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A B S T R A C T

Recent human effort has been directed at expanding pervasive smart environments. For this, ubiquitous
computing technology is introduced to provide all users with any service, anytime, anywhere, with any device,
and under any network. However, high cost, long time consumption, extensive effort, and in some cases
irrevocability are the main challenges and difficulties for developing ubiquitous systems. Therefore, one solution
is to initially simulate, analyze, and validate practices prior to deploying sensing and computational devices in
the real world. Simulation, as a performance evaluation technique, has attracted attentions due to its speed,
cost-effectiveness, repeatability, scalability, flexibility, and ease of implementation. Moreover, emulation, as a
hybrid method, not only offers most simulation advantages but also benefits from tight control of implementa-
tion, as well as a certain degree of realistic results. Both simulators and emulators are significant tools for
enhancing the understanding of ubiquitous sensor networks (USNs) through testing and analyzing several
scenarios prior to actual sensor placements. In this regard, this paper surveys 130 simulation and emulation
environments and frameworks, which were originally designed and adapted for USN. Of these 130, the 22 that
have been widely used, regularly updated, and well supported by their developers are compared based on
multifarious criteria. Finally, several studies that had favorably compared the performance of simulators and/or
emulators are examined. We believe the present research findings will be helpful for students and researchers to
pick an appropriate simulator/emulator, and for software developers and those who are keen on producing their
own environment.

1. Introduction

Information technology (IT) has been penetrating into our lives to
become highly associated and interwoven with our daily activities.
Computers, as user interfaces, enable individuals to connect to the
cyber space and facilitate persons-to-persons and persons-to-machines
interactions. Due to the rapid advancement and development in IT,
cyber space has begun to resemble the real (physical) space more and
more (Fig. 1a), because cyber space is becoming a part of our real space
(e.g., augmented reality applications). The confluence of cyber space
and real space has generated a new space that has been termed
ubiquitous space (Fig. 1b). In such a smart space, which is a new
generation of IT, computers are fragmented and deployed into the
environment and computation is made available everywhere and
anywhere through ubiquitous computing (Weiser, 1993a). The word
ubiquitous is defined as “existing or being everywhere at the same
time” (Agrawal, 1995). The term ubiquitous computing (or ubicomp in

short) was firstly introduced by Weiser (1993b, 1993c), who believed
that in the near future humans will not interact with a single computer
at a time. Instead, they will encounter invisible networked computers
that are embedded in objects and are deployed in the environment. In
other words, ubicomp is seen as a technology by which sensors interact
and control the environments in an invisible manner without humans
intervention (Keefe and Zucker, 2003). All the elements are connected
smartly. Computing fades into the background, rather than dominating
the foreground. Ultimately, this calm technology will make any service
accessible for all users, anytime, anywhere, with any device, and under
any network. Ubicomp technology is becoming pervasive across diverse
fields ranging from the military to tourism and medicine to sport.

In computer science, a network is a mixture of communication
protocols and link technologies, traffic flows, and routing algorithms
(Rahman et al., 2009). Networks can be in wired and wireless forms.
Compared with wireless networks, wired networks have been used for
several years and can transfer data more safely and securely. However,
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wires are one of the challenges of such networks. It is arduous to
handle interwoven wires and power cords while preserving the network
flexibility. Therefore, the developments of wired networks remains
challenging due to wiring and rewiring bottlenecks (Patil and Hadalgi,
2012). With the rapid development of wireless technology, wireless
networks are becoming widespread. Compared with traditional wire-
less networks, wireless sensor networks (WSNs) have more through-
puts and productivity (Egea-Lopez, 2005; Ge, 2016).

The development of a ubiquitous system necessitates an infrastruc-
ture capable of supporting interrelated processing devices. Specifically,
this infrastructure must be able to handle tens to thousands of static
and mobile devices (known as sensor nodes or motes) where commu-
nication is performed by means of wireless transmission. Sensor nodes,
with respect to their capability, are responsible for monitoring and
collecting parameters (Kiess and Mauve, 2007), then processing the
data locally or transmitting the data to one or more routers at ultra-
high speed through ubiquitous sensor networks (USNs) (Dwivedi et al.,
2010; Shen and Bai, 2016). These nodes are physically tiny, normally
cheap, and operationally low-power devices built around a microcon-
troller and equipped with one or more sensors, memory, radio-
frequency transceiver, and a power source (Jevtić et al., 2009;
Curiac, 2016). They are deployed either stationary or movable but
work unobtrusively (Rashid and Rehmani, 2016).

WSN and USN differ noticeably. In WSN, sensors are spatially
distributed and responsible for monitoring environmental conditions
(e.g., temperature, noise, and motion), then transferring these data to
central stations in wireless manner. USNs are the convergence of
advanced invisible electronic devices, the Internet, and wireless net-
works, which not only inherit WSN features but also impose smartness
into the system (e.g., the temperature separately adjusts based on
individuals’ contexts). Hence, WSN can be considered an infrastructure
of ubiquitous computing (Kim and Kim, 2012). Although USN has a
broader scope, both WSN and USN may have their own meaning in
different countries and applications. In this paper, these terms convey
the same meaning and may be used interchangeably.

USN is the core of an ubicomp system. To have reliable, secure, and
durable USN communications, a large variety of protocols is introduced
in order to make use of the resources efficiently, routing the sensor
packets accurately, and preserving the wireless communications effec-
tively (Akyildiz, 2002; Yick et al., 2008). Also, while designing USN
communications, the following factors should be considered: topology
of system (i.e., the arrangement of the various elements (nodes, links,
etc.) of a computer network), energy consumption effects, scheduling
strategies (i.e., work specified by some means is assigned to resources
that complete the work), fault tolerance (i.e., continue working to a
level of satisfaction in the presence of faults), data synchronization (i.e.,
keeping multiple copies of a dataset in coherence with one another),
process synchronization (i.e., multiple processes are to join up at a
certain point, in order to reach an agreement or commit to a certain
sequence of action), communication range (i.e., the distance by which
nodes can transfer data effectively), and coordination protocols
(Leelavathi, 2013). Furthermore, given the constraints in sensor net-
works, such as limited resources (i.e., memory, power, quality of
service, and processing ability), decentralized communications (i.e.,
allocation of resources, both hardware and software, to each individual

node), multi-tasking (i.e., simultaneous execution of multiple applica-
tions), fault tolerance results (Leelavathi, 2013), re-programmability,
and security, the correlation of algorithms and protocols for these
networks initially needs to be tested and evaluated. Therefore, saving
time, cost, and effort requires the development of practices to be
initially simulated, analyzed, and validated prior to deploying sensing
and computational devices in the real world.

In this context, this research aims to introduce and compare the
available simulators and emulators environments and frameworks for
USN applications. The rest of this paper is organized as follows. In
Section 2, we discuss the performance evaluation techniques related to
USN, as well as their corresponding merits and demerits. Section 3
describes and compares the USN operating systems (OSs). Related
studies in reviewing USN simulation and emulation environments are
comprehensively presented in Section 4. In Section 5, an overview and
classification of 130 USN simulators’ and emulators’ environments and
frameworks are provided. Section 6 compares several USN simulators
and emulators based on multifarious criteria and follows with pros and
cons of the selected ones in tabular format. In Section 7, performance
results and conclusions of applying simulators and emulators from
previous studies are addressed. Potential future works and open issues
related to USN simulation and/or emulation are discussed in Section 8.
Finally, we summarize and conclude with final remarks in Section 9. All
the acronyms and abbreviations used in this paper along with their
definitions are provided in Table 1.

2. USN performance evaluation techniques

Several techniques have been introduced for performance evalua-
tion of protocols and algorithms in USN, including analytical modeling,
simulation, emulation, testbed, and real-world experimentation (Imran
et al., 2010). Analytical models are a set of equations that represent the
performance of a system. Although analytical models simplify the
modeling procedure, they cannot accurately represent the inherent
complexity of sensor networks (Krop, 2007). Simulation has been cited
as the most frequent and effective method for designing and developing
network protocols and algorithms (Imran et al., 2010). By using
simulators various scenarios of the real environment can be modeled.
Also, they provide the possibility of testing and debugging protocols at
any stage of design. Emulation, as a hybrid method, is a combination of
hardware and software components accompanying simulation possibi-
lities for network modeling (Kiess and Mauve, 2007). Emulators use

Fig. 1. Information Technology (IT) spaces: (a) convergence of cyber and real spaces, (b)
ubiquitous spaces produced by the confluence of cyber and real spaces.

Table 1
List of acronyms/abbreviations and corresponding definitions.

Acronym/Abbreviation Definition

IT Information Technology
WSN Wireless Sensor Network
USN Ubiquitous Sensor Network
OS Operating System
ABM Agent-based Model
GUI Graphical User Interface
GNU GPL Gnu's Not UNIX General Public License
BSD Berkeley Software Distribution
CRSN Cognitive Radio Sensor Network
API Application Programming Interface
IoT Internet of Things
CS Cyber Space
RS Real Space
a Academic
r Research
c Commercial
G Generic Network Simulator
C Code Level Simulator
F Firmware Level Simulator
A Algorithm Level Simulator
P Packet Level Simulator
I Instruction Level Simulator
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firmware as well as hardware to execute simulations in laboratory
conditions. Since emulators can be utilized in real environments, they
potentially perform precisely in comparison to simulators (Patil and
Hadalgi, 2012). Physical testbeds are frameworks for real implementa-
tion of protocols and algorithms. Testbeds not only allow remote
configuration, running, and monitoring experiments but also support
model, protocol, and algorithm evaluation. They have bridged the gap
between simulation and deployment of real devices (Kiess and Mauve,
2007). A comprehensive survey of current testbeds can be found in
Farooq and Kunz (2014), Chawda and Dwivedi (2014), Steyn and
Hancke (2011), Kim (2015), El-Darymli and Ahmed (2012), Horneber
and Hergenroder (2014). Real-world experimentation allows feasible
and actual sensor deployment practices. All the functions are set in the
reality and no incorrect or inaccurate presumption is made. This is the
ultimate stage of the validation of protocols and algorithms (Patil and
Hadalgi, 2012). Each of the aforementioned techniques has its own
pros and cons, which are summarized in Table 2.

USN performance evaluation techniques range from purely soft-
ware-based to solely hardware-based techniques. To clarify the nature
of these techniques, Fig. 2 depicts the contribution of each in terms of
the proportion of virtual and real spaces which they use. In this regard,
analytical models and simulators only perform in virtual space, and no

physical deployment is implemented in real space. For emulators and
testbeds this sounds different. These techniques apportion their
throughput to cyber and real spaces. In the former, cyber space has a
much great portion, while in the latter the majority of the implementa-
tion is dedicated to real space. Real deployment, as the latest evaluation
technique, fully concentrates on real space. All the implementation and
manipulation in this technique go through physical deployment
(Halder and Ghosal, 2016). Considering all the positive and negative
aspects of USN performance evaluation techniques, this research aims
to investigate simulation and emulation concepts and environments.
This will not only enable us to assess the nature, ability, and
productivity of USN simulators and emulators but also allows evaluat-
ing techniques that are performed purely in cyber space and those in a
mixture of cyber and real spaces.

The difference between agent-based modeling and ubiquitous com-
puting can be contentious. On the one hand, agent-based models (ABMs)
have been used diversely to study the complex interaction of entities of the
real world (Chen et al., 2008). Analytical models and simulators are the
prominent performance evaluation techniques used by ABMs. In other
words, ABMs are summarized in algorithms within simulators through
virtual space. By achieving a certain degree of confidence from agent-
based modeling, physical practices may be implemented into real space.

Table 2
Pros and cons of USN performance evaluation techniques.

Performance evaluation
techniques

Pros Cons

Analytical model ● Low cost
● Provides quick insight
● Provides initial evaluation

● Deduced results are not precise in terms of consumed energy, memory, processing
power, sheer number, unattended operation, and harsh environments of sensor nodes

Simulator ● Fast
● Low cost
● Ease of implementation
● Repeatable
● Supports tight controlling
● Scalable (supports large number of nodes)
● Supports dynamic and flexible modeling
● Supports heterogeneous operating systems

and programming languages

● Software may contain oversimplified protocols
● May not generate accurate result as real implementation
● Considers high degree of abstraction

Emulator ● Repeatable
● Supports tight controlling
● Provides certain degree of realism

● Cost per tested node is high
● Technical scalability bounds
● Low speed
● Limited scalability
● Platform dependence

Testbed ● Demonstrate applicability of protocols in real
environments

● Allows to validate prototypes
● Efficient in incrementing potentially long-

lived experiments
● Bridges the gap between simulation and

deployment of real devices

● Complex
● Costly
● Time consuming
● Limited scalability
● Difficult to repeat experiments
● Not replicable for hazardous environments

Real experiment ● Accurate and reliable results
● No hypotheses and abstraction of reality

● High cost of software, hardware, and manpower
● Difficult to repeat experiments
● Resource constraints
● Limited scalability
● Limited tight control

Fig. 2. The proportion of performance evaluation techniques from cyber space (CS) to real space (RS).
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ABMs, however, suffer from the deficiencies of analytical models and
simulators such as over simplification and high level of abstraction, to
name a few. On the other hand, ubiquitous computing takes place
everywhere and is not limited to boundaries. In contrast to ABMs,
ubiquitous computing is accomplished by real deployment of pervasive
computing devices in real space. However, agent-based modeling can be a
prerequisite step for ubiquitous computing. To clarify these terms, Fig. 3
demonstrates the stage of ABM and ubiquitous computing by means of
performance evaluation techniques.

There is a tradeoff between ABM and simulators. By ABM, a set of
rules is defined at agent level and their interaction is modeled
explicitly. Simulators, as experimental tools, typically convey a general
meaning and cover broader domain. They are more or less dependent
on the predefined rules in the software. However, the rules at ABM can
be imported to simulators in order to determine the behavior of the
whole system at a global level. This procedure is known as multi-agent
simulation (Wooldridge, 2009). Nevertheless, simulators cannot han-
dle agents and their corresponding rules.

2.1. Simulation

The imitation of the real-world's conditions and processes in the
course of time is known as simulation. By simulation, the system
behavior can be characterized and analyzed, what-if questions can be
raised, and systems with close similarity to real conditions can be
designed. Significant information regarding the feasibility, productiv-
ity, and efficiency of a system can be assessed by simulation prior to
real deployment of actual implementation (Banks, 1998). Normally, to
carry out a simulation, a model needs to be developed. Such a model
demonstrates the main properties, characteristics, and treatment of the
desired system/process. The model represents the system itself, whilst
the operation of the system in the course of time is shown by
simulation. However, it is not trivial to derive a trustworthy conclusion
from a simulation result (Mishra, 2012). Diverse steps exist during a
simulation and may vary with respect to the purpose of simulation.
These steps are not necessarily sequential and can be applied in non-
consecutive manner. Nevertheless, evaluating the performance of the
model requires cyclic revision and thorough evaluation of the function-
ality of the simulation. Fig. 4 outlines the simulation process and steps
as they are concisely described in Madani et al. (2010).

2.1.1. Simulation types
Three types of simulation have been mentioned in computer science

literature: Monte Carlo simulation, Trace-driven simulation, and
Discrete-event simulation. Monte Carlo simulation is a static simula-
tion or one without a time axis. It is used for modeling probabilistic
events whose characteristics do not vary over time. Also, Monte Carlo
simulation is utilized to appraise non-probabilistic expressions by
making use of probabilistic approaches. Trace-driven simulation uses
a trace as an input in the process of simulation. A trace is defined as a
time-ordered history of phenomena in a real system. In general, Trace-
driven simulation is used in analyzing or tuning resource management
algorithms. Discrete-event simulation, in contrast to continuous-event
simulation, uses a discrete-state model of the system for simulation
and is used due to the variable system state which is described by the
number of jobs at various devices. Time in discrete-event simulation
can be discrete or continuous (Jain, 2008). The last two simulation
types are widely used in USN due to their high performance and
scalability (i.e., possible number of static and mobile sensors).

2.1.2. Simulation execution
Simulators either run via synchronous or asynchronous modes.

Synchronous simulation (Peacock et al., 1979), on the one hand, is the
simplest simulation method and is a round-based technique: Firstly,
the global time increases by one unit via the framework. Secondly, the
nodes move with respect to their mobility models and the connections
are updated according to the connectivity model. Finally, this proce-
dure iterates over nodes (ETH, 2008). Synchronous simulation has
positive aspects, including ease of implementation, performance pre-
dictability, and low overhead (Xu and Chung, 2004). However, it tends
to suffer from weak load balancing and communication costs due to the
synchronization steps between rounds. In brief, synchronous simula-
tion is appropriate for simulations with short computational granula-
rities and great round parallelism (Shu, 2011). On the other hand,
asynchronous simulation is highly based on events. A number of
message and timer events are aligned in time intervals which should
take place in order. The events are picked and executed via the
framework repeatedly (ETH, 2008). Conservative simulation and
optimistic simulation are two types of asynchronous simulation.
Comparing these two simulation modes, synchronous simulation runs
slower than asynchronous simulation mainly because synchronous
simulation meets all the nodes including the ones that are nonfunc-
tional. This condition is not applied for asynchronous simulation. In
this mode, only the messages and timer events are processed and
unnecessary rounds are not implemented. Asynchronous simulation
mode does not support node movement because the continuity of
nodes mobility cannot be characterized as events (ETH, 2008).

2.1.3. USN simulation
In the USN domain, simulation is one of the most prevailing

appraisal procedures for the progression of wireless network proto-
cols and communication frameworks, and for assessing the available
ones in different scenarios (Singh et al., 2008). The simulators
designed for USN purposes are commonly designed to consider the
development constraints (e.g., node and communication). Based on
the nature of constraints, simulation tools are classified into (1)

Fig. 3. From agent-based modeling to ubiquitous computing.

Fig. 4. Phases in simulation studying (extending the textual descriptions of Madani et al. (2010)).
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oriented network, and (2) oriented node classes (Diallo, 2014).
Oriented networks concentrate on the wireless networks behavior
and the protocol stack of the operation. These simulators are initially
designed for network simulation and then extended for USN
purposes. Examples of this class of simulator are OMNet++, NS-2,
and J-Sim. Oriented node, as the second class of simulators,
concentrates on the functionality of a single node that contains
simple communication models. These simulators are particular to
targeted nodes and their OSs. Furthermore, these simulation tools
are able to determine the compatibility of a node with an application.
Examples of this class of simulator are TOSSIM, ATEMU, and SENS.
Two common aspects are considered by these two classes: (1) the
correctness of the simulation models, and (2) the suitability of a
particular tool to implement the model. Generally, a USN simulator
contains multiple modules, including (Carley, 2005):

• Node is a device composed of both hardware and software in USN.
Nodes components are actuator, sensor, processor, transceiver,
network protocol, energy resource, and application.

• Event represents substantial functionalities including the time in
which an event takes place.

• Medium module enables nodes to transmit signals and informs the
nodes regarding affective signals.

• Environment module enables the propagation of physical phenom-
ena, such as humidity, sound, temperature, and light to be modeled.

• Transceiver hardware determines the state of each sensor node (i.e.,
sleep, standby, receive, and transmit) as well as nodes power
consumption.

• Physical Protocol is known as the lowest layer of a network stack. It
enables services such as transceivers state alteration and packet
transmitting and receiving.

• MAC Protocol resides above the physical protocol. It is normally
installed on the node processor software. MAC protocol enables
services such as alteration of MAC layer state and defining protocol
parameters.

• Routing Protocol is located above the MAC protocol. It enables
messages to be routed between network hobs.

• Application Layer lies on the top of the network stack. It imple-
ments an USN application through connecting with lower layers,
sensors, and actuators.

2.1.4. USN simulator categories
Simulation can be applied at various abstraction levels, from

generic simulation, where only the most important features are
modeled, to highly detailed simulations, where particular aspects are
represented. A research contribution (Eriksson, 2009) has categorized
the simulators based on the level of abstraction.

• Generic Network Simulators concentrate on network simulation
more than node simulation. High level languages are used for
writing simulation applications, which is far removed from real
sensor language. Also, the same programming language is used for
applications and protocol codes. Most of the network simulators
provide simulation of network stack, MAC protocol, and radio
medium. Generic network simulators are effective for assessing
new communication protocols. However, they are less operational
for interoperability evaluation or exploring software bugs.

• Code Level Simulators make use of similar codes as are utilized in
actual sensor network nodes. So, they enable network stacks
executions which are presented for a particular OS. Code level
simulators not only enable the simulation of radio medium but also
provide sensor simulation. They are effective in the detection of
software bugs (e.g., deployable code or logical error), but they are
not appropriate for hardware ones (e.g., CPU architecture or
timing).

• Firmware Level Simulators consider both sensor node emulation

and firmware that run in the actual sensor network. Firmware level
simulators enable detailed simulation and produce accurate imple-
mentation results. Furthermore, they facilitate radio medium simu-
lation in addition to microprocessor and radio chip emulation.
Because of detail simulation, firmware level simulators execution
times are higher than those of generic network or code level
simulators.

Another study (Shu, 2011) has classified the simulators into
three major categories based on the level of complexity.

• Algorithm Level Simulators consider the logic, data structure, and
presentation of algorithms. Algorithm level simulators concentrate
on graph data structure to represent nodes connections rather than
detailed communication modeling. They enable large network
simulation but with no simple MAC layer protocol.

• Packet Level Simulators execute the physical layer and data link into
the network stack. Thus, they provide MAC protocols and radio
models to be implemented, which are the ones that are feasible for
propagation, collision, fading, and noise and wave diffraction.

• Instruction Level Simulators, also named emulators, provide CPU
execution modeling at the level of instructions.

2.1.5. Requirements for USN simulation
Given the multifarious features of USN in decentralized commu-

nication, such as multitasking, heterogeneity, numerous sensor nodes,
and limited resources, the design and development of a simulator is a
challenging issue (Du, 2010). In this context, six key factors for USN
simulation tools should be taken into consideration.

• Fidelity focuses on the faithfulness of simulation as well as predic-
tion of system behavior. In this regard, for radio channels, physical
environment, node system, and accurate models need to be devel-
oped.

• Scalability represents the supported number and density of sensor
nodes by a USN simulator. As USN applications require the
deployment of many sensor nodes, higher scalability of a simulator
is an advantage.

• Energy aware is a critical feature in USN simulators. Since sensor
nodes have restricted resources of energy (i.e., battery or solar cells),
power consumption and timing information need to be modeled
accurately via simulators prior to the real deployment of sensor
nodes.

• Extensibility enables users to modify the available modules or
import new ones to the simulator. A user-friendly interface with
high modularity aids users to add or alter the functionalities.

• Heterogeneity support enables the integration of a variety of
multifarious elements in USN simulation tools. This includes
modeling of various nodes and their interconnections.

• Graphical User Interface (GUI) facilitates the implementation of the
network topology and the composition of modules. It can also speed
up debugging, tracing, and visualization of the simulation results.

2.1.6. Simulation criteria assessment
There are multifarious criteria for assessing a simulator. Key

properties such as reusability and availability, performance and scal-
ability, support for rich-semantics scripting languages to define experi-
ments and process results, and graphical, debugging, and trace support
should be present in a good simulator (Egea-Lopez, 2005). Also, there
are diverse critical features for simulators which are categorized into
input, processing, output, support, and cost groups (Banks, 1991).
Each category comprises several criteria that are outlined and extended
in Table 3. Based on the design goals, architecture, and applications
abstraction level, a combination of these features can be present in a
simulator.
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2.2. Emulation

The tools which comprise of software and hardware to perform the
simulation are typically known as emulators. In an emulator, the actual
hardware (e.g., motes), beside simulated components (e.g., links and
traffic), aims to provide realistic performance for USN applications.
The emulator usually has high scalability for simultaneously emulating
several sensor nodes. Comparing to simulators, emulators are imple-
mented in real sensor nodes and run real application codes, which
improves their performance precision. Emulators are appropriate for
timing interactions among sensor nodes as well as for fine tuning
network level and sensor algorithms (Leelavathi, 2013).

In a research contribution (Kiess and Mauve, 2007), emulators are
categorized into physical layer and MAC layer classes. For physical
layer emulators, a real system is comprised of all the network layers
except the physical layer. These emulators rip the emitted radio signals
via nodes wireless interfaces in order to experience the effects that
radio waves may face in reality. On the contrary, inverse physical layer
emulators act the other way round, i.e., the overhead parts of the
network group are simulated and packets using real hardware are
transmitted. For the MAC layer emulator, a real system is comprised of
all the network layers except the physical layer and the MAC layer.

2.2.1. Taxonomy for USN simulation and emulation tools
Importing node models into network simulators has been an

evaluation approach of USN simulators. Two types of node model have
been introduced as (1) simulators node models, and (2) node
emulators. The latter relates to instruction level simulators of the
nodes microcontrollers, and is comprised of sensors and transceivers
extensions as well as diverse peripheral models. Node emulators
enable modeling of the network and inserting node models into
network simulators (Du, 2010). In this regard, USN evaluation is
categorized into the following four classes.

• Network simulators with node models focus on discrete-event
timing, radio medium, network modeling, and more or less the
sensor node sleep duty cycles.

• Network simulators with node emulators benefit from the merits of
both the network simulators and node emulators. A detailed net-
work model can be achieved through network simulators. Also,
accurate timing information of the tools can be gained by the node
emulator.

• Node system simulator with network models operates frequently at
the system level via hardware description languages, such as
SystemC. Such languages enable node hardware modeling in diverse
abstraction levels with various details, such a system level, transac-
tion level, and register transfer level.

• Node emulators with network models can execute the application
code directly. The node emulators can be classified as (1) instruction
set simulators for special microcontrollers, and (2) emulators
designed to emulate the execution of the application code of an OS.

2.2.2. Simulation and emulation output
Simulation and emulation outcomes can be represented as graphs,

text files, and animations of a trace file. Graphs facilitate comparison
among multiple protocols. Graphs can demonstrate the variation in
packet delivery amount, network delay and throughput, and several
other parameters for network performance assessment. The output text
files can be inputs for other simulators or programs. Ultimately, every
event that happens in the simulation process can be recorded via a
trace file (Christhu raj, 2013).

3. USN operating systems

As stated before, USN is comprised of several tiny sensor nodes that
communicate through wireless networks. The components of sensor
nodes hardware such as physical sensor, microprocessor/microcon-
troller, memory, radio transceiver, and battery need to be operated in
orderly and controlled manner. This process is conducted via an OS.
Thus, each sensor node requires an OS for controlling the hardware,
providing hardware abstraction to application software, and reducing
the gap between applications and the underlying hardware (Sohraby
et al., 2007). In other words, OS acts as a resource manager for
allocating resources correctly and effectively without any conflict
(Farooq and Kunz, 2011). For USN purposes, OSs must provide basic
functionalities, efficient power management mechanisms, field repro-
gramming mechanisms, and a configurable communication stack, as
well as the ability to abstract heterogeneous sensing hardware in a
uniform fashion and operate with limited resources (Fröhlich and
Wanner, 2008).

Phani et al. (2007) presented a classification framework for USN
OSs based on their important features, i.e., architecture, execution
model, reprogramming, scheduling, and power management. In addi-
tion, it proposed adequate OSs for various classes of USN applications.
Dwivedi et al. (2009) reviewed the architecture and performance
analysis of five USN OSs: TinyOS, Contiki, Mantis OS, SOS, and
Microsoft.NET Micro. Dong (2010) addressed the major challenges
in designing OSs and reviewed some important features of TinyOS,
Contiki, Mantis OS, SOS, Nano-RK, RETOS, and LiteOS OSs. Over the
past years, a variety of OSs has been introduced to facilitate developing
USN applications. A list of the identified ones is presented in
alphabetical order in Fig. 5. Reviewing all of them is beyond the scope
of this research, but for further information please refer to Phani et al.
(2007). Aside from the mentioned OSs, several studies have tried to

Table 3
Features of simulation software.

Input features Processing features Output features Environment features Cost features

● Interface to other software
● Input data analysis

capability
● Portability
● Syntax
● Input flexibility
● Modeling flexibility
● Modeling conciseness

● Execution speed
● Model size
● Material handling
● Random variant generators
● Reset
● Independent replications
● Attributes
● Global variables
● Programming
● Conditional routing
● Rare event simulation

● Standardized reports
● Customized reports
● Confidence intervals
● Business graphics
● File creation
● Tracing capability
● Data base maintenance
● Post processing and statistical

analysis

● Ease of use
● Ease of learning
● Quality of documentation
● Animation capability
○ Ease of development
○ Quality of picture
○ Smoothness of movement
○ Portability for remote viewing
○ CAD interface
● On-line help
● On-line tutorial
● Customer support
○ Training
○ Technical support
○ Update and enhancement

● Hardware requirement
● Time spent learning to use the

software
● Time required for building models
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enhance OSs capabilities in diverse dimensions, for instance, improv-
ing OS reliability (e.g., t-kernel, Harbor, and Neutron), enabling real-
time support (e.g., FIT), extending the programming model (e.g.,
protothreads and TOSThreads), and enabling reprogramming support
(e.g., Deluge, FlexCup, Stream, and Elon) (Dong, 2011).

4. Related works

Over the last decade or so, a plethora of researches has exploited
USN simulators and emulators, demonstrating the utility and signifi-
cance of these tools in USN applications. Consequently, a considerable
body of researches has specifically and generally overviewed, com-
pared, and evaluated different aspects of the USN simulation and
emulation environments/frameworks.

From the specific point of view, Merrett (2009) investigated the
energy-aware suitability of a number of USN simulators, and subse-
quently proposed a novel structure for simulating energy-aware USNs.
Zhu (2012) introduced and assessed the coverage and connectivity
features of popular USN simulation tools. Mekni and Moulin (2008)
provided background on a number of different sensor web simulation
tools along with the advantages and the drawbacks of each.
Accordingly, they proposed an evaluation methodology in order to
assess the capabilities of each simulation tool. Although the signifi-
cance of such specialized investigations is indubitable, the outcomes
cannot be extended to all the features of that distinguished tool. In
other words, USN applications are normally comprised of a set of
stages and implementations which a simulator/emulator should be
able to handle. The strength of a simulator/emulator in specific feature
does not guarantee that other features perform well too. Therefore,
several general aspects of simulators/emulators require to be evaluated
in parallel.

From the general standpoint, the majority of published survey
papers have investigated USN simulation and emulation environ-
ments/frameworks either in quantitative or qualitative manners, and
rarely a combination of these two can be seen in literature. By the
quantitative studies, the majority of researches have reviewed a large
number of simulators and/or emulators at naive levels by providing
short descriptions and general overviews of the tools so far. For
example, Dwivedi and Vyas (2011) glimpsed 63 simulators, 14
emulators, 19 data visualization tools, 46 testbeds, 26 debugging tools,
10 code-updating tools, and 8 network monitors in USN. Musznicki
and Zwierzykowski (2012) presented the state-of-the-art, main fea-
tures, and the GUI snapshots of the 35 widely used USN simulation
and emulation environments. Dwivedi and Vyas (2014) listed 74 USN
simulators and emulators accompanying their features and properties.
Although such studies are treated as overview articles, none of them
compared and evaluated simulation and/or emulation tools in depth.

By the qualitative studies, a few research contributions have studied
a limited number of simulators and/or emulators by providing
meticulous details and specific features of those tools. For example,
Karl (2005) deeply compared the NS-2 simulator and the TOSSIM
emulator in terms of models, visualization tool, architecture, event
scheduler, and components. Khan (2011) evaluated the interface,
accessibility and user support, availability of USNs modules, extensi-
bility, and scalability of seven (i.e., NS-2, OMNeT++, GloMoSim,
OPNET, SENSE, TOSSIM, GTSNetS) simulation and emulation envir-

onments. Stetsko et al. (2011) effort was toward examining the antenna
setting, radio propagation, noise, medium access control, topology, and
energy consumption modeling just in four (i.e., Castalia, MiXiM,
TOSSIM, WSNet) USN simulators and emulators. It is evident from
the studies alike the ones abovementioned that particular features of
limited number of tools have been normally assessed and there is no
necessity that two studies evaluate identical features of one simulator/
emulator. For example, both Karl (2005) and Khan (2011) studied NS-
2, albeit with different criteria. Khan (2011) and Stetsko et al. (2011)
studied TOSSIM with almost distinct properties.

Table 4 presents a chronological overview of both quantitative and
qualitative studies over the past decade. This summery is conducted by
reviewing the publicly available and published documents including
journal articles, book chapters, conference proceedings, theses, and
technical reports. Among the preceding contributions related to the
evaluation of simulators and emulators for USN, none of them have
profoundly focused on all the present developed/extended tools so far,
very few of them (e.g., Nayyar and Singh, 2015) have comprehensively
evaluated the prominent tools based on various criteria, and no
structured classification has been suggested for these tools in the
literature. Moreover, to the best of our knowledge, there is no research
contribution that has studied the performance assessment parameters
of simulators and emulators in USN scenarios. Furthermore, a few new
tools have recently released and some of the well-known traditional
simulators/emulators have been developed since past few years that
should be examined. Therefore, there is an overriding need to fill these
gaps in a new survey article.

This survey is different from the existing reviews in three salient
aspects. Firstly, this survey expands its investigation to all of the
(founded) USN simulation and emulation environments/frameworks
along with their derivatives and extensions produced so far.
Specifically, this article is not only focusing on the quantitative aspect
of simulation and emulation environments (i.e., 130 tools) but also is
qualitatively assessing the ones which have been widely used, regularly
updated, and well supported by their developers based on multifarious
criteria. It also suggests a categorization for these tools on general- and
specific-purpose basis. Secondly, this survey provides a general picture
on the-state-of-the-art evaluation criteria for both simulators and
emulators. This consequently determines which prominent tool is
adequate for what kind of purpose (i.e., academic, research, or
commercial). Thirdly, this survey proposes a number of performance
assessment parameters for simulators and emulators in ubiquitous
simulation and emulation scenarios.

5. Overview of USN simulators and emulators

Numerous tools have been developed for simulating and emulating
USN. They vary in terms of architecture, features and characteristics,
modeling methodology, and performance (ZVKOVIC, 2014). Utilizing
or developing a simulator/emulator necessitates becoming familiar
with the available tools, evaluating their pros and cons, and choosing
the appropriate one for the application. This section, therefore,
introduces 130 USN simulation and emulation environments and
frameworks, as well as their derivatives, which were originally
designed and adapted for USN. The USN simulators and emulators
provided in the following are the ones that we found in the literature at

Fig. 5. List of sensor network OSs.
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Table 4
Contribution of the reviewed literature in USN simulators and emulators.

Reference Year Simulators and/or Emulators Description

(Khemapech et al., 2005) 2005 NS-2, SENSE, GloMoSim, SENS, SensorSim, ATEMU, OMNeT++,
Prowler, J-Sim, Shawn, TOSSIM, OPNET, TOSSF

Properties

(Egea-Lopez, 2005) 2005 NS-2, OMNeT++, J-Sim, NCTUns2.0, JiST/SWANS, GloMoSim,
SSFNeT, Ptolemy II, TOSSIM, EmStar/EmSim/EmTOS, SENS,
ATEMU, Prowler/JProwler, SNAP

Overview and implementation issues

(Karl, 2005) 2005 NS-2, TOSSIM Models, visualization, architecture, components
(Egea-Lopez, 2006) 2006 SSF, SWANS, J-Sim, NCTUns2.0, NS-2, OMNeT++, Ptolemy, SNAP,

ATEMU, EmStar, TOSSIM
Models, type of visualization

(Neves et al., 2007) 2007 NS-2, J-Sim, SENSE USN application in medicine, overview, and comparison
(Mekni and Moulin, 2008) 2008 NS-2, OPNET, OMNeT++, J-Sim, NCTUns, JiST/SWANS,

GloMoSim, SSFNet, TOSSIM, TOSSF, TYTHON, EmStar/EmSim/
EmTOS, ATEMU, SENSE, SENS, Prowler/JProwler, ModelNet/
Nisnet, SwarmNet/Shawn, Glonemo, Avrora

Evaluation in terms of reusability and extensibility, performance
and scalability, operating system portability, semantics scripting
languages, realism level of virtual environment, graphics, and
debug and trace

(Singh et al., 2008) 2008 NS-2, GloMoSim, OPNET, SensorSim, J-Sim, SENSE, OMNeT++,
Sidh, SENS, TOSSIM, ATEMU

Overview

(Köksal, 2008) 2008 J-Sim, OMNeT++, NS-2, OPNET Comprehensive overview, features, and comparison
(Lessmann, 2008) 2008 J-Sim, OMNeT++, NS-2, ShoX Overview, installation, implementation and documentation, and

visualization and statistics
(Kuorilehto et al., 2008) 2008 WISENES, SensorSim, sQualNet, NRL simulator, SWAN, SENSIM,

EYES, J-Sim, VisualSense, Prowler, H-MAS, SENSE, TOSSIM,
ATEMU, SENS, TOSSF, Em* EmSim, SNAP

Comparison table

(Wei) 2009 NS-2, SensorSim, J-Sim, SENS, TOSSIM, ATEMU, Avrora, EmStar,
COOJA

Overview and comparison

(Mehta, 2009) 2009 NS-2, GloMoSim, J-Sim, OMNeT++, OPNET, QualNet Comparison table
(Korkalainen, 2009) 2009 NS-2, OMNeT++, Prowler, TOSSIM, OPNET Overview and comparison table
(Jevtić et al., 2009) 2009 NS-2, Castalia, TOSSIM, COOJA/MSPSim Overview and comparison table
(Madani et al., 2010) 2010 NS-2, OMNeT++, NesCT, PAWiS, GloMoSim, OPNET, SENSE,

Ptolemy II, J-Sim, Cell-DEVS, GTNetS, SystemC, NCTUns2.0, JiST/
SWANS, SSFNet

Overview

(Kellner et al., 2010) 2010 GloMoSim/QualNet, OPNET, TOSSIM, OMNeT++ (Mobility
Framework, MiXiM, Castalia, INET Framework, NesCT), NS-2
(SensorSim), Avrora, J-Sim, ATEMU, EmStar, SENS, SENSE, Shawn

Overview and comparison table

(Imran et al., 2010) 2010 SensorSim, Nsrlsensorsim, Castalia, VisualSense, Viptos, Sidh,
Prowler/JProwler, SENS, TOSSIM, ATEMU, Avrora, SENSE, EmStar

Overview

(Khan, 2011) 2011 NS-2, OMNeT++, GloMoSim, OPNET, SENSE, TOSSIM, GTSNetS Overview, comparison table, and performance analysis (CPU time
and network lifetime)

(Moravek et al., 2011) 2011 NS-2, SensorSim, NRL, OMNeT++, SenSim, Castalia, MixiM, PAWiS,
J-Sim, SENSE

Overview

(Stehlık, 2011) 2011 NS-2, OMNeT++ (MiXiM), Worldsens (WSim and WSNet), TOSSIM,
COOJA, OPNET, J-Sim,, TRMSim-WSN, WSNim

Comprehensive overview and comparison table

(Sundani, 2011) 2011 NS-2, TOSSIM, GloMoSim, UWSim, Avrora, SENS, COOJA, Castalia,
Shawn, EmStar, SENSE, VisualSense, JProwler

Overview, comparison table, and performance analysis (CPU time
and memory usage)

(Stetsko et al., 2011) 2011 Castalia, MiXiM, TOSSIM, WSNet Focusing on topology, antenna, radio propagation, noise, radio,
medium access control and energy consumption modeling

(Dwivedi and Vyas, 2011) 2011 Simulators: Network Simulator (NS-2 and NS-3), Mannasim,
TOSSIM, TOSSF, PowerTOSSIM Z, ATEMU, COOJA, GloMoSim,
QualNet, SENSE, VisualSense, AlgoSenSim, GTNetS, OMNeT++,
Castalia, J-Sim, JiST/SWANS, JiST/SWANS++, Avrora, Sidh,
Prowler, JProwler, LecsSim, OPNET, SENS, EmStar, EmTOS, SenQ,
SIDnet-SWANS, SensorSim, Shawn, SSFNet, Atarraya, NetTopo,
WiseNet, SimGate, SimSync, SNetSim, SensorMaker, TRMSim-WSN,
PAWiS, OLIMPO, DiSenS, WISDOM, Sinalgo, Sensoria, Capricorn,
H-MAS, Starsim, Motesim, SNSim, SNIPER-WSNim, SNAP, SimPy,
Mule, CaVi, Ptolemy, Maple, WISENES, WSNet-Worldsens, WSim,
LSU Sensor Simulator, WSNGE, TikTak. Emulators: VMNET,
ATEMU, EmStar, TOSSIM, AvroraZ/Avrora, Freemote, EmPro,
NetTopo, OCTAVEX, SENSE, UbiSec & Sens, Emuli, MSPSim,
MEADOWS

Short description

(Paul, 2012) 2012 ATEMU, Avrora, Castalia, JProwler, SENSE Short description
(Kumar, 2012) 2012 GloMoSim/QualNet, OMNeT++, NS-2, OPNET, J-Sim Overview and comparison
(Mishra, 2012) 2012 NS-2, OMNeT++, J-Sim, GloMoSim, SSFNeT, EmStar/EmSim/

EmTOS
Overview

(Abuarqoub, 2012) 2012 SensorSim, TOSSIM, TOSSF, GloMoSim, QualNet, OPNET, EmStar,
SENS, J-Sim, Dingo, NS-3, Shawn

Overview and comparison table

(Kumar and Goyal, 2013) 2012 NS-2, GloMoSim, J-Sim, OMNeT++, JiST/SWANS, NS-3, SENS,
Prowler, TOSSIM, ATEMU, Sidh, OPNET, EmStar

Properties and limitations

(Lahmar et al., 2012) 2012 NS-2, NS-3, PowerTOSSIM, PowerTOSSIM Z, OMNeT++, MATSNL Features and comparison table
(Patil and Hadalgi, 2012) 2012 NS-2, TOSSIM, OMNeT++, J-Sim, ATEMU, Avrora, OPNET, Castalia Overview, merits and limitations, and comparison table
(Musznicki and

Zwierzykowski, 2012)
2012 ATEMU, Avrora, EmSim, Freemote Emulator, MSPSim, TOSSIM,

VMNet, WSim, Atarraya, Prowler, Wireless Sensor Network
Localization Simulator, WSNet, AlgoSenSim, NetTopo, SENSE,
Sensor Security Simulator (S3), Shawn, SIDnet-SWANS, Sinalgo,
TRMSim-WSN, Wireless Sensor Network Simulator, WSNimPy,
COOJA, J-Sim and Sensor Network Package, SENS, WSN-Sim, NS-2,

Overview and GUI

(continued on next page)
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the time of this writing. The literature review for tool selection was
based on the online publications (i.e., original and survey articles, book
chapters, conference proceedings, thesis, and technical reports) as well
as the tool developers’ websites and tutorials. Specifically, these tools
are divided into simulators and emulators. Then, simulators are
classified into general-purpose and specific-purpose classes (see
Fig. 6). General-purpose tools are those that already existed before

the emergence the USN concept. The functionality of the simulator/
emulator was then extended and adapted for USN purpose. In contrast,
specific-purpose class tools are the new simulating/emulating tools
that have been created solely for USN purpose. Of these 130 simulators
and emulators, the 22 that have been widely used, regularly updated,
and well supported by their developers are compared based on multi-
farious criteria.

Table 4 (continued)

Reference Year Simulators and/or Emulators Description

Mannasim, NRL SensorSim, RTNS, OMNeT++, Castalia, MiXiM,
NesCT, PAWiS, SENSIM (SensorSimulator), Ptolemy II, Viptos,
VisualSense

(Ali, 2012) 2012 GloMoSim/QualNet, OPNET, TOSSIM, OMNeT++, MiXiM, Castalia,
INET Framework, NesCT, NS-2, Avrora, J-Sim, ATEMU, EmStar,
SENS, SENSE, Shawn, MATLAB/SIMULINK Software

Overview and comparison table, performance analysis of USN in
MATLAB

(Cheour, 2013) 2013 NS-2, TOSSIM, OMNeT++, J-Sim, ATEMU, Avrora, SENSE,
SensorSim

Overview

(Mieyeville, 2012) 2013 NS-2, NS-3, OMNeT++, TOSSIM and its derivatives, Avrora,
Worldsens, WISENES, IDEA1

Overview

(Chhimwal et al., 2013) 2013 NS-2, NS-3, TOSSIM, J-Sim, Castalia, QualNet Overview, merits and demerits
(Leelavathi, 2013) 2013 NS-2, J-Sim, OPNET, OMNeT++, GloMoSim, Ptolemy II, JiST/

SWANS, NCTUns2.0, SSFNet, TrueTime toolbox (MATLAB),
TOSSIM, PowerTOSSIM, TOSSEF & TYTHON, EmStar/EmSim/
EmCee, ATEMU, Avrora, Prowler/JProwler, UWSim, Shawn,
COOJA/MSPSim

Comparison table and simulator analysis

(Gupta, 2013) 2013 NS-2, NS-3, OMNeT++, J-Sim Overview, architecture, advantages and limitations, and
comparison table

(Chand et al., 2013) 2013 NS-3, OPNET, GloMoSim, MiXiM, Castalia, J-Sim, Avrora Overview
(Sethi et al., 2012) 2013 NS-2, TOSSIM, GloMoSim, UWSim, J-Sim, SENS, COOJA, SENSE,

VisualSense, JProwler, Shawn, Castalia
Comparison table

(Chandrasekaran et al.,
2013)

2013 NS-2, TOSSIM, GloMoSim, QualNet, OPNET, J-Sim, OMNeT++ Overview, architecture, merits and limitations, and comparison
table

(Khalifa, 2013) 2013 NS-2, NS-3, OMNeT++, Wireshark (Ethereal), OPNET, GloMoSim/
QualNet, J-Sim, GNS3

Comparison table

(Bhatt and Kathiriya, 2013) 2013 J-Sim, OMNeT++, NS-2, OPNET Overview, GUI, comparison table of simulation features
(ZVKOVIC, 2014) 2014 NS-2, NS-3, GNS3, Wireshark (Ethereal), OPNET, OMNeT++,

GloMoSim/QualNet, J-Sim, JiST/SWANS, VisualSense, Ptolemy II,
TOSSIM, Castalia, EmStar, ATEMU, SENSE, SENS, JProwler,
Avrora, COOJA, Shawn

Overview, comparison tables, advantages and disadvantages

(Sahin and Ammari, 2014) 2014 NS-2, OMNeT++, J-Sim, OPNET, TOSSIM Comprehensive overview, features, components, comparison
tables, and shortcomings

(Dhviya and Arthi, 2014) 2014 NS-2, EmStar, GloMoSim, Shawn, UWSim, VisualSense, J-Sim,
OMNeT++, Aqua-Sim, QualNet

Underwater USN overview, merits and demerits, and comparison
table

(Dwivedi and Vyas, 2014) 2014 Simulators: Network Simulator (NS-2 and NS-3), Mannasim,
TOSSIM, TOSSF, PowerTOSSIM Z, ATEMU, COOJA, GloMoSim,
QualNet, SENSE, VisualSense, AlgoSenSim, GTNetS, OMNeT++,
Castalia, J-Sim, JiST/SWANS, JiST/SWANS++, Avrora, Sidh,
Prowler, JProwler, LecsSim, OPNET, SENS, EmStar, EmTOS, SenQ,
H-MAS, SensorSim, Shawn, NetTopo, Atarraya, SSFNet, WiseNet,
SimGate, SimSync, SNetSim, SensorMaker, TRMSim-WSN, PAWiS,
OLIMPO, DiSenS, WISDOM, Sinalgo, Sensoria, Capricorn, SIDnet-
SWANS, Starsim, SNSim, SNIPER-WSNim, SNAP, SimPy, Mule,
CaVi, Ptolemy, Maple, WISENES, WSNet-Worldsens and WSim, LSU
Sensor Simulator, WSNGE, TikTak, Motesim, Boris, SmartSim,
WSNim, EnergySim, MOB-YOSSIM, AEON, Sensor Security
Simulator (S3), Wireless Sensor Network Localization Simulator, Xen
WSN Simulator, UWSim, Network in a box (NAB)

Overview, categorization of USN-specific simulators

(Roy and Jain, 2015) 2015 QualNet, NS-2, NS-3, OPNET modeler, Net Sim, OMNeT++, J-Sim Overview
(Nayyar and Singh, 2015) 2015 NS-2, NS-3, OMNeT++, J-Sim, Mannasim, SensorSim, NRL

SensorSim, NCTUns, SSFNet, GloMoSim, QualNet, sQualNet,
OPNET, SENSE, DRMSim, NetSim, UWSim, VisualSense, Viptos,
Ptolemy II, SENS, Shawn, SIDnet-SWANS, SIDH, NetTopo, WSim/
Worldsens/WSNet, WSN Localization Simulator, Prowler, MATLAB,
PiccSIM, LabVIEW

Overview, architecture, interface/GUI, and comparison table

(Minakov, 2016) 2016 NS-2, NS-3, Castalia, MiXiM, PAWiS, WSNet, DANSE, NetTopo,
PASES, Sense, TOSSIM, Avrora, COOJA/MSPSim, VIPTOS

Overview, categorization of simulators, comparative study

(Fahmy, 2016) 2016 NS-2, NS-3, GloMoSim, OPNET, OMNeT++, TOSSIM, ATEMU,
Avrora, EmStar, SensorSim, NRL SensorSim, J-Sim, Prowler/
JProwler, SENS, SENSE, Shawn, SenSim, PAWiS, MSPsim, Castalia,
MiXiM, NesCT, SUNSHINE

Overview, component, structure
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5.1. USN simulation environments

This sub-section concisely introduces 41 general-purpose USN
simulators and their derivatives as well as 66 specific-purpose ones.
Meanwhile, the corresponding designer/developer, the latest version,
and the software link (if any) are provided for general- and specific-
purpose simulation tools in Tables 5 and 6, respectively.

5.1.1. General-purpose simulators

• Ptolemy II and its derivatives

1. Ptolemy II is a set of Java packages which support various models
of simulation, including continues time, dataflow, and discrete-
event. They are an actor-oriented and component-based design of
J-Sim (described later as tool no. 33) (Ptolemy, 2017).

2. Viptos (Visual interface between Ptolemy and TinyOS) is a graphi-
cal development and simulation environment for TinyOS-based (a
component-based, event-driven runtime environment) USN. It is
built on Ptolemy II and TOSSIM-an interrupt-level discrete-event
simulator for homogeneous TinyOS networks (Cheong et al., 2005;
Viptos, 2017).

3. VisualSense is a visual model for ubiquitous and sensor network
systems. It was built on Ptolemy II, and preserves the semantics of
discrete event, although explicit wires are not required because of
changing the mechanism of connecting components (Baldwin, 2005;
VisualSense, 2017).

• NS-2 and its derivatives

4. NS-2 (Network Simulator-2) is a flexible tool which enables the
performance of various protocols to be investigated in different
configurations and topologies. In this environment a network of
sensors can be built so that protocols and characteristics are
available in the real world (Downard, 2004; NS-2, 2017).

5. Mannasim is a module for NS-2 that aims at USN simulation. It
provides a sensing model, several application models, several sensor
network specific protocols such as LEACH routing protocol, and
directed diffusion (Mannasim, 2017).

6. NRL Sensorsim is an extension of NS-2 and facilitates sensor
network simulation. It provides the opportunity to simulate and
detect parameters of carbon monoxide concentration, seismic activ-
ity, or audible sound. Wireless sensors, phenomena sources, and
gateways can constitute the network (Musznicki and Zwierzykowski,
2012; Sethi et al., 2012; NRL Sensorsim, 2017).

7. RTNS (Real Time Network Simulator) software simulates mechan-
isms of OSs for applications in distributed networks. It combines
NS-2 environment and Real Time Operating System SIMulator
(RTSim) to simulate CPU in real time (Pagano et al., 2007;
Pagano, 2010; RTNS, 2017).

8. TRAILS (Toolkit for Realism and Adaptively In Large-scale
Simulation) is an extension of NS-2. TRAILS adds functionalities
into NS-2 and optimizes its operation. It facilitates the execution of
advanced mobility patterns, obstacle presence and disaster scenar-
ios, and failures injection that can dynamically alter over the
simulation execution (Chatzigiannakis, 2008).

9. PiccSIM (Platform for integrated communications and control
design, Simulation, Implementation and Modeling) is a simulation
platform for (wireless) networked control systems that uses NS-2
and MATLAB/SIMULINK tools. It aims to deliver a complete toolset
for the design, simulation and implementation of wireless control
systems (PiccSIM, 2017).

• NS-3 and its derivative

10. NS-3 is a discrete-event network simulator for internet systems
targeted primarily for research and educational use. Although the
NS-2 simulator is popular, the need for performing core refactor-
ing, integration, software and documentation maintenance, and
simulator extension necessitated a new simulator, NS-3. In general,
NS-3 is introduced to solve problems present in NS-2. Indeed, NS-
3 is not backward compatible with NS-2; it is built to replace NS-2.
Specifically, the main contributions that NS-3 can offer comparing
with NS-2 are as follows. In NS-2, bi-language system make
debugging complex (C++/Tcl), but for NS-3 only knowledge of C
++ is enough (single-language architecture is more robust in the
long term). NS-3 provides a lower base level of abstraction
compared with NS-2, allowing it to align better with how real
systems are put together. Some limitations found in NS-2 (such as
supporting multiple types of interfaces on nodes correctly) have
been remedied in NS-3. NS-3 provides features not available in NS-
2, such as an implementation code execution environment (allow-
ing users to run real implementation code in the simulator). NS-3
has better scalability than NS-2. NS-3 has an emulation mode,
which allows for the integration with real networks. In contrast,
NS-2 is preferred by several users in the community due to the
following reasons. Since NS-3 is under development, there is very
limited number of models and contributed codes in NS-3 in
comparison with NS-2; NS-3 still requires strong community
participation to improve it. NS-3 is a new simulator that does not
support the NS-2 APIs. Owing to NS-2's long history, it has a more
diverse set of contributed modules than does NS-3. However, NS-3
has more detailed models in several popular areas of research
(including sophisticated LTE and WiFi models). Picking NS-2 or
NS-3 relates to the availability of models and the familiarity of
users with the tools; however, the tool that is being actively
developed has the priority (i.e., NS-3) (Henderson, 2006; NS-3,
2017).

11. Symphony is a simulation framework in association with NS-3, by
which the entire processes of actual hardware and software can be

Fig. 6. Classification of simulation and emulation environments/frameworks.
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modeled. It allows real code adjustment as well as hardware
components performance evaluation on applications and protocols
in large-scale USN systems (Riliskis and Osipov, 2015; Symphony,
2017).

• OMNeT++ and its derivatives

12. OMNeT++ (Objective Modular Network Testbed in C++) is a
component-based and modular simulation which is designed to
simulate communication networks and other distributed systems
(Mallanda, 2005; OMNet++, 2017). It attempts to fill the gap
between open-source software (e.g., NS-2) and expensive commer-
cial alternatives (e.g., OPNET) (Varga and Hornig, 2008).

13. SENSIM (SensorSimulator) is a large-scale sensor network simu-
lator for OMNet++ to compute energy consumption. It is based on
a parallel discrete-event system. It integrates common sensor
network protocols, including MAC, network, and application as
well as an adapted architecture for future protocols (Cheour, 2013;
Mallanda, 2005; SENSIM, 2017).

14. LSU SensorSimulator is a customizable framework for USN
simulation. It tests and investigates robustness, scaling, network-
ing, and phenomenological issues to find efficient algorithms for
distributed sensors (Suri, 2005).

15. Castalia is an application- and discrete-level simulator designed
on the top of OMNeT++. It is designed to evaluate various
platforms because it is highly parametric and can simulate a wide
range of platforms (Pediaditakis et al., 2007; Castalia, 2017).

16. SolarCastalia or Solar Energy Harvesting Wireless Sensor
Network Simulator is a USN simulator based on Castalia which
uses solar energy as the energy source. It provides high energy
density, high conversion efficiency, and periodicity (Yi et al., 2014).

17. MiXiM (mixed simulator) is a cross-level OMNeT++ modeling
framework created for mobile and fixed wireless networks. It
consists of basic components including, environment, connectivity,
reception and collision, protocol library, and experiment. It also
supports visualization, monitoring, and debugging in the simula-
tion process (MiXiM, 2017).

18. NesCT is a translator from the NesC (Network embedded system C
language) programming language to C++ classes for OMNeT++.
NesC is an event- and component-driven application simulator. In
this way all features of OMNeT++ and Mobile Framework (MF) can
be used for simulation (NesCT, 2017).

19. PAWiS (Power Aware Wireless Sensors) simulator was developed
to facilitate the design and simulation of USN. It is based on the
OMNeT++ simulator and the idea of decomposing the node into
functional blocks which can be hardware or software (Weber et al.,
2007; PAWiS, 2017).

• GloMoSim and its derivatives

20. GloMoSim (Global Mobile system Simulator) is a library for
parallel simulation of large-scale ubiquitous networks in which
each library module simulates a particular wireless protocol in the
protocol stack (Zeng et al., 1998; GloMoSim, 2017).

21. QualNet is a discrete-event simulator and a commercial extension
of GloMoSim for scalable network technologies (Siraj et al., 2012).
It has been enhanced over during time by the inclusion of satellite,
cellular, and new sensor network library (Varshney, 2007).
Considering all the QualNet functionalities plus a real-time net-
work emulation interface, EXata is introduced which enables live
hardware integration in a seamless manner with the simulated
virtual network models, and live applications to run across the
virtual environment (QualNet, 2017). sQualNet is a scalable sensor
network simulation framework based on QualNet (Vasu, 2005).

22. SenQ is a scalable simulation and emulation framework for sensor
networks based on QualNet. It is efficient and flexible for different

applications and protocols, and can model battery power and clock
drift accurately (Varshney, 2007).

• Worldsens and its derivative

23. Worldsens is an integrated environment for developing USN
applications. It can be used for debugging and performance
evaluation because of accurate timing. It consists of two simulators:
(1) WSim; and (2) WSNet, which may perform independently or in
conjunction during application execution (Fraboulet et al;
Worldsens, 2017).

24. WSNet is an event-driven and large-scale USN simulator (Dwivedi
and Vyas, 2011). It is designed to simulate the environment with a
concentration on physical measures and simulates components of
the nods and properties of the radio channel (WSNet, 2017).

• Other general-purpose simulators

25. AlgoSenSim is an algorithm-oriented framework that is used to
simulate network-specific algorithms like localization, distributed
routing, and flooding. Its main purpose is to facilitate the im-
plementation and quality analysis of new algorithms (AlgoSenSim,
2017).

26. NetTopo is an algorithm level, large-scale network simulator
which mainly focuses on USN data structure, logic, and presenta-
tion of the algorithms. It was developed in Java and provides both
simulation and visualization functions (Shu, 2011; NetTopo, 2017).

27. SENSE (Sensor Network Simulator and Emulator) is a compo-
nent-oriented general-purpose network and application level simu-
lator. It supports an energy model that is compatible with USN. The
most important point about SENSE is its balanced consideration of
modeling methodology and simulation efficiency (Chen, 2005;
SENSE, 2017).

28. JiST/SWANS (Java in Simulation Time) is a discrete-event
simulation system that embeds simulation time into a virtual
machine. It is efficient and transparent within a standard language
(Barr et al., 2004). SWANS (Scalable Wireless Ad hoc Network
Simulator) is a scalable wireless network simulator built atop the
JiST platform. It was designed because existing network simulation
tools are insufficient for current research needs, and its perfor-
mance serves as a validation of the virtual machine-based approach
to simulator construction (JiST/SWANS, 2017).

29. Sinalgo (Simulator for Network Algorithms) is an algorithm-based
simulator that offers a message passing view of the network which
captures well the view of the network device. It concentrates on the
verification and testing of network algorithms (Sinalgo, 2017).

30. SimPy is a process-oriented discrete-event simulator. It may be
utilized for asynchronous networking or to implement multi-agent
systems (with both simulated and real communication) (SimPy,
2017).

31. MSPSim is an extensible simulator for the MSP430 microcon-
troller at the instruction-level. It is designed to be used in a larger
sensor network as a component to support cross-level simulation
(Eriksson, 2007; MSPSim, 2017).

32. COOJA (COntiki Os JAva) is a cross-level simulator and simulates
at many levels of the system simultaneously. It is interchangeable
and extensible to change all the levels of the system, and combines
low- and high-level simulation of sensor node hardware and
behavior in a single simulation (Osterlind, 2006; COOJA, 2017).

33. J-Sim (formerly JavaSim) is component-based software architec-
ture: ACA-the autonomous component architecture-and a compo-
sitional network simulation and emulation environment.
Components are the basic entities in the ACA which communicate
with one another through their ports (Sobeih, 2006; J-Sim, 2017).
G-JSIM is a GUI tool for USN simulations under J-Sim platform
(Neves et al., 2008).
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34. NetSim is a network-based environment for modeling and simu-
lating discrete-event applications to simulate Cisco Systems net-
working hardware and software. NetSim has been widely used for
network design validation in sensor deployment (McGrath, 2004;
NetSim, 2017). sNetSim can be utilized for analyzing data packet
delivery, probability of discarded packet, and other parameters in
USN.

35. OPNET (Optimum Network Performance) Modeler or Riverbed
Modeler was the first commercial network simulator developed in
1987. It is a discrete-event, object-oriented, and general-purpose
network simulator. It is well-known because of its capability to
provide accurate modeling of the radio transmission (Patil and
Hadalgi, 2012; OPNET, 2017). The educational version of it is
called OPNET IT Guru (OPNET IT Guru, 2017).

36. SSFNeT is a number of Java network models built over the
Scalable Simulation Framework (SSF). It is difficult to interact
with a simulator because of a command-line user interface; it is
therefore only suitable for static applications, but does provide the
capability of parallel simulation (SSFNeT, 2017).

37. NCTUns (National Chiao Tung University Network Simulator) is
an event-driven simulator based on a Linux OS. It enables several
simulations of various protocols used in both wired and wireless IP
networks. NCTUns provides high simulation speed when traffic
load is light and can be turned into an emulator by slowing down
and synchronizing the virtual clock with that in real life (Wang
et al., 2007; NCTUns, 2017). The NCTUns 6.0 version supports
large-scale microscopic wireless vehicular network (WVN) simula-
tion (Wang and Lin, 2010).

38. SystemC is a modeling platform including libraries to support
design abstractions for modeling hardware, software, and networks
with the same language (Fummi, 2007; SystemC, 2017).

39. Wireshark (formerly Etherreal) is a network simulator and
analyzer capable of USN modeling and evaluation. It is based on
the packet analysis as well as applicable for trouble shooting,
examining network security, and the development of software and
communication protocols. It supports over 750 protocols, which
may be exceeded due to its open-source specification (Orebaugh
et al., 2006; Wireshark, 2017).

40. MATLAB SIMULINK can be used as an USN simulator
(MATLAB SIMULINK, 2017). The unique feature of this simula-
tion tool is its capability to determine the effects of different
channel parameters such as signal to noise ratio, attenuation, and
interference (Ali, 2012; Ali et al., 2010). The authors of a research
contribution (Harding et al., 2007) have developed an interface
between MATLAB and OPNET to perform much stronger simula-
tion.

41. LabVIEW is a development environment suitable for visualizing,
creating, and coding engineering systems. It enables USN simula-
tion. By programming sensor nodes, an individual can customize
the node behavior to increase acquisition performance, interface
directly with sensors, and extend battery life (LabVIEW, 2017).

5.1.2. Specific-purpose simulators

• Topology control simulators

42. Atarraya is a discrete-event simulation tool to test the implemen-
tation of topology control protocols in USN. This simulator
encompasses structures for designing topology construction and
maintenance protocols (Wightman and Labrador, 2009; Atarraya,
2017).

43. Cell-DEVS (Cell-Discrete-Event systems Specifications) is a dis-
crete-event simulator that is used to model systems that can be
represented as cell spaces. It is an efficient simulation model to
implement topology control algorithms for a large-scale USN (Qela
et al., 2009; Cell-DEVS, 2017).

• Agent-based simulators

44. ABMQ (Agent-Based Modeling and Simulation) is a platform
based on Qt Application Framework, appropriate for modeling
and simulation of self-organization in wireless networks, and
particularly Mobile Ad Hoc Networks (MANETs)
(Noormohammadpour, 2013).

45. MASON (Multi-Agent Simulator Of Neighborhoods/Networks) is
a rapid discrete-event multi-agent simulation library written in
Java. It is comprised of a model library, and 2D and 3D visualiza-
tion tools (Zhang, 2012; Luke, 2005; MASON, 2017).

46. RepastSNS (Recursive Porous Agent Simulation Toolkit Sensor
Network Simulation) is an event-based simulator developed for
testing sensor networks from a multi-agent perspective. This
platform is an extension of Repast3 (Repast3, 2017) as it has
additional features for sensor network simulation (RepastSNS,
2017; Collier, 2001). RepastSNS has two advantages: (1) it
provides many abstraction level descriptions, and (2) it is easy to
insert USN components for simulation (del Carmen Delgado-
Roman et al., 2013).

47. NetLOGO is a free platform for multi-agent programming and
modeling. It provides the opportunity to simulate USN projects,
e.g., energy efficiency (Energy Efficiency Simulation, 2017) and
data dissemination flooding technique (Data Dissemination, 2017).

48. SXCS (SensomaX Companion Simulator) is a hybrid agent-based
multi-operational simulator aimed at the simulation of multiple
concurrent applications in USN. It is designed for emulating
Sensomax (Haghighi and Cliff, 2013) middleware, which is an
agent-based middleware with multiple concurrent application
support for dynamic data gathering in large-scale USN (Haghighi,
2013).

• Ubiquitous computing simulators

49. 4UbiWise is a simulator for ubiquitous computing. It focuses on
the way that devices compute communications through the physi-
cal environment. Ubiwise not only simulates the prototype of
devices and protocols in the network, but also simulates the
physical environment (Barton and Vijayaraghavan, 2003;
UbiWise, 2017).

50. UbikSim is a simulator for ubiquitous computing that aims to
reduce the features of services experiments and applications for
treatment appertain related to both the physical environment and
users. It proposes substantial techniques for implementing new
sensor configurations, e.g., type of event detection or the required
range of coverage (Campuzano, 2011; UbikSim, 2017).

51. TATUS is a ubiquitous computing simulator that enables research-
ers to define and test various scenarios. Meanwhile, a part of
software-under-test may be connected to the simulator in order to
develop its own representation of the world (O'Neill, 2005).

• Underwater simulators

52. UWSim is a simulator designed for Underwater USN (UUSN).
This simulator considers factors that affect USN underwater and
adapts scenarios with this condition, such as providing low
bandwidth, low frequency, high transmission power, and limited
memory (Dhurandher, 2008; UWSim, 2017).

53. SUNSET is an environment for simulation, emulation and also
testing (underwater) various communication protocols. Its func-
tionality is at MAC and Routing Protocols based on NS-2 and the
extension NS-2-Miracle (Baldo, 2007). By using SUNSET, different
acoustic modems and sensing devices can be implemented (Petrioli
and Petroccia, 2012; Petrioli et al., 2013; SUNSET, 2017).

54. SUNRISE is another UUSN, designed for sensing, monitoring and
actuating underwater surroundings. It performs over SUNSET
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platform for designing, implementing, and validating USN proto-
cols (Petrioli, 2014; SUNRISE, 2017).

55. DESERT (DEsign, Simulate, Emulate and Realize Testbeds for
underwater network protocols) is a complete set of public C/C++
libraries which support the application and transport layers
through the network, data link, and physical layers (Masiero,
2012; DESERT, 2017).

56. RECORDS (Remote Control Framework for Underwater
Networks) is an open-source environment for underwater networks
composed of acoustic nodes. MAC, network, transport, and appli-
cation layers all are supported by the RECORDS (Toso, 2014;
RECORDS, 2017).

57. Aqua-Net is a generic architecture for underwater sensor net-
works. Aqua-Net enables a powerful networking solution kit which
facilitates UUSN study and application development (Peng, 2009;
Aqua-Net, 2017).

58. SeaLinx is multi-instance protocol stack architecture for under-
water acoustic networking. It is a Linux implementation of Aqua-
Net and enables users to exploit their hardware more efficiently by
allowing applications to run simultaneously on a modem while also
providing better support for cross-layer communication (Le, 2013;
SeaLinx, 2017).

59. Aqua-Net Mate is a real-time virtual channel modem simulator
for Aqua-Net that supports underwater networks communication
(Zhu, 2013).

60. Aqua-Lab is an underwater acoustic sensor network lab testbed
for UUSN. It is comprised of hardware, software, program library,
an emulator, and real acoustic communication channels (Peng,
2007; Aqua-Lab, 2017).

61. Aqua-Sim is another underwater sensor simulator based on NS-2
which can efficiently simulate the acoustic signal attenuation and
packet collisions within water. It is extensible, flexible, and
independent of the wireless packages (Xie, 2009; Aqua-Sim, 2017).

62. Aqua-Tune provides a standardized platform for testing and
bridging the gap between modeling, simulation, and real world
field experience for Underwater Networks (Peng, 2011).

63. Aqua-GloMo is an acoustic-based communication simulator built
on GloMoSim simulator. It is designed for network layers protocols
and physical layer protocols of UUSN (Dhurandher et al., 2012).

64. Aquatools is a simulation toolkit targeted for simulating under-
water acoustic networks with static and mobile nodes. It works in
physical layer, MAC layer, routing layer, and energy consumptions
schemas (Sehgal et al., 2010).

65. UANT (Underwater Acoustic Networking plaTform) aims to
address the constantly changing underwater acoustic channel with
re-configurability. It supports the physical and MAC layer of the
ISO Model (Noh et al., 2015; UANT, 2017).

66. WOSS (World Ocean Simulation System) is a simulator based on
NS-2 for underwater networks which incorporates a ray tracing tool
for a more realistic modeling of underwater propagation (Guerra
et al., 2009; WOSS, 2017).

67. AUWCN (Acoustic Underwater Channel and Network) simulator
aims to alleviate the inappropriate simplifications and to reproduce
most effects existing in the physical acoustic underwater channel
(Wolff et al., 2012).

68. SAMON (Ocean Sampling Mobile Network) is a simulator testbed
designed to enable simulation of ocean sampling missions invol-
ving multiple heterogeneous unmanned underwater vehicles prior
to in-water experimentation (Phoha et al., 2001).

69. UsNeT (Underwater Sensor Network Simulation Tool) is devel-
oped for underwater communications. It allows real-time process-
based simulation and enables three-dimensional deployment
(Ovaliadis and Savage, 2013).

• Other specific-purpose simulators

70. Prowler/JProwler (Probabilistic Wireless Sensor Network
Simulator) is an event-driven ubiquitous network simulator which
is designed to simulate MICA motes running TinyOS in addition
to generic ubiquitous networks. It is used for application testing
(deterministic mode), wireless communication channel, and low-
level node protocol simulations (probabilistic mode). It supports
different plug-ins and any number of sensor nodes in a dynami-
cally changing environment. JProwler is a java-based prowler
(Imran et al., 2010; Du, 2010; Kumar and Goyal, 2013; Prowler,
2017).

71. Wireless Sensor Network Localization Simulator is a
simple, scalable, and discrete-event simulation system. It engages
several mobility models including, Random Waypoint, Modified
Random Waypoint, Random Direction, Modified Boundless,
Manhattan, Freeway, and RPGM (Wireless Sensor Network
Localization Simulator, 2017).

72. Sensor Security Simulator (S3) is a research simulator for
evaluating security problems in large-scale sensor networks. It
supports the analysis of the impact of selected nodes and
encryption keys that compromising the network operation and
security (Sensor Security Simulator (S3), 2017).

73. Shawn is a discrete-event customizable simulator for USN. It is
designed to simulate hundreds of sensors in network (Kröller,
2005; Shawn, 2017). It simulates only the caused effects rather
than simulating the effects of a phenomenon which provides a
performance increase (Kellner et al., 2010).

74. SIDnet-SWANS (Simulator and Integrated Development
Platform for Sensor Networks Applications) is a simulation-based
environment that aims to observe the behavior of algorithm
protocols in conditions like phenomena fluctuations or sudden
loss of service (Dwivedi and Vyas, 2011). It associates with a
graphical representation of the network, and supports defining
various phenomenon such as temperature, humidity, and object
movements (Ghica, 2010; SIDnet-SWANS, 2017).

75. TRMSim-WSN (Trust and Reputation Models Simulator for
Wireless Sensor Networks) is designed to study and compare trust
and reputation models over USN and compare the result against
other models (Mármol and Pérez, 2009; TRMSim-WSN, 2017).

76. WSNimPy is based on the discrete-event simulator SimPy. It has
developed in two versions: (1) WSNimPy (trace), and (2)
WSNimPy (synthetic). The first uses trace data from the WSN
Profiler, and the second uses a synthetic radio model to simulate
communications (Marchiori, 2010).

77. SENS (Sensor, Environment and Network Simulator) is a sensor
network simulator for USN applications that is flexible and exten-
sible to change components for applications, network communica-
tion, and the physical environment. It supports the development of
dependable applications by using diagnostic facilities such as power
utilization analysis (Sundresh et al., 2004; SENS, 2017).

78. IFAS (Interactive Flexible Ad hoc Simulator) is a modern and
novel approach of ad-hoc simulators. This simulator efficiently
accelerates the design and debugging-process of new algorithms
by providing unique viewing, debugging, tuning, and interactive
capabilities (Ben-Asher, 2007).

79. Sidh is an efficient and large-scale USN simulator in which
networks with thousands of nodes in real-time can be supported.
It is component-based and flexible in the face of different
environmental conditions, sensors, and simulation detail
(Carley, 2005).

80. SenSor is an algorithmic simulator that works at a high abstrac-
tion level in USN domain. It supports a graphical user interface
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and several extended classes by the user to run simulations
(Mount, 2006).

81. Dingo is a fork of the SenSor project. Actually, Dingo is a
workbench for prototyping algorithms in USN which uses a top-
down methodology for design. Since it is not limited to a
particular platform, full functionality of a programming language
is usable. It has a fixed API, a simple GUI, and base classes which
are extensible by the user (Dingo, 2017).

82. SNAP (Sensor Network Asynchronous Processor) is an integrated
hardware simulation-and-deployment platform for USN. It lets
parallel network simulation with a particular synchronization
protocol that is called Time Based Synchronization (TBS). It can
be used to build physical as well as simulation nodes (Kelly et al.,
2003; SNAP, 2017).

83. GTSNetS is an extension of the Georgia Tech Network Simulator
(GTNetS) suitable for USN. It is a large-scale network simulator
capable of handling several hundred thousand nodes. It is flexible
and capable of implementing diverse protocols, applications, and
sensors as well as different energy and accuracy models (Ould-
Ahmed-Vall, 2005; GTSNetS, 2017).

84. IDEA1 (hIerarchical DEsign plAtform for sensor networks explora-
tion) is a component-based simulation framework for USN. It is
based on SystemC and C++ language. IDEA1 supports transaction-
level modeling, and enables easy design space exploration avail-
ability (Mieyeville, 2012; Du et al., 2010; IDEA1, 2017).

85. WiseNet is a simulation environment aimed at design, applica-
tion, and evaluation of secure routing protocols for USN. WiseNet
enables the systematic development and investigation of security
features of secure and intrusion-tolerant routing protocols
(WiseNet, 2017).

86. SimGate is a sensor network simulator which simulates the Intel
Stargate device, an element used as a processing, storage, and
network gateway unit in sensor network. It is capable of capturing
components, including processor, communications, and periph-
erals (Wen, 2006).

87. SimSync is mainly a time synchronization simulator for sensor
networks using a Mica2-a testbed to simulate execution of time
synchronization algorithm. The structure of the program in this
simulator is table-driven and it can model the clock drift
efficiently (Xu, 2006).

88. SensorMaker is a USN simulator for scalable and fine-grained
instrumentation. It supports several results such as position,
residual energy, energy distribution map, and routing probabil-
ities for each node. It is flexible and provides different kinds of
instrumentations (Yi, 2008).

89. OLIMPO is a discrete-event simulation tool designed to ease the
design, development, and testing of communication protocols in a
sensor network. It provides users with the capability to change
various simulation parameters including timers, radio range, and
random process (Barbancho).

90. DiSenS (DIstributed SENsor network Simulator) is a scalable
distributed simulation system for sensor networks. In addition to
emulating many sensors, it includes a distributed memory parallel
cluster system and extensible radio models (Wen et al., 2007). S2DB is
a debugger for sensor networks based on DiSenS (Wen et al., 2006).

91. WISDOM (Wsn mIddleware Service moDules simulatiOn
platforM) is designed to simulate the system architecture and
components of middleware in USN. It is capable for adding and
testing various middleware algorithms (Lim, 2008).

92. Sensoria is a large-scale, user-friendly, and component-based
simulator that can efficiently adapt to different levels of details
and accuracy in simulation. Its GUI enables users to implement
various scenarios and supports different graphical output formats
for the results (Al-Karaki and Al-Mashaqbeh, 2007).

93. Capricorn is a large-scale and discrete-event simulator for USN
(Sha et al., 2004).

94. H-MAS (Heterogeneous, Mobile, Ad-hoc Sensor network) is
mainly designed to provide a convenient platform for evaluating
MAS configurations in various network layers. It also provides a
user-friendly visualization tool for non-expert users (Mochocki
and Madey, 2003).

95. SnSim is an event-driven software tool that is used to balance
data quality and USN lifetime in sensor networks. It includes
power consumption elements as well as a graphical interface to
investigate various aspects of development (Li, 2010).

96. SNIPER-WSNim is a simulator specifically designed for USN. It
aims to analyze the nodes behavior in USN as well as studying
routing protocols and clustering (Sinha et al., 2009).

97. CaVi is a simulation environment to model a network as a
collection of nodes in a sensor network. It provides a uniform
interface to simulator Castalia for Mont-Carlo simulation and
model checking, as well as tools to evaluate statistical information
from simulation (Boulis, 2008).

98. WISENES (WIreless SEnsor NEtwork Simulator) is a packet-
level simulator, designed to simulate high-level USN protocols. It
also provides accurate information about their performance in a
real environment (Kuorilehto et al., 2008).

99. 99. WSNGE is a scalable and user-friendly simulator with an
extensible environment for USN. All functions can be run in
scripting and visually, and users can view the results in a graphical
environment (Karagiannis et al., 2009).

100. TikTak is a scalable simulator for USN. The emulation at the
protocol-level increases the simulation speed, and low-level hard-
ware emulation provides the ability to simulate the program and
stack latency. It also, allows testing and debugging embedded
codes (Menichelli and Olivieri, 2010).

101. ShoX (Scalable ad HOC networK Simulator) is an object-oriented
USN simulator. The architecture of the system is an OSI seven-
layer model in which all layers are derived from an abstract super
class. The most important advantage of this simulator is its
comprehensive GUI for configuration, visualization, and statistics
demonstration (Lessmann, 2008; ShoX, 2017).

102. PASENS (Parallel Sensor Network Simulator) is an optimal-
synchronous parallel discrete-event simulator that was designed
to decrease the period of simulation in large-scale USN with large
amount of details (Kim and Kim, 2012; PASENS, 2017).

103. Glonemo (GLObal NEtwork MOdel) is a framework for con-
structing ad-hoc sensor network models and analyzing them
globally at different levels of abstraction. This means it models
the hardware including a single node, the protocol layers, the
application code, and the abstract model of the physical environ-
ment as sensed via sensors (Samper, 2006; Glonemo, 2017).

104. Maestro is a tool for orchestrating simulations in clouds. It
enables the entire application to be simulated simultaneously
using numerous sensors and actuator devices in an USN and the
functionality of the whole system to be evaluated. Maestro can
also be incorporated in parallel multiple serial simulations
(Riliskis and Osipov, 2014).

105. CupCarbon is a multi-agent and discrete USN design and
simulation platform. The sensors can be deployed in Open
Street Maps (OSM) and evaluate the behavior of the network
and its cost (Mehdi, 2014; CupCarbon, 2017).

106. TimSim is a time-step-based wireless ad-hoc network simulator.
It directly simulates the source code of wireless ad-hoc network
application and is able to represent the transmitted data at the bit
level (Yan, 2013).

107. JSensor provides parallel simulation for USN and distributed
systems. It enables synchronous and asynchronous simulation of
large sensor networks. The kernel of JSensor is based on Sinalgo.
The multi-core architecture allows hundreds of nodes to be
simulated simultaneously (Ribeiro, 2012; JSensor, 2017).
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5.2. USN emulation environments

This sub-section introduces 23 emulation tools and their deriva-
tives. For each tool, the corresponding designer/developer, the latest
version, and the software link (if any) are provided in Table 7.

• TOSSIM and its derivatives

1. TOSSIM is an efficient and scalable simulator for TinyOS USN. It
has a simple operation environment by using a probabilistic bit error
model, and supports various network interactions which make it
expensive. It can also be used to discover bugs from network bit-
level MAC interactions to queue overflows in ad-hoc routing protocol
(Levis, 2003; TinyOS, 2017). The GUI of TOSSIM is known as
JTOSSIM. Also, mTOSSIM is a simulator that estimates the battery
lifetime in USN (Mora-Merchan, 2013).

2. PowerTOSSIM z is a plug-in which models power consumption for
TOSSIM. The PowerTOSSIM (PowerTOSSIM, 2017) plug-in for
power consumption has not been fully imported to new versions of
TOSSIM, so PowerTOSSIM z is developed to simulate MICAz motes.
It offers a non-linear energy model to capture the behavior of
modern batteries (Perla, 2008; PowerTOSSIM z, 2017).

3. TOSSF (TinyOS Scalable Simulation Framework) can create appli-
cation types on the fly for use in the initialization of the model. It
also provides the TinyOS programmer with a set of scripts which
adapt the source code to run in the simulator. TOSSF was designed
to enhance TOSSIM scalability (Perrone and Nicol, 2002).

4. TYTHON is an extension to TinyOS's TOSSIM simulator scripted in

Python. Given its valuable library of scripting, TYTHON empowers
users to develop dynamic and reproducible simulation scenarios
(Demmer, 2005; TYTHON, 2017).

5. Mule is a hybrid simulator based on TOSSIM. It is mainly designed
to test and debug USN through a combination of debugging multiple
simulated motes on a host with message transmission and sensor
data acquisition of physical motes (Watson and Nesterenko, 2004).

• Avrora and its derivative

6. Avrora is a scalable cycle-accurate sensor network simulator with
precise timing. It is an instruction-level sensor network simulator
which supports more than 10,000 nodes quickly and can handle 25
nodes in real-time (Titzer et al., 2005; Avrora, 2017). AvroraZ
(2017) is an extension to Avrora for improving MicaZ support and
thereby provides IEEE 802.15.4 compliant emulations.

7. AEON (Accurate Prediction of Power Consumption) is an extension
of Avrora that is utilized to quantitatively predict the energy
consumption and estimation of sensor networks (Landsiedel et al.,
2005).

• Other emulators

8. ATEMU is a fine-grained sensor network simulator aimed at
bridging the gap between actual sensor network deployments and
sensor network simulations. The main advantage of ATEMU is its
ability to simulate a heterogeneous sensor network (Blazakis, 2004;
ATEMU, 2017).

Table 7
General description of USN emulators.

No. Emulation environment Designed by Latest
version

Released date Software link

1 TOSSIM University of California, Berkley, USA TinyOS 2.1.2 20 August 2012 http://www.tinyos.net
2 PowerTOSSIM z Trinity College Dublin, Ireland 4.0 26 November

2014
https://www.scss.tcd.ie/disciplines/computer_
systems/ccg/software/powertossimz/

3 TOSSF Dartmouth College, USA N/A 2002 N/A
4 TYTHON University of California, Berkley, USA N/A 2005 http://www.tinyos.net/tinyos-1.x/doc/tython/

tython.html
5 Mule Kent State University, USA N/A 2004 N/A
6 Avrora University of California, Los Angeles (UCLA),

USA
1.7.117 21 August 2013 http://compilers.cs.ucla.edu/avrora/

7 AEON University of Tubingen, Germany N/A 2005 N/A
8 ATEMU Maryland University, USA 0.4 31 March 2004 http://www.cshcn.umd.edu/research/atemu/
9 EmPro University of California, Irvine, USA N/A 2006 N/A
10 OCTAVEX Octave Technology, Inc. Beta 2005 https://www.millennium.berkeley.edu/pipermail/

tinyos-help/2005-September/012224.html
11 SensEH University of Trento, Italy N/A 2014 N/A
12 HarvWSNet CEA/Leti research institute and University of

Rennes, France
N/A 2013 N/A

13 UbiSec&Sens Eurescom and NEC Europe Ltd., Germany N/A 2009 http://www.ist-ubisecsens.org/
14 Emuli Kent State University, USA N/A 2007 N/A
15 MEADOWS Hong Kong University of Science and

Technology, China
N/A 2004 N/A

16 Freemote Emulator University of Applied Science of Fribourg and
University of Neuchâtel, Switzerland

9 20 October 2010 https://www.assembla.com/wiki/show/freemote

17 VMNet Hong Kong University of Science and
Technology, China

1.0.2 30 October 2005 http://www.cse.ust.hk/vmnet/

18 WSim INRIA/Compsys and INRIA/ARES, France N/A 4 January 2012 http://wsim.gforge.inria.fr/
19 EmStar University of California, Los Angeles (UCLA),

USA
2.5 October 2005 http://cens.ucla.edu/projects/2007/Systems/

EmStar/
20 WiEmu Arab Academy for Science and Technology,

Egypt
N/A 18 Apr 2014 http://wiemu.sourceforge.net/apidocs/

21 WiSeREmulator University of Houston, USA N/A 2010 N/A
22 SUNSHINE Virginia Polytechnic Institute and State

University, USA
N/A 2011 http://rijndael.ece.vt.edu/sunshine/index.html

23 CORE U.S. Naval Research Laboratory, USA 4.8 8 June 2015 http://www.nrl.navy.mil/itd/ncs/products/core
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9. EmPro is an Environment/Energy Emulation and Profiling
Platform for USN. It is designed to emulate environmental condi-
tions, and all inputs to a sensor system including power sources,
radio activities, and inputs from external sources. In profiling
mode, it can capture the behavior of USN (Park and Chou, 2006).

10. OCTAVEX ubiquitous sensor framework is intended to assist a
wide range of end users, including systems integrators, software
developers, and original equipment manufacturers in developing
and handling USN. This framework is a backbone that provides
user with the ability to implement an inexpensive end-to-end
solution quickly and easily (Dwivedi and Vyas, 2011; OCTAVEX,
2017).

11. SensEH is software framework that enables developers to manip-
ulate the power and speed of a simulation and the reality and
accuracy of experiments. It relies on COOJA for emulating the
actual code (Dall'Ora, 2014).

12. HarvWSNet is considered a suitable tool for the simulation of the
network protocols and the lifetime of energy harvesting (EH) of
USN. HarvWSNet is based on WSNet and MATLAB. Users may
build multi-node network scenarios while imposing a concise
description for node energy harvesting, management subsystem,
and its time-varying environmental parameters (Didioui, 2013).

13. UbiSec&Sens is an architecture for medium and large-scale
USN. It contains a comprehensive toolbox of security aware
ingredients for sensor network application progression (UbiSec &
Sens, 2017).

14. Emuli (Emulated Stimuli) is a method of effectively substituting
synthetic data for sensor data on physical wireless nodes. It stores
the model parameters rather than recording and playing back spot
measurements that cause a compact data memory footprint
(Clouser et al., 2007).

15. MEADOWS is a software framework for Modeling, Emulation,
and Analysis of Data Of Wireless Sensor networks. The framework
is capable of answering questions about sensor query processing
(Luo, 2004).

16. Freemote Emulator is a lightweight and visual emulator for
USN. It provides a lightweight emulation tool to combine motes
and predefined code templates, as well as a layered architecture to
produce quick running codes for nodes (Maret, 2008; Freemote
Emulator, 2017).

17. VMNet (Virtual Mote Network) is a sensor network simulator
designed to realistically emulate USN at the CPU clock cycle level.
It reports the performance of application in response time, as well
as power consumption and emulates peripherals in detail (Wu,
2007; VMNeT, 2017).

18. WSim is a sensor node platform emulator which is designed to
run, analyze, and debug applications for sensor networks
(Musznicki and Zwierzykowski, 2012). It provides hardware plat-
form simulation by microcontroller binary codes and simulates its
behavior, as well as any event that occur in the platform (Fraboulet
et al; WSim, 2017).

19. EmStar is software for developing and deploying USN on Linux. It
includes libraries to implement message-passing IPC primitives to
deploy, simulate, emulate, and visualize live systems. Further, it
contains services to support sensing, networking, and time syn-
chronization (Girod, 2007; EmStar, 2017).

20. WiEmu is an open-source agent-based simulator and emulator for
heterogeneous USN. Using WiEmu enables the evaluation of the
network architecture, topology, and protocols, even when they
running on real testbeds (Youssef et al., 2012; WiEmu, 2017).

21. WiSeREmulator is an emulation framework for structural health
monitoring. It is comprised of two main components: a testbed of
wireless sensor nodes, and a software emulation environment
(Khanda, 2010).

22. SUNSHINE is a scalable hardware-software emulator for sensor
network applications. It provides data exchanges and time syn-

chronizations across different simulation domains and simulation
accuracy levels (Zhang, 2011; SUNSHINE, 2017).

23. CORE (Common Open Research Emulator) is composed of Python
modules and GUI for building emulated USN networks. These
networks may be connected to live networks (CORE, 2017).

6. USN simulator and emulator features

This section outlines the features of the most prominent USN
simulation and emulation environments and frameworks. In this
context, 22 of the above 130 tools are selected to be compared in
detail: those which have been supported by their developers, are
popular, have published results, are usable, and have interesting
characteristics and features. In this regard, Table 8 presents the
features of the selected simulators and emulators, i.e., version type,
license type, language/scripting used, open source capability, sup-
ported platform, and presence of on-line document or tutorial.
Normally, the software is developed for academic, research, and
commercial purposes. Academic and research versions of software
are free of charge. For commercials, the licenses or affiliated packages
are not provided for free for users (the underlined letter demonstrates
the extensive use of the software in that version). There are two types of
licenses: Gnu's Not UNIX General Public License (GNU GPL) which
allows end users to use, study, share, and modify the software freely,
and Berkeley Software Distribution (BSD) license, which imposes
minimal restrictions on the redistribution of software. A variety of
languages and scripts is employed by which the simulators/emulators
are designed with, i.e., Java, C, C++, and NesC (Network embedded
system C language), where each one has its own pros and cons. Open
source software has the benefits of modifiable source code and free
extension of the software. But, open source software may not be user-
friendly and convenient with GUI. The platforms that simulators/
emulators run on vary from Microsoft Windows to Linux and Mac OS.
On-line documents, manuals and tutorials may help users to install, get
started with, and overcome any difficulties while using the software.

In addition, for each of the selected simulators and emulators,
Table 9 shows whether they are general or specific purpose simulator/
emulators, support GUI, are object-oriented or component-based,
support the level of abstraction, including the energy consumption
models, and if any derivative or extension is developed. Simulators and
emulators are either general (adaptive) or specific (new) environments.
Some of the simulators and emulators are GUI-driven where the user
can drag and drop the network components, while others require
command line and scripting. Object-oriented based simulators and
emulators focus on the relationships between classes and facilitate
implementation and extensibility, but they lack scalability. On the
other hand, component-based simulators and emulators focus on
interchangeable code modules that function independently; thus, they
are more extensible and scalable, but may be more difficult to
implement in a modularized way (Singh et al., 2008). The simulation
abstraction level is described in Section 2.1.4. Alphabetical letters are
used to briefly address each simulator and emulator abstraction
category: generic network simulator, code level simulator, firmware
level simulator, algorithm level simulator, packet level simulator, and
instruction level simulator. Energy consumption models consider
whether sensor nodes have batteries or produce energy for efficient
system design. Simulators and emulators derivatives or extensions are
developed to improve the simulators/emulators performance and/or
overcome any deficiency.

Qualitative information facilitates the comparison of the simulator/
emulator and the process of choosing an appropriate one among several
tools. Such classification has more adherents among students since it
enables them to compare and assess the tools relatively. In this context,
Table 10 gives qualitative details of the selected USN simulation and
emulation tools for academic, research, and commercial versions. The first
criterion, visualization, is related to the environment where the user is

M. Sharif, A. Sadeghi-Niaraki Journal of Network and Computer Applications 93 (2017) 150–181

168



manipulating his/her practices. Visualization ranges from poor to ex-
cellent qualities. Flexibility deals with how many frequent runs and
configuration changes may be applied to a simulator/emulator.
Scalability, as explained before, represents the number of nodes which a
simulator/emulator may handle. Existing protocols in simulators/emula-
tors databases are shown by protocol availability criterion. Radio signals
propagate via an antenna from a sensor node. The strength of signals is
directly related to the distance. Therefore, the formidable presence of such

modules in USN simulators/emulators is an advantage. The degree of
simplicity represents how quickly individuals get familiar with tools, while
interactivity demonstrates how easily individuals interact and exploit
tools. Such criteria are considerable for academic and educational
purposes where increased simplicity and interactivity makes the tool
desirable and pleasant (ZVKOVIC, 2014).

A simulator or emulator is designed or developed to fulfill the needs
of a project or application. Therefore, we cannot generically and lucidly

Table 8
Specifications of USN simulators and emulators.

Simulator/Emulator Version type License type Language/
scripting

Open
source

Platform On-line document
/tutorial

Prowler r Free m-file No Linux, Windows, Mac OS Yes
SENSE r Free (BSD) C++, CompC++ Yes Linux, Windows Yes
Shawn r Free (BSD) C++ Yes Linux, Windows, Mac OS Yes
JiST/SWANS r Free Java, Jython No – Yes
COOJA r Free (BSD) Java Yes Linux Yes
J-Sim r Free (BSD) Java, Tcl Yes Linux, Windows, Mac OS,

Solaris
Yes

Ptolemy II r Free Java Yes Windows, Mac OS Yes
SENS r Free (BSD) C++, NesC Yes Linux No
NS-2 arc Free (Apache License v2, BSD,

GNU GPL v2)
C++, OTcl Yes Linux, Solaris, SunOS,

Windows, Mac OS
Yes

NS-3 ar Free (GNU GPL v2) C++, Python Yes Linux, Windows, Mac OS,
Solaris

Yes

OMNeT++ arc Free C++, NED Yes Linux, Windows, Mac OS Yes
Castalia ar Free (GNU GPL v2) C++ Yes Linux, Windows Yes
OPNET ac Free (Academic) & Non-free

(Commercial)
C, C++, Java No Linux, Windows Yes

GloMoSim r Free C, Parsec Yes Linux, Windows No
QualNet c Non-free C, C++ No Linux, Windows, Mac OS No
Worldsens ar Free C No – Yes
ShoX r Free (GNU GPL v2) Java No Linux, Windows, Mac OS No
Wireshark

(Ethereal)
ar Free (GNU GPL) C, C++ Yes Unix, Windows, Mac OS Yes

TOSSIM r Free (BSD) C++, NesC, Python Yes Linux, Windows Yes
ATEMU ar Free (BSD) C Yes Linux, Windows, Solaris No
Avrora r Free (BSD) Java Yes Linux, Windows, Mac OS No
EmStar r Free C Yes Linux, Windows No

Table 9
Features of USN simulators and emulators.

Simulator/
emulator

General/specific
purpose

GUI Object-oriented/
component-based

Simulation level
abstraction

Energy consumption
model

Derivative/extension

Prowler Specific Yes N/A FP No JProwler
SENSE General No Component-based P Yes N/A
Shawn Specific No N/A C Yes N/A
JiST/SWANS General No N/A GFP No N/A
COOJA General No N/A GCF Yes SensEH
J-Sim General Yes Component-based P Yes G-JSim
Ptolemy II General No N/A F Yes Viptos, VisualSense
SENS Specific No Component-based GCP Yes N/A
NS-2 General No Object-oriented GP Yes Mannasim, NRL Sensorsim, RTNS,

SUNSET, Aqua-Sim, WOSS, TRAILS,
PiccSIM

NS-3 General No Object-oriented GP Yes Symphony
OMNeT++ General Yes Component-based G Yes SENSIM, Castalia, MiXiM, NesCT,

PAWiS
Castalia General Yes N/A GA Yes SolarCastalia
OPNET General Yes Object-oriented FP Yes –

GloMoSim General Yes Object-oriented GP Yes Aqua-GloMo, QualNet
QualNet General Yes N/A GAP Yes sQualNet, SenQ
Worldsens Specific Yes N/A P Yes WSim, WSNet
ShoX Specific Yes Object-oriented N/A Yes N/A
Wireshark

(Ethereal)
General Yes N/A N/A No N/A

TOSSIM Specific Yes Component-based CAI Yes JTOSSIM, mTOSSIM, PowerTOSSIM z,
TOSSF, TYTHON, Mule

ATEMU Specific Yes N/A FI No N/A
Avrora Specific No N/A I Yes AvroraZ, AEON
EmStar Specific Yes Component-based GFI Yes N/A
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name a simulator/emulator as the perfect and flawless tool. What is
desirable is to identify the positive and negative aspect of each and pick
the one which best fits the application. In this regard, Table 11
summarizes several key features and the limitations corresponding to
each simulation and emulation tool.

7. Performance assessment of simulators and emulators

Selecting the most appropriate simulator or emulator for USN
purpose among the numerous versions available remains a controver-
sial task. Several studies have evaluated the performance of USN
simulators and emulators and analyzed and compared the results with
each other in terms of popularity, architecture, OS, credibility, accu-
racy, scalability, execution speed and time, CPU usage, visualization
and GUI, debugging, and even learning difficulty criteria. Each study
has defined a scenario comprised of several parameters. In this context,
Table 12 addresses these efforts in brief.

One approach for conducting a relative comparison of USN
simulation/emulation performance is to define scenario(s). Each
scenario is comprised of a set of parameters to run. These parameters
may vary with respect to simulators/emulators throughput and defined
application; however, such tool assessment has some general para-
meters in common. We categorize these parameters into four groups of
node, execution, terrain, and other, as presented in Fig. 7. The node
category comprises several qualitative and quantitative features, which
are attributed to the sensor nodes, ranging from sensor numbers to
sensor functionalities. The execution category is dedicated to all the
settings for carrying out a simulation/emulation, such as simulation
time, packet characteristic, protocol type, etc. The terrain (field)
category is one of the most important components in simulation/
emulation. In real-world applications the sensed data from the sensors
need to be routed to the targeted sensors/services. Any physical
intruder (e.g., wall, topography) that cause problem in proper trans-
mission of these data needs to be simulated in advance. Finally, there
are several general and specific components that do not fall into the
earlier categories, which are placed in other category.

Although Table 3 has proposed several features for simulation
assessment, the most critical one, i.e., scalability (or number of nodes),
needs to be assessed specifically for USN simulators and emulators.
This feature demonstrates the ultimate throughput of a simulator/
emulator in handling a number of sensor nodes effectively. Scalability

is so imperative that the majority of comparative studies in Table 12
have compared it against other performance assessment features (see
Fig. 8). A review of the literature acknowledges that the number of
sensor nodes directly affects other features, as well as the final
performance of the simulator/emulator.

Scalability and the potential number of sensor nodes deployed in
simulation and emulation environments have been challenging tasks.
Given the widespread and pervasive projects of USN and emerging
technologies in USN, simulation and emulation by more sensor nodes
can be an advantage. However, a review of the literature ascertains that
higher scalability and more sensor nodes heavily increase the execution
time, CPU utilization, and memory usage, which affect the delivery
success ratio of messages and in some cases delay the message. Fig. 9
demonstrates the approximate number of sensor nodes that a simu-
lator and emulator can handle effectively.

Simulators’ and emulators’ designers and developers have em-
ployed a variety of programming languages for generating such tools.
In this research, the programming languages of 102 out of 130
simulators and emulators were found in their corresponding websites
and tutorials as well as the articles that firstly introduced the tools. A
review of literature demonstrates that almost half of the simulators and
emulators are scripted by C/C++ and their derivatives (e.g., C++
Builder, CompC++, NesC, PARSEC), while 39% have made use of
Java programming language. In this regard, C/C++ engines are
expected to have better functionality and productivity than their Java
counterparts. Python is used for developing 6% of simulators and
emulators. A small proportion of simulators or emulators have utilized
other programming languages (e.g., C# and m-file). This information is
illustrated as a chart in Fig. 10.

8. Lesson learned, open issues, and future directions

In this section, we first summarize the lesson learned from
literature, and then point out some general and specific research
directions for USN simulators and emulators.

8.1. Lesson learned

This survey has presented several lessons. We have highlighted
some tips for students and researchers, for whom this paper has been
targeted at. The study should clarify the choice of a simulator or an

Table 10
Qualitative specifications of selected USN simulators and emulators for academic, research, and commercial versions.

Simulator/emulator Visualization Flexibility Scalability Protocol
availability

Radio signal propagation
model

Simplicity- Interaction (for academic
version)

Prowler Basic (r) Medium (r) Medium (r) Small (r) Basic (r) N/A
SENSE Average (r) Medium (r) Medium (r) Medium (r) Average (r) N/A
Shawn Average (r) Medium (r) High (r) Small (r) Average (r) N/A
JiST/SWANS Basic (r) Medium (r) Very high (r) Medium (r) Good (r) N/A
COOJA Good (r) High (r) Medium (r) Small (r) Good (r) N/A
J-Sim Average (r) Medium (r) Low (r) Medium (r) Average (r) N/A
Ptolemy II Good (r) Medium (r) Medium (r) Small (r) Good (r) N/A
SENS Average (r) Medium (r) Medium (r) Small (r) Good (r) N/A
NS-2 Good (ar) High (r) Medium (rc) Large (rc) Good (rc) Low-Medium
NS-3 Good (ar) High (r) High (r) Medium (r) Good (r) Medium-Medium
OMNeT++ Excellent (ar) High (r) Medium (rc) Medium (rc) Good (rc) Medium-Medium
Castalia Excellent (ar) High (r) Medium (r) Medium (r) Good (r) Medium-Medium
OPNET Excellent (ar) N/A High (c) Large (c) Excellent (c) High-High
GloMoSim Good (r) Medium (r) High (r) Medium (r) Average (r) N/A
QualNet Good (r) N/A High (c) Medium (c) Good (c) N/A
Wireshark

(Ethereal)
Good (r) Medium (r) N/A Large (r) N/A N/A

TOSSIM Good (r) Medium (r) Medium (r) Small (r) Basic (r) N/A
ATEMU Average (ar) Medium (r) Low (r) Small (r) Basic (r) Medium-High
Avrora Poor (r) High (r) Medium (r) Small (r) Average (r) N/A
EmStar Good (r) Medium (r) Low (r) Medium (r) Average (r) N/A
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Table 11
Key features versus limitations of USN simulators and emulators.

Simulator/
Emulator

Key Features Limitations

Prowler – Rich library of radio modules and protocols
– Extendable for general platforms
– Easy prototyping of applications
– Integration of different optimization algorithms
– Provide GUI and good visualization capabilities
– Good extensibility via plug-ins

– Provides only one TinyOS MAC protocol by default
– No sensor node energy modeling
– No 3D space simulations
– No detailed antenna modeling in the package

SENSE – Balanced between modeling methodology and simulation
efficiency

– Memory-efficient, extensible, scalable, and reusable
– Supports parallel simulation
– Offers different battery models
– User-friendly and fast

– Not accurate evaluation of USN research
– Lacks a comprehensive set of models, routing protocols and a wide variety of

configuration templates for USN
– Absence of GUI

Shawn – Able to simulate large-scale USN
– Able to select the application preferred behavior
– Full access to the communication graph
– Protocols can be modified
– Easy to determine the effect of channel parameters

– Absence of GUI
– MAC module is not extent
– Lots of programming is required
– Detailed simulations of issues like radio propagation properties or low-layer

issues are not well considered
– Simulation issues or lower layer issues are not considered
– Limited to generate a postscript file

JiST/SWANS – Supports parallel simulation
– Enables the analysis of large-scale network behavior

– Lack of enough protocol models
– Is a command-line-based simulator
– Realization of specific application scenarios and the user interaction is

difficult
– Only focuses on static application scenarios
– Absence of GUI

COOJA – Considers both simulated hardware and software
– Larger-scale behavior protocols and algorithms can be observed

– Not extremely efficient
– Supports a limited number of simultaneous node types
– Making extensive and time dependent simulations difficult
– Lack of sensor network protocols and applications
– Absence of GUI

J-Sim – Simulate real-time processes
– Simulate radio channels and power consumptions
– The execution time is much longer
– Provides support for energy modeling, with the exception of radio

energy consumption
– Support mobile wireless networks and sensor networks
– Good reusability and interchangeability
– Easy installation on different platforms
– Specific packages with both battery and power model
– Provides GUI
– Lots of memory space

– Low efficiency of USN simulation
– The only MAC protocol provided for wireless networks is 802.11.
– Unnecessary run-time overhead in intercommunication model
– Relatively complicated to use

Ptolemy II – Provides Java packages that support different models of
simulation paradigms

– Models are constructed in an actor-oriented way, very similar to
the component-based design

– Absence of GUI
– Does not support protocols above wireless medium
– Only support sound sensors

SENS – Platform-independent
– Users can assemble application-specific environments
– Defines environment as a grid of interchangeable tiles

– Not accurately simulate a MAC protocol
– Provides support for sensors, actuators, and physical phenomena only for

sound
– Does not support physical phenomena of sensors or environmental effects
– less customizable
– Absence of GUI

NS-2 – Easy to add new protocols
– A large number of protocols available publicly
– Extensible features
– Object-oriented design allows creating and using of new protocol
– Excellent extensibility

– Cannot simulate problems of the bandwidth or the power
– consumption in USN
– Supports only two wireless MAC protocols, 802.11, and a single-hop TDMA

protocol
– Absence of GUI (employs visualization tool-NAM (Network Animator))
– Limited scalability (in memory usage and simulation run time)
– Requires user scripting knowledge and experience

NS-3 – Supports simulation and emulation modes
– Supports a real-time schedule
– Ability to support multiple radio interfaces and multiple channels
– Better scalability compared with NS-2
– A simulation script can be written as a C++ program, which is not

possible in NS-2

– Some restrictions on the customization exist
– Lack of an application model
– Does not run real hardware code
– Does not scale well for USN
– Absence of GUI (employs a package known as PyViz, which is a python based

real-time visualization package)
OMNeT++ – Provides a powerful GUI

– Supports MAC protocols and some localized protocols
– Simulate power consumptions and channel controls
– Excellent extensibility
– Fast processing time

– Lack of available protocols in its library
– Most of the available models have been developed by independent research

groups and do not share a common interface
– Simple energy model

Castalia – Physical process modeling, sensing device bias and noise, node
clock drift, and several MAC and routing protocols implemented

– Highly tunable MAC protocol and a flexible parametric physical
process model

– Is not a sensor specific platform
– Not useful if one would like to test code compiled for a specific sensor node

platform

(continued on next page)
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Table 11 (continued)

Simulator/
Emulator

Key Features Limitations

OPNET – Free for academic use
– Uses a hierarchical model to define each characteristic of the

system
– Capability of recording a large set of user defined results
– Powerful GUI
– Supports the use of modeling different sensor-specific hardware
– Contains extensive libraries of accurate models
– Easily extensible
– Code is very well documented and ships with a large number of

built-in protocols
– Fast processing time

– Scalability problems
– Very expensive license

GloMoSim – Supports protocols designed purely for wireless networks
– Built using a layered approach
– Uses standard APIs between different simulation layers
– Processing time is medium
– Large scalability
– Good mobility models specify for wireless simulation
– Transport layer and IP address support
– Parallel simulation capability
– Supports ad-hoc networking protocols
– GUI support

– Not scalable of simulating sensor networks accurately
– Does not support phenomena occurring outside of the simulation

environment
– Only supports simulating IP networks
– Unavailability of new protocols
– No specific routing protocols for sensor network
– No energy consumption models

QualNet – A comprehensive set of advanced wireless modules is provided
– User-friendly tool
– Sophisticated animation capabilities
– Support for multi-processor systems and distributed computing
– Extensibility is good

– Annual license is expensive
– Limited online resources and tutorials are available

Worldsens – Supports large-scale USN simulation
– Language dependent: runs native code generated for the target

microcontroller
– Enables accurate time control

– Node architecture is limited to systems based on MSP430 microcontroller
from Texas Instruments and on RF transceivers from the same manufacturer

– Co-simulation generates significant simulation time

ShoX – GUI and visualization support
– Architecture

– Simulator user guide and documentation is unavailable
– Lack of models

Wireshark
(Ethereal)

– Supports hundreds of protocols
– Supports rich display filter capabilities
– Packet sniffer – live capture and offline packet analysis

– Considerable protocol knowledge is need for deep analysis and inspection

TOSSIM – Designed specifically for TinyOS applications to be run on MICA
motes

– Possible to build scalable and high fidelity simulations of full
sensor network applications

– Graphical User Support (Tiny ViZ)
– Simple and powerful emulator for USN
– Support thousands of Nodes
– High degree of accuracy or running the application source code

unchanged
– Can emulate radio models and code executions
– Good extensibility
– Processing time is fast

– TOSSIM would be effective for simulating thread-based systems
– The cost of the large number context switches (even if in user-land) would be

prohibitive
– Not good for low level protocols (MAC)
– Does not simulate the physical phenomena that are sensed
– Each node must run the exact same code
– Makes several assumptions about the target hardware platform
– Does not model energy consumption by itself (possible with add-on

PowerTOSSIMz)
– Assumes that each node in the network must run the exact same code, so

making it less flexible
– Unsuitable for heterogeneous environments

Avrora – Instruction-level simulator
– Provides fast speed and good scalability
– Enables validation of time-dependent properties of large-scale

networks
– Supports energy consumption simulation
– Can simulate different programming code projects

– Fails to model clock drift
– −50% slower than TOSSIM
– Cannot model mobility
– Absence of GUI
– Cannot simulate network management algorithms

ATEMU – One of the most accurate sensor simulators
– Uses a cycle-by-cycle strategy to run application code
– Can simulate multiple sensor nodes at the same time
– Has a large library of a wide range of hard devices
– Can provide a very high level of detail emulation in USN
– GUI can help users debug programs

– Scalability problems
– Long simulation time
– Has fewer functions to simulate routing and clustering problems

EmStar – Support modular programming model
– Can mitigate faults among sensors
– Evaluation of bugs is much easy
– GUI support available
– Fast processing time
– User friendly
– Supports hybrid mode
– Provides an option to interface with actual hardware while

running a simulation
– Compatible with two different types of node hardware

– Limited scalability
– Only run in a real time simulation
– Supports only the code for the types of nodes that it is designed to work with
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Table 12
Comparative studies of the performance of USN simulators and emulators.

Reference Compared simulators/emulators Scenario parameters Performance assessment

Khan et al. (2013) NS-2, NS-3, GloMoSim, and OMNet++ Simulation Time: 500 s Number of nodes vs. Memory usage
X, Y Dimensions: 1000 × 1000 Number of nodes vs. CPU utilization
Mobility Model: None Number of nodes vs. Computational time
Packet size: 512 kb
Number of nodes: 400–2000
Routing protocol: AODV

Sundani et al. (2011) NS-2, TOSSIM, and Shawn Simulation Time: 60 s Number of nodes vs. Abstraction level
Rate of sending packet: 250 ms Number of nodes vs. CPU time
X, Y Dimensions: 500 × 500 Number of nodes vs. Memory usage
Number of nodes: 10000

Stehlik (2011) Castalia, MiXiM, and TOSSIM Number of nodes: 15 Packet Reception Rate (PRR) for different log normal
shadowing settings in Castalia
PRR for different noise floor in Castalia
PRR for different modulation techniques in Castalia
PRR for different deciders in MiXiM
PRR for different noise floor in TOSSIM
PRR for different noise models in TOSSIM

Timm-Giel et al.
(2008)

NS-2, OMNeT++, and OPNET Application: Fire fighter Throughput and delay at firefighter
Simulation Time: 500 s Throughput and delay at command post node
Rate of sending packet: 0.2 s Received throughput at fire fighter node
Node speed: 0.5 km/h Received throughput at incident commander node
Number of nodes: 25 Firefighter to incident commander packet delay
Packet size: 32 bytes Firefighter to incident commander packet delay frequency

distribution
Routing protocol: AODV

Cavin et al. (2002) OPNET, GloMoSim, and NS-2 Terrain size: 1 km x 1 km
Number of nodes: 50
Node placement: uniform
No. of broadcasting nodes: 10 Success rate vs. Power range
No. of broadcasts per node: 100 Success rate vs. Mobility
MAC protocol: 802.11 without RTS/CTS Overhead vs. Mobility
Bit rate: 2 Mbps Time delay vs. Mobility
Wireless propagation model: FreeSpace
Antenna Type: Omni directional
Mobility model: Random waypoint
Minimum node speed: 0 m/s

Du et al. (2010) IDEA1 and NS-2 Number of nodes: 31 Accuracy evaluation, simulation time, and power dissipation
analysis

Simulation Time: > 1000 s
Haghighi (2013) SXCS and OMNet++ Number of nodes: 10–1000 Agents processing time vs. Number of nodes

Remaining energy profiling
Memory usage vs. Number of nodes
Packet loss vs. Number of nodes

Khan et al. (2014) NS-2, NS-3, OMNet++/Castalia,
TOSSIM, and J-Sim

Simulation Time: 500 s
X, Y Dimensions: 1000 × 1000
Mobility Model: None Number of nodes vs. Memory usage
Packet size: 512 kb Number of nodes vs. CPU utilization
Number of nodes: 400–2000 Number of nodes vs. Computational time
Routing protocol: LEACH

Schoch et al. (2008) NS-2 and JiST/SWANS Number of nodes: 200–1000
Transmission range: 250 m

Field: 2368–5296 m

Mobility: Random waypoint
Max speed: 20 m/s
Min speed: 1 m/s
Pause: 0 s Number of nodes vs. Delivery success ratio
Duration: 120 s Number of nodes vs. Hopcount of message transfer
Warm up: 20 s Number of nodes vs. Average message delay
Cool down: 10 s Number of nodes vs. Processing time of CGGC routing protocol
Noise: Independent Number of nodes vs. Processing time of AODV routing protocol
Path loss: Tworay Number of nodes vs. Memory usage
Fading: None
Packet loss: None
Traffic: 1 packet/min
Routing protocol: CGGC, AODV
Beaconing: 1 Hz
Packet caches: Unlimited
Destination radius: 100–300 m

Gamess et al. (2012) JiST/SWANS and OMNet+
+/INETMANET

VANET scalability: Circular road and
rectangular road
Number of Vehicles: > 5000 Number of vehicles vs. Overall time for simulations
Execution times: 3–10 Number of vehicles vs. Memory consumption

(continued on next page)
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emulator. The goal of design and development of a simulator/emulator
varies among the available versions. Each tool has its own advantages
and disadvantages. So, choose the one that best fits your application,
effort, time, and budget. Most of the presented USN simulators and
emulators fall into research and commercial domains. Among the
simulators, NS-2, OPNET, and QualNet, and for the emulators,
TOSSIM, have gained more popularity. From an educational perspec-
tive, limited tools are available that have an academic version released.
Among them, OPNET IT Guru and OMNet++ have gained more
attention, especially due to their free license, rich tutorial, and excellent
GUI. A good GUI facilitates interaction between users and software by
dragging and dropping the simulation elements and presenting the
outputs graphically. However, if a student neglects the GUI and can get

Table 12 (continued)

Reference Compared simulators/emulators Scenario parameters Performance assessment

Routing protocol: AODV
Xian et al. (2008) OMNeT++, NS-2, and OPNET Comparison of delivery ratio

Execution time of 10 queries generate nodes (SimpleMAC)
Number of nodes: 500–2000 Execution time of 100 queries generate nodes (SimpleMAC)
X, Y Dimensions: 500 × 500 m Memory usage of 10 queries generate nodes (SimpleMAC)
Simulation time: 300 s Memory usage of 100 queries generate (SimpleMAC)
Query generating nodes: 10 and 100 Execution time of 10 queries generate nodes (IEEE 802.11MAC)

Execution time of 100 queries generate nodes (IEEE 802.11
MAC)
Memory usage of 10 queries generate nodes (IEEE 802.11 MAC)
Memory usage of 100 queries generate nodes (IEEE 802.11
MAC)

Sobeih et al. (2006) NS-2 and J-Sim Network size n2 + 2 vs. Execution time
Number of sink nodes: 1 Network size n2 + 2 vs. Number of events
Number of target nodes: 2 Memory usage before simulation start vs. Network size n2 + 2
Number of sensor nodes: n2 - 1 Memory usage before simulation ending vs. Network size n2 + 2
X, Y Dimensions: 1500 × 1500 m Execution time vs. Network size n2 + 2 (GPSR routing protocol)
Target nodes speed: 10 m/s Number of events vs. Network size n2 + 2 (GPSR routing

protocol)
Nodes’ sensing radius: 200 m Memory usage before simulation start vs. Network size n2 + 2

(GPSR routing protocol)
Simulation time: 1000 s
Routing protocol: AODV (Scenario A) Memory usage before simulation ending vs. Network size n2 + 2

(GPSR routing protocol)
Routing protocol: GPSR (Scenario B)

Alizai et al. (2009) TOSSIM, TimeTOSSIM, and Avrora Number of nodes: 650 Scalability comparison: Number of nodes vs. Time
Simulation time: < 1000 s Accuracy, speed, and energy consumption

Mallanda (2005) NS-2 and LSU SensorSimulator Number of nodes vs. Delivery ratio
Execution time for 10 queries for 150 simulation seconds
Execution time for 100 queries for 150 simulation seconds
Memory utilized to setup the network for 10 queries
Memory utilization during simulation for 10 queries

Number of nodes: 5–200 Memory utilized to setup network for 100 queries
MAC layer: 802-11 MAC Memory utilization comparison during simulation for 100

queries
Directed Diffusion-GEAR-MAC802.11 execution time for 10
queries simulated for 300 simulation seconds
Directed Diffusion-GEAR-MAC802.11 memory usage for 10
queries simulated for 300 simulation seconds

Fig. 7. Scenario parameters for USN simulation and emulation.

Fig. 8. Pairwise performance assessment: number of nodes feature versus other
simulator's/emulator's features.
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familiar with scripting, NS-2 and NS-3 are suitable educational tools.
Last but not least, an open source facility enables modification of
current programs and free extension of the software. However, they
may not be user-friendly and convenient with GUI. NS-2 and OMNeT+
+ are two frequently used open source software.

Choosing an authoritative tool that provides flexible modeling and
validation can drastically improve the results. Also, the tool should
enable statistical analysis of output data. Users/developers should
ensure the validity of the model inputs and outputs. Researchers and
tool developers should consider the positive and negative aspects of
simulators/emulators, appropriate programming language, architec-
ture (i.e., component-based or object-oriented architecture), degree of
simulator/emulator complexity, presence and shortage of features,
parallel execution, real deployment of sensor nodes, and several other
factors.

Researchers normally execute simulation/emulation repeatedly by
using one simulator/emulator. It should be noted that execution of
several runs does not necessarily results in better results. The simula-
tion/emulation outputs are directly related to the mathematical models
developed in that specific tool. The variation in the built models leads
to discrepancies among the simulation/emulation outputs. Although
simulation/emulation models should be built credibly, more complex
models require more computational time and resource. A good USN
simulator/emulator, however, offers a balance between several criteria,
such as accuracy, scalability, feature, extendibility, scripting language,
GUI support, and ease of use.

8.2. Future work

Many types of research have been conducted addressing simulation
and emulation issues in USN. However, there are still a lot of potential
future studies which either remain unsettled or unexplored compre-
hensively. We classify them into general and specific open issues. From
the general perspective we have identified the following trends.

• A promising future work relates to deeply reviewing other perfor-
mance evaluation techniques (i.e., analytical modeling, physical

testbed, and real world experimentation) suitable for USNs along
with addressing a standardized criteria list for assessing the
performance of such techniques.

• Interoperability of USN simulators/emulators is a topic that has not
been deeply explored so far; that is, developing integrated simula-
tors/emulators to support a wide range of features. In this context,
one tool can be complemented by other tools for their distinctive
features such that the output of one can be imported as an input to
the other one. To this end, a model can be analyzed through different
simulation tools synchronously/asynchronously. This enables the
strengths and weaknesses of the model to be revealed and makes the
model possible to be improved in the design process. Experimenting
with multiple simulators/emulators is a non-trivial challenge and
should be supported with a common API for all participants.

• USN has gained attention in different indoor and outdoor applica-
tions, such as health, transportation, agriculture, and military, to
name a few (Keshteh Gar and Sadeghi-Niaraki, 2015; Sahelgozin
et al., 2015; Nikparvar et al., 2014; Jamali and Sadeghi-Niaraki,
2016; Moosavi and Sadeghi-Niaraki, 2015). These applications have
specific characteristics that are coupled with technology. Therefore,
there is an enormous potential to run and test application-specific
scenarios through USN simulators and emulators. Since simulations
and emulations can reveal design flaws to a large extent, the
scenarios need to compare different parameters to increase the
knowledge about impacting factors.

• Given the ability of simulators/emulators in modeling sensor net-
works in diverse scales, exploring their capabilities in terms of
terrestrial, underground, underwater, multi-media, and mobile
USNs is an interesting area of research that can be carried out in
future.

Besides the aforementioned general directions, we also highlight
the following specific issues, which are not fully addressed or remain
unaddressed by the current USN simulators and emulators so far. A
promising future direction can be toward extending the functionality of
simulators and emulators, especially the open-source ones, which
suffer from the appropriate extension/feature of the USN emerging
technologies (e.g., cognitive radio sensor networks, the Internet of
Things (IoT), cloud computing, etc. (Islam et al., 2016)).

• Cognitive radio sensor networks: In applications that require a
large number of sensor nodes, the available bandwidth may not
suffice to support all the transmissions, which can result in loss of
useful data. In order to minimize data loss, an emerging trend in
USNs is to equip the wireless sensor nodes with cognitive radio (CR)
technology. CR is an adaptive, intelligent radio and network
technology, capable of automatically detecting vacant channels
(termed spectrum sensing) in a wireless spectrum, change their
transmission parameters accordingly (termed spectrum decision),
and making use of these available channels in an opportunistic
manner, improving the overall spectrum utilization (Akan et al.,

Fig. 9. Simulators’ and emulators’ scalabilities: approximate number of supported sensor nodes.

Fig. 10. Percentage of simulator/emulator programming languages.
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2009). Incorporating cognitive radio capability in sensor networks
yields a new sensor networking paradigm, termed cognitive radio
sensor networks (CRSNs). Depending on the application, a USN
composed of sensor nodes equipped with cognitive radio may benefit
from its potential advantages. Several researches have investigated
the theories behind this technology, such as radio resource alloca-
tion in CRSNs (Ahmad, 2015), channel bonding in CRSNs (Bukhari
et al., 2016a), and adaptive medium access control in CRSNs (Shah
and Akan, 2015), to name a few. In spite of these considerations, the
majority of researchers are using analytical methods to understand
the behavior of CRSNs and a very few simulation models at present
are providing support for combined features of USNs and CRNs.
Accordingly, CRSNs has not been a main research focus in USN
simulators and emulators. As an exceptional and pioneering study, a
NS-2 based CRSN simulator model was proposed by (Bukhari et al.,
2016b). This model supports the fundamental requirements of a CR-
based wireless sensor network. As the research trend is shifting
towards CRSNs technology, there is a possibility of examining
different aspects of such technology and practically identifying the
challenges in multiple applications (e.g., indoor sensing, multi-
media, multiclass heterogonous sensing, real-time surveillance,
etc.) by USN simulators and emulators for future research.

• Energy management and harvesting: In USN applications
static and dynamic sensor nodes are normally dispersed over a
large area while they are prone to failure due to energy depletion.
Exploiting power suppliers from fixed utilities may not be techni-
cally or economically possible in all practices. Therefore, energy
management, harvesting, and replenishment become crucial to
maximizing sensor networks’ lifetimes and throughputs (Niyato
et al., 2007; Akhtar and Rehmani, 2015). Despite the plethora of
theories relevant to these issues, very few researches have pointed
out the difficulties in energy efficient protocol design using simula-
tors/emulators; for example, Hasenfratz (2010) analyzed and com-
pared a limited number of routing protocols for energy harvesting
USNs in different scenarios by the Castalia simulator. Therefore,
measuring the energy consumption of the (mobile) sensor nodes and
experiencing energy efficient protocols are topics that have not been
deeply explored in simulators/emulators thus far. More specifically,
energy saving mechanisms (e.g., energy-efficient routing protocol,
power-conserving MAC protocol, battery management, energy-effi-
cient packet scheduling, etc. (Niyato, 2007)) besides renewable
energy resources (e.g., light, vibration, heat, radio frequency, wind,
etc. (Akhtar and Rehmani, 2015)) are the issues that can be
individually or collaboratively investigated by different applications
in USN simulators and emulators.

• The Internet of Things: During recent years, a lot of attention has
been towards establishing infrastructures for smart and context-
aware environments (Sharif and Alesheikh, 2017). In this respect, in
the Internet of Things (IoT) paradigm, concurrent collection of data
from numerous devices and communications between them has
been a challenging task for network technologies. To overcome this
challenge, sensor networks try to complement the sensing and
communication infrastructures. The integration of sensor networks
and IoT is theoretically discussed in Alcaraz (2010). Also, the review
by Rashid and Rehmani (2016) demonstrates the utility of IoT and
USN integration in real-world applications. Therefore, in the light of
USN simulators and emulators, exploring the scalability and topol-
ogy issues along with communication protocols, targeting at IoT
applications, can be an interesting topic for prospective research.

• Cloud computing: For ubiquitous applications, the collected data
by sensor nodes need to be available at any time, at any place.
However, due to the limitations of sensors in storage, bandwidth,
battery power, processing, security, etc., one drastic solution for
communication among sensor nodes is using cloud infrastructure.
High-performance computing, less maintenance, seamless availabil-

ity, and scalability are only a few features of cloud computing.
Therefore, combination of USNs with clouds enables sharing and
analyzing real time sensor data pervasively on-the-fly. A USN-Cloud
platform normally comprises of USN, cloud infrastructure, and
client(s). USN consists of physical wireless sensor nodes to sense
the environment and route the data to the cloud. The cloud provides
the client(s) on-demand data/service over the Internet. Despite the
effectiveness of USN-Cloud computation, very few works have
undertaken specific features of it. Kurschl and Beer (2009) pre-
sented a model by combining the concept of USNs with the cloud
computing paradigm, and demonstrated that how both can benefit
from this combination. Ahmed and Gregory (2011) proposed a novel
framework to integrate the cloud computing paradigm with USN,
aiming to facilitate the shift of data from USN to the cloud
environment. In this perspective, more general models must be
further developed and be evaluated in different scenarios to measure
the advantages and shortcomings of USN-Cloud combination. A
large part of the work can be handled in USN simulators and
emulators through developing patches/extensions. Then, the output
of simulators/emulators can be imported as input for cloud comput-
ing.

9. Conclusion

The purpose of this study was to expand the understanding of
researchers and tool developers about the available simulation and
emulation tools for USN. We believe this study will aid them in
choosing an appropriate simulator and/or emulator for sensor network
performance testing based on their requirements and constraints. In
this context, this paper overviewed 130 simulator and emulator
environments and frameworks that were originally designed or adapted
for USN. The brief explanation provided for each tool accompanied by
corresponding designer/developer, the latest version, and the software
link. A number of prominent USN simulators and emulators were
qualitatively and quantitatively compared based on multifarious criter-
ia: those that are available for the community and supported by their
developers, are popular, have published results, and have interesting
characteristics and features. The strengths and weaknesses of each
were comparatively addressed as well. Several studies that cited
relative performance analysis of simulators and emulators were
introduced. Finally, we summarized with some recommendations for
potential future works. We conclude from the observations that
choosing an appropriate simulator/emulator and building a correct
simulation model are two important aspects for USN. However, there is
no standard simulator or emulator for all USN applications; its choice
depends on the operational environment.
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