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Common Genetic Variants and Gene-Expression
Changes Associated with Bipolar Disorder Are
Over-Represented in Brain Signaling Pathway Genes
Inti Pedroso, Anbarasu Lourdusamy, Marcella Rietschel, Markus M. Nöthen, Sven Cichon,
Peter McGuffin, Ammar Al-Chalabi, Michael R. Barnes, and Gerome Breen

Background: Despite high heritability, the genetic variants influencing bipolar disorder (BD) susceptibility remain largely unknown. Low
statistical power to detect the small effect-size alleles believed to underlie much of the genetic risk and possible heterogeneity between
cohorts are an increasing concern. Integrative biology approaches might offer advantages over genetic analysis alone by combining
different genomic datasets at the higher level of biological processes rather than the level of specific genetic variants or genes. We employed
this strategy to identify biological processes involved in BD etiopathology.

Method: Three genome-wide association studies and a brain gene-expression study were combined with the Human Protein Reference
Database protein–protein interaction network data. We used bioinformatic analysis to search for biological networks with evidence of
association on the basis of enrichment among both genetic and differential-expression associations with BD.

Results: We identified association with gene networks involved in transmission of nerve impulse, Wnt, and Notch signaling. Three features
stand out among these genes: 1) they localized to the human postsynaptic density, which is crucial for neuronal function; 2) their mouse
knockouts present altered behavioral phenotypes; and 3) some are known targets of the pharmacological treatments for BD.

Conclusions: Genetic and gene-expression associations of BD cluster in discrete regions of the protein–protein interaction network. We
found replicated evidence for association for networks involving several interlinked signaling pathways. These genes are promising
candidates to generate animal models and pharmacological interventions. Our results demonstrate the potential advantage of integrative

biology analyses of BD datasets.
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B ipolar disorder (BD) is a chronic and episodic psychiatric ill-
ness characterized by extremes of mood ranging from mania
to severe depression. Despite a convincing and substantial

enetic contribution to the etiology of the disorder (1), its genetic
nd molecular underpinnings remain largely unknown. Its diagno-
is is based solely on observed clinical features. Individual genome-
ide association studies (GWAS) and linkage studies have high-

ighted several genomic regions, and recently replicated evidence
mplicating specific loci have also been reported (2– 6). The GWAS
f common genetic variation have reinforced the notion that many

ow-risk genetic variants are involved in the etiology of BD. There-
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ore, an important challenge of genetic studies is to devise analyti-
al strategies to extract biologically relevant associations from
hose under the genome-wide significance threshold needed for

ultiple testing correction, p � 5 � 10�8 (7). Currently, large meta-
nalyses of GWAS represent the major approach used to increase
ower to detect BD risk alleles (8). A potential limitation to these
tudies is allelic and locus heterogeneity (i.e., two or more polymor-
hisms within a gene being independently associated, and differ-
nt sets of genes associated in different studies). This has been
eported in different diseases (9 –11). There is some evidence to
uggest this might also be true for BD (12), although the extent to
hich this occurs in BD or other traits is not yet clear.

Prior knowledge can be used to boost signal-to-noise ratio
nd tackle heterogeneity in large-scale genomic experiments
13,14). Prior information can be used to filter out data, on the
asis that they are unlikely to carry useful information, or to
ggregate them into biologically relevant groups to allow their
ignal to stand out above the noise generated by multiple test-
ng. Such an approach can be used with multiple data sources,
nd increasing evidence suggests that gene-expression studies
an help prioritize GWAS results (15–17). For example, Zhong et
l. (16) showed that gene-expression changes and disease-sus-
eptibility alleles cluster in common biological pathways confer-
ing risk for type 2 diabetes.

Analysis of the Wellcome Trust Case Control Consortium
WTCCC) BD GWAS and its meta-analysis with another GWAS pro-
ided evidence of association within biological processes involved

n the modulation of transcription and cellular activity, including
hat of hormone action and adherens junctions (11,18,19).

Here we present an integrative biology analysis aimed to iden-
ify biological processes associated with BD susceptibility. Three
WAS of BD susceptibility were integrated via a gene-wide analysis
ollowed by protein–protein interaction network (PPIN) analysis
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and comparison with a brain gene-expression study of BD patients
and matched control subjects. Our integrative approach revealed
convergent evidence for association of genes and biological pro-
cesses with BD susceptibility.

Methods and Materials

Samples and Genotype Data
We reanalyzed GWAS of BD from the Wellcome Trust Case Con-

trol Consortium (20), Cichon et al. (4), and Sklar et al. (21) studies,
which we refer to as WTCCC, Bonn, and Sklar, respectively. We used
individual level genotype and phenotype data from the Bonn study
and summary statistics from each of the other studies. Genotype
data from the Bonn study were quality controlled by the sample
and single nucleotide polymorphism (SNP) missing rate and Hardy-
Weinberg. All BD samples met DSM-IV criteria to establish BD diag-
noses. We also analyzed summary statistics from six GWAS in com-
mon nonpsychiatric disorders reported by the WTCCC (20). See
Supplement 1 for additional method descriptions.

Gene-Based Association
We calculated gene-wide p values with the FORGE software

suite (see Supplement 1 for a detailed description of the software).
We included in our analyses approximately 21,000 protein-coding,
long noncoding RNA and micro RNA genes annotated in Ensembl
v59 (www.ensembl.org) and mapped them to SNPs if the SNP was
within 20 kb of the annotated coordinates. The FORGE software
combined the m association p values within genes with the fixed-
effects Z score method

Zfix � ��i�1
m WiZi

�i�1
m Wi

� · �Vfix

where zi are the p values transformed to Z scores with the standard
normal distribution inverse cumulative distribution function (c.d.f.)
and Vfix is the variance of Zfix. With the approximation of the multi-
variate-normal distribution

Vfix � �i�1
m �j�1

m wiwj�ij

where w are weights that we set to 1/m and �ij is the correlation
between the zi and zj that we approximate as the correlation be-
tween the SNPi and SNPj, because we only use summary statistics.
We used the simulation-based strategy of Liu et al. (22) to estimate
the significance of the Zfix statistics, because it was shown to pro-
vide very good correlation with empirical estimates. Briefly, N gene-
wide statistics for each gene were calculated with sets of m random
Gaussian variables (Z scores) with correlations defined by the cor-
relation matrix between the SNPs (see Liu et al. [22] for details). We
set N to a maximum of 106 simulations or until the value of Zfix was
observed 10 times. The gene-wide association test significance is
equal to (R�1)/(N�1), where R is the number of times a statistic �
Zfix was observed.

Application of these methods to GWAS has been reported else-
where (23). Before calculating gene p values we applied genomic
control to the SNP p values, if the study � median was �1 (24).

Network Analyses
To identify subnetworks of interacting genes enriched with ge-

netic associations, we used the greedy search introduced by Ideker
et al. (25), which we implemented in a Perl script distributed to-
gether with FORGE. The algorithm starts subnetwork searches from
each node (seed node) in the PPIN. A subnetwork is defined by

sequentially adding the direct neighbors of the nodes of the sub- t

www.sobp.org/journal
etworks (initially only the seed node). We allowed searches to go
o a maximum of five interactions from the seed node and generate
ubnetworks of 2 to 500 nodes in size. For each dataset, we calcu-
ate the aggregate Z score of the subnetwork (SNet) with

SNet � ��d�1
k Wigi

�d�1
k Wi

� · �VSNet

here gi is the Z score of the ith gene in the subnetwork, k is the
umber of genes in the subnetwork, and Vgenes is the variance-
ovariance matrix of the statistic of the gene that we calculated
ith the method described by Luo et al. (23),

VSNet � corr�gi, gj� �
�u�1

ki �v�1
kj corr�ziu , zjv�

���u�1
ki �u�1

ki
�ij� · ��v�1

kj �v�1
kj

�ij�
o identify groups of highly overlapping networks, we constructed
gene-to-network membership matrix filled with values 0 or 1,

epending on whether a gene was part of the network or not. This
atrix was used to calculate correlations between networks and to

erform hierarchical clustering with the Heatplus R package (http://
ww.bioconductor.org/packages/2.3/bioc/html/Heatplus.html).

NA Microarray Analysis
The gene-expression data of dorsolateral prefrontal cortex

DLPFC) tissue from 61 subjects and orbitofrontal cortex (OFC) tis-
ue from 21 subjects reported by Ryan et al. (26) were downloaded
rom the ArrayExpress database (27) under accession number E-
EOD-5392. Raw intensity values of Affymetrix Human Genome
133A arrays were normalized with the Robust Multi-Average algo-

ithm (28). Pre-filtering removed transcripts not detected (marked
s “absent” with MAS5 detection call algorithm) in any sample and
ere not considered further. The generalized linear model with

ovariates was used to assess differential expression for each probe
n each brain region. Covariates were used as in the original report:
or the DLPFC samples we used the generalized linear model with
isease status (control/BD) as the main effect while controlling for
rain pH and fluphenazine equivalents; and for the OFC samples,
e used fluphenazine equivalents as a covariate.

n Silico Characterization of Significant Networks
We interpreted the biology of significant subnetworks with

etaCore (GeneGo; http://www.genego.com). GeneGO provides
ene ontologies as GeneGO Pathways Maps and Network Pro-
esses manually constructed from literature review. There are de-
ned as: 1) GeneGO Pathways summaries of established, noncon-
radictory state-of-the-art knowledge on the major functional
ategories of human metabolism and cell signaling; and 2) Net-
orks Processes descriptive of a biological function but containing
ore information than a Pathway Map and possibly having newer

ublished results on them. Enrichment of subnetwork genes in
hese biological categories is calculated with hypergeometric dis-
ribution statistics as has been described elsewhere (29). For all
nalyses in GeneGO, we used the intersection between the PPIN
nd the three GWAS dataset genes as a background to account for
iases in PPIN gene annotation. This reference list had 7924 genes,
f which 3375 could be mapped to GeneGO Pathways and 7917
ould be mapped to GeneGO Processes. In addition we compiled
enes associated with mouse phenotypes by parsing the files pro-
ided by the Mammalian Phenotype Ontology database (30).
enes localized in the human postsynaptic density (hPSD) were
btained from the supplementary material of Bayes et al. (31). En-
ichment of genes for membership of the Mammalian Pheno-

ype Ontology, and the hPSD categories were calculated with

http://www.ensembl.org
http://www.bioconductor.org/packages/2.3/bioc/html/Heatplus.html
http://www.bioconductor.org/packages/2.3/bioc/html/Heatplus.html
http://www.genego.com
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binomial statistics. Enrichment of BD gene expression results in
subnetworks was performed with the parametric analysis of
gene set enrichment (32).

eta-Analyses
Gene and network level statistics from different studies were

ombined with the fixed-effects model previously described for
ene-wide testing. We set study specific weights calculated as the
quare root of the sample size: WTCCC � 70.71, Sklar � 59.16, and

Bonn � 44.72. When combining GWAS and gene-expression stud-
ies, equal weights were assigned. The Perl script used to perform
the meta-analysis is distributed with the FORGE software.

Results

We combined results from three GWASs (4,20,21) and a gene-
expression study of BD (26) with information of protein–protein
interactions (33). Detailed descriptions of these datasets have been
provided elsewhere (4,20,21). All studies used DSM-IV criteria to
establish BD diagnosis, and quality control included sample and
genetic marker filters to exclude low-quality data. The combined
data were meta-analyzed at the gene and gene-set level to identify
biological processes enriched with genetic variants and gene-ex-
pression changes associated with BD.

Gene-Based Meta-Analysis of BD Datasets
We calculated gene-wide association p values for each GWAS

with the FORGE software and for the gene-expression studies with
standard differential expression analysis (see Methods and Materi-
als). First, the GWAS p values of each gene were meta-analyzed with
a fixed-effects model, and this resulting p value (PGWAS) was then
meta-analyzed with the p value of that gene’s test for differential
gene-expression between cases and control subjects (PGE). This was
performed separately with the gene-expression results for two
brain regions, DLPFC and OFC gene-expression, yielding two
GWAS-gene-expression meta-analysis results we refer to as PGWAS-

LPFC and PGWAS-OFC, respectively. One and eight genes showed
significant association (false discovery rate �.05) in the GWAS-
DLPFC and GWAS-OFC meta-analyses, respectively (Table 1). All
genes, except TRIM23 with PGWAS � .2 and PGE � 2 � 10�6, reached

Table 1. Significant Genes from Gene-Based Meta-Analysis Between GWAS

Hugo Symbol

GWAS

WTCCC (4,30,21) Sklar (4,30,21) Bon

DLPFC
LMBR1L 2E-03 8E-03

OFC
RAB7L1a 8E-03 .07
TMEFF1 .07 .5
ITGA10 3E-03 .02
ITM2C .3 .05
LFNGb .4 5E-03
CSDA 2E-03 .4
TRIM23 .4 .3
HIST1H3F .4 .02

Reported are p values from individual genome-wide association studies
eta-analysis p value (PGWAS) was combined with the p value of differentia

PGEAS-GE).
DLPFC, dorsolateral prefrontal cortex; FDRGWAS-GE, false discovery rate e
aLoci with previous disease mapping results registered in the Nation

Inheritance in Man (OMIM): Parkinson’s disease (52,53).
b
Loci with previous disease mapping results registered in the National Human

spondylocostal dysostis 3 (MIM 602576).
ignificance supported by both the gene-expression and GWAS
ata.

etwork Analysis of GWAS and Gene-Expression Signals
To identify groups of interacting gene products enriched for BD

ssociation signals, we mapped gene-level results from the GWAS
nd gene-expression studies to the PPIN and tested the association
f approximately 6100 subnetworks of between 2 and 200 nodes

products of genes) in size. We performed, as with our gene-level
nalyses, a combined analysis of the GWAS and gene-expression
esults at the PPIN subnetwork level. There were 11 subnetworks
ith false discovery rate � .05 in the GWAS-DLPFC meta-analysis

Table 2). Some of these showed significant overlap, and we se-
ected four subnetworks as representatives (Figure 1). We used
ene ontology analysis to characterize the biological function of

he genes of the four subnetworks (Table 3). Two subnetworks,
PIN-5572 and PPIN-1576, were best characterized by similar ontol-
gies, including transmission of nerve impulse, gonadotropin-re-

easing hormone signaling pathway, and Wnt and Notch signaling.
he other two subnetworks were more distinctive; PPIN-6001 was
nriched for neuropeptide signaling pathways genes, and PPIN-
19 was enriched for genes involved in lipid metabolism pathways.
e further characterized these networks by analyzing the pheno-

ype of mouse knockdowns of their genes. We found that PPIN-
572 and PPIN-1576 were over-represented in mouse knockdowns
howing alteration in phenotypes like behavior, growth, and size
nd nervous system phenotypes (Table 4). We did not find signifi-
ant results after correction for multiple testing for PPIN-119 and
PIN-6001. Finally, we also found a significant overlap between
hese networks and genes reported to code for proteins localized in
he human postsynaptic density (31). The PPIN-5572 and PPIN-1576
ad the largest overlap, with a 2- and 2.4-fold enrichment, p � 8 �
0�4 and 7 � 10�3, respectively (Table S5 in Supplement 1).

Our network analysis strategy aimed to deal with potential locus
eterogeneity, which has been described in gene-expression stud-

es (e.g., Chuang et al. [13]) and diverse diseases studied by GWAS
10,11,19). We found, in common with these previous reports, that
he genes driving the network associations (association p values �
05) were different in each dataset (Figure S2 and Table S6 in Sup-

Gene-Expression

GWAS � Gene-Expression

0,21) PGWAS PGE PGWAS-GE FDRGWAS-GE

2 6E-06 .02 4E-06 .03

1E-03 4E-04 4E-06 .04
.04 2E-05 2E-05 .04

8E-04 5E-03 2E-05 .04
3 6E-03 1E-03 3E-05 .04

.01 3E-04 4E-05 .04

.01 4E-04 4E-05 .04

.2 2E-06 4E-05 .04

.01 3E-04 4E-05 .04

S) and gene-expression studies and their meta-analysis results. The GWAS
-expression (PGE) to give the pooled GWAS and gene-expression estimate

te for PGWAS-GE; OFC, orbitofrontal cortex.
man Genome Research Institute GWAS Catalogue or Online Mendelian
and

n (4,3

1E-0

.1

.03

.4
3E-0

.1

.4

.2

.03

(GWA
l gene

stima
al Hu
Genome Research Institute GWAS Catalogue or OMIM: autosomal recessive

www.sobp.org/journal
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plement 1). This reinforces the notion that system level analyses are
required to compare and integrate GWAS and gene-expression
studies.

Also, we found no association with these four sub-networks in
six nonpsychiatric complex diseases, except for PPIN-6001, which
showed some association with two immune-system related disor-
ders (Crohn’s disease and rheumatoid arthritis) (Table S7 in Supple-
ment 1).

Discussion

Our results show that genetic variants and gene-expression
changes associated with BD are not randomly distributed across
genes but instead cluster into discrete groups. These can be identi-
fied by integrating multiple layers of biological information, and
here we used genetic association signals, evidence of direct or
indirect interaction in the context of a PPIN, as well as differential
expression in brains of BD patients compared with control subjects.
The PPIN subnetworks associated were characterized by biological
processes of relevance for a neuropsychiatric disorder (e.g., trans-
mission of nerve impulse and Wnt signaling) (Table 3). Interestingly,
we also found that these networks overlap significantly with the
hPSD recently described by a large proteomic study (Table S5 in
Supplement 1). The hPSD is enriched with genes affected by muta-
tions causing neurological, central nervous system, and cognitive

Table 2. Significant Gene-Sets in Combined GWAS and Gene-Expression N

PPIN

GWAS

WTCCC Sklar Bonn

PPIN-5572 .1 4 � 10�3 6 � 10�3

PPIN-5042 .2 1 � 10�3 .1
PPIN-7033 .04 .01 .2

PIN-1576 .1 4 � 10�3 .2
PIN-3274 .4 3 � 10�3 .02
PIN-5348 .1 3 � 10�3 6 � 10�3

PIN-7161 .2 .01 .02
PIN-6001 .04 .1 .03
PIN-6294 .1 .03 .04
PIN-2675 .2 .01 .07
PIN-119 5 � 10�3 .4 .2

PGWAS, PGWAS-DLPFC, and FDRGWAS-DLPFC are p values obtained by poolin
results, respectively. There were no significant results in the GWAS-OFC me

PPIN, protein–protein interaction network; WTCCC, Wellcome Trust Cas

PPIN-7161
PPIN-6294
PPIN-5042
PPIN-5572
PPIN-5348
PPIN-3274
PPIN-2675
PPIN-7033
PPIN-1576
PPIN-6001
PPIN-119

-0.5        0      0.5       1

Figure 1. Overlap between significant networks. Hierarchical clustering of
etworks on the basis of gene overlap. Four networks were selected as

epresentative (names in bold). Correlation between networks is color-
t
oded as indicated in the figure key. PPIN, protein–protein interaction net-
ork.

www.sobp.org/journal
henotypes, such as mental retardation or Alzheimer’s disease (31).
herefore, not only rare mutations with large effect-size but also
ommon variants and gene-expression changes seem to affect the
PSD as a mediator of disease risk. Furthermore, the data presented
ere and by others highlight the potential to shed light on the
olecular basis of complex diseases via consideration of the statis-

ical signals normally buried under strict GWAS significance thresh-
lds alongside knowledge of protein function, (e.g., protein-protein

nteractions) (for examples see references [9 –11,34] and gene-ex-
ression changes [15–17]). It is likely that these BD associated net-
orks might also harbor risk variants for other psychiatric condi-

ions, because the Wnt signaling and more broadly the hPSD have
een linked to diverse conditions, including schizophrenia (31).
dditional analyses in genetic and gene-expression samples ascer-

ained for other disorders will be needed to explore the phenotypic
pecificity of the effects of genetic variants within these molecular
etworks. Our initial attempt showed no association with nonpsy-
hiatric disorders, except for PPIN-6001 in two immune-system dis-
ases. However, these results remain preliminary, because by ana-

yzing one GWAS and no gene-expression data we anticipate that
ur statistical power is limited.

Our results support Wnt signaling as a biological process of
elevance to the understanding of BD etiology. There is evidence to
uggest that lithium and valproic acid, two molecules used to treat
he disorder, exert part of their pharmacological effects through
hanges in Wnt signaling (35). Previously, a genetic association
tudy analyzed Wnt signaling genes and found some evidence of
ssociation with BD (36). Genetic variants within Wnt signaling
enes have also been shown to affect gray matter volume in major
epression patients (37). Wnt signaling is involved in the regulation
f cell proliferation and tissue development across several major
uman organs, including brain (38). However, it remains challeng-

ng to propose a specific mechanism by which Wnt signaling genes
nfluence BD risk, our results overall point to biological process of
nown relevance for brain function, supporting the notion that
any subthreshold genetic associations hold valuable biological

nformation to understand the etiology and propose new treat-
ents. For example, drugs targeting neuropeptide signaling are

hought to be promising alternatives in the treatment of mood
isorders (39,40).

A major challenge in psychiatric genetics is the development of
etter animal models. The GWAS might provide a new avenue for

rk Analysis

GWAS � Gene-Expression

PGWAS PDLPFC PGWAS-DLPFC FDRGWAS-DLPFC

� 10�4 3 � 10�3 1 � 10�5 8 � 10�3

� 10�3 2 � 10�3 2 � 10�5 8 � 10�3

� 10�3 4 � 10�3 5 � 10�5 .01
� 10�3 1 � 10�3 3 � 10�5 .01
� 10�3 1 � 10�3 5 � 10�5 .01
� 10�4 .02 1 � 10�4 .01
� 10�3 3 � 10�3 6 � 10�5 .01
� 10�3 3 � 10�3 7 � 10�5 .01
� 10�3 4 � 10�3 1 � 10�4 .03
� 10�3 2 � 10�3 1 � 10�4 .03

.02 1 � 10�3 2 � 10�4 .04

AS, GWAS � DLPFC, and FDR applied to the GWAS-DLPFC meta-analysis
lysis.

trol Consortium; other abbreviations as in Table 1.
etwo

4
2
2
3
5
3
3
3
4
7

g GW
ta-ana
heir development by pointing to biological process that can be
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systematically studied to generate new animal models (e.g., with
mouse knockdowns). These genetic models can be systematically
phenotyped to establish phenotypic commonalities that poten-
tially will translate into underlying processes of relevance for the
understanding of human pathology. Our results suggest that this
strategy might be fruitful, because the biological process associ-
ated in human also associates with phenotypic alteration in the
mouse (Table 4). Although laborious, such a systematic screening
will be streamlined by new gene targeting technologies, for exam-
ple as demonstrated in Premsrirut et al. (41). This strategy might
provide genetically driven models in which to test new drugs and
explore pathology at a molecular and physiological level (42,43).

ome progress along these lines has been made in BD (44 – 46). For
xample, Ogden et al. (45) used a convergent functional genomics

approach combining gene expression from animal models and
human linkage information from human studies to identify new
candidate genes for mood disorders. In a follow-up study, Le-Ni-
culescu et al. (44) characterized the mouse knockout of one of these
candidate genes, which showed phenotypes of potential interest to
understand mood disorders.

Several of the biological functions over-represented in the sig-
nificant PPIN networks are in line with those reported in previous
gene set analyses of BD GWAS (18,47). For example, Holmans et al.
(18) found significant association with GO0005179 (p � .0001 in
Table 4 of Holmans et al. [18]), which is a parent in the Gene Ontol-
ogy classification of gonadotropin hormone-releasing activity
(GO0005183), where we also found association (Table 3). Our gene-
based meta-analysis highlighted several new potential loci but did
not support previous associations with BD (Table 1). Not much is
known about the biological function of our most significant gene,
LMBR1L, but it has been shown to be a lipocalin receptor (48) and is
expressed in many tissues, including the central nervous system
(49). Our results did not provide compelling evidence for loci previ-

Table 3. Subnetwork Characterization with Ontology Enrichment

Biological Process

PIN-5572 Neurophysiological process: transmission of nerve impulse
Signal transduction: Wnt signaling
Reproduction: GnRH signaling pathway

PPIN-1576 Reproduction: GnRH signaling pathway
Signal transduction: Wnt signaling
Signal transduction: Notch signaling

PPIN-6001 Signal transduction: neuropeptide signaling pathways
PPIN-119 Regulation of lipid metabolism: regulation of fatty acid syn

Regulation of lipid metabolism: regulation of lipid metabo

Enrichment of the subnetwork genes for biological pathways and proces
ategory name and the uncorrected p value. All results had a false discovery

GnRH, gonadotropin-releasing hormone; LXR, liver X receptor; NF-Y, nuc
lement binding protein.

able 4. Representative Mouse Phenotypes Enriched for Significant Subne

Phenotype Ontology Ontology Description

MP:0005386 Behavior and neurological phenotype
MP:0005378 Growth and size phenotype
MP:0005376 Homeostasis and metabolism phenotype
MP:0002873 Nervous system phenotype
MP:0003631 Nervous system phenotype

Mammalian Phenotype Ontology (MPO) identifiers are provided for ont

compared with all genes included in the protein–protein interaction analysis. R

ategories) via a Bonferroni correction. There were no significant results for prote
usly associated with BD in large GWASs (2), namely ANK3 and
ACNA1C. These genes were not part of the significantly associated
etworks, but they had nominal levels of association in the GWAS
eta-analysis—CACNA1C gene p � .01, and ANK3 gene p � .25—

nd gene-expression data; differential expression p value in the
FC for CACNA1C � .047 and ANK3 � .047 and in the DLPFC for
ACNA1C � .054 and ANK3 � .27. Additional analyses in larger
WAS (e.g., those of the Psychiatric GWAS Consortium) (8) will
rovide a better synthesis of the association evidence at these loci.

We found, in line with previous reports (10,11,19), that system-
evel genetic associations in complex traits are heterogeneous (Fig-
re S2 and Table S6 in Supplement 1). However, this heterogeneity

s approachable, and GWAS can be mined for the biological pro-
esses underlying complex traits, as recently reviewed in Wang et al.
50). Although overcoming genetic heterogeneity was a major mo-
ivation of our study, we do acknowledge the merit of increasing
ample size to improve statistical power; this has been an unmistak-
bly successful approach for some complex traits (e.g., Lango et al.
9]). However, in some situations increasing sample size is not an
ption—for example, in the case of low population frequency dis-
ases. Many nonreplicated signals might represent true disease-
usceptibility alleles whose effect is not expressed, due to cryptic
ifferences in genetic background between populations, their ex-
osure to environmental factors, or ascertainment differences be-

ween studies, among other possibilities. Despite this, by clustering
hese weak signals with prior knowledge of biological pathways
nd networks, it is possible to identify molecular systems underly-

ng complex traits.
A major limitation of our approach and those based on pre-

efined gene-sets (e.g., [10,11,18,19,51]) was the relatively low or
iased coverage of the protein interactome, which only included
pproximately 8000 genes of the approximately 21,000 genes cov-
red by the GWAS analyzed. However, this will improve as more

Enrichment p Value Fraction of Genes

1 � 10�6 17/121
3 � 10�6 19/126
1 � 10�5 15/83
1 � 10�7 15/83
4 � 10�7 19/126
8 � 10�7 23/174
4 � 10�14 23/94

activity in hepatocytes 3 � 10�4 4/9
ia LXR, NF-Y and SREBP 4 � 10�4 5/22

ach result is denoted by a broad category description followed by a specific
�.05.
ctor-Y; PPIN, protein–protein interaction network; SREBP, sterol regulatory

s

PPIN-1576 PPIN-5572

Fold Enrichment p Fold Enrichment p

2.36 1E-11 2.56 2E-09
2.01 7E-10 2.05 8E-06
1.91 2E-08 1.97 1E-05
2.40 2E-07 1.88 8E-05
1.93 2E-07 2.39 1E-04

category. Fold enrichment correspond to the enrichment of the networks
thase
lism v

ses. E
rate
twork

ology

eported p values are corrected for 120 tests (4 networks � 30 ontology
in–protein interaction network (PPIN)-119 and PPIN-6001.
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experiments are annotated in the public databases. In summary, we
find a significant and replicable association with PPIN subnetworks
involved in transmission of nerve impulse and signaling pathway as
neuropeptides, Wnt and Notch with BD. We suggest that these
approaches are highly complementary to large meta-analytical
studies based on single SNP analyses. Our results strongly suggest
that BD genetic research can benefit by integrating GWAS and
gene-expression studies. However, our results do require replica-
tion in additional genetic and gene-expression samples, and func-
tional studies will be needed to explore the molecular mechanisms
mediating the effects of genetic variants within these networks.
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