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Introduction
Empirical stock recruitment (S-R) relationships exhibit clear

evidence of density dependence. Since the early works of Ricker
(1954), Schaefer (1954), Beverton and Holt (1957) and oth-
ers, characterizing and interpreting these relationships, much
progress has been made in linking this density-dependence to
ecological mechanisms. Reviewing our current understanding,
Houde (2008, 2009) stresses the distinction between a variety
of oceanographic, climatic, and ecological mechanisms con-
trolling recruitment and manifestly density-dependent mecha-
nisms contributing to population regulation. While all control-
ling mechanisms combine to generate the observed large vari-
ability in recruitment even at constant spawning-stock biomass
(SSB), only regulating mechanisms can explain the observed
non-linear dependence of recruitment R on SSB. Among pos-
sible regulating mechanisms that have been considered are com-
petition for refuge or territory, diseases or parasitism at var-
ious life stages, larval competition for oxygen, and density-
dependent trophic (feeding) interactions, i.e., food intake and
predation mortality, with cannibalism as a special case (Houde
2009).

The goal of the present study is to test the plausibility of
the hypothesis that S-R relationships are primarily shaped by
the density dependencies of trophic interactions. In addition to
its relevance for the interpretation of S-R data, this hypoth-
esis also has a bearing on questions such as to what extent
trophic interactions are relevant for management models or
what the mechanisms are that determine the carrying capac-
ity of individual stocks and entire communities (Batchelder
and Kim 2008). Management aiming at maximum sustainable
yield (MSY), in turn, hinges on a good understanding of den-
sity dependencies and carrying capacity. This is clear already
from the textbook analysis of MSY for the logistic model (Con-
roy and Carroll 2009), where the optimal population biomass
comes out as exactly half the carrying capacity.

Our approach to this set of interrelated problems is to con-
struct a species-rich fish-community model in which trophic
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interactions are the only source of density dependence, and to
study in detail the resulting S-R relationships, relating them to
observations. The model we study is a variant of the Fish Com-
munity Size Resolved Model (FCSRM) (Hartvig et al. 2011;
Andersen and Pedersen 2010; Houle et al. 2012), developed
based on theory by Andersen and Beyer (2006). In this model,
individual fish interact exclusively through predator-prey rela-
tionships. Just as in the original model formulation by Hartvig
et al. (2011), individual reproductive output is a linear function
of food intake (with negative intercept), that is, S-R relation-
ships are not a priori built into the model. Density dependen-
cies in the model arise only from the dependence of growth and
fecundity on food availability and the dependence of mortality
on the abundance of predators. Individuals are characterized by
their momentary body mass and their species identity, with the
latter determining prey, predators and asymptotic body mass.
Intentionally, the model describes fish physiology and ecol-
ogy in a highly simplified form, so simplifying the interpre-
tation of model outputs. Yet, the model is realistic enough to
choose all model parameters on empirical grounds, and the re-
sulting model communities resemble communities of interact-
ing fishes in many aspects (Andersen et al. 2008; Hartvig et al.
2011; Rossberg 2012).

The simulated S-R relationships for each model species were
obtained by adding a constant µa to the mortality of that species
(leaving that of other species unchanged) and recording SSB
and recruitment R as µa gradually increases. The resulting
pressure-response relationships are similar to those produced
by fishing—where µa would correspond to fishing mortality—
but avoid complications such as those resulting from mixed
(multi-species) fisheries or gear selectivity by size. The simu-
lated S-R data were then evaluated with respect to visual pat-
terns, the best-fitting functional relationships, heteroscedacity
of variations around this curve, and their steepness (Mace and
Doonan 1988), revealing surprisingly good agreement with ob-
servations.

Methods
Simulation model

Most aspects of the FCSRM have been described and mo-
tivated in great detail by previous authors (Andersen and Ped-
ersen 2010; Hartvig et al. 2011; Houle et al. 2012). Here, the
model structure is outlined just as much as required to interpret
simulation results. Only two innovations that we introduce for
the present study are described in more detail.

In view of the tremendous numbers of offspring produced
by most fishes, individual-based models that track the full life
cycle of each individual can be computationally very expen-
sive. Instead, the FCSRM keeps track of the body-size distri-
bution of individuals in each population. This distribution is
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represented by a time-dependent histogram with bins equally
spaced along the logarithmic body-mass axis. Bin width is ap-
proximately log 1.1, corresponding to a factor of 1.1 in body
mass.

The modelled fish feed either on other fish or on a commu-
nity of smaller non-fish species (e.g. zooplankton), summarily
described by a resource size spectrum. The size-resolved pop-
ulation dynamics of the resource size spectrum is described by
a simple semi-chemostatic growth model without any coupling
between size classes.

Food intake of individual fish is determined by a bell-shaped
predator-prey size ratio (PPMR) window (here in a modified
form following Houle et al. (2012)), a trophic link strength θij ,
depending on the species identities of prey i and predator j,
and a Type II functional response to prey availability. Assim-
ilated food is first discounted by density-independent respira-
tion, and the remainder is invested into growth, gj(m), and re-
production, gr,j(m), both of which depend on individual body
massm and species identity j. The proportion gr,j(m)/[gj(m)+
gr,j(m)] of assimilated intake invested into reproduction is con-
trolled by a maturation selection function, which is described
as a product of a maturity ogive and a functional form chosen
such that adults grow following approximate von-Bertalanffy
trajectories (Hartvig et al. 2011). Different species have differ-
ent asymptotic body masses Mj . Maturation body mass, de-
fined as the inflection point of the maturity ogive

Ωi(m) =
1

1 + (m/m∗j)−10
[1]

on the logm axis, or the body mass at 50% maturity, is set to
be m∗j = Mi/4 (Beverton 1992). The size of the offspring
produced, on the other hand, is chosen following Hartvig et al.
(2011) to be the same value m0 = 0.5 mg for all species (An-
dersen et al. 2008).

Natural mortality in the FCSRM has three components: (1)
food intake by all individuals is matched by corresponding
mortality of their prey; (2) if food is insufficient to compen-
sate for respiration losses, starvation mortality sets in; and (3)
a small additional background mortality accounts for death of
predominantly large adults for reasons not explicitly described
by the model.

Standard allometric scaling laws are employed for the de-
pendencies of maximal food-intake rate, respiration rate, and
background mortality rate on the body mass of individuals.
Similarly, an allometric law controls the scaling of search/attack
rates with body mass, as a third factor together with PPMR
window and link-strength matrix.

Simulations are initialized with Sini species with asymptotic
body masses sampled at random from an even distribution be-
tween 0.1 g and 100 kg on a logarithmic axis. Initial population
sizes and structures are chosen according to generic theoretical
considerations (Andersen et al. 2008), and simulations run un-
til a quasi-steady state is reached. Populations reaching very
low biomasses are removed as extirpated. The quasi-steady
state finally reached tends to exhibit complex oscillations, ei-
ther regular or chaotic (Hartvig et al. 2011).

The FCSRM in the form originally proposed by Hartvig
et al. (2011) admits coexistence of only a limited number of
species (at most 9, on average 5). This is likely a result of
strong interspecific competition. To overcome this limitation,

the model was modified in two crucial ways. First, rather than
sampling the entries of the link-strength matrix θij from an
even distribution between 0 and 1 (Hartvig et al. 2011), we
sampled them as

θij = exp
(
σξij − σ2/2

)
,[2]

with σ = 2
√

2 lnSini and ξij denoting Sini × Sini independent
standard normal variables. This log-normal distribution of link
strengths is suggested by the observed statistics of fish diet par-
titioning (Rossberg et al. 2011, appendices). The term −σ2/2
in Eq. [2] guarantees that the community mean of θij is close
to 1. With link strengths chosen as in Eq. [2], diets are more
narrow and competition is reduced as compared to the model
variant by Hartvig et al. (2011).

The second modification we introduced carries this idea over
to feeding on the resource size spectrum. Assuming that dif-
ferent species are specialized to feed on different parts of the
resource spectrum, each species is assigned its “own” resource
spectrum, which dynamically responds to predation pressure
from this species alone.

With these two modifications, we find that arbitrary large
numbers of species can be brought to coexist in the model, lim-
ited only by the available computational resource. Typically,
half the initial number Sini of species survive to co-exist in
the model’s quasi-steady state. Here we set Sini = 40, giving
communities with about 20 co-existing species. To improve the
statistical power of our analyses, data from three independent
model communities were combined, yielding a total of 77 sim-
ulated S-R data sets. In view of the complexity of dynamics in
these communities, it is legitimate to consider the 77 data sets,
for the simple analyses performed here, as statistically inde-
pendent.

Quantifying SSB and recruitment
With Ni(m) denoting the density of individuals along the

body mass (m) axis, we computed the SSB of each population
as

SSBi =

∫ Mi

m0

mNi(m)Ωi(m)dm,[3]

where Ωi(m) is the maturity ogive, defined in Eq. [1]. All in-
tegrals are evaluated numerically as sums over logm bins after
a corresponding change of the integration variable.

To obtain a measure of recruitment consistent with this def-
inition of SSB, we computed

Ri =

∫ Mi

m0

gi(m)mNi(m)Ω′i(m)dm,[4]

where gi(m) is the somatic growth rate (Mass/Time) of species
i at sizem, and Ω′i(m) = dΩi(m)/dm is a hump-shaped func-
tion with mode near maturation body mass m∗i. The value of
Ri is time-dependent through the time dependencies of both
growth gi(m) and population structure Ni(m). The definition
ofRi in Eq. [4] is motivated by the observation that the expres-
sion gi(m)mNi(m) represents the mass per unit time of indi-
viduals reaching size m. Through the integration over Ω′i(m),
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this value is averaged over the transition to maturity. The rea-
son for averaging over the quantity gi(m)mNi(m) rather than
gi(m)Ni(m), the number per unit time reaching sizem, is that
its dependence on m is weaker (Rossberg 2012). In the ideal-
ization that maturation at m∗i is a sharp transition and Ωi(m)
a step function, Ri/m∗i equals the rate gi(m∗i)Ni(m∗i) at
which individuals reach maturity, so that Ri is proportional to
recruitment by the conventional definition. Equation [4] simply
takes into account that, in fact, maturation is a gradual process.

Simulated S-R relationships
As explained above, the simulated S-R relationship of each

was obtained by increasing its added mortality µa over time t,
slow enough that the community always remained in a quasi
steady state, taking the quasi steady state of the community
without additional mortality as the starting point. Specifically,
µa was chosen as µb×0.02 yr−1 t, where µb = 0.84 (Mj/4)−1/4 yr−1

is the natural background mortality of species j (Hartvig et al.
2011). Eventually, a value µa = µlim was reached where the fo-
cal species became extirpated and simulations stopped. In our
model the age at maturation depends on the somatic growth
rate and therefore varies through time. Because of this compli-
cation, the delay between spawning and recruitment was not
taken into account when constructing S-R graphs.

Fitting Deriso-Schnute models
To provide a broad quantitative characterization, simulated

S-R data were fitted to the generalized Deriso-Schnute model
(Deriso 1980; Schnute 1985) given by

R = α SSB (1− β γ SSB)1/γ .[5]

For negative values of 1 − β γ SSB we define the model to
predict R = 0. The model encompasses linear relationships
(γ � −1) and the models by Beverton-Holt (γ = −1), Ricker
(γ → 0), and Schaefer (γ = 1) as special cases.

To make model fitting independent of assumptions regarding
the distribution of residuals, 50% quantile regression (Koenker
and Park 1994) in the implementation in R by Koenker (2012)
was used. The algorithm determines the model parameters α,
β, and γ such that, over any range in SSB, approximately 50%
of data points lies above and below the fitted curve. To avoid
numerical artifacts, only data points with SSB larger than 0.1%
of the largest observed value were used for the model fits.

Heteroscedacity
The dependence of the variance of residuals of logR on SSB

was investigated by Iles and Beverton (2000) and Minto et al.
(2008) to probe for regulating mechanisms. For an easy com-
parison, we determined the heteroscedacity parameters η1 of
Minto et al. (2008) for our simulated data sets, following the
method of Minto et al. (2008) in every detail; in particular,
maximum likelihood fits assuming log-normally distributed R
were used, rather than quantile regressions. The value of η1 in-
dicates whether variance in logR increases or decreases with
SSB, and how much. Data points with low SSB were excluded
as above. Minto et al. (2008) considered S-R curves corre-
sponding to Eq. [5] with γ fixed at γ = −1, γ → 0, and
γ = +1, but obtained very similar results. Therefore, only the
case γ → 0 was investigated here.

Steepness
Steepness h is frequently used as a dimensionless index to

characterize the shape of S-R curves. It is defined as the pro-
portion of recruitment retained when SSB is reduced from the
virgin biomass SSB0 to 20% of this value. To obtain values
of steepness comparable with published empirical results, we
fitted the Beverton-Holt model

R =
α SSB

1 + β SSB
[6]

to the simulated S-R data, assuming log-normal errors, and
evaluated steepness as h = 0.2(1 + 0.2βSSB0)/(1 + βSSB0).

Results
Simulated S-R scatter plots

Simulations generated a wide variety of S-R relationships,
of which the simple quantitative characterization discussed be-
low do not capture all important features. Being unable to clas-
sify this variety of patterns automatically, we visually distin-
guished 10 different types according to characteristics explained
in the caption of Fig. 1. The types were labeled from (a) to (j) in
order of increasing visual evidence for compensatory recruit-
ment. Figure 2 shows the prevalence of these types depending
on asymptotic body mass M .

A large proportion (44%) of model S-R relationships had vi-
sual similarity with the Ricker model (types f, g, h, i.e. “Ricker”,
“blurred Ricker” or “Ricker-plus”), with a tendency for vari-
ability of recruitment at fixed SSB to increasing with M (f →
g → h, Fig. 1). The types found for small (M < 1 g) model
species, c, e, f, and g, exhibit only weak variability. This is
likely an artifact of the simplified description of the spectrum
of non-fish resources and the absence of competition for these
in the model. The result is noteworthy nevertheless, as it in-
dicates that the model’s inherent oscillations of these species’
predator populations only weakly affect recruitment.

Best-fitting Deriso-Schnute models
Of particular interest is the value of the parameter γ for fits

of the Deriso-Schnute model to S-R curves, because this pa-
rameter determines the overall shape of the curves. Parameters
α and β only scale them horizontally and vertically. As shown
in Figure 3, we find a strong preferences for best-fitting val-
ues of γ near zero, confirming the visual impression of a ten-
dency in our model for Ricker-type S-R relationships. In addi-
tion, however, the estimated distribution of γ has a pronounced
shoulder around γ = −1, corresponding to the occasional oc-
currence of S-R relations better described by the Beverton-Holt
model.

Heteroscedacity
While both Iles and Beverton (2000) and Minto et al. (2008)

find indications for an increased variation of logarithmic re-
cruitment with decreasing stock size (corresponding to η1 <
0), this phenomenon is not reproduced by the present model.
The distribution for the heteroscedastic coefficient η1 found
here is shown in Fig. 4. Next to a high preference for values
of η1 near 0, there is a strong contribution from large positive
values. The latter correspond to an pronounced increased in
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Fig. 1. Types of SR-relationships found in model simulations.
Points represent simulation data, solid lines best-fitting
curves, vertical dashed lines median virgin SSB. Both SSB
and recruitment are normalized to the maximum found in
simulations. Based on the visual impression, we labeled the
types as follows, in approximate order of increasing evidence
for non-linear compensation: (a) “cloud” when no clear structure
was recognizable, (b) “depensatory” when recruitment increased
faster than linear with SSB, (c) “linear” when recruitment
rises nearly linearly with SSB, (d) “opening” when recruitment
variability is strong and increases with SSB, (e) “maximizing”
when recruitment has a local maximum near virgin SSB, (f)
“Ricker” and (g) “blurred Ricker” for curves visually resembling
a Ricker curve without and with additional variability, respectively
(h) “Ricker-plus” for a variant of “Ricker” where variability
abruptly becomes large for large SSB, (i) “curling” when SSB
first increases, then decreases with added mortality, (j) “complex”
when there is evidence for several regime shifts as mortality
increases.
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general Deriso-Schnute S-R model, Eq. [5], estimated from
simulation data by an adaptive kernel method following Portnoy
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Fig. 5. Steepness in simulated SR data. (a) Overall distribution
of steepness values, with 95% confidence intervals assuming
binomial distributions (Wilson 1927). (b) dots: dependence of
steepness on carrying capacity (median steady-state SSB); dashed
line: ordinary least square regression (r = 0.23, p = 0.046).

the variability of logR for increasing SSB, as found, among
others, for the “opening” S-R type (Fig. 1d).

Steepness
A histogram of the values of steepness h obtained from sim-

ulated S-R data is shown in Fig. 5a (histograms cope better
with the constraint of possible h to the interval [0.2, 1] than
kernel density estimation). Noteworthy is the significantly en-
hanced probability for values of h in the range [0.7, 0.8]. As
shown in Fig. 5b, S-R curves for stocks with smaller SSB,
corresponding to smaller population densities, tend to exhibit
lower steepness.

Steepness was independent of asymptotic body mass M in
the model. The slope of the ordinary linear regression line of h
against log10M was 0.016±0.018 (s.e.), i.e., despite the small
error indistinguishable from zero.

Discussion and conclusion
Coexistence

A first, basic finding of this study is that large model com-
munities can indeed be built in which fully size-structured pop-
ulations of fish interact and regulate their abundances exclu-
sively through feeding interactions. The feasibility of commu-
nity models of this type was hitherto unclear. The model orig-
inally proposed by Hartvig et al. (2011) was able to support
at most nine co-existing populations. Variants of the model,
employed by Blanchard et al. (2009), Andersen and Peder-
sen (2010) and Houle et al. (2012) use a hard-coded density-
dependent fecundity or even model reproduction as a constant
stream of larvae independent of spawner abundance (imply-
ing a strong negative dependence of fecundity on SSB). By
building this additional density dependence into the FCSRM,

the relative importance of population regulation and competi-
tion through trophic interactions is reduced, which explains the
high species richness these variants can support. Other previ-
ous models of specious size-structured communities in which
feeding was the only source of density dependence (Rossberg
et al. 2008; Fung et al. 2013) did not resolve intraspecific size
or age structure, and so were unable to represent the variable
relationship between SSB and recruitment. OSMOSE (Shin
and Cury 2001, 2004) is one of a few other food-web mod-
els resolving intraspecific size structure where reproduction is
modeled as a linear function of SSB; however, even OSMOSE
contains additional sources of density dependence, e.g., a hard
limit on the carrying capacity of non-piscivorous fish.

Stock-recruitment patterns
Perhaps not unexpectedly in view of the persistence of the

unperturbed model communities, the simulated S-R data we
extract from our model do indeed exhibit clear signs of density-
dependent recruitment. Interestingly, density-independent re-
cruitment variability is evident in the simulation data as well.
This variability tends to be smaller than seen in empirical data,
and this should not be surprising. The majority of density-
independent mechanisms known to control and modulate re-
cruitment, such as climate- or oceanographic variability, are
not represented in the model. Our results support the thesis
that at least some of the observed recruitment variability at
fixed SSB is attributable to variable abundances of the prey
and predators of the focal species.

More interesting than the mere fact of density-dependent re-
cruitment is the question how the structure of the simulated S-
R data compares with structure identified in observation data.
However, because of the relative brevity and enhanced variabil-
ity of most empirical time series, it is difficult to decide which
types of the variety of simulated S-R relations obtained in sim-
ulations (Fig. 1) have direct correspondences in nature. Yet, at
least two overall patterns are in good agreement with observa-
tions. The first is the preference of the fitted Deriso-Schnute
model for Ricker- and Beverton-Holt like S-R curves, with
other conceivable shapes occurring less frequently (Fig. 3).
Ricker-like curves (Fig. 1f,g,h) are found for species of all
sizes (Fig. 2). Relations best described by Beverton-Holt-type
models tend to be associated with the “opening” type (Fig. 1d)
of S-R relations and arise predominantly for species with large
maturation body size (Fig. 2). Empirically, the differences be-
tween Beverton-Holt and Ricker model are known to be dif-
ficult to resolve (Myers et al. 1994; Zhou 2007), and uncon-
trolled measurement errors in SSB can bias analyses towards
flatter, Beverton-Holt type relationships (Walters and Ludwig
1981; Walters and Martell 2004). Whether the preference for
Ricker that we find here is paralleled by observations or a
model artifact is therefore difficult to say. Setting the distinc-
tion between these two models aside, the consistent preference
for Ricker- or Beverton-Holt models in fisheries science itself
can be taken as evidence that the other options offered by the
Deriso-Schnute model tend to yield less satisfactory descrip-
tions of data, a finding that is consistent with our simulations.

The second pattern which we find to be in agreement with
observations is the broad spread of steepness values, with a
preference for steepness around 0.8. Shertzer and Conn (2012)
demonstrated this preference in a meta-analysis covering 75
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stocks of demersal fish, in good agreement with similar analy-
ses by Myers et al. (2002). Contrary to the simulation results,
Shertzer and Conn (2012) find no stocks with steepness in the
range 0.2-0.3. The reason could be that the data set analyzed by
Shertzer and Conn (2012) was inevitably biased towards well-
studied, rather abundant stocks, while steepness values near
0.2 are predominantly found for rare species in our simula-
tions (Fig. 5b). Among the 28 most abundant socks, only one
has steepness < 0.3.

This conformity with observations found for two quanti-
tative characterizations is remarkable as no parameter in the
model was adjusted for the purpose of the present study. Most
parameter values were derived by Hartvig et al. (2011) from
empirical data, except for the shape of the predator-prey size-
ratio window, which was chosen following Houle et al. (2012)—
based on observations by Scharf et al. (2000), Pinnegar et al.
(2003), and Floeter and Temming (2005)—and the parametriza-
tion of dietary preferences, Eq. [2], which follows from a quan-
titative analysis of fish-stomach data by Rossberg et al. (2011).

A third overall pattern, the broad variety of S-R relations
found, conforms with observations on a qualitative level. There
is broad agreement among fisheries scientists that a one-size-
fits-all approach to S-R data is inappropriate, and our simu-
lations support this view. Noteworthy are the two instances
of the “depensatory” type (Fig. 1b) we find. The underlying
mechanism must be very different from those usually invoked
to explain this pattern, such as mate finding or shoal forma-
tion (Liermann and Hilborn 2001), because these mechanisms
are not represented in the model. Remarkable are also patterns
such as those seen in Figs. 1h,j, which reflect qualitative tran-
sitions in stock dynamics with increasing added mortality.

Simulation results differ from the observation data analyzed
by Iles and Beverton (2000) and Minto et al. (2008) in the pre-
dominant type of heteroscedacity. Partially, this might be ex-
plained by noting that empirical measurement errors in logR
will be larger for small values of R, and so for small values of
SSB. Neither Iles and Beverton (2000) nor Minto et al. (2008)
had considered this explanation for their findings. Burrow et al.
(2013) argue that data is insufficient to resolve heteroscedacity.
Strong positive heteroscedacity (η1 > 0) as seen in some simu-
lated S-R relations could be masked by additional recruitment
variability driven by effects not represent in the model.

Mechanisms
For both, the Beverton-Holt and the Ricker form of S-R re-

lationships, a number of different mechanisms have been pro-
posed. Some of these, such as contest or scramble competi-
tion, depend explicitly on spatial structure (Brännström and
Sumpter 2005). However, when originally introduced, both forms
were motivated by generic demographic models with mortal-
ity depending either on the size of the cohort of future recruits
itself (Beverton and Holt 1957), on SSB, or number of eggs or
hatchlings (Ricker 1954). The ecological mechanisms leading
to these density dependencies remained unspecified. They may
be purely trophic, as in the FCSRM, or involve other effects.
Ricker (1954), for example, mentions density-dependent pre-
dation, parasitism, and density-dependent growth as potential
regulating mechanisms. Ricker (1954) discusses cannibalism
as the simplest mechanism, though probably relevant only for
“a minority of populations”. In Appendix A we analyze the

regulating mechanism for a selected stock of “blurred Ricker”
type (Fig. 1g), and find indeed no indication for regulation
through density-dependent mortality (e.g., cannibalism). Only
growth and reproduction exhibit clear density dependencies,
demonstrating bottom-up regulation through food limitation.
The strongest density-dependence is found for late juveniles
and adults, compatible with the conclusions Lorenzen and En-
berg (2002) and Lorenzen (2008) draw from survey data. For
other types of S-R relations that we find, the regulating mech-
anisms are possible quite different, constrained only to derive
from trophic interactions.

Our model does not resolve space, and so implicitly assumes
a “well mixed” community. Because early life stages contribute
only a small proportion to the total biomass of individuals in
each size class (most individuals in each body-size class are
adults, Rossberg 2012), the effect of early life stages on their
environment is generally weak, and so the resulting direct density-
dependent regulation of cohort size. This might explain the ab-
sence of clear Beverton-Holt-like patterns among the modeled
S-R relations (Fig. 1). In reality there might be reasons that
cohorts remain sufficiently localized to induce abundance reg-
ulation at early stages, despite the strong evolutionary pressure
to disperse that this implies.

Another, independent argument for the dominant role of trophic
interactions in determining abundances is the frequently ob-
served power-law distributions of community biomass over body
size, as represented by community size spectra (Sheldon et al.
1972). The FCSRM reproduces this phenomenon (Hartvig et al.
2011). The theories brought forward to explain it differ in de-
tailed mechanisms they invoke (Rossberg 2012), but there is
broad agreement that the observed coupling of abundances across
size classes is achieved through trophic interactions, which im-
plies a dominance of trophic density-dependencies over other
mechanisms. To illustrate the relevance of these considerations
for S-R models, consider the derivation of a Beverton-Holt S-
R relationship from foraging-arena theory by Walters and Kor-
man (1999). By this derivation, the characteristic scale of pop-
ulation abundances is essentially proportional to the mixing
rate at which resources enter and leave the foraging arena, a
parameter particular to this theory. Although several examples
are known where the theory is likely to apply (Ahrens et al.
2012), its reconciliation with the phenomenon of power-law
size spectra would require additional constraints, either on the
mixing rate or on the number of co-existing species within a
size class.

Implications
Our study demonstrates that the density-dependence of ob-

served S-R relationships is possibly a consequence of density-
dependent trophic interactions alone. Concepts such as for-
aging arenas (Walters and Juanes 1993; Walters and Martell
2004) or concentration effects (Iles and Beverton 2000), though
biologically plausible, are not required to explain the observed
density dependencies. A corollary of this possibility, if con-
firmed, is that carrying capacity is not an intrinsic property
of stocks, but the consequence of a complex interplay with
their prey and predators. The notion that steepness is related
to life-history traits of species (Myers et al. 1999) would need
to be questioned. In the simulated communities steepness scat-
ters broadly, even though life-history parameters differ among

c©2013 Crown copyright
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stocks only through differences in asymptotic sizeM , and this,
on its own, turned out not to affect steepness.

If our hypothesis holds true, large changes in community
structure are bound to lead to large changes in S-R relations,
with corresponding implications for the maximum yield sus-
tainable by stocks. Because in our model each stock is assign-
ing its own resource size spectrum, the model might rather un-
derestimate these interdependencies than overestimating them.
Usage of population models with hard-coded S-R relationship
in a management context should therefore remain mindful that
these relations are likely to depend intrinsically on the structure
of the entire community. Whether models with time-varying S-
R parameters (Collie et al. 2012) are the appropriate response
to this challenge remains to be determined.
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Appendix

A. Mechanisms regulating abundance in
a simulated stock with a Ricker-like S-R
relationship

In this appendix we provide an analysis of the mechanism
regulating abundance of a simulated stock with “blurred Ricker”
S-R relationship (Fig. 2g). The analysis allows us to exclude
cannibalism from the conceivable regulating mechanisms in
this case. We selected for this example a stock for which the
Ricker-type pattern was clear but overlayed by small additional
variability (Fig. A1).

Methods
The growth rate of a population j is to a good approximation

proportional to the (negative) deviation of the integral mortal-
ity, a quantity here defined as

Ij =

∫ Mj

m0

µj(m) + µa
gj(m) + gr,j(m)

dm,[A1]

from its equilibrium value (see Eqs. (61), (63) of Rossberg
2012). In this expression, µj(m) denotes the natural mortal-
ity rate of species j at size m, the constant µa additional mor-
tality applied here to vary stock sizes (µa 6= 0 for only one
species j at a time), and gj(m) and gr,j(m) are rates of growth
and fecundity as explained in the main text. The expression in
the integral over body sizes can intuitively be understood as
the mortality at different body-sizes classes weighting by the
duration of time spent in these size classes.

When µa is slowly ramped up to reduce the size of popula-
tion j in simulations, whilst maintaining a quasi steady state,
there will be changes in size-dependent morality, growth rates
and/or the fecundity of this population, compensating for the
change in µa so as to keep Ij near its equilibrium value. In-
spection of the integrand in Eq. [A1] as µa varies therefore
allows identifying the life stages and mechanisms playing the
main role for this compensation.

To identify the relative roles of the regulation of growth and
mortality at different life stages, we evaluated the natural inte-
gral mortality

Inat,j =

∫ Mj

m0

µj(m)

gj(m) + gr,j(m)
dm[A2]

and the corresponding values obtained when replacing in Eq. [A2]
either the natural mortality µj(m) or the combined somatic and
reproductive growth rate gj(m) + gr,j(m) by their averages

Spawning Stock Biomass
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Fig. A1. Simulated S-R data for the stock analyzed in this
appendix. Symbols used are the same as in Fig. 1 of the main
text.

µj(m) and gj(m) + gr,j(m) over the entire ramp in µa from
µa = 0 to µlim, so isolating the effect of the other component,
i.e. gj(m) + gr,j(m) or µj(m)), respectively.

For numerical calculations, and also for an easy ecological
interpretation of the functional form of the integrand, it is use-
ful to express body mass m in Eq. [A2] in terms of a logarith-
mic size variable u as m(u) = exp(u), and to the change the
variable of integration accordingly. This leads to the relation

Inat,j =

∫ ln(Mj)

ln(m0)

m(u)µj(m(u))

gj(m(u)) + gr,j(m(u))
du,[A3]

which is mathematically equivalent to Eq. [A2].
As µa was varied, we recorded the value of the integral in

Eq. [A3], its value when replacing either denominator or nu-
merator by their temporal averages, and also the functional
forms of the corresponding integrands, given by [mµj(m)]/[gj(m)+
gr,j(m)] and [mµj(m)]/[gj(m) + gr,j(m)]. These quantities
are closely related to physiological mortality rate (Beyer 1989)
[mµj(m)]/gj(m), the importance of which has been recog-
nized by theorists (Cushing 1975; Werner and Gilliam 1984;
Beyer 1989; Andersen and Beyer 2006; Rossberg 2012) and
empiricists (Houde 1987; Houde and Zastrow 1993; Bohlin
et al. 1994; Houde 1997; Nash et al. 2007; Houde 2008; Nash
and Geffen 2012) alike.

Results and Discussion
Simulation outputs for integral mortality and the underly-

ing size-dependent physiological mortality rates are shown in
Figs. A2 and A3.

Two types of dynamics are overlayed in the time series of
SSB recorded as added mortality µa on this species is slowly
increased (Fig. A2a). Variations in SSB on short time scales
reflect variations in natural mortality (Fig. A2b) which affects
the population growth rates mostly in the late juvenile and
adult phase (Fig. A3a, dashed lines). Over longer time scales,
SSB declines as a result of increasing added mortality, until at
µa = µlim the species becomes extirpated.

Mortality (Fig. A2b) exhibits no notable density-dependent
response. Changes in mortality seem to be largely driven by
population cycles of consumers of the focal species that op-
erate independent of it. By contrast, the effect of the density-
dependent responses of growth and reproduction on natural in-
tegral mortality (Fig. A2b) is very clear. These responses, too,
have their strongest impacts during the late juvenile and adult
stages (Fig. A3b). The long-term trend in natural integral mor-
tality (Fig. A2d) is largely explained by the changes due to
density dependent growth and fecundity (Fig. A2c). The down-
ward bending of the stock-recruitment curve in Fig. 1g is there-
fore largely due to a decline in adult growth and fecundity with
increasing population size, obviously driven by a depletion of
the food resources by the focal species. The bending down is
here not attributable to changes in the mortality of larvae or
juveniles, only the scatter of data seen for fixed SSB is. Can-
nibalism as a regulating mechanism can therefore be excluded
in this example.

Figure A2e verifies the analytically motivated premise un-
derlying the analysis above: despite substantial changes in the
size-dependent life-history parameters, integral mortality, Eq. [A1],
remain largely unchanged when including the effect of added
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Fig. A2. Population regulation in response to external pressure.
All curves are trajectories through time as added mortality µa

is ramped up from 0 to µlim. Panel (a) shows the corresponding
decline in SSB, (b) natural integral mortality, Eq. [A2], when
fixing growth and fecundity, (c) natural integral mortality when
fixing mortality, and (d) natural integral mortality when evaluating
all rates at their momentary values. Panel (e) shows integral
mortality including added mortality, Eq. [A1], demonstrating
that this quantity remains largely unchanged, as theoretically
expected for populations in equilibrium. The focal species is that
corresponding to Fig. A1.
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Fig. A3. Size-resolved responses of population regulation to
external pressures. Solid lines show size-dependent momentary
values of the physiological mortality rate [mµj(m)]/[gj(m) +
gr,j(m)] after replacing either (a) the denominator or (b) the
numerator of this expression by its temporal average. The
ten lines correspond to ten moments in time evenly spaced
as µa is slowly ramped up from 0 to µlim. In panel (a) lines
show no particular temporal pattern (see Fig. A2b). In panel
(b) lower-lying lines correspond to higher addition mortality
µa, demonstrating a rise in growth and fecundity rates with
decreasing population density. Dashed line show the same
data for a 50-fold extended vertical scale (right side). The
reason for choosing this particular representation of life-history
parameters is that the area enclosed by two curves in a graph
above is approximately proportional to hypothetical change in the
corresponding natural populations growth rate if either growth
and fecundity (panel a) or mortality (panel b) were kept fixed. To
ease the biological interpretation of results, the thick curve above
panel (a) indicates the maturation ogive. The focal species is that
corresponding to Fig. A1.
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mortality µa. Changes in natural integral mortality, Eq. [A2],
therefore reflect density-dependent responses to the artificial
depletion by the added mortality µa.

We caution that when conducting the kind of analysis demon-
strated above for different stocks in the three simulated model
communities studied in the main text, the graphs correspond-
ing to Figs. A2 and A3 can attain quite different forms. Prelim-
inary studies show that population regulation through density-
dependent growth and fecundity in late juvenile and adult stages
is frequent, but not the only pattern occurring in our simula-
tions. Understanding the variety of patterns found and their im-
plications for the mechanics of S-R relationship remain tasks
for future studies.
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