

Finding shortest paths on real road networks:

 the case for A*

by

W. ZENG† and R.L. CHURCH*‡

†Faculty of Information Engineering, China University of Geosciences, 388 Lumo

Road, Hongshan District, Wuhan 430074, Hubei Province, China

‡Department of Geography, University of California, Santa Barbara; Santa Barbara, CA

93106-4060, USA

* Corresponding author

Running title: Shortest paths and A*

December 12, 2007

Abstract

The problem of identifying the shortest path along a road network is a fundamental

problem in network analysis, ranging from route guidance in a navigation system to

solving spatial allocation problems. Since this type of problem is solved so frequently,

it is important to craft an approach that is as efficient as possible. Based upon past

research it is generally accepted that several efficient implementations of the Dijkstra

algorithm are the fastest at optimally solving the ‘one-to-one’ shortest path problem

(Cherkassky, et al. 1996). We show that the most efficient, state-of-the-art

implementations of Dijkstra can be improved by taking advantage of network

properties associated with GIS-sourced data. The results of this paper, derived from

tests of different algorithmic approaches on real road networks, will be extremely

valuable for application developers and researchers in the GIS community.

Keywords: shortest path algorithms; A* algorithm; transportation networks

1. Introduction

One of the basic problems of network modeling is to find the shortest path from an

origin to a destination. In 1955, George Dantzig presented a conference paper that

included the first formulation of the shortest path problem. His paper was subsequently

published in Operations Research (Dantzig 1957). Based upon that paper Minty (1957)

suggested a format for solving the shortest path problem using a network represented as

a web of strings and knots, and Ford (1956) developed an algorithm to solve for the

shortest path problem in the presence of some negative arc lengths. Dijkstra (1959)

followed the work of Minty and Ford with a new algorithm that appeared to be

considerably more efficient and required less data storage. The algorithm of Dijkstra

remains to this day as one of the best approaches for optimally solving the simple

shortest path problem where all arcs have nonnegative lengths.

In another early contribution, Hart et al. (1968) developed a search strategy, called

A*, to solve for minimum cost paths. The A* approach differs from other methods as it

incorporates an estimate of the cost of ‘path-completion.’ For certain classes of

estimating functions, A* will find the optimal path.

Over the past 50 years, there has been continued and sustained interest in

developing faster algorithms for solving the shortest path problem, because this

problem is applied in a wide variety of areas including telephone call routing on

communication networks and vehicle routing on road networks. The main objective of

this paper is to provide a direct comparison of A* with what is considered to be the best

implementations of shortest path algorithms in order to identify the most efficient

approach when using data that is sourced from GIS. Over the last decade there have

been several notable attempts to compare shortest path algorithms (see Cherkassky et al.

(1996) and Zhan and Noon (1998)). Notably lacking from past work is a head-to-head

comparison of A* and efficient implementations of Dijkstra. This is somewhat

understandable given that A* requires a function for estimating the completion cost of a

path. Because of this, A* is not suitable for many shortest path applications, however, it

is potentially ideal for an application using information sourced from GIS. One of the

earliest tests of A* is due to Golden and Ball (1978) on Euclidean networks (i.e. a

network defined in r-dimensional Euclidean space with the travel cost of each arc

proportional to the straight line distance between the nodes it connects) where they

found that A* expanded no more than about 10% of the nodes than what would be

expanded by the Dijkstra algorithm. This possibility was also recognized by Shekhar et

al. (1993, also see Shekhar and Fetterer 1996) where they conducted preliminary tests

of A* applied to the street network of Minneapolis and compared it to the Dijkstra

algorithm as well as a ‘breadth first’ search method. Their overall conclusion was

unclear when they suggested that each algorithm appears to have some advantage over

the others, depending upon the problem being solved and the resulting path length.

While developing an approach to solve for shortest paths on German roads, Ertl (1998)

essentially dismissed A* as a viable alternative when he stated that A*, at best, is

modestly faster than Dijkstra’s algorithm. Thus, virtually all previous research has

either ignored the existence of A*, tested A* on a specialized problem or concluded

that it is perhaps as good as or modestly better than the Dijkstra algorithm. In a recent

review Fu et al. (2006) state that A* is competitive to Dijkstra-based approaches, but

then emphasize the possible advantages of using A* as a heuristic instead of as an

algorithm. Thus, it is impossible to discern from past work whether A* is a competitive

technique to the most efficient encoding of the Dijkstra algorithm or a ‘label-

correcting’ algorithm like the two queues method of Pallottino (1984). Our main

objective is to demonstrate the relative value of A* in solving simple origin-to-

destination shortest path problems on real road networks with respect to what is

considered to be state-of-the-art encodings of Dijkstra’s and label-correcting algorithms.

The results of this paper, derived from real road networks, will be extremely valuable

for application developers and researchers in the GIS community. In the next section

we present a detailed description of shortest path algorithms. Included in this is a

description of the A* approach. We follow that with a discussion of how we

implemented and tested A* and compared A* to other approaches. Then we present

detailed comparisons using networks from two regions of California, USA (Los

Angeles and Santa Barbara counties). We conclude with a set of recommendations in

terms of further research and suggestions for embedding A* in GIS functionality.

2. Background

The literature on shortest path algorithms (SPA) is quite long and detailed. For more

details than we provide here the interested reader should consult Gallo and Pallottino

(1986), Cherkassky et al. (1993), Dreyfus (1969) and Fu et al. (2006). The problem of

concern is to find the shortest distance route from a pre-specified origin to a pre-

specified destination on a road network that either is sourced from a GIS or resides in a

GIS. We make no distinction here as to whether the shortest path algorithm is to be

tightly coupled or loosely coupled with the GIS.

Before discussing details of various shortest path algorithms, it is important to first

introduce some general notation about a network. Following Gallo and Pallottino

(1986), we utilize the symbol G(N,A;l) to represent a directed network with n=|N|

nodes, m=|A| arcs and a length function l:A->R where R 0 (i.e. l is a set of arc lengths

of real values greater than or equal to zero). We denote the length of a specific arc (i,j)

by l(i,j). For node i, we define arc set FS(i) = Ajiarcji ),(|),(as its forward star,

and SUC(i)=  Ajiarcj ),(| as the set of i’s successors. The forward star is a

commonly used data structure which is a list of those arcs that are rooted at node i and

are directed to other nodes. We refer to the source of a shortest path or the root of a

shortest path tree (SPT) as node s. In the context of the one-to-one shortest path

problem, we refer to the destination as node t.

Gallo and Pallottino (1986) stated that almost all SPT algorithms of practical

interest can be derived from one single prototype method. This prototype can be

structured as follows:

Step 1: Begin with any directed tree T rooted at s and, for

each vN, let d(v) be the length of the path from s to v

in T;

Step 2: Let (i,j) A be an arc for which d(i)+l(i,j)<d(j), then

adjust the vector d by setting d(j)=d(i)+l(i,j), and

update the tree T by replacing the current arc incident

into node j by the new arc (i,j);

Step 3: Repeat step 2 until d(i)+l(i,j)≥d(j) for every (i,j) A.

The basic idea behind this prototype is that, one first begins with a tree T rooted at

origin s, and then iteratively updates this tree by replacing the arcs until all the arcs in

the tree meet Bellman’s optimality conditions (Bellman 1958), which is to say that for

every arc (i,j), the path length from origin s to node i plus the length of arc (i,j) is no

less than the path length from s to j.

Most of the shortest path algorithms follow the above prototype. In fact, all of the

SPAs that are considered to be efficient in past tests can be defined within the prototype

structure. The basic differences only occur in determining the order in which the

improvements of step 2 are made and in the data structure used to store the list of

candidates (arcs or nodes) for possible improvement. The famous Dijkstra algorithm is

also consistent with this prototype. It applies a best-first selection strategy at step 2.

Essentially, with a best first strategy, nodes of the shortest path tree are identified in

order of the distance from the origin. Thus, the optimality criterion is satisfied in order

of distance from the origin. We will denote the Gallo and Pallottino prototype as the

GP algorithm class for the SPT problem, which includes all label-setting algorithms

such as Dijkstra (1959), label correcting algorithms such as Pallottino’s algorithm with

two queues (TWO-Q) and threshold based algorithms such as Glover and Klingman

(1980).

One of the most comprehensive reviews and tests of SPAs was published by

Cherkassky et al. (1996). In that research, a number of algorithms were tested along

with several proposed refinements. To their credit, they attempted to produce a level

playing field, where all tested algorithms were coded in C with a concerted effort to

make each as efficient as possible. In addition, all code was made available as open

source. They tested 17 implementations of SPAs on a number of randomly generated

networks and concluded that no single algorithm consistently beat all others over all

problem classes. Overall, they suggested that the Dijkstra algorithm implemented with

a double-level bucket structure (DIKBD) is the best algorithm for networks with

nonnegative arc lengths. The double-bucket structure represents the approach used to

track and identify the next node to add to the shortest path tree (i.e. the next closest

node to the origin). Using the open source codes written by Cherkassky et al. (1996),

Zhan and Noon (1998) conducted an evaluation of 15 of the 17 algorithms on a variety

of real road networks. They concluded that TWO-Q, DIKBD and the Dijkstra algorithm

incorporating approximate buckets (DIKBA, which is a different variant of the bucket

approach than DIKBD) are the three fastest one-to-all shortest path algorithms. In a

subsequent study, Zhan and Noon (2000) compared these three algorithms for the one-

to-one shortest path problem on 10 different road networks. They suggested that

DIKBA is the best choice for the case when shortest paths are somewhat short and that

Pallottino’s TWO-Q is the best choice in situations where the shortest paths are

relatively long. Given the work of Cherkassky et al. (1996) and Zhan and Noon (1998,

2000) one can conclude that the top three candidates for SPA application on real road

networks are two versions of Dijkstra’s algorithm (DIKBA and DIKDB), and

Pallottino’s TWO-Q algorithm. This past research, although meticulous, falls short in

terms of three major areas. First, all real networks that were tested can be considered

relatively small when compared to many GIS networks. Second, all tests performed on

large networks involved random graphs, which lack geographically integrity. These two

factors together could certainly skew the overall results and therefore the conclusions as

well. Third, no attempt was made to test A* as a viable approach. Therefore, a balanced

test of the top SPA candidates does not exist and conclusions drawn in past work may

be misguided. In the next section we will introduce the A* approach. We will also

provide what we think is a plausible explanation as to why it has been ignored in

previous tests of solving the one-to-one shortest path problem.

3. The A* heuristic

The A* algorithm was originally presented by Hart, et al. (1968). It was designed to

solve for the shortest path between an origin and a destination. Suppose that in addition

to the network of nodes and arcs that we have information in which we can estimate the

distance from any one node to the destination. Formally, let h(i) = the estimate of

completing the path from node i to the destination node t. One candidate for h(*) is the

Euclidean distance measure. The Euclidean distance measure is always a lower bound

on what it would take in distance to complete a path from i to node t on a Cartesian

plane (for a large region it would be the distance of the great circle arc). The A*

algorithm for solving the one-to-one shortest path problem can be described as follows:

Step 1: Begin by setting d(i)=+∞ for each Ni ; next set

g(s)=0 and d(s)=g(s)+h(s); finally, let S={s};

Step 2: Node selection: identify node Sv where

)()(idvd  for all Si ; set S=S - {v};

Step 3: Stopping criteria: if v=t, stop as the shortest path to

destination t has been found; otherwise go to step 4;

Step 4: Expanding: for each node w where arc (v,w) A , if

),()()(wvlvgwg  then update g(w)= g(v) + l(v,w),

set d(w) = g(w)+h(w) and when Sw let S=S  w ;

after all updates have been made go to Step 2.

Like the Dijkstra algorithm, the A* algorithm maintains a set S of candidate nodes

(nodes which have yet to be selected as the next closest node to the origin) and applies

a best-first method to select from this list the next node to expand/scan. When viewed

from a myopic perspective, A* is exactly the same as Dijkstra’s, however, A* also

includes a forward-looking component, which is an estimate of the length to complete

the path to the destination from a specific node. When node i is placed on the candidate

list, S, the A* algorithm establishes a temporary distance label with a function

consisting of two parts: d(i)=g(i)+h(i) where g(i) is the estimated length of the shortest

path from the origin s to node i, and h(i) is the estimated length of the shortest path

from i to the destination t. If h(i)=0 for all nodes i, then A* is essentially the same as

Dijkstra’s SPA. One can think of the estimated completion costs, h(*), as a type of

penalty, where nodes closer to the destination are penalized less than nodes that are

further away from the destination. The h(*) component of the node label helps direct

the search space towards the destination, whereas Dijkstra’s algorithm tends to expand

the search space uniformly in all directions. Although both procedures identify and

label nodes in order of distance, Dijkstra labels nodes in order of increasing distance

from the origin and A* in order of the increasing distance from the origin plus the

estimate of the completion distance to the destination.

Up to this point, we have not said much about the definition of h(*) or its

implementation. In fact this is the key issue which controls both the efficiency and

optimality of the A* algorithm. We have already defined the h(i) function as an

estimate for completing the path from node i to the destination, node t. Depending upon

the definition of h(*), A* is either a heuristic or an optimal algorithm. If for every node

i, h(i) does not exceed the actual shortest path distance from i to destination t, then h(i)

is said to be admissible. Hart et al. (1968) proved that if h(i) is admissible, then A* is

an optimal algorithm. Furthermore, if for every arc (i,j), h(*) satisfies the triangle

inequality: h(i) ≤ l(i,j)+h(j) and h(t)=0, then, h(*) is said to be consistent. If h(*) is

consistent, every node enters set S at most once (see Nilsson 1971 and Pearl 1988).

Consistency can help in reducing the total amount of node selection and expanding,

thus making A* faster than what it otherwise would be. Therefore, A* is an algorithm

when h(*) is admissible, and labels are set and not changed when h(*) is consistent.

Although A* could be used as a heuristic, depending upon the definition of h(*),

our intention here is to employ A* as an algorithm and solve for the optimal shortest

path connecting an origin and a destination. Thus, our selection of an h(*) function

needs to be admissible. In the implementations of A* in this paper, we define h(i) as the

Euclidian distance between node i and t: 22)()()(titi yyxxih  , where

),(rr yx represents the coordinates for node r . It is obvious that for this definition, that

h(*) is both admissible and consistent. We can compute h(i) by using positional

coordinates for node i and node t (data which is essential to GIS functionality in

plotting a map of the network).

Like all efficient implementations of Dijkstra, an efficient implementation of A*

needs a “priority queue” for storage of the candidate (or opened) nodes (for example

double buckets or approximate buckets. The priority queue data structures that are

adopted in label-setting algorithms (e.g. double buckets or approximate buckets), with

some modifications, can also be used in A*. In our experiments, we utilize three kinds

of data structures to implement priority queues for A* algorithm, namely k-array heap,

double-level buckets and approximate buckets. To do this, we utilized the shortest path

codes that have been made available by Cherkassky et al. (1996). In the next section we

describe an environment in which we test A* along with what is considered to be the

best shortest path algorithms, namely, DIKBA, DIKDB, and TWO-Q.

The principal test of a shortest path algorithm is the computational time that is taken

to solve a given set of problems. For Cherkassky et al. (1996) the problem set was

composed of a set of random graphs. Randomly generated graphs do not reflect any

form of geographical reality. They are comprised of a set of nodes and arcs where the

arcs and their distances are determined randomly. In general, searching for the shortest

path on a random network can be a computational challenge, presenting in many cases

a worst-case type of problem. Thus, from a theoretical point of view, such testing can

be considered ideal. But from a practical point of view, the most efficient SP algorithm

for random networks may not be the best algorithm for geographically realistic

problems. It makes sense to test shortest path algorithms on real road networks, like the

work of Zhan and Noon, in order to identify nuances between approaches as well as

identify those algorithms that perform the best. Unfortunately, past research has

concentrated on analyzing algorithms primarily published in the operations research

literature and ignored A*. In fact, even research reviews concentrate on SP algorithms

presented in this literature (see e.g. Gallo and Pallottino (1986)). Even when SP

algorithms are tested on geographically real networks, they are often limited to OR-

based algorithms (see Zhan and Noon, 1998). Thus, the A* algorithm that is found in

the artificial intelligence literature has been virtually ignored. To be fair, A* has

probably been ignored by many as it relies on information that is not present in

randomized graphs. But, if the problem has a geographical basis, like a real road

network, then a comparison of algorithms should include A*.

4. Experimental environment

In previous work, both Cherkassky et al. (1996) and Zhan and Noon (1998) tested a

number of shortest path algorithms. What makes these two papers important is the fact

that Cherkassky et al. spent considerable effort at developing efficient codes of 17

different SPA approaches involving combinations of algorithms (e.g. Dijkstra) and

priority queue data structures (e.g. double buckets) and the fact that Zhan and Noon

tested these same implementations on real road networks. Their conclusions were quite

similar, in that they both found that the top three performers were the double bucket

version of the Dijkstra algorithm (DIKDB), the approximate bucket version of the

Dijkstra algorithm (DIKBA) and Pallottino’s TWO-Q algorithm. Because of the

meticulous work of Cherkassky, it is clear that these three techniques are candidates for

the best optimal, one-to-one, shortest path algorithm applied to road networks.

Because Cherkassky et al. (1996) have placed in the public domain the codes they

developed, we began our research with this library of codes. Cherkassky et al. coded

every algorithm in C to run on the Sun UNIX operating system (Solaris) as a console

program. We integrated the DIKBA, DIKDB, TWO-Q, and the Dijkstra algorithm

using k-Heap (DIKH) codes of Cherkassky et al. into one MS Windows graphical user

interface (GUI) application. We included the DIKH method as it is perhaps the most

popular implementation of Dijkstra, is considered to be efficient, is easy to implement

and is incorporated in many existing GIS applications. All the codes were compiled

with MS Visual Studio 6.0 using the O2 optimization option (maximizing speed). Since

our tests involved repeated execution of the SPAs for selected sets of origin and

destination pairs, we modified the original codes to eliminate cumulative memory

occupancy.

All of the original codes read network data from an ASCII file. This file included

data fields for nodes, arcs, and arc lengths, but contained no position information of the

node or arc features. We augmented the file format to integrate a small amount of

geographical information, i.e. the positional coordinates of nodes on the road network.

We transferred road network data from a GIS database into the expanded file format,

including positional coordinates for all nodes. In the process of transferring data from

the GIS, data checks were made and each bidirectional link was mapped as two directed

arcs. The arc lengths were magnified by a factor of 1000 and truncated to integers.

<<Place Table 1 here>>

We then developed three different codes of A* based upon the type of priority-

queue implementation. These new codes are A* with k-heap (ASH), A* with double

buckets (ASBD), and A* with approximate buckets (ASBA). We took advantage of the

Cherkassky et al. encodings of priority-queue structures in our codes, so the final codes

represent extended versions of what was developed by Cherkassky et al. We developed

these three codes in order to not only test A* against competitive SPAs, but also

investigate which implementation would be best for A*. Table 1 summarizes the seven

different algorithms tested in our experiments. This includes the three codes that

Cherkassky et al. and Zhan and Noon found as most efficient, three different versions

of A* and the classical DIKH.

Finally, we used road network data from two counties in California, USA (Santa

Barbara and Los Angeles) for testing the algorithms. Details concerning the two

networks are shown in Table 2. The Santa Barbara network is a representative of a

network of medium size and the Los Angeles network is considered to be relatively

large. In tests conducted by Zhan and Noon (1998), no network exceeded a size of

100,000 nodes. Using the LA dataset provides better insight in solving problems on

large networks. For each data set, we randomly selected 500 pairs of points, where each

pair represented an origin node and a destination node. All algorithms were tested 500

times on each data set, using the same sets of origins and destinations. All

computational results were developed on a 2.8GHZ Pentium processor, using 2GB of

RAM and running Windows XP Professional version 5.1.

<<Place Table 2 here>>

5. Experimental results

For a given road network, we ran all seven algorithms for each of the 500 source-

destination node pairs. We used mean execution time as the metric of algorithm

efficiency, so for each individual source-destination pair, each algorithm was run 50

times and the mean runtime was calculated. Table 3 presents results for the 1000

different shortest path problems solved (500 problems on each of two datasets) using

the seven different algorithms. The upper half of the table presents results in terms of

mean execution time (seconds). Notice for both networks that the fastest routine on

average is a version of A* (ASBA). Also note that TWO-Q has the worst performance

on average. The lower half of the table presents results of A* relative to similarly

encoded versions of Dijkstra. That is, ASH is compared to DIKH, ASBD is compared

to DIKBD, and ASBA is compared to DIKBA. The results presented in the lower half

of the table indicate that a particular encoding of A* always represents an improvement

over its counterpart encoding of Dijkstra.

<<Place Table 3 here>>

For the medium size network of SB, the double-level bucket implementation of the

priority-queue tends to perform poorly for both Dijkstra and A*. However for a larger

network such as LA, performance of the double-level bucket implementation

approaches the efficiency of the approximate bucket implementation. For the smaller

data set of SB, the runtimes of A* are 60%-70% of those of Dijkstra’s. However, in the

case of the LA data, A* implementations appear to be of obvious superiority, where

solution times average less than half of what is needed for a similarly encoded Dijkstra

algorithm. For the heap implementations, ASH spends just 38.7% of the time of

Dijkstra employing k-heap.

The results demonstrate that A* is not only competitive, but appears to be superior

to what has been considered best for real road networks. This means that spatial data in

the form of coordinates of the nodes can be used to estimate completion costs in a form

that is not only admissible (using Euclidean distance formula) and therefore optimal,

but can save on overall computational effort, even when accounting for the added

computational burden of making a significant number of Euclidean distance

calculations. The reason for this is that the algorithm tends to search among a

considerably smaller set of nodes before identifying the shortest path to the destination

than what is required by the Dijkstra algotithm.

Figures 1 and 2 presnt details based upon path complexity. These two figures give

plots corresponding to the SB and LA datasets respectively. Each graph is a plot of the

mean execution time as a function of the number of nodes within the shortest path (a

surrogate measure for path complexity and length). For the 500 shortest paths computed

for each data set, the paths were analyzed in order to count the number of nodes

traversed along the path. Nodes encountered within the paths ranged from 8 to 636 for

SB and from 25 to 696 for LA. We parceled out the resulting counts into 30 equal

intervals, which were used for the plots in Figures 1 and 2. For each interval, the point

represents the mean solution time for the respective algorithm for all paths assigned to

that interval. Note that the plot for SB depicts only 29 intervals, as one of the equal

sized intervals did not include any paths. As the number of nodes used in the shortest

path increases, the complexity and possibly the distance of the path increases. There is

a notable trend for all algorithms, except TWO-Q, where execution time increases with

increases in path complexity/distance.

 <<Place Figure 1 here>>

As a label-correcting algorithm, the TWO-Q algorithm maintains a relatively stable

performance with respect to the lengths of shortest paths. This is not a surprising result,

because TWO-Q cannot stop until it has found all shortest paths from the origin node to

all other nodes, rather than just the selected destination node. For the SB data, the

average time of TWO-Q is lower than DIKH and DIKBD for modest to high

complexity paths. It is also better than ASH and ASBD for paths of high complexity.

But, the average time of TWO-Q is always higher than those of DIKBA and ASBA. For

the LA data, the performance of TWO-Q is a bit more erratic and tends to outperform

only DIKH some of the time.

<<Place Figure 2 here>>

It is important to understand the phenomena depicted in the graph of Figure 2 for

LA as path complexity/distance increases. At the far rightmost interval, you can

observe that the solution times for the A* implementations tend to converge to their

counterpart Dijkstra implementations. Although this may seem somewhat

counterintuitive, it is to be expected. When the source node and destination node are so

far apart (in terms of nodes used in the optimal path) that the shortest path between

them almost forms a diagonal of the network (i.e. one of the longest, shortest paths

possible), the search space of A* tends to approach that of Dijkstra, as both path

searches cover most of the network. This reduces the effectiveness of using a function

to estimate the completion costs of the path (i.e. h(*)), especially considering that it

takes time to compute h(*).

Overall, the results indicate that DIKBA is the best Dijkstra algorithm

implementation. This is especially true since DIKBA’s computing time gently increases

as path complexity increases. Its performance is slightly better than ASH and ASBD for

some of the less complex path problems found in the SB dataset. The performance of

DIKBA, however, is eclipsed by the faster implementations of A*. With respect to the

three A* implementations, ASBA has the lowest average time as well as the lowest

times among all seven tested algorithms on both networks. Given that Zhan and Noon

concluded that DIKBA and DIKBD are best for real road networks, and given that we

have used essentially the same codes of DIKBA and DIKBD in our comparison with

the A* implementations developed as a part of this research, the computational results

presented in this paper clearly demonstrate that A* implementations are superior when

applied to geographical data.

6. Concluding remarks

We tested four algorithms of the Gallo-Pallottino (GP) class of shortest path

algorithms and three different implementations of the A* algorithm applied to road

networks from two counties of California, USA. Of the four ‘GP-class’ of SP

algorithms, three of them are considered to be the fastest shortest path algorithm

implementations tested in the literature. From the experimental results presented here,

we can conclude that on real road networks that the A* algorithm is more efficient than

the GP-class algorithms. As the size of the network increases, A*’s performance tends

to improve over that of the best of the GP-class. Among the three implementations of

A*, A* with approximate buckets (ASBA) has the best performance. Among the seven

algorithms tested, ASBA virtually dominated all of the other algorithms for both

networks.

Even though the Dijkstra algorithm is one of the earliest developed SPAs, it has

continued to be proven as one of the most efficient based upon the use of an efficient

method to track the search list. Because it has survived the test of time, it has been

applied in many domains and has been the algorithm of choice within the GIS

community for many years. Unfortunately, the Dijkstra process is oblivious to spatial

layout and does not take advantage of the spatial attributes readily available in a GIS

setting. The A* algorithm, however, can take advantage of spatial coordinates in

trimming the search for the shortest path. It is this fact that allows the A* approach to

outperform Dijkstra for real road networks. Our experiments demonstrate that on real

road networks A* outperforms the best implementations of the Dijkstra algorithm by a

significant margin. In fact a simple implementation of the A* algorithm can save more

than half of the runtime when the network is relatively large. In that sense, one may

conclude that implementations of Dijkstra in GIS tend to spend considerably more

time than what is necessary for solving shortest path problems. Consequently, future

GIS applications requiring a shortest path algorithm should incorporate A* constructs.

We believe that we have conclusively determined that A* is one of the most

efficient shortest path algorithms, and outperforms other classic shortest path

algorithms when spatial coordinates are present in the data base. But, our

implementation was somewhat simple in that it used the Euclidean distance metric as

an estimate of completion costs. It may be possible to further improve the performance

of the A* algorithm for solving the shortest path problem, by developing an improved

lower bound heuristic function, h(*). The more accurate the estimate of completion cost

is, the fewer nodes the A* algorithm is likely to visit and the faster the algorithm will

be. It may also be possible to reduce the computations necessary to compute h(*) (see

the discussion of Hart et al. 1968 and Nilsson 1971) as well as to apply a better

implementation of the priority queue list of open nodes. For example, Cherkassky et al.

(1999) developed a structure called a ‘hot queue’ which is a combination of multi-level

buckets and heap. A ‘hot queue’ implementation of A* might lead to even better

performance than what has been achieved in this paper. Furthermore, other techniques

such as the bi-directional search approach of Pohl (1971) and the strategies discussed in

Fu et al. (2006) could prove to be very fruitful directions in future research.

Although we have shown that A* is an approach that should be part of the GIS tool

box, it is not clear whether there may be other productive ways in which to take

advantage of geometrical and geographical information of road networks during the

state-space search. Road networks are planar (or nearly planar), spatially coherent

(nodes which are close to some node are also close to each other) and are often

somewhat sparse graphs. If these characteristics are encoded to direct a shortest path

search, then perhaps A* can be outclassed by a spatially coherent algorithm. In fact,

several studies have been conducted which utilize geographical or geometrical

characteristics of networks to speed up path search. Among them, the most remarkable

is the radius constrained search method of Ertl (1998) and the reach method of Gutman

(2004) to prune expanded nodes and reduce the effective search space. Since both of

these methods require a time-consuming preprocessing step to construct ‘guidance’

data for the network, they are probably limited to solving static networks.

Acknowledgements

This work was done while Dr. Wen Zeng was visiting the Department of

Geography at the University of California, Santa Barbara. We wish to acknowledge the

generous support of the China University of Geosciences that was provided to Dr. Wen

Zeng for study leave at UCSB. We would also like to acknowledge Boris V.

Cherkassky, Andrew V. Goldberg and Tomasz Radzik for making their encodings of

shortest path algorithms available in the public domain.

References

BELLMAN, R., 1958, On a routing problem. Quarterly of Applied Mathematics, 16, pp.

87-90.

CHERKASSKY, B.V., GOLDBERG A.V. and RADZIK, T., 1996, Shortest paths algorithms:

theory and experimental evaluation. Mathematical Programming: Series A

and B, 73, pp. 129-174.

CHERKASSKY, B.V., GOLDBERG, A.V. AND Silverstein, C., 1999, BUCKETS, HEAPS, LISTS

AND MONOTONE PRIORITY QUEUES. SIAM Journal on Computing, 28, pp. 1326-

1346.

DANTZIG, G.B., 1957, Discrete-variable extremum problems. Operations Research, 5,

pp. 266-277.

DIJKSTRA, E.W., 1959, A note on two problems in connexion with graphs. Numerische

Mathematik, 1, pp. 269-271.

DREYFUS, S.E., 1969, An appraisal of some shortest-path algorithms. Operations

Research, 17, 395-412.

ERTL, G., 1998, Shortest path calculation in large road networks, OR Spektrum, 20, 15-

20.

FORD, L.R., 1956, Network flow theory. Technical Report P-932, The Rand

Corporation, Santa Monica, CA.

FU, L., SUN, D. and RILETT, L. R., 2006, Heuristic shortest path algorithms for

transportation applications: state of the art. Computers and Operations

Research, 33, pp. 3324-3343.

GALLO, G. and PALLOTTINO, S., 1986, Shortest path methods: a unifying approach.

Mathematical Programming Study, 26, pp. 38-64.

GOLDEN, L.B. and BALL, M., 1978, Shortest paths with Euclidean distance: an

exploratory model. Networks, 8, pp. 297-314.

GUTMAN, R., 2004, Reach-based routing: a new approach to shortest path algorithms

optimized for road networks. In Proc. 6th International Workshop on

Algorithm Engineering and Experiments (ALENEX), pp. 100-111.

HART, E.P., NILSSON, N.J. and RAPHAEL, B., 1968, A formal basis for the heuristic

determination of minimum cost paths, IEEE Transactions on System Science

and Cybernetics, 4, pp. 100-107.

MINTY, G., 1957, A comment on the shortest route problem. Operations Research, 5, pp.

724.

NILSSON, J.N., 1971, State-space search methods. Chapter 3, pp. 43-79. In Problem-

solving methods in artificial intelligence (New York: McGraw-Hill).

PALLOTTINO, S., 1984, Shortest-path methods: complexity, interrelations, and new

Propositions. Networks, 14, pp. 257–267.

PEARL, J., 1988, On the discovery and generation of certain heuristics. In Readings from

the AI magazine. American Association for Artificial Intelligence, pp. 58-66.

POHL, I., 1971, Bi-directional search. pp. 127-140, in B. Meltzer and D. Michie, (Eds).

Machine Intelligence (New York: American Elsevier).

SHEKHAR, S., COYLE, M. and KOHLI, A., 1993, Path computation algorithms for

advanced traveler information system, in Proc. Intl. Conf. on Date

Engineering (IEEE Computer Society). Available online at:

http://www.spatial.cs.umn.edu/paper_list.html (accessed 7 September 2006).

SHEKHAR, S. and FETTERER, A. 1996, Path computation in advanced traveler

information systems,. in Proc. Intelligent Transportation Systems. Available

online at: http://www.spatial.cs.umn.edu/paper_list.html (accessed 7

September 2006).

ZHAN, F.B. and NOON, C.E., 1998, Shortest path algorithms: an evaluation using real

road networks. Transportation Science, 32, pp. 65-73.

ZHAN, F.B. and NOON, C.E., 2000, A comparison between label-setting and label-

correcting algorithms for computing one-to-one shortest paths. Journal of

Geographic information and decision analysis, 4, pp. 1-13.

List of Tables and Figure Captions:

Figure 1. A plot corresponding to the dataset of Santa Barbara County that

illustrates the mean execution time as a function of the number of nodes within the

shortest path.

Figure 2. A plot corresponding to the dataset of Los Angeles County that

illustrates the mean execution time as a function of the number of nodes within the

shortest path.

http://www.spatial.cs.umn.edu/paper_list.html
http://www.spatial.cs.umn.edu/paper_list.html

Table 1: Algorithms tested

Table 2. Road network characteristics

Table 3. Average performance for each tested algorithm in terms of average execution

time (seconds) and ratios of execution times between A* and Dijkstra when employing

the same priority queue structure.

