Dataset Open Access

Dataset: Quantifying cell densities and biovolumes of phytoplankton communities and functional groups using scanning flow cytometry, machine learning and unsupervised clustering

Thomas, Mridul K.; Fontana, Simone; Reyes, Marta; Pomati, Francesco


JSON Export

{
  "files": [
    {
      "links": {
        "self": "https://zenodo.org/api/files/f4a68b7e-7677-4862-adfa-65b02bfed04a/Script%201.%20Training%20biovolume%20estimation.zip"
      }, 
      "checksum": "md5:83803a569b10da0a5cfd9470a9093d7f", 
      "bucket": "f4a68b7e-7677-4862-adfa-65b02bfed04a", 
      "key": "Script 1. Training biovolume estimation.zip", 
      "type": "zip", 
      "size": 3463684
    }, 
    {
      "links": {
        "self": "https://zenodo.org/api/files/f4a68b7e-7677-4862-adfa-65b02bfed04a/Script%202.%20Identifying%20important%20variables%20for%20data%20cleaning.zip"
      }, 
      "checksum": "md5:3a95df2dfd1b74d7f1c0d8cbfbaf8920", 
      "bucket": "f4a68b7e-7677-4862-adfa-65b02bfed04a", 
      "key": "Script 2. Identifying important variables for data cleaning.zip", 
      "type": "zip", 
      "size": 11120055
    }, 
    {
      "links": {
        "self": "https://zenodo.org/api/files/f4a68b7e-7677-4862-adfa-65b02bfed04a/Script%203.%20Generating%20raw%20data%20subset.zip"
      }, 
      "checksum": "md5:47f082290386235c81547557f5fc92df", 
      "bucket": "f4a68b7e-7677-4862-adfa-65b02bfed04a", 
      "key": "Script 3. Generating raw data subset.zip", 
      "type": "zip", 
      "size": 8231949693
    }, 
    {
      "links": {
        "self": "https://zenodo.org/api/files/f4a68b7e-7677-4862-adfa-65b02bfed04a/Script%204.%20Cleaning%20by%20clustering.zip"
      }, 
      "checksum": "md5:19c8ffdd62d569e33731f5662db1f474", 
      "bucket": "f4a68b7e-7677-4862-adfa-65b02bfed04a", 
      "key": "Script 4. Cleaning by clustering.zip", 
      "type": "zip", 
      "size": 310054063
    }, 
    {
      "links": {
        "self": "https://zenodo.org/api/files/f4a68b7e-7677-4862-adfa-65b02bfed04a/Script%205.%20Generating%20cleaned%20data%20subset.zip"
      }, 
      "checksum": "md5:edf2bf072e05db7d59bdf4ed7ab1bd87", 
      "bucket": "f4a68b7e-7677-4862-adfa-65b02bfed04a", 
      "key": "Script 5. Generating cleaned data subset.zip", 
      "type": "zip", 
      "size": 39347755
    }, 
    {
      "links": {
        "self": "https://zenodo.org/api/files/f4a68b7e-7677-4862-adfa-65b02bfed04a/Script%206.%20Calculating%20cell%20density.zip"
      }, 
      "checksum": "md5:3b4ed742c96e7d46b8128af8b6597655", 
      "bucket": "f4a68b7e-7677-4862-adfa-65b02bfed04a", 
      "key": "Script 6. Calculating cell density.zip", 
      "type": "zip", 
      "size": 8321
    }, 
    {
      "links": {
        "self": "https://zenodo.org/api/files/f4a68b7e-7677-4862-adfa-65b02bfed04a/Script%207.%20Identifying%20important%20variables%20for%20group%20distinction.zip"
      }, 
      "checksum": "md5:f18128da04aa6bad6473493a73524ee0", 
      "bucket": "f4a68b7e-7677-4862-adfa-65b02bfed04a", 
      "key": "Script 7. Identifying important variables for group distinction.zip", 
      "type": "zip", 
      "size": 24613228
    }, 
    {
      "links": {
        "self": "https://zenodo.org/api/files/f4a68b7e-7677-4862-adfa-65b02bfed04a/Script%208.%20Calculating%20cell%20densities%20of%20clusters.zip"
      }, 
      "checksum": "md5:cbd29e56442a2798bc1b9438af98bd67", 
      "bucket": "f4a68b7e-7677-4862-adfa-65b02bfed04a", 
      "key": "Script 8. Calculating cell densities of clusters.zip", 
      "type": "zip", 
      "size": 87201
    }
  ], 
  "owners": [
    36199
  ], 
  "doi": "10.5281/zenodo.977773", 
  "stats": {
    "version_unique_downloads": 81.0, 
    "unique_views": 223.0, 
    "views": 241.0, 
    "version_views": 241.0, 
    "unique_downloads": 81.0, 
    "version_unique_views": 223.0, 
    "volume": 537453633562.0, 
    "version_downloads": 320.0, 
    "downloads": 320.0, 
    "version_volume": 537453633562.0
  }, 
  "links": {
    "doi": "https://doi.org/10.5281/zenodo.977773", 
    "conceptdoi": "https://doi.org/10.5281/zenodo.977772", 
    "bucket": "https://zenodo.org/api/files/f4a68b7e-7677-4862-adfa-65b02bfed04a", 
    "conceptbadge": "https://zenodo.org/badge/doi/10.5281/zenodo.977772.svg", 
    "html": "https://zenodo.org/record/977773", 
    "latest_html": "https://zenodo.org/record/977773", 
    "badge": "https://zenodo.org/badge/doi/10.5281/zenodo.977773.svg", 
    "latest": "https://zenodo.org/api/records/977773"
  }, 
  "conceptdoi": "10.5281/zenodo.977772", 
  "created": "2017-09-28T09:51:49.539425+00:00", 
  "updated": "2020-01-24T19:24:40.712301+00:00", 
  "conceptrecid": "977772", 
  "revision": 8, 
  "id": 977773, 
  "metadata": {
    "access_right_category": "success", 
    "doi": "10.5281/zenodo.977773", 
    "description": "<p>This dataset contains all relevant data\u00a0for the manuscript (in submission) \"<em>Quantifying cell densities and biovolumes of phytoplankton communities and functional groups using scanning flow cytometry, machine learning and unsupervised clustering</em>\".</p>\n\n<p>Code written to analyse this dataset (which may be adapted for other flow cytometry datasets) is found at https://zenodo.org/record/999747</p>\n\n<p>--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------</p>\n\n<p>Naming convention for raw flow cytometry data files (located in /Script 3. Generating raw data subset/input/):</p>\n\n<p>[Allparameters] _ [Year] - [Month] - [Date]\u00a0 [Hour] [u] [Minute] _ [Depth]</p>\n\n<p>e.g:\u00a0Allparameters_2014-07-31 08u08_1.0m</p>\n\n<p>The date, time and depth indicate the location and time at which the measurement was taken.</p>", 
    "license": {
      "id": "CC-BY-4.0"
    }, 
    "title": "Dataset: Quantifying cell densities and biovolumes of phytoplankton communities and functional groups using scanning flow cytometry, machine learning and unsupervised clustering", 
    "notes": "We are presently using this dataset for multiple publications that are in preparation. To avoid duplicated efforts, we request that you contact the authors if you are interested in pursuing a research project with this data. \n\nContact information: \nMridul K. Thomas - mrit {at} dtu {dot} dk\nFrancesco Pomati - francesco {dot} pomati {at} eawag {dot} ch", 
    "relations": {
      "version": [
        {
          "count": 1, 
          "index": 0, 
          "parent": {
            "pid_type": "recid", 
            "pid_value": "977772"
          }, 
          "is_last": true, 
          "last_child": {
            "pid_type": "recid", 
            "pid_value": "977773"
          }
        }
      ]
    }, 
    "keywords": [
      "phytoplankton, flow cytometry, automated monitoring, traits"
    ], 
    "publication_date": "2017-09-28", 
    "creators": [
      {
        "affiliation": "Centre for Ocean Life, Technical University of Denmark, Kemitorvet, Building 202, 2800 Kgs. Lyngby, Denmark", 
        "name": "Thomas, Mridul K."
      }, 
      {
        "affiliation": "Swiss Federal Institute for Forest, Snow and Landscape Research (WSL), Z\u00fcrcherstrasse 111, 8903 Birmensdorf", 
        "name": "Fontana, Simone"
      }, 
      {
        "affiliation": "Dept. of Aquatic Ecology, Eawag: Swiss Federal Institute of Aquatic Science and Technology, \u00dcberlandstrasse 133, 8600 D\u00fcbendorf, Switzerland", 
        "name": "Reyes, Marta"
      }, 
      {
        "affiliation": "Dept. of Aquatic Ecology, Eawag: Swiss Federal Institute of Aquatic Science and Technology, \u00dcberlandstrasse 133, 8600 D\u00fcbendorf, Switzerland", 
        "name": "Pomati, Francesco"
      }
    ], 
    "access_right": "open", 
    "resource_type": {
      "type": "dataset", 
      "title": "Dataset"
    }, 
    "related_identifiers": [
      {
        "scheme": "doi", 
        "identifier": "10.5281/zenodo.977772", 
        "relation": "isVersionOf"
      }
    ]
  }
}
241
320
views
downloads
All versions This version
Views 241241
Downloads 320320
Data volume 537.5 GB537.5 GB
Unique views 223223
Unique downloads 8181

Share

Cite as