Dataset Open Access

Dataset: Quantifying cell densities and biovolumes of phytoplankton communities and functional groups using scanning flow cytometry, machine learning and unsupervised clustering

Thomas, Mridul K.; Fontana, Simone; Reyes, Marta; Pomati, Francesco


MARC21 XML Export

<?xml version='1.0' encoding='UTF-8'?>
<record xmlns="http://www.loc.gov/MARC21/slim">
  <leader>00000nmm##2200000uu#4500</leader>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">phytoplankton, flow cytometry, automated monitoring, traits</subfield>
  </datafield>
  <controlfield tag="005">20200124192440.0</controlfield>
  <datafield tag="500" ind1=" " ind2=" ">
    <subfield code="a">We are presently using this dataset for multiple publications that are in preparation. To avoid duplicated efforts, we request that you contact the authors if you are interested in pursuing a research project with this data. 

Contact information: 
Mridul K. Thomas - mrit {at} dtu {dot} dk
Francesco Pomati - francesco {dot} pomati {at} eawag {dot} ch</subfield>
  </datafield>
  <controlfield tag="001">977773</controlfield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">Swiss Federal Institute for Forest, Snow and Landscape Research (WSL), Zürcherstrasse 111, 8903 Birmensdorf</subfield>
    <subfield code="a">Fontana, Simone</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">Dept. of Aquatic Ecology, Eawag: Swiss Federal Institute of Aquatic Science and Technology, Überlandstrasse 133, 8600 Dübendorf, Switzerland</subfield>
    <subfield code="a">Reyes, Marta</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">Dept. of Aquatic Ecology, Eawag: Swiss Federal Institute of Aquatic Science and Technology, Überlandstrasse 133, 8600 Dübendorf, Switzerland</subfield>
    <subfield code="a">Pomati, Francesco</subfield>
  </datafield>
  <datafield tag="856" ind1="4" ind2=" ">
    <subfield code="s">3463684</subfield>
    <subfield code="z">md5:83803a569b10da0a5cfd9470a9093d7f</subfield>
    <subfield code="u">https://zenodo.org/record/977773/files/Script 1. Training biovolume estimation.zip</subfield>
  </datafield>
  <datafield tag="856" ind1="4" ind2=" ">
    <subfield code="s">11120055</subfield>
    <subfield code="z">md5:3a95df2dfd1b74d7f1c0d8cbfbaf8920</subfield>
    <subfield code="u">https://zenodo.org/record/977773/files/Script 2. Identifying important variables for data cleaning.zip</subfield>
  </datafield>
  <datafield tag="856" ind1="4" ind2=" ">
    <subfield code="s">8231949693</subfield>
    <subfield code="z">md5:47f082290386235c81547557f5fc92df</subfield>
    <subfield code="u">https://zenodo.org/record/977773/files/Script 3. Generating raw data subset.zip</subfield>
  </datafield>
  <datafield tag="856" ind1="4" ind2=" ">
    <subfield code="s">310054063</subfield>
    <subfield code="z">md5:19c8ffdd62d569e33731f5662db1f474</subfield>
    <subfield code="u">https://zenodo.org/record/977773/files/Script 4. Cleaning by clustering.zip</subfield>
  </datafield>
  <datafield tag="856" ind1="4" ind2=" ">
    <subfield code="s">39347755</subfield>
    <subfield code="z">md5:edf2bf072e05db7d59bdf4ed7ab1bd87</subfield>
    <subfield code="u">https://zenodo.org/record/977773/files/Script 5. Generating cleaned data subset.zip</subfield>
  </datafield>
  <datafield tag="856" ind1="4" ind2=" ">
    <subfield code="s">8321</subfield>
    <subfield code="z">md5:3b4ed742c96e7d46b8128af8b6597655</subfield>
    <subfield code="u">https://zenodo.org/record/977773/files/Script 6. Calculating cell density.zip</subfield>
  </datafield>
  <datafield tag="856" ind1="4" ind2=" ">
    <subfield code="s">24613228</subfield>
    <subfield code="z">md5:f18128da04aa6bad6473493a73524ee0</subfield>
    <subfield code="u">https://zenodo.org/record/977773/files/Script 7. Identifying important variables for group distinction.zip</subfield>
  </datafield>
  <datafield tag="856" ind1="4" ind2=" ">
    <subfield code="s">87201</subfield>
    <subfield code="z">md5:cbd29e56442a2798bc1b9438af98bd67</subfield>
    <subfield code="u">https://zenodo.org/record/977773/files/Script 8. Calculating cell densities of clusters.zip</subfield>
  </datafield>
  <datafield tag="542" ind1=" " ind2=" ">
    <subfield code="l">open</subfield>
  </datafield>
  <datafield tag="260" ind1=" " ind2=" ">
    <subfield code="c">2017-09-28</subfield>
  </datafield>
  <datafield tag="909" ind1="C" ind2="O">
    <subfield code="p">openaire_data</subfield>
    <subfield code="o">oai:zenodo.org:977773</subfield>
  </datafield>
  <datafield tag="100" ind1=" " ind2=" ">
    <subfield code="u">Centre for Ocean Life, Technical University of Denmark, Kemitorvet, Building 202, 2800 Kgs. Lyngby, Denmark</subfield>
    <subfield code="a">Thomas, Mridul K.</subfield>
  </datafield>
  <datafield tag="245" ind1=" " ind2=" ">
    <subfield code="a">Dataset: Quantifying cell densities and biovolumes of phytoplankton communities and functional groups using scanning flow cytometry, machine learning and unsupervised clustering</subfield>
  </datafield>
  <datafield tag="540" ind1=" " ind2=" ">
    <subfield code="u">https://creativecommons.org/licenses/by/4.0/legalcode</subfield>
    <subfield code="a">Creative Commons Attribution 4.0 International</subfield>
  </datafield>
  <datafield tag="650" ind1="1" ind2="7">
    <subfield code="a">cc-by</subfield>
    <subfield code="2">opendefinition.org</subfield>
  </datafield>
  <datafield tag="520" ind1=" " ind2=" ">
    <subfield code="a">&lt;p&gt;This dataset contains all relevant data for the manuscript (in submission) "&lt;em&gt;Quantifying cell densities and biovolumes of phytoplankton communities and functional groups using scanning flow cytometry, machine learning and unsupervised clustering&lt;/em&gt;".&lt;/p&gt;

&lt;p&gt;Code written to analyse this dataset (which may be adapted for other flow cytometry datasets) is found at https://zenodo.org/record/999747&lt;/p&gt;

&lt;p&gt;--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------&lt;/p&gt;

&lt;p&gt;Naming convention for raw flow cytometry data files (located in /Script 3. Generating raw data subset/input/):&lt;/p&gt;

&lt;p&gt;[Allparameters] _ [Year] - [Month] - [Date]  [Hour] [u] [Minute] _ [Depth]&lt;/p&gt;

&lt;p&gt;e.g: Allparameters_2014-07-31 08u08_1.0m&lt;/p&gt;

&lt;p&gt;The date, time and depth indicate the location and time at which the measurement was taken.&lt;/p&gt;</subfield>
  </datafield>
  <datafield tag="773" ind1=" " ind2=" ">
    <subfield code="n">doi</subfield>
    <subfield code="i">isVersionOf</subfield>
    <subfield code="a">10.5281/zenodo.977772</subfield>
  </datafield>
  <datafield tag="024" ind1=" " ind2=" ">
    <subfield code="a">10.5281/zenodo.977773</subfield>
    <subfield code="2">doi</subfield>
  </datafield>
  <datafield tag="980" ind1=" " ind2=" ">
    <subfield code="a">dataset</subfield>
  </datafield>
</record>
241
320
views
downloads
All versions This version
Views 241241
Downloads 320320
Data volume 537.5 GB537.5 GB
Unique views 223223
Unique downloads 8181

Share

Cite as