach. Even for responses 
that are usually measured on a continuous scale, how- 
ever, there is often a threshold value above which some 
kind of action or intervention will be undertaken (Patil 
199 1), in which case the ROC approach provides a 
useful summary of the value of a potential indicator. 
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FIG. 9. Positive and negative predictive value of initial 
ANC, as a function of prevalence of lakes and streams with 
acidification episodes, for a cutoff of 40 potmol iL 
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The predictive value of an indicator depends on the 
prevalence of the underlying response in the population 
being studied, as well as on the indicator's sensitivity 
and specificity. In environmental monitoring, for ex- 
ample, where observed values of the indicator lead to 
predictions or guesses about the existence of some con- 
dition (e.g., an unacceptable level of pollution), the 
success rate of the predictions will depend critically on 
the prevalence of the condition in the environments 
being monitored. If the condition is rare, then the pos- 
itive predictive value of the indicator will generally be 
low, even for indicators that are quite sensitive and 
specific. 

The methodology described here provides informa- 
tion on which decisions about indicators can be based, 
but it does not unambiguously identify the best indi- 
cators or the best ways to use the available indicators. 
Those judgements must incorporate the relative costs 
of the different kinds of mistakes that can be made in 
applications of the indicator: failure to detect a con- 
dition where one exists, or apparent detection of a non- 
existent condition (Metz 1978). For example, if the 
event is such that the cost of overlooking it is extraor- 
dinary (e.g., an acute pollution episode), we would 
probably opt for an indicator, or a cutoff for a particular 
indicator, that yields high sensitivity at the cost of some 
specificity. The marriage of cost-benefit considerations 
with the statistical statements available from the ROC 
analysis a problem in the domain of decision analysis 
(e.g., see Raiffa 1970)-should lead to improved pro- 
tocols for the selection and use of ecological indicators. 

An important caveat in the use of any indicator is 
that an association between the indicator and the re- 
sponse is not necessarily causal, and it does not imply 
that interventions leading to changes in the indicator 
will necessarily have any effect on the response. For 
example, there is increasing evidence that the use of 
surrogate markers for human disease (e.g., the decline 
in the number of CD4 cells in AIDS progression) can 
lead to misleading inferences in clinical trials of ther- 
apeutic agents, due to imperfect associations between 
the markers and key clinical endpoints such as death 
(Nowak 1994). Indicators must be screened rigorously 
and quantitatively before they are put forth as mean- 
ingful surrogates for the responses we are really inter- 
ested in. 
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APPENDIX 

Assume the binary response of interest, Y*, is a dichoto- 
mization of some underlying continuous response, Y, such 
that 

Y* = I if Y>cy 
0O if Y '<Cy, 

where cy is some response cutoff (e.g., a threshold between 
acceptable and unacceptable values of Y). If c, is the indicator 
or marker cutoff above which we will "guess" that Y* = 1, 
then we can write the sensitivity, H, and specificity, F, as 
functions of both cutoffs: 

H(cx, cy) = P(X > cx Y* = 1) = P(X > CX Y > cy) 

= f f fxi y(U I v) du dv; 

F(cx, c),) = P(X' C Y* = 0) = P(X < C Y 'Y cy) 

= JfJffx y(UIV) du dv, 

wherefmy(.) is the conditional density of the marker variable, 
given a value of the response. 

This formulation allows us to explore the effect of the 
response cutoff, cy, on the form of the receiver operating 
characteristic (ROC) curve [H(c,, cy) vs. F(cx, cy) for varying 
c,]. For example, Fig. Al shows the ROC surface for sat- 
ellite score as an indicator of oceanic chlorophyll concen- 
tration (Example 1), when "high" chlorophyll is variously 
defined as in situ concentration exceeding values from 0.40 
to 0.60 mg/m3. This sort of graph illustrates the conse- 
quences of the choice of response cutoff on the ROC curve, 
but, it must be emphasized, it is not a tool for selecting that 
cutoff. The judgement of what constitutes a "high" re- 
sponse must be based on the subject matter of the problem 
at hand, not on the appearance of the ROC curve calculated 
for that cutoff. 

FIG. A 1. Estimated ROC (receiver op- 
erating characteristic) surface for satellite 
score as an indicator of in situ pigment con- 
centration, for various pigment cutoffs (i.e., 
values defining elevated concentrations). 
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