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Abstract In this paper We present the Smarandache’s Orthic Theorem in the geometry of

the triangle.
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§1. The main result

Smarandache’s Orthic Theorem
Given a triangle ABC whose angles are all acute (acute triangle), we consider A′B′C ′, the

triangle formed by the legs of its altitudes.
In which conditions the expression:

‖A′B′‖ · ‖B′C ′‖+ ‖B′C ′‖ · ‖C ′A′‖+ ‖C ′A′‖ · ‖A′B′‖

is maximum?
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Proof. We have
4ABC ∼ 4A′B′C ′4AB′C ∼ 4A′BC ′. (1)

We note
‖BA′‖ = x, ‖CB′‖ = y, ‖AC ′‖ = z.

It results that
‖A′C‖ = a− x, ‖B′A‖ = b− y, ‖C ′B‖ = c− z.

B̂AC = B̂′A′C = B̂A′C ′; ÂBC = ÂB′C ′ = Â′B′C ′; B̂CA = B̂C ′A′ = B̂′C ′A.

From these equalities it results the relation (1)
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4A′BC ′ ∼ 4A′B′C ⇒ A′C ′

a− x
=

x

‖A′B′‖ , (2)

4A′B′C ∼ 4AB′C ′ ⇒ A′C ′

z
=

c− z

‖B′c′‖ , (3)

4AB′C ∼ 4A′B′C ⇒ B′C ′

y
=

b− y

‖A′B′‖ . (4)

From (2), (3) and (4) we observe that the sum of the products from the problem is equal
to:

x(a− x) + y(b− y) + z(c− z) =
1
4
(a2 + b2 + c2)− (x− a

2
)2 − (y − b

2
)2 − (z − c

2
)2,

which will reach its maximum as long as x = a
2 , y = b

2 , z = c
2 , that is when the altitudes’ legs

are in the middle of the sides, therefore when the 4ABC is equilateral. The maximum of the
expression is 1

4 (a2 + b2 + c2).

§2. Conclusion (Smarandache’s Orthic Theorem)

If we note the lengths of the sides of the triangle 4ABC by ‖AB‖ = c, ‖BC‖ = a, ‖CA‖ =
b, and the lengths of the sides of its orthic triangle 4A∗B∗C∗ by ‖A∗B∗‖ = c∗, ‖B∗C∗‖ =
a∗, ‖C∗A∗‖ = b∗, then we proved that:

4(a∗b∗ + b∗c∗ + c∗a∗) ≤ a2 + b2 + c2.

§3. Open problems related to Smarandache’s Orthic The-

orem

1. Generalize this problem to polygons. Let A1A2 · · ·Am be a polygon and P a point inside
it. From P we draw perpendiculars on each side AiAi+1 of the polygon and we note by Ai′ the
intersection between the perpendicular and the side AiAi+1. A pedal polygon A1′A2′ · · ·Am′

is formed. What properties does this pedal polygon have?
2. Generalize this problem to polyhedrons. Let A1A2 · · ·An be a poliyhedron and P a

point inside it. From P we draw perpendiculars on each polyhedron face Fi and we note by Ai′

the intersection between the perpendicular and the side Fi. A pedal polyhedron A1′A
′
2 · · ·Ap′

is formed, where p is the number of polyhedron’s faces. What properties does this pedal
polyhedron have?
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