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Abstract
This paper examines the development of one step, five hybrid point method for the solution of
first order initial value problems. We adopted the method of collocation and interpolation of power
series approximate solution to generate a continuous linear multistep method. The continuous
linear multistep method was evaluated at selected grid points to give the discrete linear multistep
method. The method was implemented using a constant order predictor of order seven over an
overlapping interval. The basic properties of the derived corrector was investigated and found to
be zero stable, consistent and convergent. The region of absolute stability was also investigated.
The method was tested on some numerical experiments and found to compare favorably with the
existing methods.
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1 Introduction
It is remarkable to note that many physical phenomena in sciences, engineering, and medicine,
to mention few, are modeled by equations involving derivatives, which are generally referred to as
differential equations. A differential equation in which the unknown parameter is a function of one
independent variable is called an ordinary differential equations, while that involving two or more
independent variables is called a partial differential equation.

The general form of the initial value problems of ordinary differential equations is in the form;

y(n) = f(x, y, y(1), ...y(n−1)), y(a) = ϕ0, ..., y
(n−1)(a) = ϕn−1. (1.1)
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In most cases, modeled problems do not have analytical solutions; hence numerical methods are
often the only option to solve such problems.

Many physical problems are modeled into first order ordinary differential equations, the few that
are modeled into higher order ordinary differential equations, are solved by reducing them to a system
of first order ordinary differential equations. Hence, the study of first order ordinary differential
equation is important. This paper considers a numerical method of solving first order initial value
problems of ordinary differential equations of the form;

y′ = f(x, y), y(a) = y0, a ≤ x ≤ b <∞, (1.2)

where f(x, y) is a given real valued function in the strip S = [a, b] ⊂ [−∞,∞], which is continuous
within the region. We assumed that f(x, y) satisfies Lipchitz conditions that guaranteed the existence
and uniqueness of the solution to equation 1.2.

Scholars have developed linear multistep method for the solution of 1.1. They developed methods
varying from the discrete linear multistep method to the continuous linear multistep method. According
to [1], the continuous linear multistep method has greater advantages over the discrete method, in
that it gives better error estimation, provides a simplified form of coefficient for further analytical work
at different points, and guarantees easy appropriation of solutions at all interior points within the
interval of integration. Among the authors that proposed the continuous linear multistep method are;
[2],[3],[4], to mention a few. They individually proposed methods which are implemented in predictor
corrector mode, and adopted Taylor series expansion to supply the starting value.

Generally, the major setback of the predictor-corrector method is the high cost of implementation,
as subroutines are very complicated to write because of the special techniques required to supply
starting values. Therefore we seek to address this setback by proposing a method that shares the
properties of both the block method and the predictor corrector method. It should be recalled that [5]
first proposed block method as a predictor to a predictor corrector algorithm. [6], [7],[8] adopted the
Milne’s approach and concluded that though the method is more expensive to implement but it gives
better results than the block method; hence the method follows the Milne’s approach.

2 Methods and Materials

2.1 Derivation of the Corrector
We consider a power series approximate solution in the form

y(x) =

s+r−1∑
j=0

ajx
j , (2.1)

where r and s are the number of interpolation and collocation points respectively. Substituting the
first derivative of 2.1 into 1.2 gives

f(x, y) =

s+r−1∑
j=1

jajx
j−1. (2.2)

Interpolating 2.1 at xn, xn+ 1
6
, xn+ 1

3
and collocating 2.2 at xn+s, s = 0( 1

6
)1 gives a system of non linear

equation in the form
AX = U, (2.3)
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where
A = [a0 a1 a2 a3 a4 a5 a6 a7 a8]T ,

U = [yn yn+ 1
6
yn+ 1

3
fn fn+ 1

3
fn+ 1

2
fn+ 2

3
fn+ 5

6
fn+1]T ,
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Solving 2.3 for a′js using Gaussian elimination method gives a continuous hybrid linear multistep
method in the form

y (t) = αµ (t) yn+µ + h

(
1∑
j=0

β (t) fn+j + βk(t)fn+k

)
, (2.4)

where µ = 0, 1
6
, 1
3
, k = 1

6

(
1
6

)
5
6
, fn+k = f((xn + kh) , y (xn + kh)), t = x−xn

h

α0 = 1
58 879

(
1105 397 280t9 − 4654 320 912t8 + 8116 009 488t7 − 7598 367 000t6+

4136 522 418t5 − 1320 624 081t4 + 233 757 738t3 − 18 630 810t2 + 58 879

)
,

α 1
6

= 1
58 879

(
3224 862 720t9 − 12 733 168 896t8 + 20 296 479 744t7 − 16 688 851 200t6+

7465 893 120t5 − 1734 421 248t4 + 170 636 544t3 − 2177 280t2

)
,

α 1
3

= 1
58 879

(
−4330 260 000t9 + 17 387 489 808t8 − 28 412 489 232t7 + 24 287 218 200t6

−11 602 415 538t5 + 3055 045 329t4 − 404 394 282t3 + 20 808 090t2

)
,

β0 = 1
24 729 180

 20 094 564 240t9 − 85 453 263 360t8 + 151 143 614 712t7

−144 534 487 104t6 + 81 350 668 413t5 − 27 486 167 940t4+
5429 454 157t3 − 572 556 798t2 + 24 729 180t

 ,

β 1
6

= 1
2060 765

(
17 436 863 520t9 − 71 370 079 776t8 + 119 715 654 888t7 − 106 136 094 960t6

+53 407 542 888t5 − 15 160 023 648t4 + 2232 970 848t3 − 130 340 160t2

)
,

β 1
3

= 9
1648 612

(
11 737 401 552t9 − 46 356 200 208t8 + 74 148 407 640t7 − 61 663 976 136t6

+28 457 215 353t5 − 7197 296 085t4 + 917 530 839t3 − 45 746 955t2

)
,

β 1
2

= − 1
1236 459

(
3868 440t2 − 82 463 032t3 + 697 706 352t4 − 3014 282 376t5+

7157 930 472t6 − 9342 961 200t7 + 6255 519 840t8 − 1674 530 496t9

)
,

β 2
3

= 1
1648 612

(
714 921 552t9 − 2534 167 296t8 + 3573 835 992t7 − 2585 556 288t6+

1036 115 577t5 − 230 472 900t4 + 26 422 173t3 − 1211 310t2

)
,

β 5
6

= − 1
2060 765

(
199 104 480t9 − 668 113 920t8 + 895 423 896t7 − 621 418 392t6+

241 167 024t5 − 52 370 640t4 + 5898 456t3 − 266 904t2

)
,

β1 = 1
24 729 180

(
254 100 240t9 − 804 781 008t8 + 1034 093 304t7 − 695 981 160t6

+264 161 709t5 − 56 446 929t4 + 6283 999t3 − 281 955t2

)
,
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Evaluating 2.4 at t = 1 gives

yn+1 −
197 000

58 879
yn −

746 496

58 879
yn+ 1

6
+

1002 375

58 879
yn+ 1

3

= h

(
− 172 225

1236 459
fn − 701 280

412 153
fn+ 1

6
− 666 000

412 153
fn+ 1

3
+ 788 000

1236 459
fn+ 1

2

− 28 125
412 153

fn+ 2
3

+ 115 200
412 153

fn+ 5
6

+ 57 410
1236 459

fn+1

)
, (2.5)

equation 2.5 is our corrector.

2.2 Derivation of the Constant Order Predictor
[8] had developed a block method which we adopted as our constant order predictor. They considered
collocating 2.2 at xn+s,s = 0( 1

6
)1 and interpolating 2.1 at xn to obtained a discrete block method given

as
Ym = eyn + hdf(yn) + hbf(Ym), (2.6)

where,

d =
[

19087
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]T
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6
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17
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560
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945
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945

8
945

−4
2835
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24192
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567
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24192
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3024
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72516

9
35

9
280
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9
280

9
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840

 e =


0 0 0 0 0 1
0 0 0 0 0 1
0 0 0 0 0 1
0 0 0 0 0 1
0 0 0 0 0 1
0 0 0 0 0 1

 ,

kindly refer to [8] for the analysis of the basic properties of this method.

2.3 Implementation of the Method
In order to implement the method, we propose a prediction equation of the form

Y (0)
m = (jh)yn + h

2∑
λ=0

∂λ

∂xλ
f(x, y)(x0,y0), (2.7)

substituting 2.7 into the general block formula (8) gives

Ym = eyn + h[df(yn) + bF (Y (0)
m )], (2.8)

Writing 2.5 in a linearized form gives

YN+1 = YN+µ + h[bF (YN+µ)], (2.9)

where µ is the grid points, YN+µ are the interpolation points and F (YN+µ) are the collocation points,
hence substituting 2.8 into 2.9 gives

YN+1 = 6 YN+µ + h[bF (Ym)], (2.10)

where Ym = YN+µ. 2.10 is our new method
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3 Analysis of the basic Properties of the Corrector

3.1 Order and Error Constant of the Corrector
Let the linear operator `{y(x);h} associated with the hybrid linear multistep method be defined as

`{y(x);h} = y(x)− αµ (x) yn+µ + h
∑1
j=0 β (x) fn+j + βk(x)fn+k ).

Expanding `{y(x);h}in Taylor series and comparing the coefficient of h gives

` {y(x) : h} =

(
C0y(x) + C1hy

′(x) + C2h
2y′′(x) + ...+ Cph

pyp(x)
+Cp+1h

p+1yp+1(x) + Cp+2h
p+2yp+2(x) + ....

)
,

Definition 1 The linear operator ` and the associated continuous linear multistep method 2.5 is
said to be of order p if CO = C1 = C2 = ... = CP = 0 and Cp+1 6= 0. Cp+1 is called the error constant
and implies that the local truncation error is given by

tn+k = Cp+1h
p+1yp+1(x) +O

(
hp+2

)
tn+k,

For our corrector, C0 = C1 = ... = C9 = 0, C10 6= 0 hence the order of the method is 9 with error
constant cp+1 = −4. 875 3× 10−11

3.2 Zero Stability of the Corrector
A Continuous hybrid linear multistep method is said to be zero stable, if the zeros of the first characteristic
polynomial σ(r) satisfies |r| = 1 is simple .

The first characteristics polynomial of 2.5 is given

ρ(z) = z − 197 000

58 879
− 746 496

58 879
z

1
6 +

1002 375

58 879
z

1
3 , (3.1)

equating 3.1 to zero and solving for z gives the roots of the first characteristic polynomial as 0 and 1,
hence our corrector is zero stable

3.3 Consistency of the Corrector
A method is said to be consistent if

• it has order p ≥ 1

• if %(1) = %′(1) = ...%(n−1)(1) = 0, where %(z) is the first characteristic polynomial, n is the
order of the differential equation.

• if %(n)(1) = n!σ(1) where σ(z) is the second characteristic polynomial.

The second characteristic polynomials of 2.5 is given as

σ (r) = − 172 225
1236 459

− 701 280
412 153

z
1
6 − 666 000

412 153
z

1
3 + 788 000

1236 459
z

1
2 − 28 125

412 153
z

2
3

+ 115 200
412 153

z
5
6 + 57 410

1236 459
z,

ρ (1) = 0, ρ
′(1) = σ (1) hence our method is consistent.
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3.4 Convergence
The necessary and sufficient condition for a linear multistep method to be convergent is that it must
be consistent and zero stable. Hence our corrector is convergent.

3.5 Region of Absolute Stability of our Corrector
Definition: A method is said to be absolutely stable if for a given value of h, all the roots zs of the
characteristics polynomial Π(z, h) = ρ(z) + hσ(z) = 0, satisfying |zs| < s, s = 1, 2..., n where h =
λh, λ = df

dy
, substituting the test equation y′ = λy into (7), solving for h = λh and writing r = eiθ,

gives the stability region as shown in Fig. (1)

4 Numerical Experiment
Problem 1

y′ = x− y, y(0) = 0, 0 ≤ x ≤ 1, h = 0.1
Exact solution: y(x) = x+ e−x − 1

ERB→Error in Block-predictor
ER1→Error considering two interpolation
ERN→Error in New Method
ERA→Error in [9]
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Table 1 showing results generated from problem 1

x ERB; ER1 ERN ERA

0.1 1.9595(−11) 2.26688(−13) 9.1770(−14) 0.000
0.2 3.54623(−11) 2.04759(−13) 8.2666(−14) 0.000
0.3 4.81315(−11) 1.84879(−13) 7.4419(−14) 6.0(−10)
0.4 5.80680(−11) 1.67213(−13) 6.7335(−14) 2.0(−10)
0.5 6.56779(−11) 1.50879(−13) 6.0326(−14) 7.0(−10)
0.6 7.13132(−11) 1.36446(−13) 5.4511(−14) 1.0(−10)
0.7 7.52814(−11) 1.23123(−13) 4.9016(−14) 8.0(−10)
0.8 7.78485(−11) 1.11272(−13) 4.4492(−14) 2.0(−10)
0.9 7.92403(−11) 1.00697(−13) 3.9857(−14) 9.0(−10)
1.0 7.96712(−11) 9.11493(−13) 3.6415(−14) 4.0(−10)

Problem 11:

y′ = −y, y(0) = 1, 0 ≤ x ≤ 1, h = 0.1.
Exact solution y(x) = e−x

ERUY→Error in [10]
Table 2: Showing results generated from Problem 11

x ERB ER1 ERN ERUY

0.1 1.9596(−11) 2.2648(−13) 9.3702(−14) 2.5292(−06)
0.2 3.5462(−11) 2.04614(−13) 8.2489(−14) 2.0937(−06)
0.3 4.8131(−11) 1.85074(−13) 7.4606(−14) 2.0079(−06)
0.4 5.8068(−11) 1.67199(−13) 6.7390(−14) 1.6198(−06)
0.5 6.5677(−11) 1.51212(−13) 6.0729(−14) 3.1608(−06)
0.6 7.1313(−11) 1.36668(−13) 5.3179(−14) 2.7294(−06)
0.7 7.5281(−11) 1.23179(−13) 4.8072(−14) 2.5457(−06)
0.8 7.7848(−11) 1.11188(−13) 4.3687(−14) 2.1713(−06)
0.9 7.9245(−11) 1.00530(−13) 4.0578(−14) 3.1008(−06)
1.0 7.9671(−11) 9.05386(−14) 3.5527(−14) 2.7182(−06)

Problem 111:
We Consider the growth model described by the differential equation of the form

dN

dt
= αN,N(0) = 1000, t ∈ [0, 1],

The above growth equation represents the rate of growth of bacteria in a colony. We shall assume
that the model grows continuously without restriction. One may ask; how many bacteria are in a
colony after some minutes if an individual produces an offspring at an average growth rate of 0.2?
We also assume that N(t) is the population size at time t.

The theoretical solution is given by
N(t) = 1000e0.2t, we note that the growth rate α = 0.2 in the growth equation.

ERN→Error in New method
ERS→ Error in [11]
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Table 3: Showing results generated from problem 111
x Exact result Computed result ERN ERS

0.1 1020.2013400267558 1020.2013400267565 6.82121(−13) 1.8303(−11)
0.2 1040.8107741923882 1040.8107741923861 2.04636(−12) 1.2505(−11)
0.3 1061.8365465453596 1061.8365465453599 2.27373(−13) 1.2278(−11)
0.4 1083.2870676749587 1083.2870676749576 1.13686(−12) 3.1377(−11)
0.5 1105.1709180756477 1105.1709180756473 4.54747(−13) 2.2168(−10)
0.6 1127.4968515793757 1127.4968515793755 2.27373(−13) 2.0600(−10)
0.7 1150.2737988572273 1150.2737988572242 3.18323(−12) 2.1714(−10)
0.8 1173.5108709918102 1173.5108709918097 4.54747(−13) 2.2168(−10)
0.9 1197.2173631218104 1197.2173631218095 9.09494(−13) 2.7444(−10)
1.0 1221.4027581601702 1221.4027581601722 2.04636(−12) 4.8999(−10)

Problem IV.
The SIR model is an epidemiological model that computes the theoretical numbers of people

infected with a contagious illness in a closed population over time. The name of this class of models
derives from the fact that they involves coupled equations relating the number of susceptible people
S(t), number of people infected I(t) and the number of people who have recovered R(t). This is a good
and simple model for many infectious diseases including measles. The SIR model is described by
the three coupled equations.

ds
dt

= µ(1− S)− βIS
dI
dt

= −µI − γI + βIS
dR
dt

= −µR+ γI

Where µ, γ and β are positive parameters. Define y to be
y = S + I +R
Adding equations the three coupled equations above, we obtain the following evolution equations

for
y′ = µ(1− y)
Taking µ = 0.5 and attaching an initial condition y(0) = 0.5 (for a particular closed population),

we obtain,
y′(t) = 0.5(1− y), y(0) = 0.5
Whose exact solution is,
y(t) = 1− 0.5e−0.5t

ERB-Error in Block method
ERN-Error in New method
ERS-Error in [11]
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Table 4: Showing results generated from problem IV
x Exact Results ERB ERN ERS

0.1 0.5243852877496430 7.704948e− 014 3.33066(−16) 5.574430e− 012
0.2 0.5475812909820202 1.465494e− 013 6.66133(−16) 3.946177e− 012
0.3 0.5696460117874711 2.090550e− 013 0.0000000 8.183232e− 012
0.4 0.5906346234610092 2.652323e− 013 3.33066(−16) 3.436118e− 011
0.5 0.6105996084642975 3.151923e− 013 1.11022(−15) 1.929743e− 010
0.6 0.6295908896591411 3.599343e− 013 4.44089(−16) 1.879040e− 010
0.7 0.6476559551406433 3.994582e− 013 8.8817(−16) 1.776835e− 010
0.8 0.6648399769821803 4.342082e− 013 4.44089(−16) 1.724676e− 010
0.9 0.6811859241891134 4.647394e− 013 4.44089(−16) 1.847545e− 010
1.0 0.6967346701436833 4.911627e− 013 7.77156(−16) 3.005770e− 010

4.1 Discussion of Results
We have considered four numerical examples in this paper. Problem 1 was solved by [9], where they
proposed a hybrid block method of order seven and adopted classical Range Kutta to provide the
starting values. We solved this problem as shown in Table 1. Problem II was solved by [10]. Problem
III and IV were soled by [11] where they proposed a block method of order six, combining power
series and exponential function as their approximate solution. The results are shown in Tables III and
IV. It has been shown clearly that our method gave better approximation than the existing methods.

5 Conclusion
We have proposed a new method that harnesses the properties of the Predictor Corrector method
and the Block method. The results affirm the claims of [7] and [8] as discussed in section one.
We have equally established that increasing the interpolation points with the same block predictor
improves the method. It has been established in literature that the higher the order of a numerical
scheme, the higher the accuracy . In our future correspondence, we shall consider a case when the
corrector gives results at a non-overlapping interval.

Competing Interests
The authors declare that no competing interests exist.

References
1. Awoyemi D.O., A Class of Continuous Method for General Second Order Initial Value

Problems in Ordinary Differential Equation. J. of Computer Math, 1999; (72):29-37

2. Onumanyi P, Awoyemi D.O, Jator S.N, and Serisena U.W, New Linear Multistep Method With
Constant Coefficient for First Order Initial Value Problems J.N.M.S., 1994;13(7): 37 –51

3. Adesanya A.O, Anake T.A, Oghoyon G.J, Continuous Implicit Method for the Solution
of General Second Order Ordinary Differential Equation. J. Nigerian Association of
Mathematical Physics, 2009; (40):71-78.

4. Kayode S.J and Awoyemi D.O, A Multi derivative Collocation Method for fifth Order Ordinary
Differential Equation. J. of Mathematics and Statistics. 2010; 6(1): 60-63.

5. Milne W.E, Numerical Solution of Differential equation, Wiley Publisher, New York;1953

894



British Journal of Mathematics and Computer Science 4(6), 886-895, 2014

6. Adesanya, O A., Odekunle, M.R. and Anake, T. A. 3 Step Continuous Block Predictor
Corrector Method for the Solution of General Second Order Ordinary Differential Equations.
Journal of Nigerian Association of Mathematical Physics, 21, 2012: 477 - 482

7. Anake T. A, Awoyemi, D. O and Adesanya A. O. One-Step Implicit Hybrid Block Method
for the Direct Solution of General Second Order Ordinary Differential Equations. IAENG
International Journal of Applied Mathematics, 2012: 42(4):224 -228

8. Adesanya A Olaide, Odekunle M. Remilekun and James A. Adewale, Order seven
continuous hybrid method for the solution of first order ordinary differential equations.
Canadian Journal on Science and Engineering Mathematics Vol. 3 No. 4: 2012;

9. Areo E.A, Ademiluyi R.A, and Babatola P.O, Three-step hybrid linear multistep method for
the solution of first order initial value problem in ordinary differential equation ,J.N.A.M.P,
2011; (19):155-158.

10. Yahaya Y.A. and Umar Mohammed. A family of implicit 4-step block Hybrid Collocation
method for accurate and efficient solution of ODEs , Nigerian Journal of Mathematics and
Applications. 2010; Vol.20: pp43-52.

11. Sunday J. Odekunle M.R. and Adeyanya A.O. Order six block integrator for the solution of
first-order ordinary differential equations, IJMSC , 2013;Vol.3 (1).1: 87-96.

—————————————————————————————————————————————-
c©2014 James & Adesanya; This is an Open Access article distributed under the terms of the Creative Commons

Attribution License http://creativecommons.org/licenses/by/3.0, which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.

Peer-review history:
The peer review history for this paper can be accessed here (Please copy paste the total link in your
browser address bar)
www.sciencedomain.org/review-history.php?iid=370&id=6&aid=3374

895

http://creativecommons.org/licenses/by/3.0

	Introduction
	Methods and Materials
	Derivation of the Corrector 
	Derivation of the Constant Order Predictor
	Implementation of the Method

	Analysis of the basic Properties of the Corrector
	Order and Error Constant of the Corrector
	Zero Stability of the Corrector
	Consistency of the Corrector
	Convergence
	Region of Absolute Stability of our Corrector

	Numerical Experiment 
	Discussion of Results

	Conclusion

