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The molecular mechanics of mixed lineage leukemia
RK Slany

Mixed lineage leukemia caused by MLL fusion proteins is still a mostly incurable disease. Research on novel treatment strategies has
gained momentum in the last years with the elucidation of the molecular mechanisms underlying the transforming potential of
these powerful oncoproteins. This review summarizes the recent developments in this area including new attempts to treat MLL in
a rational way by exploiting the biochemical vulnerabilities of the leukemogenic process.
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THE CLINICAL ASPECT OF MLL
Before the next-generation sequencing revolution, it was a
daunting task to accurately pinpoint the genetic changes
responsible for a disease like cancer. Therefore, it came as a
breakthrough when it was realized that certain recurrent and
cytogenetically observable genome alterations, like chromosomal
translocations, were firmly associated with a specific subtype of
neoplasia.1,2 As correctly surmised, the visible chromosomal
abnormalities served as a molecular beacon that enabled the
localization, isolation and characterization of the genes causally
involved in the transformation process. This was particularly true
for leukemia where, in contrast to the often highly aberrant
genomes of solid tumors, single chromosomal aberrations often
stood out as sole genomic change. It was realized already in the
early 1980s that a very aggressive subtype of infant leukemia
presenting within the first year of life was characterized by
translocations affecting a hotspot of genomic instability at
'11q23'.3,4 Microscopically, this aberration had been found in both
acute lymphoid leukemia (ALL) and acute myeloid leukemia (AML)
cells. Closer inspection revealed that the transformed cells
frequently carried surface markers of both major blood lineages
and therefore this disease was called mixed lineage leukemia.5–7

Today we know that up to 80% of infant ALL and about 35–50% of
pediatric AML harbor 11q23 abnormalities.8–12 A second peak of
incidence for this chromosomal lesion has been recorded in
patients who suffer from therapy-induced AML after treatment of
an unrelated malignancy with certain genotoxic agents.13,14

Particularly, the application of topoisomerase inhibitors like
epipodophyllotoxins (etoposide) carries a high risk of secondary
malignancy. Finally, 11q23 translocations do also occur in sporadic
cases of adult ALL and AML adding up to a considerable 5% of
adult ALL and 5–10% of AML with 11q23 involvement.
The common clinical denominator of all these cases is their

dismal prognosis. Treatment of infant MLL depends on its initial
classification as ALL or AML. Induction for 'ALL-type' disease is
usually performed with prednisone followed either by a 'lymphoid'
consolidation therapy (cyclophosphamide, cytarabine, 6-mercap-
topurine) or, for some protocols adjusted to the more aggressive
nature of MLL, by a more 'myeloid'-based therapy with cytarabine,
daunorubicin/mitoxantrone and etoposide. The benefit of allo-
geneic hematopoietic stem cell transplants is still unclear for

infant ALL. In contrast, infant AML with MLL involvement is treated
similar to other pediatric AML with an intensive chemotherapy
followed by hematopoietic stem cell transplant if donor marrow is
available and if the health status of the recipient allows this
procedure.15 In adults, the mainstay of AML therapy is a
cytarabine/anthracycline-based regimen followed by allo-
hematopoietic stem cell transplant if circumstances permit.16

The trend for high-risk ALL in older patients is to follow up
induction therapy (usually including vincristine, prednisone,
cyclophosphamide, doxorubicin and L-asparaginase) with an
intensified regimen often containing cytarabine and methotrexate
and subsequently with a maintenance therapy of methotrexate
and 6-mercaptopurine. However, despite best supportive care, the
5-year survival rates after high-dose chemotherapy and bone
marrow transplants for infants and adults with 11q23 abnormal-
ities are still well below 50% with the possible exception of
patients carrying t(11;9) translocations in AML.17–19 Because of
these extraordinary properties, 11q23 aberrations have been listed
as a separate entity in the WHO (World Health Organization)
classification of leukemia.20 Underscoring the remarkable trans-
forming power of 11q23 translocations, a recent sequencing
study21 uncovered that infant MLL is the only neoplasm besides
low-grade glioblastomas that is almost devoid of secondary
mutations besides the defining chromosomal aberration as
founder event. On average, infant leukemia with MLL rearrange-
ment contains 1.3 additional non-silent mutations (mostly in
PI3K-RAS signaling pathways), yet in some instances, 11q23
aberrations are the only genetic lesion detectable.

MOLECULAR ANATOMY OF 11Q23 TRANSLOCATIONS:
THE ADVENT OF EPIGENETICS IN ONCOGENESIS
MLL is a multi-functional chromatin modulator
Several groups contended to clarify the events underlying the
11q23 anomalies and to identify the genes involved. Four
independent laboratories succeeded to clone and sequence the
respective breakpoint genes.22–25 On chromosome 11, they
localized a gene coding for a very large protein of 3972 amino
acids (432 kDa calculated MW) that showed clear homology to
Drosophila trithorax (trx). Trx is an embryonic regulator that is
important for maintaining gene expression during development.
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It opposes the repressive activity of the so-called polycomb group
proteins with the clustered Hox-homeobox genes as major
physiological targets.26 Because of this homology and the
involvement in leukemogenesis, the human gene was initially
called MLL, ALL-1 or HRX with MLL as the 'common name'
prevailing until today. A knockout study in mice showed that the
structural homology of MLL and TRX also extended to function as
Mll-/- animals died in utero with homeotic malformations, aberrant
Hox expression and hematopoietic problems.27,28 A variety of
functional domains have since been described in MLL and their
function will be shortly summarized in their order of appearance
(Figure 1a).

MLL-N: DNA-binding meets regulation
Under physiological conditions, full-length MLL is cleaved post-
transcriptionally by an enzyme called Taspase1 into a larger MLL-N
(also called N320, calculated MW 297kDa) and a MLL-C (C180,
calculated MW 135 kDa) fragment (Figure 1a).29–31 Both are kept
together by intramolecular interactions mediated by two interac-
tion motifs located in the N-terminal (FYRN) and C-terminal (FYRC)
cleavage products, respectively.30 The resulting dimer is incorpo-
rated into a larger protein assembly that associates with a variety
of cofactors (WDR5, RBBP5, ASH2L, hDPY30) that are also present
in other H3K4 methyltransferase complexes. As this topic has been
summarized recently, readers interested in more detail are kindly
referred to the respective review.32 The physical separation into
MLL-N and MLL-C subunits is also reflected by separable functions
of the two cleavage products. MLL-N is involved in chromatin
targeting and regulation of MLL activity, whereas MLL-C mediates
transactivation. The first characterized domain at the very
N-terminus of MLL-N is the LEDGF-menin interaction region
(LMI). This moiety binds to menin (multiple endocrine neoplasia I)
a protein that is lost in a familiar cancer syndrome.33–36 The
combined menin/MLL interface then allows interaction with
LEDGF or lens epithelium-derived growth factor (encoded by
the PSIP1 gene, also known as p75).37 LEDGF contains a PWWP
domain that recognizes H3K36 methylation, a hallmark of actively

transcribed chromatin. LEDGF seems to be necessary for recruiting
MLL to active chromatin and, in an interesting side aspect, LEDGF
is also used by HIV-integrase to enable insertion of the viral
genome into the host chromosomes.38 The LMI is followed by
three AT-hooks that constitute an unusual DNA-binding domain
with an affinity for 'distorted' DNA displaying a widened minor
groove.39 The AT-hooks of MLL have an additional function as
they mediate interaction either with itself or with a domain further
downstream40 that is characterized by the occurrence of a
duplicated Cysteine-n-n-Cysteine zinc-finger (CxxC). Similar struc-
tures have been found in proteins like DNA methyltransferase 1
that recognize CpG dinucleotides. In analogy, also the Cysteine-n-
n-Cysteine zinc-finger motif of MLL binds CpG sequences with the
additional capability to discriminate for unmethylated cytosine.41

Together with a basic stretch of amino acids, this region also
recruits PAF1, a member of the 'polymerase associated complex'
(PAFc), which catalyzes histone H2B ubiquitination during
transcription.42,43 The LMI and the Cysteine-n-n-Cysteine zinc-
finger domain are included in every known MLL fusion protein,
and in structure–function experiments, they have been identified
as the sole determinants that are necessary44 and sufficient45 to
create a transforming protein if joined to a MLL fusion partner.
Consequently, MLL fusion proteins never include any sequences
downstream of the common and narrow 11q23 breakpoint region
(Figure 1a, lower panel).
Thus, the central four PHD fingers and an intervening

bromodomain of wt-MLL are invariably excluded from MLL
fusions. Bromodomains read acetylated chromatin and PHD
fingers recognize methylated proteins with PHD finger number
3 of MLL specifically interacting with methylated H3K4.46–48 In this
way, this region can establish a positive feedback loop as it will
enable MLL to bind to chromatin that has been acetylated/
methylated by itself (see below). Simultaneously, the PHD fingers
are targets of ubiquitination and conformational regulation by
interaction with the proline-isomerase CYP33.49,50 This has been
suggested as a regulatory mechanism that allows to turn off MLL
activity. Binding of CYP33 to the third PHD finger in an artificial
MLL-ENL fusion protein increased association with the histone

Figure 1. Wild-type MLL and the diversity of MLL fusion partners. (a) Schematic structure of wild-type MLL. Functional domains are labeled in
black. Known interactions of these domains are annotated in blue. LMI, LEDGF, menin interaction domain; PHD, plant homeodomain; bromo,
bromodomain; FYRN/FYRC, N-terminal and C-terminal interaction domains. For more details, see text. (b) Biochemical and clinical distribution
of MLL fusion partners.
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deacetylase HDAC1 leading to repression of HOX gene
expression.47 Thus, inclusion of this region into MLL fusion
proteins incapacitates their transforming function47,48 supposing
that also the corresponding region in MLL serves as a 'regulatory
module'.

MLL-C: a histone modification element
MLL-C contains two regions with chromatin modification cap-
ability. The first is a transactivator region that interacts either
directly or genetically with the histone acetyltransferases p300/
CBP, MOZ and MOF51–53 transferring acetyl groups to H3K27, H3K9
and H4K16, respectively. The second histone modification activity
is characterized by a C-terminal SET domain that works as histone
methyltransferase.54 SET is an acronym for Suppressor of
variegation, Enhancer of zeste and Trithorax, the first proteins
described with this functional unit. In general, SET domains
catalyze the transfer of a methyl group from S-adenosylmethio-
nine to a protein substrate. In the case of MLL, the acceptor is
lysine 4 on histone H3, which can be monomethylated,
dimethylated or trimethylated (H3K4me1,2,3). H3K4me is a hall-
mark of actively transcribed chromatin with monomethylation
marking enhancers while dimethylation and trimethylation are
found around the transcription start sites of active genes.55 The
methyl-mark itself is recognized by 'reader' proteins that
frequently recognize the methylated residue with the help of a
PHD (plant homeodomain) domain. Although exact details remain
to be worked out, one way how H3K4 methylation stimulates
transcription is by attracting nucleosome remodeling complexes
like NURF that can create nucleosome-free regions to facilitate
transcriptional initiation.56,57

In an interesting new development, it has been demonstrated
that actually H4K16 acetylation is the more important activity of
MLL responsible for the loss-of-function phenotypes in Mll
knockout animals.58 After specific deletion of the Mll SET domain,
H3K4me levels as well as expression of several genes critical for
blood cell development remained unaffected, whereas a total
knockout of Mll led to a rapid loss of transcription of the respective
loci affecting primarily hematopoiesis. This corroborates previous
reports demonstrating that a localized knockout specifically
removing the SET domain of Mll produced viable offspring that
survived into adulthood.59 In line with these results, a simple
pharmacologic inhibition of the MOF-counteracting histone
deacetylase SIRT1 restored acetylation and Mll target gene
expression in complete Mll-/- knockout cells.58 Acetylated H4K16
provides a binding platform for BET-bromodomain proteins
(bromodomain and extra terminal domain) like BRD4. BRD4 is a
multifunctional activator that recruits and activates P-TEFb,60 a
kinase that is required for efficient transcriptional elongation.
P-TEFb also has a major role in transformation by MLL fusions (see
below) suggesting that wt-MLL and fusion derivatives use a similar
mechanism to stimulate target transcription. In contrast, a loss of

H3K4 methylation can be likely complemented by other H3K4
methyltransferases. In total, six enzymes with this catalytic activity
have been identified in mammalian cells (MLL1-4, SET1A, SET1B)
and the respective genes have been renamed KMTxx (from
lysine = K methyltransferase) as KMT2A ( MLL1), 2B (MLL4), 2C
(MLL3), 2D (MLL2), 2 F (SET1A) and 2G (SET1B). It is not yet entirely
clear how the task of global H3K4 methylation is distributed
among the respective KMT proteins, but they seem to be generally
highly exchangeable. For example, in ESC cells, Mll is localized
virtually at every active promoter but only a few genes lose H3K4
methylation and expression upon Mll knockout, possibly because
other KMT enzymes substitute.61

MLL FUSION PROTEINS: PERCEIVING ORDER IN CHAOS
The predominant MLL fusion partners function in transcriptional
elongation
As anticipated by cytogenetic findings, the initial identification of
MLL fusion partners yielded a very confusing picture. The 11q23
locus is translocated to partner loci distributed across the whole
genome. Although a few translocations like t(4;11), t(11;19), t(9;11)
and t(10;11) prevail, the respective partner genes (AF4, ENL, AF9,
AF10) code for proteins with little resemblance except an
occasional homology (for example, between AF9 and ENL).62

(The nomenclature of genes fused to MLL is still unsatisfactory as
only some of the original genes have been included in a
systematic scheme. For example, ENL was officially renamed
MLLT1 (MLL translocated to number 1), whereas the translocation
partner AF4 now is called AFF1 (AF4/FMR family member 1). For
this reason, this review will use the older and better known
denominations throughout.) Despite a lot of effort invested in
cloning new MLL fusions, originally no unifying feature could be
discovered. This changed with a series of reports where we and
others purified protein complexes associated with MLL
partners.63–67 These studies revealed that 8 out of 79 known
MLL partner proteins were involved in the process of transcrip-
tional elongation (Figure 1b), a notion that had been first brought
up for ELL, the only fusion partner for which a biological function
could be assigned before.68 Together these eight fusion partners
cover more than 80% of all clinical cases of leukemia with MLL
involvement. Thus, mixed lineage leukemia, in its majority, is
caused by a loss of proper transcriptional regulation. The
adjustment of transcriptional elongation rather than the classical
control of initiation is the preferred mode of regulation for many
genes that need to respond quickly like those involved in
differentiation, proliferation and immediate early control. This
step contributes to overall regulation to a varying degree also for
other genes,69 because RNA Polymerase II (RNA PolII) frequently
stops after initiation and remains paused or 'stalled' until proper
signals for further transcription are given. Elongation rates can be
adjusted by the activity of various 'impeding' factors like NELF
(negative elongation factor) and DSIF (DRB sensitivity inducing

Figure 2. Schematic representation of the biochemical functions associated with common MLL fusion partners. (a) The DOT1L complex
induces H3K79 methylation. (b) Positive transcription elongation factor b (P-TEFb) contains CDK9 that phosphorylates RNA PolII and various
other proteins to promote transcriptional elongation. (c) Polycomb repressive complex 1 (PRC1) is inhibited by a direct interaction of ENL/AF9
with CBX8.
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factor) and by adjusting the 'speed' of RNA PolII itself. In addition,
the modification state of chromatin has an influence on
transcription rates. Thus, it has been shown that the activity of
the polycomb repressors can 'compact' chromatin to impede
elongation.70 MLL fusion partners are members of protein
complexes that affect these set-points of elongation control with
far reaching consequences. This was demonstrated first for ENL
where affinity purification revealed that this protein (as well as its
homolog AF9) is a member of a multi-subunit complex initially
labeled EAP65 (elongation-assisting proteins or ENL-associated
proteins). Later it was shown that EAP actually is composed of
separate subcomplexes (Figure 2) all of which impact on a
different feature of transcriptional elongation63,64,67 as
detailed below.

DotCom: paving the road to transcription
One of the key activities within EAP is DOT1L (disruptor of
telomeric silencing 1 like) representing the core component of the
DOT1L sub-complex (DotCom) (Figure 2a). Initially discovered in
yeast where it curbs the spread of repressive chromatin
emanating from the telomere regions, DOT1L was later shown
to be a histone methyltransferase.71 It is the only known enzyme
that either monomethylates, dimethylates or trimethylates lysine
79 in histone H3. It is also unique because it does not possess a
SET domain, a fact that makes it vulnerable to specific
pharmacological inhibition (see below). H3K79 methylation is
associated with actively transcribed regions, and recently, it was
shown that knocking-down the histone deacetylase SIRT1 can
compensate for a loss of DOT1L activity by increasing histone
acetylation.72 This likely allows more BRD4/P-TEFb to bind as an
alternative method to promote elongation (see next paragraph).
Next to ENL and AF9 that bind DOT1L with a C-terminal
region66,73,74 also AF10 and AF17 interact directly with this
enzyme75 thereby stimulating DOT1L catalytic activity and thus
allowing the accumulation of higher methylated states of H3K79
(di/trimethylation).76 Interestingly, other studies have shown that
ubiquitination of H2B, a modification catalyzed by the RNF20
subunit of the PAF complex, also facilitates DOT1L-mediated
H3K79 methylation.77 Thus, the transcriptional impact of the
fusion partner is reinforced by PAF recruitment via the MLL
portion.77 As there is no known H3K79 demethylase, cells must
remove this chromatin mark by dilution during cell division.
H3K79me may therefore serve as a marker for past transcriptional
states constituting the equivalent of a 'transcriptional memory'.

Positive transcription elongation factor b (P-TEFb) and the super
elongation complex (SEC)
The second protein complex involving multiple MLL partner
proteins is the super elongation complex or SEC78 (Figure 2b). At
the core of SEC, is positive transcription elongation factor b
(P-TEFb), a dimer of cyclin-dependent kinase 9 and either a cyclin
T (T1 or T2) or a cyclin K. Together, the active dimer recognizes
multiple targets. Best known is its role in phosphorylating the
C-terminal repeat domain of RNA PolII (CTD) that consists of a
heptapeptide that is tandemly repeated 54 times for mammalian
RNAPolII. The CTD contains several serines that can be phos-
phorylated, and depending on the location within the repeat, this
creates a 'code' that determines the activity of RNAPolII in part by
serving as docking site for accessory proteins. In this way,
initiation, elongation, co-transcriptional RNA processing and
termination can be coordinately regulated. P-TEFb specifically
recognizes serine-2 in the heptarepeat, which needs to be
modified for efficient elongation. In addition, P-TEFb inactivates
impeding factors like NELF and DSIF. P-TEFb binds directly to AF4
and AF4-family members (AF5q31, LAF) through the cyclin
moiety.66 As ENL and AF9 interact with AF4 family proteins,
P-TEFb can be indirectly recruited also by MLL-ENL/AF9. ELL has

been identified as another component of SEC.68 A further essential
subunit of SEC is BRD4, a member of the BET (bromodomain and
extra terminal domain) family that includes BRD2, BRD3 and BRDT.
These proteins contain two bromodomains that recognize
acetylated chromatin. BRD4 binds to CDK9, recruits it to chromatin
and stimulates P-TEFb activity.60 Thus, BRD4 couples elongation to
acetyl-marks on chromatin in another intricate analogy to the
transactivation mechanism of wild-type MLL.

Polycomb repressive complex 1 and MLL fusions
A further interaction of MLL fusion partners with transcriptionally
active proteins has been uncovered for ENL and AF9 that bind to
chromobox protein 8 (CBX8), a member of polycomb repressive
complex 140,79 (PRC1) (Figure 2c). PRC1 is a repressor that impedes
transcription by compacting chromatin and by imposing ubiqui-
tination on histone H2A catalyzed by the RING1B subunit of the
complex.80 In fly, polycomb opposes trithorax activity and a
perturbation of this balance manifests itself first as homeotic
alteration caused by aberrant Hox expression. A similar situation
exists in leukemia where interaction of the MLL-fused ENL moiety
with CBX8 neutralizes PRC1-repressive activity, thus allowing an
uncurbed expression of polycomb targets, foremost the clustered
HOX homeobox genes.40 Currently it is unknown how ENL
inactivates PRC1, but as ENL generally acts as a scaffold bringing
various proteins together, this activity may be mediated by some
other ENL interaction partner. For the ENL homolog AF9, it has
been shown that it tethers CBX8 to the histone acetyl-transferase
TIP60, thus turning an inhibitor into an activator of transcription.81

The impact of MLL fusion proteins on gene expression patterns
One of the unsolved questions is whether MLL fusion proteins use
all three of these mechanisms (induction of H3K79 methylation by
DOT1L, stimulation of elongation through P-TEFb, suppression of
polycomb function) simultaneously to activate their target genes.
Biochemical assays have shown that most of the underlying
protein–protein interactions do not occur at the same time. For
example, ENL and its homolog AF9 can interact either with DOT1L,
AF4 or CBX8, but all of these interactions are mutually exclusive.40

This has been traced to a disordered interaction domain in ENL/
AF9 that adopts a structured conformation dependent on the
specific binding partner, thus excluding other interactions.82

A potential solution for recruiting different effector molecules to
the same molecular locus would be via dimerization or multi-
merization of individual MLL fusion molecules. Indeed, MLL
fusions form large nuclear speckles that are visible by fluorescence
microscopy and that must consist of more than a single
molecule.83 Consequently, MLL fusions contain two dimerization
domains in the MLL portion (coinciding with the AT-hook and
Cysteine-n-n-Cysteine zinc-finger motifs) that allow dimerization
and likely also the formation of multimers.40 Alternatively, various
MLL fusion complexes of different composition may exist that are
individually recruited to target genes depending on the respective
necessities for transcriptional stimulation.

HOX genes as predominant targets of MLL fusion proteins
Regardless of the exact molecular mechanism of transcriptional
activation, it has been confirmed in numerous studies that the
clustered HOX homeobox genes and the genes for the HOX
protein interaction partners MEIS1 and PBX3 are major targets of
MLL fusion proteins.84–86 Interestingly, a recent report quantifying
HOX expression in normal and malignant cells showed that the
presence of MLL fusion proteins does not really lead to the
overexpression of HOX genes. Rather, they freeze HOX expression
at a level that is present in normal early hematopoietic stem and
precursor cells.87 HOX genes, mainly of the so-called HOX-A cluster
in combination with MEIS1 and PBX3, are the foremost
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determinants of self-renewing potential in the hematopoietic
stem and precursor cell population. Their peculiar arrangement in
genomic clusters parallels their special mode of regulation that is
highly dependent on DOT1L-mediated H3K79 methylation even in
wild-type cells and in the absence of MLL fusion proteins.76

Conspicuously, there are many parallels between the transactiva-
tion mechanisms perused by MLL fusions and by wt-MLL
suggesting that uncontrolled wt-MLL expression may be onco-
genic by itself. Indeed, transcription of MLL, MLL2 (a close
homolog of MLL) and MOZ (coding for a HAT-enzyme) genes
are activated by gain-of-function mutations of p53 in various solid
cancers.88 As a consequence, H3K4 methylation and H4K16
acetylation is increased at several gene loci supporting the
transformed phenotype.
It is not clear whether MLL fusion targets besides HOX, MEIS and

PBX genes are absolutely required to achieve leukemic transfor-
mation. In contrast to wt-MLL that can be found basically at every
active promoter, MLL fusions have a relatively small set of
confirmed binding sites with about 130 to approximately 400 loci
identified in various ChIP studies.89–91 A few of these 'non-HOX'
MLL fusion targets have been tested in knockdown studies, and
CDK6, JMJD1C, MEF2C, EYA1 and the MECOM locus (from which
EVI-1 and MDS1 transcripts emanate) have been implied in the
etiology of MLL fusion-induced leukemia by these studies.92–98

TARGETING THE BIOCHEMISTRY BEHIND MLL
FUSION-INDUCED LEUKEMIA
Fusion proteins derived from recurrent chromosomal transloca-
tions have been the first examples of the potential success of a
molecularly targeted therapy. The treatment of BCR-ABL-positive
CML with Imatinib and related tyrosine kinase inhibitors as well as
the medication of retinoic receptor alpha rearrangements in acute
promyelocytic leukemia with all-trans retinoic acid and arsenic are
substantial medical breakthroughs. It is therefore not surprising
that numerous groups have investigated the possibilities to
exploit the specific properties of MLL fusion proteins to treat this
particularly aggressive leukemia (Figure 3).
The use of small molecule inhibitors aimed at the activity of

DOT1L is most advanced in clinical development.99 The unique
structure of its catalytic domain enables the design of very specific

pharmacons that block the methyltransferase activity of DOT1L
with ID50s in the low nanomolar range.100 No H3K79 demethylase
exists in cells and tissues yet examined. Therefore, during
incubation with DOT1L inhibitors, cell division leads to a slow
dilution of this chromatin mark within several days. Despite the
presence of H3K79 methylation on virtually all transcribed
chromatin, blockage of DOT1L is surprisingly well tolerated in
experimental animals with no obvious acute toxicity. This was
unexpected because conditional knockout of DOT1L in adult mice
is lethal within 8–12 weeks after deletion owing to hematopoietic
failure.101–103 Together, this indicates that DOT1L function, like
MLL, does not completely rely on its methyltransferase activity.
Nevertheless, the small molecule DOT1L inhibition is sufficient to
block the proliferation of MLL fusion-induced leukemia cells of
murine and human origin. Beyond that, DOT1L inhibitors seem to
be also effective in every leukemia that depends on sustained HOX
expression for transformation like NUP98 or CALM translocation
cases.76,104 This is mainly based on the exquisite and specific
dependence of HOX transcription on H3K79 methylation.76 A loss
of DOT1L methyltransferase activity can be complemented by
ectopic expression of HOXA9 and MEIS1 from non-DOT1L-
dependent retroviral promoters. These promising properties have
brought small molecule DOT1L inhibitors like EPZ5676 into phase I
clinical studies. First data showed promising molecular efficacy in
the majority of treated patients (reduction in H3K79 methylation)
and some improvements in disease status.105

The second most clinically advanced strategy to target MLL
fusion proteins involves the inhibition of BRD4 by small molecules
(JQ1, i-Bet) that bind competitively to the bromodomain of BRD4.
This blocks the binding of BRD4 to acetylated chromatin and
affects P-TEFb activity. Originally thought to be specific for MLL
fusion leukemia, later it was shown that these molecules have a
broader effect on malignant cells.106–111 Many genes with a role in
cell proliferation with MYC as prime example seem to be regulated
by special enhancers with a characteristic setup that have been
controversially termed 'super-enhancers'.112,113 Besides its func-
tion in the SEC complex, BRD4 is involved in the formation and
function of these regulatory units.114 Therefore, BRD4 inhibition
affects MYC expression as a prerequisite for rapid cell proliferation
in many cancer cells. At present, a clinical trial with the BRD4
inhibitor GSK525762 is recruiting for NUT midline carcinoma

Figure 3. Different approaches to target MLL fusion-induced leukemia. A schematic representation of intervention points that have been used
to block MLL fusion-mediated transformation. The boxed strategies target processes not directly related to MLL fusion-associated functions.
Compounds already in clinical trials are highlighted in red font.
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(clinicaltrials.gov #NCT01587703) where BRD4 itself is involved in a
chromosomal translocation with the NUT gene. However, it is to
be expected that trials in leukemia patients will start soon.
In a similar direction CDK9, the enzymatically active subunit of

P-TEFb, can be targeted by various inhibitors. Flavopiridol
(alvocidib) is the most well-known representative in this inhibitor
class. Animal experiments did report the efficacy of CDK9
inhibition in experimentally induced MLL.115 Although flavopiridol
is a widely researched substance, no trial has been set up
targeting flavopiridol specifically at MLL. Several groups, however,
report promising results for this substance if included in general
treatment schedules for high risk leukemia including MLL-r cases.
A small caveat is that many studies apply flavopiridol at doses
where it acts as a general CDK inhibitor forsaking its moderate but
existent specificity for CDK9.116

A variety of other approaches to disable specific functions of
MLL fusion proteins have been explored either in vitro or in
preclinical studies. Most of these target protein–protein interac-
tions of the higher order MLL fusion complex. Most advanced are
efforts to design small molecules that disrupt menin-MLL
binding.117–120 These reverse MLL fusion-mediated transformation
in vitro and are one of the first examples that protein–protein
interactions can be successfully targeted by small molecules. In
analogy, it has been shown that expression of small LEDGF
peptides that inhibit LEDGF interaction with the composite Menin/
MLL-binding surface is antagonistic to MLL fusion-induced
transformation.121,122 Similarly, a small peptide interrupting the
AF9/ENL-AF4 interaction showed anti-leukemic activity in MLL-
rearranged cells.123,124

MLL-recombined leukemia has been also found to be sensitive
towards the inhibition of processes that are not directly associated
with the biochemistry of the fusion proteins. For example, a block
of polycomb repressor complex 2 inhibited MLL fusion leukemia
cell growth, likely because of a derepression of aberrantly silenced
tumor suppressor genes.125 In addition, proteasome inhibitors
showed some efficacy against mixed lineage leukemia.126 Redu-
cing the rapid turnover of MLL-AF4 increased the cellular
concentration of this oncoprotein beyond a tolerable level and
induced apoptosis in ALL with t(4;11) translocations. Finally, an
interesting new approach targets wt-MLL because an intact copy
of MLL is essential to maintain the transformed state of MLL fusion
cells.127 The interaction of the MLL-C portion with WDR5, the
common subunit of all H3K4 methyltransferase complexes, can be
abolished by small molecule mimetics, an approach that may also
benefit leukemia with C/EBPα mutations.128,129

OUTLOOK
On the basis of our increasingly complete knowledge of the MLL
fusion-induced transformation mechanism, a variety of new
compounds and principles have been developed that have at
least the potential to stop MLL fusion-induced leukemogenesis.
MLL fusions do use common pathways that are also utilized in
normal transcription foreshadowing the potential for serious side
effects. However, the surprising example of DOT1L inhibitors
demonstrates that these are not predictable by biochemical
knowledge alone. The hope now lies in the success of clinical trials
testing these compounds in a real life setting. It is to expect that
first results will be available soon to bring some light into the
future of many patients suffering from MLL fusion induced
leukemia.
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